17,363 research outputs found

    On Clustering of Non-stationary Meteorological Time Series

    Get PDF
    A method for clustering of multidimensional non-stationary meteorological time series is presented. The approach is based on optimization of the regularized averaged clustering functional describing the quality of data representation in terms of several regression models and a metastable hidden process switching between them. Proposed numerical clustering algorithm is based on application of the finite element method (FEM) to the problem of non-stationary time series analysis. The main advantage of the presented algorithm compared to Hidden Markov Models (HMMs) and to finite mixture models is that no a priori assumptions about the probability model for the hidden and observed processes (e.g., Markovianity or stationarity) are necessary for the proposed method. Another attractive numerical feature of the discussed algorithm is the possibility to choose the optimal number of metastable clusters and a natural opportunity to control the fuzziness of the resulting decomposition a posteriory, based on the statistical distinguishability of the resulting persistent cluster states. The resulting FEM-K-trends algorithm is compared with some standard fuzzy clustering methods on toy model examples and on analysis of multidimensional historical temperature data locally in Europe and on the global temperature data set

    Graph ambiguity

    Get PDF
    In this paper, we propose a rigorous way to define the concept of ambiguity in the domain of graphs. In past studies, the classical definition of ambiguity has been derived starting from fuzzy set and fuzzy information theories. Our aim is to show that also in the domain of the graphs it is possible to derive a formulation able to capture the same semantic and mathematical concept. To strengthen the theoretical results, we discuss the application of the graph ambiguity concept to the graph classification setting, conceiving a new kind of inexact graph matching procedure. The results prove that the graph ambiguity concept is a characterizing and discriminative property of graphs. (C) 2013 Elsevier B.V. All rights reserved

    SSA of biomedical signals: A linear invariant systems approach

    Get PDF
    Singular spectrum analysis (SSA) is considered from a linear invariant systems perspective. In this terminology, the extracted components are considered as outputs of a linear invariant system which corresponds to finite impulse response (FIR) filters. The number of filters is determined by the embedding dimension.We propose to explicitly define the frequency response of each filter responsible for the selection of informative components. We also introduce a subspace distance measure for clustering subspace models. We illustrate the methodology by analyzing lectroencephalograms (EEG).FCT - PhD scholarship (SFRH/BD/28404/2006)FCT - PhD scholarship (SFRH/BD/48775/2008
    corecore