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SSA of biomedical signals: A linear invariant
systems approach
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Singular spectrum analysis (SSA) is considered from a
linear invariant systems perspective. In this terminology,
the extracted components are considered as outputs of a
linear invariant system which corresponds to finite impulse
response (FIR) filters. The number of filters is determined
by the embedding dimension. We propose to explicitly define
the frequency response of each filter responsible for the se-
lection of informative components. We also introduce a sub-
space distance measure for clustering subspace models. We
illustrate the methodology by analyzing Electroencephalo-
grams (EEG).
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1. INTRODUCTION

Projective subspace models, applied to time series data
sets, can be found in literature under various names de-
pending on the domain of application: Singular Spectrum
Analysis (SSA) (for instance in climate time series analysis)
[6, 5, 18] and Singular Value Decomposition (SVD) (for in-
stance in speech enhancement) [4, 8, 10]. The aim of SSA
is to achieve a decomposition of the original time series into
a sum of a small number of interpretable components such
as a slowly varying trend, oscillatory components and noise.
While the aim of speech enhancement methods instead is
simply to eliminate noise which is usually considered ad-
ditive and normally distributed. In general, the processing
chain comprises the following steps:

• Transformation of the time series into a sequence of
lagged vectors (embedding) which are arranged into a
trajectory matrix with either Toeplitz or Hankel struc-
ture.

• Estimating an orthogonal basis vector matrix, using
singular value decomposition or principal component
analysis.
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• Projecting the multidimensional data vectors onto the
new basis vectors.

• Selecting relevant components.
• Reconstructing the multidimensional embedded data

using the possibly lower-dimensional subspace represen-
tation.

• Diagonal (or anti-diagonal) averaging to reconstitute
the Toeplitz (or Hankel) structure of the reconstructed
trajectory matrix.

• Reverting the embedding to yield an univariate time
series.

Thus, the subspace model corresponds to an orthogonal
matrix whose columns form basis vectors of the multidimen-
sional space created by the embedding. The relevant com-
ponents of the signal are obtained by projecting the data
onto that basis and omitting irrelevant (for example noise-
related) components. Finally an improved, univariate time
series can be reconstructed. The selection of relevant com-
ponents is a critical issue that can be addressed when the
subspace model is generated. Recently, in [1, 2] the frequency
profile of the basis vectors was studied to select those vectors
(and related components) which correspond to the trends in
the data.

The aim of this work is to show that, seen from a lin-
ear invariant systems perspective, the basis vectors of the
time-delayed coordinate space can be interpreted as filters
responding to signals in different frequency bands of the
original time series. This interpretation was already dis-
cussed in [9, 8], however, here the frequency response of
the filters is deduced in closed form. Using techniques from
linear time-invariant systems theory to compute input - out-
put relationships [12, 13], a closed-form expression for the
frequency response of the filters is obtained such that the
frequency profile of the output can be extracted easily. An-
other issue discussed here is how to measure a similarity be-
tween different subspace models computed for signals that
have similar characteristics (see also [16]). This aspect is
important because most of the selection schemes, discussed
for example in signal enhancement applications, are simply
based on studying eigenvalues and no attention is given to
the corresponding eigenvectors. But it is equally important
to know if two different data sets that lead to two closely
related subspace models spread in similar directions of the
underlying multidimensional space.
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The paper is organized as follows: Section 2 resumes the
main steps to compute the projective subspace model and
discusses its application in a signal enhancement scenario.
Section 2.2 presents the application of SSA using a linear
invariant system approach and its interpretation as filter
bank system. In Section 3 a distance measure to compare
subspaces is presented. In Section 4 two examples are pre-
sented to illustrate the main characteristics of SSA using the
approach and tools (namely the frequency response) of lin-
ear invariant systems. The second example (evoked potential
signals) is a signal enhancement and clustering application.

2. SINGULAR SPECTRUM ANALYSIS

Time series analysis techniques often rely on embed-
ding one-dimensional sensor signals in the space of their
time-delayed coordinates. Embedding can be regarded as
a mapping that transforms a one-dimensional time series
into a multidimensional sequence of lagged vectors. Con-
sidering an univariate signal (x[0], x[1], . . . , x[N − 1]) with
N samples, its multidimensional variant is obtained by
xk = (x[k − 1 + M − 1], . . . , x[k − 1])T, k = 1, . . . ,K, where
K = N − M + 1. These lagged vectors form the columns
of the data matrix X which is called a trajectory matrix
[6]. The column vectors xk of X span the space of dimen-
sion M

(1) X =

⎡
⎢⎢⎢⎢⎢⎣

x[M − 1] x[M ] · · · x[N − 1]
x[M − 2] x[M − 1] · · · x[N − 2]
x[M − 3] x[M − 2] · · · x[N − 3]

...
...

. . .
...

x[0] x[1] · · · x[N − M ]

⎤
⎥⎥⎥⎥⎥⎦ .

Note that the trajectory matrix has identical entries along
its diagonals. Such a matrix is called a Toeplitz ma-
trix. There are other alternatives to organize a data
matrix via embedding the univariate time series sig-
nal in an M -dimensional space of its time-delayed co-
ordinates. For example, an Hankel matrix is obtained
if the embedding is arranged such that identical ele-
ments occur along the anti-diagonals [6, 8]. Anyway, by
computing two-point time correlations between the en-
tries of the multi-dimensional representation of the sig-
nal, it is possible to find an orthogonal matrix U
whose columns form an orthogonal basis of the M -
dimensional space. The non-normalized correlation matrix
is obtained as

S = XXT

and its eigenvalue decomposition

S = UΛUT

provides the related subspace model via the matrix U
of basis vectors and corresponding eigenvalues Λ =

diag(λ1, . . . , λM ). This subspace model is then used to ma-
nipulate the original data vectors according to

(2) X̂ = UPUTX = UY,

where

• UTX corresponds to the dot product between the
columns of U and the columns of X.

• P is a diagonal selection matrix with the m-th diagonal
entry equal to pmm = 1 if the m-th row of Y is to be
selected, or equal to pmm = 0 if it is to be discarded.

• Each column of Y = PUTX thus is the weighted
projection of a data vector xk onto a basis vector
um, m = 1 . . . M .

• X̂ is the reconstructed version of the original trajec-
tory matrix. If all pmm = 1, m = 1, . . . , M , the original
matrix X is recovered because UUT = I.

Alternatively, by applying a SVD decomposition to the
trajectory matrix

X = UΛ1/2VT

the projections are obtained as

(3) Ym = pmmuT
mX = pmmλ1/2

m vT
m.

The row vector Ym (m-th row of Y) is thus related with the
m-th eigenvector vm of the inner product matrix (XTX) of
the data. So, the projections form a non-correlated repre-
sentation of the original data.

2.1 Signal enhancement

From (2) we obtain the expansion of the reconstructed
data matrix into a sum of rank-one matrices according to

X̂ = u1p11uT
1 X + u2p22uT

2 X + · · · + uMpMMuT
MX(4)

= u1Y1 + u2Y2 + · · · + uMYM

=
M∑

m=1

X̂m,

where each element of the 1×K matrix Ym is the dot prod-
uct, between the m-th eigenvector and one of the columns
of the data matrix, weighted by pmm. As mentioned be-
fore pmm = 1, if the m-th component is selected for the re-
construction otherwise pmm = 0. These weights thus serve
to select the components relevant for the problem at hand,
which might be concerned, for example, with noise reduction
or artifact removal.

In noise reduction applications, for example, the selected
components correspond to the m = 1, . . . , L ≤ M largest
eigenvalues of the matrix S. Then the eigenspectrum of X̂
is a truncated version of the eigenspectrum of the origi-
nal data. Alternatively, it is also possible to re-scale the
eigenspectrum of the reconstructed version by assigning a
real value pmm ∈ � like, for instance, pmm =

√
1 − η/λm,
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Figure 1. Filter Bank description of the processing chain:
Hm(z) are analysis transfer functions and Fm(z) are

synthesis transfer functions.

where η represents the noise variance (or energy). The eigen-
spectrum then scales according to the variance of the esti-
mated noise. The amplitude of each projected component
then changes according to the level of noise estimated:

(5) Ym = pmmλ1/2
m vT

m = (λm − η)
1
2 vT

m.

Other possibilities to compute the weights of pmm can
be found, though all assume that the noise variance should
be smaller than the selected eigenvalues [8, 10]. The mean
of the discarded eigenvalues is often used as an estimate of
the noise variance [14], but more sophisticated schemes have
been considered also.

The reconstructed data matrix X̂, in general, does not
exhibit identical elements along each descending diagonal
like in case of the original trajectory matrix X. In singu-
lar spectrum analysis (SSA), these distinct entries in each
diagonal (or anti-diagonal) are replaced by their average in
order to obtain again a Toeplitz (or an Hankel) matrix Xr.
A univariate reconstructed time series x̂[n] is then obtained
by reverting the embedding, i.e. by forming the signal with
the mean of the values along each diagonal of X̂.

2.2 SSA and filter banks

Signal enhancement as it was sketched above can also be
addressed employing linear invariant systems theory. Seen
from that perspective, the decomposition discussed above
can be considered the result of the application of a bank of
finite impulse response (FIR) filters [9], where analysis and
synthesis filter pairs are connected in parallel (see Fig. 1).
Hansen et al. [9] proposed an architecture where formally,
both filters represent vectors which multiply trajectory ma-
trices. They organize their input time series by embedding
into an input trajectory matrix with Hankel structure. This
matrix is common to all branches of the filter bank. At the
output of each analysis filter they compute a second tra-
jectory matrix which has a Toeplitz structure, instead. The
latter type of matrix is chosen to achieve the diagonal aver-
aging necessary to re-establish a Hankel or Toeplitz struc-
ture of the reconstructed data matrix as suggested in [3].
The coefficients of their analysis and synthesis filters corre-
spond to the eigenvectors of the correlation matrix of the
input trajectory matrix.

However, in the framework of linear invariant system the-
ory, the filter bank structure needed to achieve the output
time-series x̂[n] should be provided by the input time-series
x[n] instead of the trajectory matrices. Hence we propose an
approach based on filter responses and related transfer func-
tions rather than on matrix manipulations. The approach
proposed in this work is summarized in Fig. 1. It represents
the block diagram of the filter bank system where the trans-
fer functions Hm(z) of the analysis filters are related with
the projection step onto the eigenvectors um of the sub-
space model and the transfer functions Fm(z) of the synthe-
sis filters are related with the reconstruction and diagonal
averaging step. Therefore each parallel branch of the block
diagram represents one summand of (4) with the diagonal
averaging performed in each term. In the following we de-
duce closed form expressions for the transfer functions and
discuss their properties.

Each row Ym = pmmuT
mX of the projected data matrix

Y can be considered a filtered version of the original data
sequence. But the dot product of the eigenvector with the
sequence of lagged vectors xk, k = 1, . . . , K can be formu-
lated similarly as the weighted sum of a sequence of samples
of the time series. This operation, usually called convolution
sum [12], is written as follows

(6) ym[n] = pmm

M∑
i=1

uimx[n − i + 1],

where (M − 1) ≤ n < N .
The row vector Ym comprises K = N − (M −1) samples

of the time series ym[n], starting with time index (M − 1),
much like in the first row of the trajectory matrix X. The
entries of the vector um, the m-th column of the subspace
model U, correspond to the coefficients of a finite impulse
response (FIR) filter.

The transfer functions Hm(z) of the analysis filter can
be computed by substituting in (6) every delay operation
by the corresponding z transform. Therefore mapping x[n]
to X(z) =

∑∞
−∞ x[n]z−n, x[n ± d] to z±dX(z) and ym[n]

to Ym(z) [13], where z is a complex number, the filtering
operation can be formulated as

(7) Ym(z) = Hm(z)X(z),

whereby

Hm(z) =
Ym(z)
X(z)

= pmm

(
M∑
i=1

uimz−(i−1)

)
(8)

= pmm(u1m + u2mz−1 + · · · + uMmz−(M−1)).

The transfer functions Hm(z), m = 1, . . . , M thus con-
stitute the analysis block as it decomposes the input time
series x[n] into several component time series ym[n], m =
1, . . . ,M .
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After filtering out the subspace projections at the analysis
step, these projections can be further processed by select-
ing only the problem-relevant components and discarding
the rest. Afterwards the remaining problem-relevant projec-
tions need to be combined to the reconstructed signal at the
synthesis step. To facilitate the exposition of the latter, the
reconstruction step of one component X̂m of (4), which is
given by

(9)

X̂m = umYm

=

⎡
⎢⎢⎢⎢⎣

u1mym[M − 1] u1mym[M ] · · · u1mym[N − 1]
u2mym[M − 1] u2mym[M ] · · · u2mym[N − 1]
u3mym[M − 1] u3mym[M ] · · · u3mym[N − 1]

...
...

...
uMmym[M − 1] uMmym[M ] · · · uMmym[N − 1]

⎤
⎥⎥⎥⎥⎦

is exemplified. Note that X̂m is a rank-one matrix as all its
rows are linearly dependent. Obviously, each row is a scaled
version of the same component time series ym[n]. But the
resulting matrix does not yet exhibit a Toeplitz structure
which can be restored, however, by diagonal averaging. In-
terestingly, this reconstruction procedure can equally well
be formulated as a convolution sum operation:

(10) x̂m[n] =
1

Md

s∑
i=l

uimym[n + i − 1],

where Md, l and s attain values according to the number of
elements in the diagonals of the matrix defined in (9). More
specifically, the response can be sub-divided into a transient
and a steady state response according to the following dis-
tinction:

• With M elements, (10) represents a steady state re-
sponse of the filter in case of (M − 1) ≤ n ≤ (N − M)
with parameters Md = M , l = 1 s = M .

• With less than M elements, (10) represents a transitory
response of the filter in case of

– 0 ≤ n ≤ (M − 2) (lower left corner of the matrix)
with parameters Md = n + 1, l = M − Md and
s = M .

– (N −M +1) ≤ n ≤ (N −1) (upper right corner of
the matrix) with parameters Md = N − n, l = 1
and s = M − Md

Note that the synthesis filter is an anti-causal FIR filter
as the output at time index n depends on input samples with
time indices n + 1, . . . , n + M . Both cases can be unified by
formally setting ym[n] = 0 for time indices 0 ≤ n ≤ (M − 2)
and N ≤ n ≤ (N + M − 2) and compute (10) as in the
steady-state case. Therefore, the synthesis transfer function
is given by:

Fm(z) =
Xm(z)
Ym(z)

=
1
M

M∑
i=1

ujmzi−1(11)

=
1
M

(u1m + u2mz1 + · · · + uMmz(M−1)).

Notice that the transfer functions of the analysis and syn-
thesis filters differ by a scale factor and by the sign of the
powers of z. Therefore the magnitudes of the frequency re-
sponse of both filters are related by a scale factor and their
phases are symmetric.

The transfer function of each parallel branch (see Fig. 1)
resembles a cascade, formed by the projection step (analysis
filter) followed by the reconstruction and diagonal averaging
step (synthesis filter). Hence, the product of the two transfer
functions reads

(12) Tm(z) =
X̂m(z)
X(z)

= Fm(z)Hm(z) =
M−1∑

k=−(M−1)

tkmzk.

The coefficients tkm are the coefficients of the product
of two polynomials with the same coefficients but symmet-
ric powers. It can easily be shown that tkm = t−km, k =
1, . . . , (M−1). Therefore the related frequency response can
be obtained by substituting z = ejω, where j =

√
−1, in (12)

which then leads to

(13) Tm(ejω) = t0m +
M−1∑
k=1

2tkm cos(kω).

The frequency response is a real function, with period
ω = 2π, and it corresponds to a zero-phase filter. This
means that each extracted component x̂m[n] is always in-
phase with its related original signal x[n].

Examples of frequency responses of the eigenfilters are
shown graphically in [9] but no analytic expressions of the
filter responses are given. However, the present work also
deduces closed-form analytical expressions for the analy-
sis and synthesis filters. Note that frequency responses of
the component filters Hm(z) and Fm(z) cannot be given in
closed-form similar to Tm(z) in (13) due to lacking symme-
try properties of their coefficients [13].

In [1], the frequency profile of the eigenvectors was stud-
ied by way of the corresponding periodogram. The same goal
can also be achieved by taking samples of |Hm(ejω)| with
ω = 2π k

M , k = 0, . . . , M−1. Note that because Hm(ejω) and
Fm(ejω) only differ by a scaling factor and the sign of the
power of the complex exponential argument, the resulting
transfer function Tm(ejω) is similar in shape to |Hm(ejω)|.
Consequently, the value of Tm(ejω) is given by the square
of |Hm(ejω)| divided by pmmM .

The global transfer function of the block diagram repre-
sented in Fig. 1 is finally obtained by adding the transfer
functions of the parallel branches. The resulting output x̂[n]
is a sum of the selected signals x̂m[n], e.g, the outputs of
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the cascaded filter pairs formed by Hm(z) and Fm(z). No-
tice, that the embedding of the time-series as suggested by
(1) leads to a causal filter for the analysis step and to an
anti-causal filter for the synthesis step. Using alternative
embedding procedures, this property of the filters can inter-
change.

3. COMPARING SUBSPACES

When applying subspace analysis it is frequently of inter-
est to compare different subspace models. Given two matri-
ces (UA and UB) with L1 and L2 eigenvectors representing
two subspaces (UA and UB) of an M-dimensional data space,
we consider the following normalized distance measure of the
similarity of the two subspaces

dAB =
d(UA,UB)√
max(L1, L2)

(14)

=

√
1 − trace(UT

AUBUT
BUA)

max(L1, L2)
.

This subspace distance measure d(UA,UB) was proposed
in [16, 17], where its properties concerning non-negativity,
symmetry and invariance to the choice of an orthonormal
basis were discussed as well. Furthermore, it was proven in
[17] that this subspace distance satisfies the triangular in-
equality. The normalized distance dAB ∈ [0, 1] provides a
practical means to perform simple decisions. It reflects the
difference between the eigenvectors spanning the subspaces.
If two subspaces nearly coincide, they will have a small dis-
tance, and if they are almost perpendicular to each other,
they will have a large distance. Moreover, the distance (14)
appears to be a quite effective subspace distance measure
due to its clear geometrical meaning and easy computation.
Therefore it has been applied in a number of applications
in face, object and video based recognition [19]. The rule
dAB ≤ 1/2 provides an intuitive decision whether or not
two subspaces are similar.

In the present work we extend the application of this sim-
ilarity measure to cluster subspace models in the signal en-
hancement framework. Signal enhancement is achieved by
selecting a subspace in the M -dimensional space of time-
delayed coordinates, i.e., by choosing a subset of the eigen-
vectors which span the original data space. Suppose that a
subspace UA with L1 eigenvectors is computed for a segment
of a time series and another subspace UB with L2 eigenvec-
tors is computed for another segment of the same time series.
We are then interested to know if the embedded time-series
lead to subspace models with eigenvectors which spread in
similar directions of the multidimensional embedding space.
This problem fits well to the measure considered above and
is studied experimentally in the next section.

4. ILLUSTRATIVE EXAMPLES

To illustrate the concepts discussed above, we perform
numerical simulations for two time series:

Figure 2. The Hénon time series (top) and its Discrete
Fourier Transform (bottom). DFT absolute values normalized

by the maximal value are shown in the lower figure.

• One nonlinear time series given by Hénon’s equation.
• Electroencephalogram (EEG) signals collected during

evoked potential studies.

The spectrum of the nonlinear Hénon time series spreads
over all the frequency range with a slight predominance in
the high-frequency band, while the EEG time series has its
energy concentrated in the low-frequency band.

4.1 Hénon time series

The nonlinear Hénon time series is used to illustrate the
frequency response of the filter and its relation with the
embedding dimension considering that the sequence has a
fixed length N . The time series results from the following
dynamical equation

x[n + 1] = 1 − ax2[n] + bx[n − 1],

where parameter values a = 1.4, b = 0.3 have been used
in the following simulations. Fig. 2 shows N = 400 sam-
ples of the time series x[n] and its corresponding Discrete
Fourier Transform (absolute values). The spectrum of the
time series is spread over the whole range of normalized
frequencies and exhibits the largest amplitudes in the high
frequency range close to ω = π. The time series was ana-
lyzed applying different embedding dimensions M . The ba-
sis vectors U = (u1u2 . . .uM ) (see Sec. 2) of the space of
time-delayed coordinates correspond to eigenvalues ordered
by decreasing value λ1 ≥ λ2 ≥ · · · ≥ λM . The corresponding
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Figure 3. Frequency responses Tm(ejω). Left: M = 20 filters, Right: M = 40 filters for the Hénon time series x[n].

frequency responses Tm(ejω), m = 1, . . . , M (with pmm = 1)
of the branches of the analysis-synthesis system are shown
in Fig. 3.

The frequency response of the first two filters of the filter
bank with M = 20 parallel FIR filters are centered around
ω = 0.9π. Hence, they cover the high frequency band of the
signal. The next region covered by both filter bank models
is around ω = 0.2π which corresponds to the second largest
peaks in the spectrum of the time series. Generally the pat-
tern of frequency responses is very similar for different em-
bedding dimensions as can be concluded from the examples
given above. However, the bandwidth of the filters decreases
as the embedding dimension M increases. Hence, the num-
ber of filters covering any specific region of the spectrum,
i.e. any given frequency band, also changes.

By deliberately increasing the mean of the time series x[n]
by adding a constant amplitude c = 3 to x[n], the Discrete
Fourier Transform (DFT) exhibits an additional peak at ω =
0 which is the strongest peak of the spectrum. Consequently,
the filter corresponding to m = 1 turns from a bandpass
filter centered at high frequency to a low-pass filter. Except
from this, the general profile of frequency responses of the
other filters is very similar in case of both input sequences
x[n] and x[n] + c, respectively.

We now compare two subspace models UA and UB cor-
responding to series x[n] and x[n] + c, respectively. Fig. 4
shows the measures of similarity between these subspaces
with dimensions L1 < M and L2 = L1. The largest nor-
malized distance dAB = 1 is achieved when the subspaces
have dimension L1 = L2 = 1. When L1 = L2 = 40, both
subspaces correspond to the complete space, hence their nor-
malized distance is dAB = 0. The two subspaces can be con-
sidered to differ substantially if dAB > 1/2 holds, resulting
in L1, L2 < 5. However, notice the abrupt change occurring
when L1, L2 = 38 which obviously corresponds to the in-
clusion of the low-pass filter in the subspace model UA (see
Fig. 3).

Figure 4. The dependence of the distance (14) on L1 = L2,
the dimension of the subspaces, for the Hénon time series

x[n] and x[n] + c.

4.2 Evoked response potential signals

Evoked response potentials (ERPs) represent transient
components in the electroencephalogram (EEG) generated
in response to a stimulus, e.g. a visual or auditory stim-
ulus. To render the ERP signal visible, a large number of
single-trial responses are required to perform an ensemble
average over all trials. However, this simple methodology
has some drawbacks. The ERP averaging might not can-
cel some artifacts induced by eye movements or blinks if
they are time-locked to the experimental events. Thus it is
common practice in ERP studies to reject all EEG epochs
contaminated with artifacts. The averaging process has the
further drawback of masking the single-trial variability of
the task-related responses with respect to amplitude or la-
tency, for example. The fact that the same stimulus can elicit
somewhat different signals has been discussed for decades.
Despite these drawbacks, cognitive brain studies even con-
sider a grand average to characterize dominant peaks. Grand
average signals are taken over the ensemble averages ob-
tained in several sessions with different participants. There-
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Figure 5. The grand-average (occipital channel) and frequency response of the filters Tm(z). Left: Grand-average (dot) and
the enhanced version (line) with the subspace model of the signal. Right: Frequency responses of M = 31 filters, the first

L1 = 3 filters form the subspace model.

fore, evoked response potential studies deal with signals that
represent different levels of analysis: the single-trial segment,
the ensemble average and the grand-average. The applica-
tion of SSA to single-trial signals is mostly oriented towards
signal enhancement. But it would be interesting to have
some information about the signal under analysis. Subse-
quently, a projective subspace analysis of ERPs is pursued.
The resulting subspace models of the single-trial signals are
clustered using the subspace distance defined in (14). En-
semble averages are computed for every cluster and com-
pared with the corresponding ensemble average of visually
selected trials. Note that in spite of not being optimal, the
ensemble average waveform is often the goal in practice or
it constitutes a reference signal [11, 7] of a single-trial en-
hancement algorithm.

The data set analyzed comprises 32 sessions (two sessions
per participant) with roughly 250 trials per session. Exper-
imental protocol and data acquisition are fully described in
[15]. The stimulus consisted of overlapping pictures of faces
and houses. The participant’s task was to determine, during
each trial, if the relevant stimulus (house or face, depending
on the condition) had the same identity as the relevant stim-
ulus presented on the previous trial, i.e., if it was the same
house or the same person. Disregarding any eventual differ-
ences between conditions, early potentials like the famous
P100 response amplitude are clearly visible in ensemble av-
erages, mostly in occipital derivations [15].

The ensemble average of a particular channel xs[n] of a
session is estimated according to

xs[n] =
1
T

T∑
t=1

xt[n](15)

n = −B,−B + 1, . . . , 0, . . . , R − 1,

Figure 6. Grand-average versus ensemble average: correlation
coefficients (top); distance between respective subspace

models (bottom).

where t denotes the trial number and B and R stand for the
number of samples before and after stimulus onset at n = 0.
As referred to before, traditionally, the EEG is visually in-
spected and segments with excessive artifacts (for instance
eye movement artifacts, drifts) are annotated. Therefore the
ensemble average (15) includes only T single trials ERPs free
of artifacts. For visualization purposes, the ensemble aver-
ages xs[n] are further averaged over the population of sub-
jects to form the grand-average x[n]. Fig. 5 exemplifies such
a grand-average signal of one occipital channel. The ERP os-
cillation is characterized by an initial negative peak (denoted
as either N1 or N70, where 70 indicates 70ms time lag after
stimulus onset), followed by a large positive peak (denoted
as either P1 or P100) followed by another negative peak
(denoted as either N2 or N170). In the 200ms window after
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Figure 7. Single-trial analysis and frequency response of the filters. Top: input signal (dashed), output (line); Bottom-
frequency responses of L = 10 filters.

the stimulus onset all these peaks are visible. However, as
Fig. 5 illustrates, the P100 wave, appearing roughly 100ms
after the stimulus, is the most prominent peak of ERPs.
The ensemble averages xs[n] exhibit peaks with similar la-
tencies. However, their amplitudes and the waveforms differ
from session to session. Fig. 6 (top) presents correlation co-
efficients between x[n] and each xs[n]. Remarkably, these
correlation coefficients are less than 0.5 in 4 of the cases.

SSA was applied to the single trial evoked potential and
the subspace models were computed using a similar strat-

egy: the embedding dimension is chosen to be M = 31 and
N = 300 samples (B = 37 before stimulus) are used to
estimate S. From these signals (x[n] and xs[n]) subspace
models were estimated with L = 3 dimensions, correspond-
ing to L1 = L2 = 3 filters of the related filter bank model.
The subspace models are then compared employing the nor-
malized distance measure discussed before. From all the re-
sults shown in Fig. 6, globally, a similar conclusion can be
drawn: when the correlation coefficient is high, the subspace
distance is low. Note, however, the exception of the signal
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Figure 8. Ensemble averages of 4 sessions: Dashed: Ensemble of visually selected trials; Ensemble averages in: Line: cluster A
with dAB < 0.1 and dot: cluster B with 0.1 ≤ dAB < 0.2 and dash-dot: cluster C with dAB ≥ 0.2.

corresponding to session 29 that exhibits the largest sub-
space distance and a large correlation coefficient. Comput-
ing a grand-average over the subject population, a smoother
signal results from the subspace model with L1 = 3. Fig. 5
shows the frequency response of the corresponding filters,
where the first 10 filters have their bandpass increasing with

the frequency f . The input signals have a low-pass spectral
profile decreasing in amplitude with f , and with highest
percentage of energy up to 35Hz.

The goal of the analysis is to achieve single-trial signal
enhancement and, simultaneously, to perform an ensemble
averaging of signals whose subspace models are considered
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similar according to the chosen metric. For each single trial
signal, irrespective of the presence of possible artifacts, a
corresponding subspace model is estimated. The subspace
model is applied to the signal and its enhanced version (out-
put of the filter bank with L2 = 3) is taken to perform
ensemble averaging over the corresponding cluster.

To form the clusters, the grand-average signal was cho-
sen as the corresponding reference model (UA, L1 = 3) for
comparison. Three clusters were considered to group the
single-trial subspace models (UB , L2 = 3). Clustering was
effected using the normalized distance measure according to
the following rules: a single-trial subspace model belongs to
cluster A if its distance to the grand-average subspace model
is dAB < 0.1, and it belongs to cluster B if 0.1 ≤ dAB < 0.2
or it belongs to cluster C if dAB ≥ 0.2.

Fig. 7 shows two single-trial signals and its enhanced ver-
sions and the corresponding frequency response of the filters.
The first single trial signal, shown in the top left row, ex-
hibits a pronounced peak at a latency of roughly 100ms.
The corresponding frequency responses of the filters, shown
in the bottom left, have a profile similar to the filters of
the reference model (dAB = 0.02). The second single trial
signal, shown in the top right row, has a drift starting at
t = 200ms after stimulus onset and the related filter output
signal has no clearly defined peak close to t = 100ms. There
is also a visible difference in the frequency response of the
filters when compared to the reference model (dAB = 0.39),
the third filter of the subspace model moves to the 20Hz
region.

Fig. 8 shows ensemble averages of the single-trial signals
of each of the three clusters and of visually selected trials
corresponding to 4 sessions (the number 2, 5, 10 and 29 of
Fig. 6). The sessions 2 and 10 exhibit prominent P100 peaks
with large amplitudes (� 20μV ) in two of the clusters and in
the visually selected group (Fig. 8 on left). The cluster C of
session 10 is formed with trials whose signals have artifacts
and the ensemble average has no meaning. The session 5 has
P100 peak with smaller amplitude but in the cluster A the
peak is larger than in the other ensemble averages (Fig. 8
on right-top). Also notice that the ensemble average of the
cluster C presents a slow wave with large amplitude after
t > 0.4s and the peak around t = 0.1s is not positive. The
session 29 has not a peak with the expected latency. The
ensemble average of the visually selected trials has a peak
close to 0.2s and cluster B has the peak with similar latency.
However cluster A has a very low peak closer to t = 0.1s
but it is not the largest peak of the wave.

Whatever is the session there is always one ensemble av-
erage that is very similar to the ensemble average of visually
selected trials. And in most of the cases the number of sig-
nals in the cluster is smaller than the number of trials visu-
ally selected. This justifies the application of SSA to enhance
single-trial signals. The application of the distance measure
provides ensemble averages of signals in different clusters. In
this way it is possible to separate the contribution of possible

artifacts and isolate them in a group like cluster C in most
of the sessions. This aspect can be important to avoid the
visual inspection of the recordings, a very time consuming
task, usually performed before the ERP analysis.

5. CONCLUSIONS

The interpretation of SSA as a bank of filters can be use-
ful to attain a more clear-cut insight into the outcomes of
the method. By the frequency responses of the filter bank,
corresponding to the basis vectors of the subspace, the fre-
quency content of the different components can be easily
attained. SSA filters are data adaptive and the relevance of
one component to the energy of input signal is deduced from
the corresponding eigenvalue. Moreover, the frequency pro-
file of each component is determined only at the projection
step. However, in order to get a component in phase with
the input signal, the diagonal averaging is required. There-
fore, by applying a linear invariant system theory approach,
analytical expressions of the frequency response are deduced
in this work. These results thus corroborate the properties
of the SVD/SSA steps referred to in previous works [9, 3].
The possibility of having outputs that are in phase with
the input is an important aspect in applications where mea-
sures have to be taken using a small number of samples (like
evoked potential signals). This work also discusses the appli-
cation of a similarity measure to compare subspace models
of the single-trial signal enhancement task. The preliminary
results in evoked potential studies are very promising and
encouraging to proceed with a more quantitative evaluation
of the results.
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