874 research outputs found

    A CASE STUDY ON SUPPORT VECTOR MACHINES VERSUS ARTIFICIAL NEURAL NETWORKS

    Get PDF
    The capability of artificial neural networks for pattern recognition of real world problems is well known. In recent years, the support vector machine has been advocated for its structure risk minimization leading to tolerance margins of decision boundaries. Structures and performances of these pattern classifiers depend on the feature dimension and training data size. The objective of this research is to compare these pattern recognition systems based on a case study. The particular case considered is on classification of hypertensive and normotensive right ventricle (RV) shapes obtained from Magnetic Resonance Image (MRI) sequences. In this case, the feature dimension is reasonable, but the available training data set is small, however, the decision surface is highly nonlinear.For diagnosis of congenital heart defects, especially those associated with pressure and volume overload problems, a reliable pattern classifier for determining right ventricle function is needed. RV¡¦s global and regional surface to volume ratios are assessed from an individual¡¦s MRI heart images. These are used as features for pattern classifiers. We considered first two linear classification methods: the Fisher linear discriminant and the linear classifier trained by the Ho-Kayshap algorithm. When the data are not linearly separable, artificial neural networks with back-propagation training and radial basis function networks were then considered, providing nonlinear decision surfaces. Thirdly, a support vector machine was trained which gives tolerance margins on both sides of the decision surface. We have found in this case study that the back-propagation training of an artificial neural network depends heavily on the selection of initial weights, even though randomized. The support vector machine where radial basis function kernels are used is easily trained and provides decision tolerance margins, in spite of only small margins

    Scaling Multidimensional Inference for Big Structured Data

    Get PDF
    In information technology, big data is a collection of data sets so large and complex that it becomes difficult to process using traditional data processing applications [151]. In a world of increasing sensor modalities, cheaper storage, and more data oriented questions, we are quickly passing the limits of tractable computations using traditional statistical analysis methods. Methods which often show great results on simple data have difficulties processing complicated multidimensional data. Accuracy alone can no longer justify unwarranted memory use and computational complexity. Improving the scaling properties of these methods for multidimensional data is the only way to make these methods relevant. In this work we explore methods for improving the scaling properties of parametric and nonparametric models. Namely, we focus on the structure of the data to lower the complexity of a specific family of problems. The two types of structures considered in this work are distributive optimization with separable constraints (Chapters 2-3), and scaling Gaussian processes for multidimensional lattice input (Chapters 4-5). By improving the scaling of these methods, we can expand their use to a wide range of applications which were previously intractable open the door to new research questions

    Towards The Deep Semantic Learning Machine Neuroevolution Algorithm: An exploration on the CIFAR-10 problem task

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsSelecting the topology and parameters of Convolutional Neural Network (CNN) for a given supervised machine learning task is a non-trivial problem. The Deep Semantic Learning Machine (Deep-SLM) deals with this problem by automatically constructing CNNs without the use of the Backpropagation algorithm. The Deep-SLM is a novel neuroevolution technique and functions as stochastic semantic hill-climbing algorithm searching over the space of CNN topologies and parameters. The geometric semantic properties of the Deep-SLM induce a unimodel error space and eliminate the existence of local optimal solutions. This makes the Deep-SLM potentially favorable in terms of search efficiency and effectiveness. This thesis provides an exploration of a variant of the Deep-SLM algorithm on the CIFAR-10 problem task, and a validation of its proof of concept. This specific variant only forms mutation node ! mutation node connections in the non-convolutional part of the constructed CNNs. Furthermore, a comparative study between the Deep-SLM and the Semantic Learning Machine (SLM) algorithms was conducted. It was observed that sparse connections can be an effective way to prevent overfitting. Additionally, it was shown that a single 2D convolution layer initialized with random weights does not result in well-generalizing features for the Deep-SLM directly, but, in combination with a 2D max-pooling down sampling layer, effective improvements in performance and generalization of the Deep-SLM could be achieved. These results constitute to the hypothesis that convolution and pooling layers can improve performance and generalization of the Deep-SLM, unless the components are properly optimized.Selecionar a topologia e os parâmetros da Rede Neural Convolucional (CNN) para uma tarefa de aprendizado automático supervisionada não é um problema trivial. A Deep Semantic Learning Machine (Deep-SLM) lida com este problema construindo automaticamente CNNs sem recorrer ao uso do algoritmo de Retro-propagação. A Deep-SLM é uma nova técnica de neuroevolução que funciona enquanto um algoritmo de escalada estocástico semântico na pesquisa de topologias e de parâmetros CNN. As propriedades geométrico-semânticas da Deep-SLM induzem um unimodel error space que elimina a existência de soluções ótimas locais, favorecendo, potencialmente, a Deep-SLM em termos de eficiência e eficácia. Esta tese providencia uma exploração de uma variante do algoritmo da Deep-SLM no problemo de CIFAR-10, assim como uma validação do seu conceito de prova. Esta variante específica apenas forma conexões nó de mutação!nó de mutação na parte non convolucional da CNN construída. Mais ainda, foi conduzido um estudo comparativo entre a Deep-SLM e o algoritmo da Semantic Learning Machine (SLM). Tendo sido observado que as conexões esparsas poderão tratar-se de uma forma eficiente de prevenir o overfitting. Adicionalmente, mostrou-se que uma singular camada de convolução 2D, iniciada com valores aleatórios, não resulta, directamente, em características generalizadas para a Deep-SLM, mas, em combinação com uma camada de 2D max-pooling, melhorias efectivas na performance e na generalização da Deep-SLM poderão ser concretizadas. Estes resultados constituem, assim, a hipótese de que as camadas de convolução e pooling poderão melhorar a performance e a generalização da Deep-SLM, a não ser que os componentes sejam adequadamente otimizados

    A Machine Learning Approach to Reveal the NeuroPhenotypes of Autisms

    Get PDF
    This work was partly supported by the MINECO Under the TEC2015-64718-R Project, the Salvador de Madariaga Mobility Grants 2017 and the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía, Spain) under the Excellence Project P11-TIC-7103. The study was conducted in association with the National Institute for Health Research Collaborations for Leadership in Applied Health Research and Care (NIHR CLAHRC) East of England (EoE). The Project was supported by the UK Medical Research Council (Grant No. GO 400061) and European Autism Interventions — a Multicentre Study for Developing New Medications (EU-AIMS); EU-AIMS has received support from the Innovative Medicines Initiative Joint Undertaking Under Grant Agreement No. 115300, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007–2013) and EFPIA companies’ in-kind contribution. During the period of this work, M-CL was supported by the OBrien Scholars Program in the Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health (CAMH) and The Hospital for Sick Children, Toronto, the Academic Scholar Award from the Department of Psychiatry, University of Toronto, the Slaight Family Child and Youth Mental Health Innovation Fund, CAMH Foundation, and the Ontario Brain Institute via the Province of Ontario Neurodevelopmental Disorders (POND) Network; MVL was supported by the British Academy, Jesus College Cambridge, Wellcome Trust, and an ERC Starting Grant (ERC-2017-STG; 755816); SB-C was supported by the Autism Research Trust. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health, UK.Although much research has been undertaken, the spatial patterns, developmental course, and sexual dimorphism of brain structure associated with autism remains enigmatic. One of the difficulties in investigating differences between the sexes in autism is the small sample sizes of available imaging datasets with mixed sex. Thus, the majority of the investigations have involved male samples, with females somewhat overlooked. This paper deploys machine learning on partial least squares feature extraction to reveal differences in regional brain structure between individuals with autism and typically developing participants. A four-class classification problem (sex and condition) is specified, with theoretical restrictions based on the evaluation of a novel upper bound in the resubstitution estimate. These conditions were imposed on the classifier complexity and feature space dimension to assure generalizable results from the training set to test samples. Accuracies above 80% on gray and white matter tissues estimated from voxel-based morphometry (VBM) features are obtained in a sample of equal-sized high-functioning male and female adults with and without autism (N=120, n=30/group). The proposed learning machine revealed how autism is modulated by biological sex using a low-dimensional feature space extracted from VBM. In addition, a spatial overlap analysis on reference maps partially corroborated predictions of the “extreme male brain” theory of autism, in sexual dimorphic areas.This work was partly supported by the MINECO Under the TEC2015-64718-R Project, the Salvador de Madariaga Mobility Grants 2017 and the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía, Spain) under the Excellence Project P11-TIC-7103The Project was supported by the UK Medical Research Council (Grant No. GO 400061) and European Autism Interventions — a Multicentre Study for Developing New Medications (EU-AIMS)EU-AIMS has received support from the Innovative Medicines Initiative Joint Undertaking Under Grant Agreement No. 115300MVL was supported by the British Academy, Jesus College Cambridge, Wellcome Trust, and an ERC Starting Grant (ERC-2017-STG; 755816

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Applying neural networks for improving the MEG inverse solution

    Get PDF
    Magnetoencephalography (MEG) and electroencephalography (EEG) are appealing non-invasive methods for recording brain activity with high temporal resolution. However, locating the brain source currents from recordings picked up by the sensors on the scalp introduces an ill-posed inverse problem. The MEG inverse problem one of the most difficult inverse problems in medical imaging. The current standard in approximating the MEG inverse problem is to use multiple distributed inverse solutions – namely dSPM, sLORETA and L2 MNE – to estimate the source current distribution in the brain. This thesis investigates if these inverse solutions can be "post-processed" by a neural network to provide improved accuracy on source locations. Recently, deep neural networks have been used to approximate other ill-posed inverse medical imaging problems with accuracy comparable to current state-of- the-art inverse reconstruction algorithms. Neural networks are powerful tools for approximating problems with limited prior knowledge or problems that require high levels of abstraction. In this thesis a special case of a deep convolutional network, the U-Net, is applied to approximate the MEG inverse problem using the standard inverse solutions (dSPM, sLORETA and L2 MNE) as inputs. The U-Net is capable of learning non-linear relationships between the inputs and producing predictions about the site of single-dipole activation with higher accuracy than the L2 minimum-norm based inverse solutions with the following resolution metrics: dipole localization error (DLE), spatial dispersion (SD) and overall amplitude (OA). The U-Net model is stable and performs better in aforesaid resolution metrics than the inverse solutions with multi-dipole data previously unseen by the U-Net
    corecore