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We develop a simple functional programming language ainhathaipulating infinite, but first-order
definable structures, such as the countably infinite cliqaplyor the set of all intervals with rational
endpoints. Internally, such sets are represented by Idfgicaulas that define them, and an external
satisfiability modulo theories (SMT) solver is regularlynrby the interpreter to check their basic
properties.

The language is implemented as a Haskell module.

1 Introduction

A common theme in computer science is effective maniputatibinfinite but finitely presented data
structures. It is one of the main features of functional progming, where computable functions, them-
selves infinite set-theoretic objects, drena fidedata values. In lazy programming languages such as
Haskell one can also conveniently manipulate structurel as infinite lists or trees.

To achieve computability one usually restricts the integfased to manipulate infinite structures to a
few basic and well-behaved operations. For example, theveay to access a function type data value is
to apply it to an argument. Similarly, infinite lists providdimited interface that allows only continuous
operations on them to be implemented.

In mathematics a rich source of infinite but finitely presdrabjects are relational structures that are
first-order definable over fixed, well understood structutesamples include the set of ordered triples
of natural numbers:

{(a,b,c) |a,b,ce N}, (1)

or the infinite clique graph, with natural numbers as vestiard unordered pairs of distinct numbers as
edges:
(N,{{a,b}|a,beN, a# b}) (2)

These structures are first-order defined over theNset natural numbers with equality. On the other
hand, the set of all closed intervals with rational endpint

{{c|ceQ,a<c<b}|abeQ}, ©)

or the same set partially ordered by inclusion, are defined the setQ of rational numbers with the
ordering relation<. The elements of the underlying structure, suctNasr Q above, will be called
atoms

We wish to manipulate first-order definable structures &ffely in the context of a functional pro-
gramming language via a limited interface that can only se@oms by relations in their signature.
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Therefore, for example, if a setis definable oveN with equality, then we do not have the ambition to
check whetheX contains all even numbers as that property is not expressgihg equality alone. On
the other hand, we may wish to check whetKds empty or contained in another definable‘et

Computability of these and other similar conditions rebedfirst-order properties of the underlying
structures of atoms. For example, to ensure that thé lseb(@yias some nonempty interval, one needs
to know that there exist some rational numbers b such thata < ¢ < b. The structure of atoms should
be simple enough for all such conditions to be effectivelgattable. For this purpose, we shall assume
that underlying structures of atoms are uniquely (up to mgrnism) determined as countable models of
their first-order theories and that these first-order tiesosire decidable. In this paper we concentrate on
two particular structures:

¢ natural number® with equality, understood as the unique countable modéieofitst-order theory
of equality,

e rational number€) with order <, understood as the unique countable, total, dense ordeoutit
endpoints.

Our goal is a set of programming idioms that would hide from fliogrammer as much as it is
possible the fact that she or he is dealing with infinite se¢sgnted by first-order formulas rather than
with finite sets presented by enumerating their elements. ekample, consider a program to compute
the transitive closure of a binary relation. When only fimi#ations on a seX are concerned, one can
model them in Haskell as values of the typet (a,a), assuming thakX is a set of values of a typa
One can then code a functieenpose that computes the relational composition of two relationd a
functiontransitiveClosure to compute the transitive closure of a relation as follows:

compose : (0Ord a, Ord b, Ord c) => Set(a,b) -> Set(b,c) -> Set(a,c)
compose r s = sum (map (\(a,b) ->
map (\(_,c) -> (a,c))
(filter ((==b) . fst) s))
r)

transitiveClosure : Ord a => Set(a,a) -> Set(a,a)
transitiveClosure r =

let r’ = union r (compose r r)

in if r==r’ then r else (transitiveClosure r’)

using functions from the standard Haskell modidea . Set:

sum = unions . elems :: Set (Set a) -> Set a
map :: Ord b => (a => b) -> Set a -> Set b
filter :: (a -> Bool) -> Set a -> Set a
union :: Ord a => Set a -> Set a —> Set a

One of our goals is to provide a version of et type constructor that would allow the programmer
to construct both finite and infinite first-order definablessad then treat them uniformly, so that the
above piece of code could be reused to compute the transitgere of an infinite relation, internally
represented by first-order formulas.

We continue the line of work started in [2], where a core paogming language N was introduced,
aimed at direct manipulation of orbit-finite nominal set§][1These sets are typically infinite, but they
can be finitely presented and they are in a strong sense &qtitafirst-order definable sets over natural
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numbers with equali@. In [2], nominal sets were constructed using so-caliatls, i.e., closures of sets
under actions of automorphisms of atoms. Internally thesewepresented as collections of orbits. For
reasons explained in Sectibh 5, we give up the orbit-baseseptation of infinite sets and we use a
representation based on first-order formulas instead. nieally we keep the syntax of Nfrom [2]
with few changes and semantic intuitions remain similar al:\get-typed expressions evaluate to orbit-
finite sets or equivalently to first-order definable sets atems. However, we further propose a concrete
semantics and an implementation that is significantly diffié from the one in[2]. In particular, sets are
represented by first-order formulas rather than on an bgbitrbit basis.

Since data values are represented using logical formukasatems, in order to evaluate expressions
one often needs to evaluate and compare such formulas tk etgeovhether a set is empty or whether
two sets are equal. This task fits in the well-researched @reatisfiability modulo theorie§SMT),
and there are off-the-shelf software tools tuned to thap@se. In our implementation we use the freely
available Z3 checkel [4] developed by Microsoft Researdhichvoffers satisfiability checking for first-
order formulas over the theory of equality and over the thedrdense total orders without endpoints.
Our implementation of W intensively interacts with Z3 to analyse formulas thatenisrepresentations
of infinite data structures. We believe that this applicatid logical satisfiability checking in functional
programming is novel; a similar application in the contekinaperative programming has been devel-
oped in [10] where mechanisms for manipulating first-ordefirdble sets are added to the language
C++.

This paper is closely related to its predecessor [2] anditgister project [10], but the general idea of
symbolic manipulation of infinite sets is far older; indetith entire field of constraint programming [16]
is based on it. An example of a simple programming languageikegrates with an SMT solver i&Z.
The language SETL[17] operates on set expressions, batiiiats attention to finite sets. Nominal sets,
which are closely related to first-order definable sets, amaipulated in the functional programming
language Fresh O’Camil [18], but the main focus there is omdiimding operations, which we do not
deal with here.

The structure of this paper is as follows. In Secfibn 2, weothice first-order definable sets; the pre-
sentation is based on|[9,110,/14]. We also relate them to radreéts[[15]. In Sectionl 3, we describe the
syntax and intuitive meaning of Nprograms; this part of the paper is closely related to [2halgh the
language is changed a little to reflect different semantigoes. In Sectiohl4, a new logic-based seman-
tics of NA is provided. Sectioh]5 presents a more detailed compars#],tand sketches an extension
of the core language of Sectiond B—4 with operations to céenpulls and orbits. In Sectidd 6 some
implementation issues are explained, and Se€fion 7 illtesrthe use of Non two simple examples.

A prototype implementation of N as a Haskell module is available for download from|[13].

Acknowledgments.We are grateful to Eryk Kopczyhski and Szymon Toruhczykpwame up with the
idea of using formulas to represent orbit-finite sets witnat, and whose work on the LOIS library for
C++ [10] has been a source of constant inspiration. We adstkthnonymous reviewers whose insightful
comments helped us improve the paper.

2 Sets with atoms

Fix a countably infinite relational structurg over some finite signatur®. We call the elements o/
atoms It would be enough to assume thathas a decidable first-order theory and it isidinahomoge-

1other underlying structures of atoms were also consider¢®]j with assumptions similar to ours.
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nousstructure, also known askrais< limit [7]. In particular, this implies that7:

e is w-categorical i.e., it is the only (up to isomorphism) countable modeltsffirst-order theory
and

e hasquantifier eliminationi.e., every first-order formula ovey is equivalent to a quantifier-free
formula.

In this paper and for the purposes of implementation we fotusvo particular structures with all these
properties:

e o/ = (N,=), i.e., natural numbers with equality (we call thespiality atom}

o o/ =(Q,<), i.e., rational numbers with ordering (we call thesdered atomps
For a fixed structure?, aset expressiois

e a variablex from some fixed infinite set of atom variables, or

e afinite sequence, writtefé,, ..., &} (or {} for the empty sequence), of expressions of the form
E=e:pforxy,...,x (4)

whereeis a set expressiom is a first-order formula ovex, andxs, ..., Xk are atom variables.

If k=0 then we write simplye: @ instead of[(4). We also omi if it is the always true formular .
The set of free variables in a set expression is defined indlcty:

FV(x) = {x}
FV(e:pforx,....x) =FV(e)UFV (@) \ {X1,..., %}
FV({Ela--->En}) = FV(El) U---u FV(En)

whereFV (g) is the standard set of free (atom) variables in a first-ordeméila. Avaluationfor a set
expressiore is a functionv: FV(e) — 7. A set expressior together with a valuation denotes a set
(or an atom)[€]]y in the expected way:

wheres, v = ¢ means that the formul@ holds in.7 with the valuatiorv of the free variables ip. We
say that a set of the forrffe], is definableover o7
Standard set-theoretic tricks can be used to encode orgaresi(e.g. as Kuratowski paifs,y) =
{{x},{x,¥}}), tuples (as nested pairs), and integers (e.g. as von Neumamneralsi={0,1,... ,n—1}).
For example, over equality atoms, the expression

{(xy) 1 ~(x=y) for x,y},

with the empty valuation denotes the set of ordered pairgstindt atoms. The same definition works
for ordered atoms, where we see y as shorthand fax < yAy < x. Over ordered atoms, the expression

{x:x<uforx, y:w<yfory}
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with a valuationu — 2, w+— 5, denotes the set of all atoms outside of the open int¢®&). The same
set is denoted by the expression
{x:x<uvw< xforx}

with the same valuation.
We shall restrict attention twell-typedexpressions with a set of types defined by:

1,p:=A[N|(T,p)|ST 5)

wheresS is a unary type constructor, witfir meant to be the type of sets whose elements are ofttype
Set expressions are provided with types by the followingtieh (actually, a partial function):

e:T e:p e:T - e:T
X: A n:N (e1,€): (1,p) {et:@-,....en: @ }:ST

wherex ranges over atom variables anaver integers. Essentially it is required that all elemarita
well-typed set have the same type. Pairs and integers atedrseparetely here, since neither Kuratowski
pairs nor von Neumann numerals are well typed in this sense.

The above constructions appear in the literature undeowsrguises. Indeed, sets definable over
atoms.«/ are essentiallffirst-order interpretablestructures overs in the sense of model theory![7].
They also correspond to nominal sets|[15]; we sketch thisecdiion briefly as it relates this paper to
previous work([2] on extending functional programming ttsseith atoms.

Consider a seK with a group action - _: Aut(«/) x X — X of the automorphism group of the
structures/. A setSC &7 supportsan elementx € X if 17-x = x for every 1T € Aut(</) such that
n(a) =afor allae S If every element oX has some finite support, théfis called.e7-nominal For
</ equality atoms this specializes to the notion considerdSh

A function f : X — 'Y between nominal sets eqquivariantif f(7r-x) = - f(x) for everyx € X and
e Aut(<).

An orbit of an elemenk € X is the set{m- x| m e Aut(</)} C X. Orbits form a partition of the
<7-nominal seiX; we callX orbit-finiteif it has finitely many orbits.

For every set expressiomwithout free variables, the s@g]p is equipped with a canonical group
action of Aut.<?): for € : @ for xq,...,% a part ofe, and foray, .. .,a, € & such thatZ, [ — a] = @,
define

- [€] xi—a)] = [€] [X—7(a)]
o, [% — 1(&)] = @ follows from rrbeing an automorphism &¥, sinceFV (@) C {xi,...,Xn}. Itis easy
to see thaf€] .4 is supported byay, ..., an}, so[€]p is a.«7-nominal set. Moreover, the set is orbit-
finite; this follows from the fact that for evemy-categorical structure, the setez" with the pointwise
action of Au{.«?) is orbit-finite, by the celebrated Ryll-Nardzewski theorom model theory([7].

This means that every set definable by an expression witheeitvariables is7-nominal and orbit-
finite. The converse also holds: eves-nominal, orbit-finite set is equivariantly bijective to et ®f the
form [[€]p for some set expressian Moreover, if pairs are included in the language of expoessione
can choose to be well-typed. Details of this correspondence are dgealan the first chapter of [14].

In [2], a functional programming language\Nvas designed to compute and manipulate orbit-finite
nominal sets. There, infinite structures were internaljyresented on an orbit-by-orbit basis using a
representation theorem from [3] saying that every singhétet is in equivariant bijection with a set of
tuples of atoms quotiented by an equivalence relation of@iceshape. In this paper we continue the
programme of{[2] and develop a language with a new semantitsnaplementation, where orbit-finite
sets are internally represented by set expressions ovasato
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3 A basic functional language

To provide a functional language to construct and operatdefimable sets over atoms, begin with a
lambda calculus with a typA for atoms and a typ8 for boolean values, extended with a unary type
constructorS that cannot be applied to values of function types. Thussyre defined by the following
grammar:

T:=A|B|ST
a,B:=1|a—p

The intuition is that values of typ8t are (definable) sets of values of type This excludes function
types, as one expects set elements to be equipped with a tairtepaquality operation.
Terms of the core language are defined by the grammar:

M:=C|x|AxM | MM

with the usual typing relation of lambda calculus, wh&reomes from the following set of typed con-
stants:

empty : ST (the empty set)
atoms : SA (the set of all atoms)
insert: T — ST — ST (adds an element to a set)
map: (T3 — T2) > ST; —» STz (applies a function to every element)
sum : SST — ST (union of a family of sets)
true,false:B (boolean values)
not:B—B (logical negation)
and,or.:B—B —B (conjunction and disjunction)
isEmpty:St — B (emptiness test)
if:Ba—a—a (conditional)

We refrain from providing formal semantics for all these @gd®ns until the next section, but their
meaning should be intuitively clear as specified on the rifiave. Additionally, we include some
constants that depend on the signature of the underlyingtete <7 of atoms. For equality atoms we
take simply:

eqgp :A—-A—=B (equality relation on atoms)
and for ordered atoms, additionally:

leq:A—>A—B (ordering relation on atoms)

For other structuresy this part of the language may change.
This core language can be extended with product types,argegmutually) recursive definitions,
algebraic types and other features using standard teams)igre omit the details for brevity, noting only
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that the type metavariableshould include all equality types. One can then define auditifunctions
such as:

singleton: T — ST singleton x = insert x empty
filter: (T —B) - ST — ST filter f s = sum (map
(Ax.if (f x) (singleton x) empty) s)
exists:(T—B)—>ST1—B exists f s =not (isEmpty (filter f s))
forall: (T—B)—St—B forall f s = isEmpty (filter (AX.not (f x)) s)
contains:ST—T17—B contains s x = exists (eq x) s
isSubset0f:ST — ST —B isSubset0f s t = forall (containst) s
eq:ST—St—B eq st = and (isSubsetOf s t)
(isSubsetOf t s)
union:ST — ST — ST union s t = sum (insert s (singletont))
intersection: ST — ST — ST intersections t =filter (containst) s

and so on. In particular, for an equality typeequality can be defined for the tySe.
One can also construct sets definable by well-typed set sipres. For example,

atomPairs = sum (map (Ax.map (Ay.(x,y)) atoms) atoms) : S(A,A)
evaluates to the set of all pairs of atoms, and
filter (A(x,y).not(eqa xy)) atomPairs: S(A,A)

to the set of all distinct pairs of atoms.

In general, every set over atoms that is definable by a wpédyset expression is a value of some
program. More formally, for every set expressien T with free variablesxs,..., % there is a term
sete : AK — T in the programming language, that evaluates to a functimm f7* that, when applied to
argumentsay, ..., &, returnsfef - This follows by induction on the structure of expressiofae
only interesting case is

e={€ :@pforxc1,...,Xm} : ST
for some€ : 1 such thatFV (€),FV(9) C {x1,...,Xm}. Itis easy to generalize the teratomPairs
above to a function
atomTuplesy ! Ak — SAM

that extends a givekrtuple of atoms to the set of ait-tuples that arise by putting arbitrary atoms on the
remainingm— k components. Then put

setet =map setg (filter formy (atomTuplesy ,t))
wheresety exists by the inductive assumption, afwm, : A" — B is a term that encodes the first-order

formula ¢. Such a term exists sinc& has quantifier elimination, and so without loss of generalie
may assume thap is quantifier-free.
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4 Logic-based semantics

From the description of the language in Secfidn 3 it may notlbar how to implement operations
postulated in it. For example, how to implement the functiap so that a function can be applied
to every element of the infinite set of atoms in finite time? His tsection we provide a (small-step)
reduction semantics of the core functional language, thplements the set-theoretic intuitions provided
in Sectior{ 8, yet is clearly computable.

The semantics is based on the following general ideas:

e Values of set typeSr are represented not by enumerating their elements (thdtdweumpossible,
as usually they are infinite sets), but by set expressions &edtiori 2.

e Values of typeB are not just boolean values; they are rather first-orderditasnover a special kind
of variables calledtom variableghat denote atoms.

e Terms are evaluated in contexts that specify what relatiots between atom variables in them.

e Sometimes a conditiop in a conditional expressioif @ M N is neither tautologically true nor
false. In such cases it is not clear whether the conditidmalilsl evaluate t&1 or N and the choice
is delayed for as long as possible. When delaying is notdéuntlossible, e.g. whel andN are
atom variables, &ariantis created that has vall or N, formally depending on the value ¢f

Formally, keeping the set of types as in Seclibn 3, we exteadjtammar of terms to:
M:=C ‘ x‘/\x.M ‘ MM ‘a‘ (p‘ {M:e@foro,....M:@pforc} | M:g|---M:@

where:
e Cranges over the same set of typed constants as in Séttion 3,

e aranges over a fixed infinite set afom variablesdisjoint from the set of program variables such
asx,

e (@ranges over the set of first-order formulas (with quantifedi@ved) over the signature ef and
over atom variables,

e o ranges over finite sets of atom variables. We omit ‘d8if o is empty.

Note that the new terms are unavailable to the programmethaydshall appear only as final or inter-
mediate values in the reduction semantics.
Atom variables in the sets in set expressions are binding occurrences, just as thegmmogariable
x is a binding occurrence iAx.M. Terms are considered up tcequivalence, defined as expected. For
example,
{a:—(a=c)fora} and {b:—(b=c)forb}

area-equivalent.
Expressions of the form

Mi:@l---[Mn:h

are calledvariants They look syntactically similar to set expressions of tef{My : @,...,Mn: ¢},
but their meaning is very different. A variant as above dagsdenote a set of values, busimglevalue
whose identity cannot be determined at the moment and wifideel depending on which one of the
formulase; to @, holds.
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In addition to standard typing rules for the lambda calcuilns newly added terms are typed accord-
ing to:
Mi:t -+ Myt Mi:t -+ Myt

a:A 'B
¢ {M1: @ forom,...,M,: @ for o} : ST (M1:@|-[Mn:an): T

(6)

relative to any typing context of free program variable$/in. .., M.
We define a small-step operational semantics where termevahgated in the context of a formula
over atom variables. The basic semantic statements are &rtim

Yy+-M—N

wherey is a formula andM, N are program terms. Reduction rules are given in[Big. 1.

Rules [T) provide the standard infrastructure of the landadeulus. The notion of capture-avoiding
substitutionM [N /x| works as usual taking into account the fact that atom vag&gbi o bind in {M :

@ for o}. We do not commit to any particular reduction strategy aitgareductions both in functions
and in their arguments.

Rules [8)-(14) are mostly self-explanatory and they agritle tlie intuitive meaning of program
constants as listed in Sectibh 3. We only note that in tul®, (hber expressionsl; : @ for o; may need
to bea-converted so that the side condition of the rule holds. Mdge that the rule foatoms in (@) is
the only place where a new atom variable is created and tlea{Id) may cause quantified first-order
formulas to appear.

The conditional constarnitf is evaluated in a special way and it deserves a separaterseftthe
semantics. A premise/ = = ¢ means that the formulg = ¢ holds in.<# under every valuation
of its free variables. If some valuation falsifies the formulve write</ £ ¢y = ¢. Rules [(15) apply
where the value of the logical conditignis determined by the ambient formula In such situations the
conditiong behaves like a standard boolean value and the conditiopatgsion is resolved as expected.

If the value of@ remains undetermined under the assumptio othen both values to be chosen
from must be combined in the result of the conditional exgimms The course of action depends on
the type of those values with the general idea to postponehbiee by pushing it down the structure
of terms. If the two values are functions, [n[16) a new “lazyhction is created where the choice
is postponed until the function argument is provided. Ifythee formulas or set expressions, ruled (16)
and [1T7) combine them in an expected way. The most integeséise is a choice between atom variables:
in rule (18), a variant is created. It may be seen as an “ambigatom” equal t@ or b depending on
the value ofp. Formally, a separate rule_(19) for a choice between varimntequired but it works as
expected similarly to ruld_(17).

Notice that rule[(IB) is the only place where variants aratei and those variants are always built
of atom variables. One may wonder why the typing rule foramts in [6) allowed arbitrary types
instead of simplyA. This is in anticipation of other basic types added to thglage such as integers
or strings, excluded from the core language for brevity. éarth such basic type, a rule corresponding
to (I8) would need to be added.

Variants tend to be short-lived intermediate values ang #re dissolved as soon as they emerge
as elements of set expressions. ROlg (21) shows how thisis. dRules[(20) specify how reductions
are done in the context of set expressions and variantse tiudss show how ambient formulgs are
constructed.

Rule [22) specifies the behaviour of the equality functioadufor equality atoms. This rule also
applies to single atom variables which are here understeatkgenerated variangs: T. For ordered
atoms the functioneq is specified analogously.
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B-reduction:
YyrFM - M YN — N
W F MN — M'N U F MN = MN Y F (AXM)N — M[N/X (7)
Basic constants:
Yrempty —{} Yk atoms— {a:T fora} (8)

Yt insert M {My: @ for oy,...,My: ghfor on} — {M: T ,My: @ for g,...,Mp: @ for o} (9)
Y+ map M {M;: @ for oy,...,My: @ for on} — {MMy: @ for gy,..., MMy : @, for on} (10)

Yrsum{....,{M1: @ for oq,...,Mpn: @ for o,}: @foro,...}

n
ifon| Jo=0 (11
—{...,Mi:@A@foroiuao,..., My: ghA@for o,Uo,...} Uoa (1)

i=1

Yrtrue— T Y false — L Y Fnot @ — —@ (12

WEor @ B o BV B YrFand @ @ — G A@ (13)

Y+ isEmpty {M1: @ for 01,...,Mp: @ for on} — /\ VaiVay - - Vax.—@ (14)
EE A

Conditional expressions:

dEYP=9 g EY=-9 (15)
Yrif M N— M Yrtif M N — N
FdEYP=9 A EYP=@ FdEYP=>9 A EYP=@ (16)
Yrif @ AXMAXN — Ax.(if @ M N) Yrif oo @ — (@ AQ)V (@A)
dFEP=0 dEP=-9 17)
Yrif @{My: ¢ foroy,...,Mn: @ for o} {Ny: 0y for mm,...,Ng: 6 for 1}
—{Mi:@A@foroy,...,My:ghA@for on, Ny : 61 A—@for mm,... Nk : 6 A —ofor i}
dEY=0 dEP= (18)
Yyrif pab—a:@b:—@
dEY=0 dEP= (19)
Yrif @ (My:@|-- My @) (Np: 6|+ |Nk: 6k)
=M@ AQ - [Mntgh A@NLI BL A~ [N B A~
Set and variant reduction:
YA M —N YAP-FM — N (20)

gH{...,M:¢pforo,...} - {...,N:¢foro,...} g M:g@|---— - IN:@|-

gH{...,(M1:@| - My:@):@foro,...} = {.... M@ A@foro,....M,:gwA@foro,...}
(21)

Equality:
Wheqa (B @f...[a0 @) (b 6yf...|bm: 6n) — \/ (@=bjA@NE) (22)

1<i<n
1<j<m

Figure 1: Reduction semantics
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This reduction semantics has a few expected propertieegtoy standard arguments:
e subject reductiomolds, i.e., the reduction relation preserves types,

e the Church-Rosser propertiiolds up to first-order formula equivalence, i.e.pif M — N and
@+ M — N’ then there exist term@ andQ such thatp- N —* Q andgp+ N’ —* Q', where—*
is the reflexive and transitive closure of, Q andQ are equal up to replacing some first-order
formulas with equivalent ones. This follows by a paralleluetions argument as described in/[19].

¢ (weak) normalisatiorinolds, i.e., each term can be reduced to an irreducible valois is proved
by a standard type of argumeht [5] assigning degrees to tyfpiee language.

Obviously, normalization fails as soon as the core languagextended with recursion as non-
terminating programs can then be written. Otherwise, tmeasd¢ics can be routinely extended with
product types and terms, integers, mutually recursive iiefiis, algebraic types, etc. This is illustrated
by our implementation described in Sectidn 6. Indeed, wealamplement the language from scratch;
instead, we write a Haskell module to support features destihere, allowing the programmer to use
them in conjunction with the power of a full-fledged funct@programming language.

5 Hulls, supports and orbits

In [2], which is a direct predecessor to this paper, a difieieternal representation of infinite sets was
used. To construct such sets a programming construttidih was provided, which, given a finite i€t

of atoms and a set of valuésof some type (possibly built of atoms), returned the closfiré under all
automorphisms of atoms that fix every elementofor example, the expression

hull []1 {2}

evaluates to the set of all atoms, because every atom carideaibfrom the atora by an application of
an automorphism af7 that fixes (which is a non-condition) every element of the gnlipt. Similarly,

hull [3] {2} hull [2] {(2,5)}

evaluate respectively to the set of atoms different fronm8, ta the set of pairs of atoms where the first
element is 2 and the second is different from 2. If orderedhatare considered, the expression

hull [1 {(2,3)}

evaluates to the set of pairs where the second componenitctyysjreater than the first one. One could
then manipulate sets constructed in this way using funstsuth asap andsum, so that, e.g., functions
compose andtransitiveClosure could be written more or less as in Section 1. Internallynitdisets
were not represented by first-order formulas. Rather, thechostruction was used as a basic semantic
construct in computed values of set types; sée [2] for detail

The mechanism for representing infinite sets using hullsahasmber of disadvantages. Most im-
portantly, the size of the representation of an orbit-fisié¢ is proportional to the number of its orbits.
For example, the set of all triples of atoms is constructed by

hull [1 {(1,1,1),(1,1,2),(1,2,1),(2,1,1),(1,2,3)}

and in general the set of orderaduples needs an internal representation of size expatémti. This

is rather inefficient and as a result in the prototype Haskgllementation of M from [2] only very
rudimentary programs could be evaluated in reasonable titote that in our semantics the set of atom
triples is represented internally by the more concise

{(a1,ap,a3) : T for ay,ap,a3}.
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Another problem is thaiull-based definitions of sets require the use of constants émaitel particular
atoms, even if mathematical definitions of the same sets toew®x to. For example, even though no
concrete natural numbers are mentioned in a mathematitialtibm of triples of numbers, as many as
three numbers are used in thell-based definition above. This is not a major problem when lggua
atoms are concerned, but with more sophisticated striciofratoms it would cause difficulties. For
example, although the universal partial order [8] is a legal well-behaved structure of atoms, no easy
and natural representation of it is known and it is not cleaw o denote its particular elements in a
convenient way.

For these reasons, in this paper we replace the hull-bagedsentation with the logic-based se-
mantics from Sectiohl4. One may even contemplate removiagithl construction from the language
available to the programmer, and indeed this is what we dith#® core language in Sectidnd 83—4. This
is justified by the observation from Sectioh 3, missed in{l23t every definable set can be denoted by a
program withoutull. On the other hand, it is not clear how to define the hull fuorcttself:

hull:[A] - ST — St

in the core language (extended with list tyges in a standard way). As this function is sometimes
useful to the programmer, we add it to the language alongavidw other basic functions:

groupAction: (A —-A)—>T—T (renames free atoms in an argument)
supports: [A]—>T—B (checks if a list of atoms supports the argument)
support : T — [A] (returns some finite support of the argument; efficient)
leastSupport: T — [A] (returns the least support of the argument; less efficient)
setOrbit:ST— 17— ST (returns the orbit of an element in a set)
setOrbits: ST — SST (returns the (finite) set of orbits of a given set)

In [2], most of these functions or their minor variations @éerived fromhull. For example, one may
write:

isSingleton: ST — B isSingletons = exists (Ax.forall (eqx)s) s
supports: [A] > T—B supports c x = isSingleton (hull c (singleton x))
However, such definitions are rather inefficient. Here, vatuite groupAction andsupport as basic

operations and defirieu11 and other functions from them, which results in a more efficimplemen-
tation.

6 Implementation

We implement M as a Haskell module (available from_[13]), which allows theggammer to use
all benefits of a full-fledged functional programming langea The module introduces new types and
functions operating on infinite structures and first-oraenfulas.

We shall now explain a few aspects of the implementation waréntioning.

SMT solving

In Fig.[d, rules[(1b)+(19) involve premises of the form = ¢ = ¢, stating that a formula holds in
the structures/. Since we only considesw-categorical structures of atoms, one may equivalently ask
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whethery = @ follows from the axioms of the first-order theory.ef. This is an instance of the general
satisfiability modulo theories (SMT) problem and there afergare tools available that perform that task
efficiently for a variety of first-order theories.

To determine whether a formula holds &4 the interpreter of W calls the external Z3 solver|[4]
via a system call. The implementation can be easily modifiezbhnect to any other solver compatible
with the SMT-LIB standard 1] instead. Currently two SMTB.logics are used: LIA (linear integer
arithmetic, for equality atoms) and LRA (linear real arittin, for ordered atoms). Formula solving
is a pure function without side-effects, therefore it isaked within the HaskellinsafePerformIO
function to avoid putting th&0 monad in types of all conditional statements iA.N

Experiments performed in our companion project LOIS [10jvebd that SMT solvers in general
and Z3 in particular do not deal well with quantified formulaat do not involve arithmetic. To improve
performance before calling Z3, the interpreter eliminatiéguantifiers from the formula to be checked.
The quantifier elimination algorithm used for ordered atasrizased on the method of infinitesimals for
linear real arithmetic proposed by Loos and Weispfennidj §ihd adapted by Nipkow to dense linear
order [12] (for equality atoms it is enough to use a simplifiedsion of this algorithm). Roughly, this
method involves replacing an existentially quantified falanby a disjunction of formulas where the
bound variable is substituted by test points which inclualees arbitrarily close to either lower or upper
bounds of the eliminated variable.

Conditionals

From rules[(I6)+£(19) in Fid.l1 it is clear that the conditibegpression in M is substantially different
from the standard Haskellf...then...else... construction, in that it must deal with conditions that
cannot be resolved tarue or false. Sinceif is a Haskell keyword, a different name must be used for
NA conditionals; we choose
ite :: Conditional a => Formula -> a -> a -> a
This function is implemented for all instances of the rmditional typeclass, which includes several
basic types, the atom and formula types, list and functipegy The functiorite first tries to determine
the logical value of the condition formula with a SMT solvetlcfailing that, it calls a functiorcond of
the same type aste that is defined in a type-specific manner.

For example, the implementation eénd for the formula type is:

instance Conditional Formula where
cond f1 f2 £f3 = (f1 /\ £2) \/ (not f1 /\ £3)

For the function type it works in a lazy way:

instance Conditional b => Conditional (a -> b) where
cond ¢ f1 f2 = \x -> cond ¢ (f1 x) (f2 x)

These definitions correspond to rules](16) in Elg. 1.

The result for the type of (definable) sets includes elemieoits both input sets but with appropriate
formulas, according to rulé (1.7) in Figl 1. In other collectitypes (lists, tuples, etc.), missing from
the core language of N condition handling is passed to elements. The functiotists with the same
lengths is coded as follows:

cond ¢ 11 12 = zipWith (cond c) 11 12

One problem appears for an ambiguous condition on listsftérdnt lengths. To simplify the imple-
mentation we decided to report an error in this case. Howepmrations on lists can be performed
alternatively using th&ariants constructor.
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Variants and contexts

Of course some types (such as integer types) cannot copeawittimbiguous condition in any other
way than to somehow return both values. For such types aafgpe constructoWariants is pro-
vided; values of typ&ariants a are lists of values of type coupled with formulas. It comes with its
counterpart ofite function, defined for any type:

iteV :: Formula -> a -> a -> Variants a

Thus one can implement conditional statements e.g. fogémge iteV (eq a b) 1 2 will return a
variant 1:a=Db | 2:a+# b, akin to rule [18) in Figl. 1. The type of atomson itself is actually defined
as the variant type of variable names. Every variant typa isstance of the clas®nditional.
However, not always all possible result variants of the progare desired. Sometimes the result is
interesting only in a given context. In such cases the nessClantextual is useful. A function

when :: Contextual a => Formula -> a -> a
introduces a formula into the context of a computation. Kangple, expression
when (neq a b /\ neq b ¢ /\ neq a c¢) size (fromList [a,b,c])

will display only the result for distinct atoms. This compesds to adding formulas to contexts in

rules [20) in Fig[L.

Nominal types

The basic type class inNis NominalType corresponding to types ranged over by thmetavariable in
our core language. This class is required by several fumetid the language and is important for three
reasons:

e it provides an implementation of the equality predicade

e it has functions that operate on atom variablespariables andfoldVariables)and are used
internally for resolving conflicts between atom variablenes, and for collecting all or free atom
variables that occur in a set expression,

e it helps split variant values into elements when insertirent to the set (to implement rule{21) in
Fig.[d).

To operate on a set of elements of a given type, the type has &m Instance dfominalType. Addi-
tionally, all instances of this class must be instances@tthndard Haskell claggd. This is to improve
performance.

Set types

The Set type constructor is an implementation of both infinite anddisets. Generally, it is an alter-
native to the standamkata.Set module with most features that can be found there. Thesadadore
functions of M suchmap, filter andsum and functions defined from them as in Secfidon 3. One can
find auxiliary functions to deal with pairs, triples or in geal tuples and lists of set elements.

Notable omissions among functions providedDayta . Set are those that rely on an ordering of set
elements, such ad emAt, toList but alsofoldl andfoldr. There seems to be no meaningful way to
interpret these functions on infinite, definable sets.

One additional function thas provided calculates the size of a set:
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size :: NominalType a => Set a -> Variants Int

Certainly one can expect the answer in finite time only fortdirsets. This function for consecutive
natural numbers tries to find a list of distinct elements vathgiven length. This procedure is rather
inefficient for large sets and does not terminate for infinites.

Hulls, supports and orbits

As mentioned in Sectionl 5 and as will become apparent in @d€@tisometimes it is useful to the pro-
grammer to be able to operate on orbits of definable sets.hisoptirpose, functions listed in Sectidn 5
have been added to the language. The implementation ofeaétfunctions is derived from two basic
ones:
support :: NominalType a => a -> [Atom]
groupAction :: NominalType a => (Atom -> Atom) -> a -> a
The first returns a list of free atom variables in the arguniéns list also serves as a support of it), the
second applies a function to all free atom variables. Botittions invoke function€oldVariables
andmapVariables that must be provided in instances of theninalType class.

Based orsupport andgroupAction we implement the function
orbit :: NominalType a => [Atom] -> a -> Set a
which computes the orbit of an elemeninder the action of all automorphismsefthat fix all elements
of a given supporfay, ...,a,]. This function computes the list of free atonis, ..., by] in e, and filters
all lists of atoms of lengtlk:

{[Xe,- X @ forxg,...,xc € A}

to obtain only these in the same orbit[bs ..., b ]. To this end, a conjunction formula is built as follows:

A r(6,x) <> r(bi,b) A A r(x.a) < r(b,a)
1<i,j<k 1<i<k
i#] 1<j<n

for every relatiorr in the signature of/. (For equality atoms, it is just the equality relation.) e ast
step, the filtered set of lists is mapped with a function teataces every atoin in the elemeng by x
for1<i<k.

Using orbit an implementation ofull and other functions listed in Sectiéh 5 is now easy, for
example:
hull :: NominalType a => [Atom] -> Set a -> Set a
hull supp = sum . map (orbit supp)

7 Examples

We demonstrate the potential and limitations of bin two simple examples: computing transitive clo-
sures of relations and gragcolorability. Although both examples can be implementedNi, they

are rather different. In the former one, standard Haskeledor calculating transitive closures of finite
relations can be reused almost verbatim for the first-ordéndble case, sparing the programmer from
considerations regarding finite vs. infinite sets. In theetaéxample, standard Haskell code for finding
k-colorings in finite graphs does not transport to the infin@tting. Instead, one partitions a given graph
into its orbits, and looks for aequivariantcoloring, where all nodes in the same orbit get the same.color
Both the program and the proof of its correctness dependeprigrammer’s knowledge of first-order
definable sets and their mathematical theory.
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Transitive closures and cycles

We begin by recalling the example presented in Sefion 1.ofwpate the composition of two relations
one can define a functiotbmpose as follows:

compose :: (NominalType a, NominalType b, NominalType c) =>
Set (a,b) -> Set (b,c) -> Set (a,c)
compose r s = sum (map (\(a,b) ->
map (\(_,c) -> (a,c))
(filter (eq b . fst) s))
r)

This function can be written down more concisely, using samgliary functions. In M we provide
some functions similar to the standard Haskelp andzipwWith:

pairs :: (NominalType a, NominalType b) => Set a -> Set b -> Set (a, b)
pairsWith :: (NominalType a, NominalType b, NominalType c) =>
(a=>b ->c) ->Set a ->Set b -> Set ¢

There are also functions that help filtering pairs:

pairsWithFilter :: (NominalType c, NominalType b, NominalType a) =>
(a => b -> NominalMaybe c) -> Set a -> Set b -> Set ¢
maybeIf :: Ord a => Formula -> a -> NominalMaybe a

Using these one can implemetdmpose in a single line:
compose r s = pairsWithFilter (\(a, b) (c, d) -> maybeIf (eq b c) (a, d)) r s

Now, one can code a functiotransitiveClosure computing the transitive closure of a given
relation:

transitiveClosure :: NominalType a => Set (a,a) -> Set (a,a)
transitiveClosure r = let r’ = union r (compose r r)
in ite (eq r r’) r (transitiveClosure r’)

It should be noted that the implementatiorncofipose andtransitiveClosure is similar to the fi-
nite version with only two differencesq instead of(==) andite instead of arif. . .then. . .else...
statement.

Consider a datatype that describes directed graphs witlcegiof any type and edges represented as
pairs of vertices:

data Graph a = Graph {vertices :: Set a, edges :: Set (a,a)}

To check whether a graph has a cycle one could use the funotiieitiveClosure in the following
way:

hasCycle :: NominalType a => Graph a -> Formula

hasCycle (Graph vs es) = exists (uncurry eq) (transitiveClosure es)

When only odd-length cycles are requested, one could definecion hasOddLengthCycle as pre-
sented below:

hasOddLengthCycle :: NominalType a => Graph a -> Formula
hasOddLengthCycle (Graph vs es) = intersect (map swap es)
(transitiveClosure (compose es es))
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where (transitiveClosure (compose es es)) returns the set of all pairs of vertices connected
with even-length paths. If some pair of vertices from thisisalso connected with an edge from the
original graph, it means that there is an odd-length cycle.

Note how the above fragments of code are essentially the ssnumes that would be used for
computing transitive closures or cycle finding on finite drsp

Graph coloring

Recall that a graph coloring is a valuation of its nodes shahno two adjacent vertices share the same
value. The verification whether a given function is a valitbcog looks as follows:

isColoring0f :: (NominalType a,NominalType b) => (a -> b) -> Graph a -> Formula
isColoring0f ¢ g = forAll (\(v1,v2) -> c vl ‘neq‘ c v2) (edges g)

A k-coloring is a graph coloring witk colors. In order to check whether a graptkisolorable in
the finite setting, one could generatelapartitions of a set of vertices:

partitions :: Int -> Int -> Set [Int]

partitions n 1 = singleton (replicate n 0)

partitions n k | k <1 || n < k = empty

partitions n k | n == k = singleton [0..n-1]

partitions n k = union (map (k-1:) $ partitions (n-1) (k-1))

(pairsWith (:) (fromList [0..k-1]) (partitions (n-1) k))

For example,fartitions 3 2) evaluates to a set of three partitiof$o,0,11, [1,0,0], [1,0,1]1}.
For each such partition one could examine if the valuatia &hises from it is a valid coloring.

In the world of definable sets the situation is much more carafgd. One cannot enumerate and
collect all partitions because the set of partitions of anddfie set might not be first-order definable or
even countable. Indeed, at first sight it is not clear thabraddility of definable graphs is a decidable
problem. For example, consider the undirected graph:

Graph {vertices = {(ag,ap) : &y # ap forag,ap € A},

23
edges = {{(a1,a), (az,a3)} :a1 #Fap Ny #agNap #ag forag,ap,az € A}} (23)

This graph, used as an examplelin [9], is not 3-colorable. é¥ew its smallest finite non-3-colorable
graph has as many as 10 vertices and 20 edges. One may tryctolalger and larger finite subgraphs
of a given definable graph and check their colorability usheystandard code above, but it is not clear
when one can stop and declare the entire graph colorable.

One may make some additional assumptions, for exampledmmsnlyequivariantcolorings, where
nodes in the same orbit must get the same color. (For exarigegraph in[(28) has no equivariant
colorings, as it only has one orbit of vertices and it has eggehe problem then reduces to coloring the
finite set of orbits. For a given list of orbits and a list of ifartitions one can create a coloring function
that determines which orbit contains a given element angnetthe color assigned to such an orbit.

coloring :: NominalType a => [Set a] -> [Int] -> a -> Variants Int
coloring [] [] _ = variant O

coloring (o:0s) (p:ps) a = ite (member a o) (variant p) (coloring os ps a)

Then it remains to check whether a coloring function credigd partition of orbits is a proper
coloring of the graph. This can be implemented as follows:
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hasEquivariantColoring :: NominalType a => Graph a -> Int -> Formula
hasEquivariantColoring g k = member true $
pairsWith (\os ps -> (coloring os ps) ‘isColoring0f‘¢ g)
(replicateSet n orbits)
(partitions n k)
where orbits = setOrbits (vertices g)
n = maxSize orbits

wherereplicateSet :: NominalType a => Int -> Set a -> Set [a] returns the set of lists
with a given length and elements from a set.

This solves the problem of finding equivariant colorings efimlable graphs. As it turns out it solves
the problem of generd-colorability as well: in[[9], it was proved thatver ordered atoma definable
graph has &-coloring if and only it has an equivariant one. That reseliiess on deep theorems in topo-
logical dynamics. As we can see, the programmer needs to kremathematics of first-order definable
structures not only to write the program foicolorability, but even more so to prove its correctness.

It is worth noting that the problem of finding an equivari&ntoloring may have different solutions
depending on the structure of atoms. For example, the graph:

g = Graph {vertices = {(ag,a): a1 # ay foray,a, € A},
edges = {((a1, @), (ag,a1)) 1 a1 # ap for ag,ap € A}}

does not have an equivariant 2-coloring when equality atarasconsidered. But for ordered atoms, a
function (uncurry 1t) with type: (Atom, Atom) -> Formulais a correct coloring. So for these two
structures of atoms the expressitasEquivariantColoring g 2) will evaluate tofalse andtrue
respectively.

Note that 2-colorings can be looked for in a way very simidaihte one used for finite graphs; indeed,
a graph is 2-colorable if and only if it has no cycle of odd lgn@nd an M program to check that was
shown above. The expressiGhas0ddLengthCycle g) will evaluate tofalse both over equality and
ordered atoms, indicating that a 2-coloring (not necelysaquivariant) ofg exists.

These are only selected examples of programs in NVe have also solved problems such as
reachability, finding weakly or strongly connected compuaen graphs, the emptiness problem of
automatal[B] and a minimization algorithm of automata. Nohéese require the programmer to ex-
plicitly use orbits and other structure of definable setswel@r, as the example of gragkcoloring (for
k > 2) shows, certain problems do seem to require that. We donu#ratand precisely what it means
for a problem to “require the use of orbits” or where the dosslies between problems that do or do not.
A possible connection to descriptive complexity theory #melcelebrated “quest for PTIME logic”|[6]
could be imagined but this is left for future work.
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