Schaefer's theorem is a complexity classification result for so-called
Boolean constraint satisfaction problems: it states that every Boolean
constraint satisfaction problem is either contained in one out of six classes
and can be solved in polynomial time, or is NP-complete.
We present an analog of this dichotomy result for the propositional logic of
graphs instead of Boolean logic. In this generalization of Schaefer's result,
the input consists of a set W of variables and a conjunction \Phi\ of
statements ("constraints") about these variables in the language of graphs,
where each statement is taken from a fixed finite set \Psi\ of allowed
quantifier-free first-order formulas; the question is whether \Phi\ is
satisfiable in a graph.
We prove that either \Psi\ is contained in one out of 17 classes of graph
formulas and the corresponding problem can be solved in polynomial time, or the
problem is NP-complete. This is achieved by a universal-algebraic approach,
which in turn allows us to use structural Ramsey theory. To apply the
universal-algebraic approach, we formulate the computational problems under
consideration as constraint satisfaction problems (CSPs) whose templates are
first-order definable in the countably infinite random graph. Our method to
classify the computational complexity of those CSPs is based on a
Ramsey-theoretic analysis of functions acting on the random graph, and we
develop general tools suitable for such an analysis which are of independent
mathematical interest.Comment: 54 page