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ABSTRACT OF THE DISSERTATION

Scaling Multidimensional Inference for Big Structured Data
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Professor Arye Nehorai, Chair

“In information technology, big data is a collection of data sets so large and complex that

it becomes difficult to process using traditional data processing applications” [151]. In a

world of increasing sensor modalities, cheaper storage, and more data oriented questions, we

are quickly passing the limits of tractable computations using traditional statistical analysis

methods. Methods which often show great results on simple data have difficulties processing

complicated multidimensional data. Accuracy alone can no longer justify unwarranted mem-

ory use and computational complexity. Improving the scaling properties of these methods

for multidimensional data is the only way to make these methods relevant. In this work

we explore methods for improving the scaling properties of parametric and nonparametric

models. Namely, we focus on the structure of the data to lower the complexity of a specific

family of problems. The two types of structures considered in this work are distributive

optimization with separable constraints (Chapters 2-3), and scaling Gaussian processes for

multidimensional lattice input (Chapters 4-5). By improving the scaling of these methods,

x



we can expand their use to a wide range of applications which were previously intractable

open the door to new research questions.
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Chapter 1

Introduction

As sensor and storage technologies are becoming increasingly cheaper and more widely used,

modern applications increasingly involve multidimensional big datasets. The captured data

is often highly complex, correlated, high dimensional, nonlinear, and stochastic. These

properties make the use of sophisticated inference methods computationally prohibitive and

necessitate improving the scaling ability of these methods.

In this thesis we consider and develop methods to significantly reduce the scaling burden of

inference methods. In the literature, a significant amount of research has gone into improving

the scaling of generic methods either by simplifying the model or by using a small subset

of the data. However, these simplifying assumptions improve computational complexity at

the expense of modeling accuracy, and can depend strongly on the properties of the data.

In this work we consider an alternative approach. Instead of dealing with the generic case,

we limit our domain to a family of problems with a useful structure that allows significantly

lowering their complexity without altering the inference method. Specifically in this work we

consider optimization problems with block separable constraints (Chapters 2-3) and Gaussian

processes for multidimensional lattice input (Chapters 4-5).

1.1 Parallel optimization with separable constraints

The first part of this work explores parallel optimization routines for problems with block

separable constraints. The assumption of block separable constraints is valid for many prac-

tical problems, such as multi-agent resource allocation, where resources are being distributed

amongst several agents that influence the choice of allocation. Examples of such problems

1



are found in smartgrid scheduling and budgeting [162], managing multi-modal sensor net-

works [28], and communication networks [118].

Parallel methods are commonly used to lower the runtime of hard problems. However,

parallel methods introduce new challenges, such as synchronization between subproblems,

convergence issues, and communication overhead. In this work we consider a parallel dis-

tributed algorithm that uses an adaptive regularizer (PDAR) for optimization problems with

separable constraints. The algorithm utilizes an adaptive step-size between iterations to syn-

chronize the distributed subproblems. We will show the theoretical convergence properties

of the proposed algorithm, and illustrate its effectiveness in simulated and real problems. An

important real application of this algorithm is using measurements from a microelectrode

array to find the electrical conductivity of an excitable tissue.

The electrical conductivity of an excitable tissue is important for understanding the tissue’s

structure and functioning. However, the inverse problem of inferring spatial conductiv-

ity from data is highly ill-posed and computationally intensive. Here, we propose a novel

method to solve the inverse problem of inferring tissue conductivity from a set of trans-

membrane potential and stimuli measurements made by microelectrode arrays (MEA). We

start by formulating a forward model of the tissue, using a reaction-diffusion model with

an anisotropic inhomogeneous electrical conductivity-tensor field. Then we solve the inverse

problem using a single-step approximation and a parallel optimization based on the PDAR

algorithm. We analyze the performance of our algorithm, then discuss its application to

real measurements obtained from smooth-muscle cardiac tissue, using data collected with a

high-resolution MEA system.

1.2 Scaling Gaussian Processes regression with multi-

dimensional grid inputs

The second part of this work explores scaling Gaussian process regression for problems with

lattice data input. In the machine learning community, Gaussian processes (GPs) have

become a popular tool for nonparametric Bayesian regression. However, naive GP regression

has O(N3) runtime and O(N2) memory complexity, where N is the number of observations.

2



At ten thousand or more observations, this problem is practically intractable, given current

hardware. Many algorithms for improving GP scaling approximate the covariance with lower

rank matrices. Other work has exploited various structures inherent in particular covariance

functions. However, these GP advances have not been well extended to the multidimensional

input setting, despite the preponderance of multidimensional applications. Here we extend

the initial work of [127] on multiplicative kernel GPs with inputs on a multidimensional

grid. We then generalize the method to handle incomplete grids, heteroscedastic noise, and

automatic pattern discovery and extrapolation on large multidimensional datasets. These

advances enable the use of our GP method on a wide variety of applications.

In Chapter 5, we use our efficient GP algorithm for image interpolation and denoising in

division of focal plane images (DoFP). Image interpolation and denoising are inherent to

digital image acquisition as most digital cameras are composed of a 2D grid of heterogeneous

imaging sensors. The sensors capture only partial information of the true scene, leading to

a loss of spatial resolution as well as inaccuracy of the captured polarization information.

Interpolation is a standard technique to recover the missing information and increase the

accuracy of the captured polarization information. Our Gaussian process regression allows

for statistical image interpolation, where estimates of sensor noise are used to improve the

accuracy of the estimated pixel information. This produces significant improvements over

previously published interpolation methods for polarimeters, which is most pronounced in

cases of low signal-to-noise ratio (SNR).

In Chapter 6, we use our efficient GP algorithm for denoising fMRI data. Although concep-

tually attractive, GP use in the neuroscience community has been limited by burdensome

scaling properties. Naively solving exact GP inference is limited to datasets with only a few

thousands data points. In a standard fMRI experiment the number of data points (voxels)

can easily reach hundreds of thousands, if not millions, making GP infeasible. Fortunately,

fMRI data inputs (voxels) are lie on a 4D grid (3D space + time), which makes exact GP

inference, for the first time, competitive for fMRI analysis. Our GP-based statistical denois-

ing enables adaptive noise-based smoothing that learns its spatiotemporal structure from

the data and runs in practicable time.

3



1.3 Contributions of this work

Distributed Optimization via Adaptive Regularization for Large Problems with

Separable Constraints

Here, we propose a fully distributed parallel method to solve optimization problems over

multidimensional data sets. Our method can be applied to a wide variety of nonlinear

problems where the constraints are block separable. In order to coordinate among the

subproblems, we introduce an adaptive regularizer term that penalizes large changes in

successive iterations. Our method can be seen as an extension of the classical proximal

point method (PPM) with two novel advances. First, we use PPM to coordinate among the

parallel subproblems, not to handle non-differentiability. Second, we enforce coordination

by using adaptive regularizers that vary across different subproblems.

Estimating Electrical Conductivity Tensors of Biological Tissues from Microelec-

trode Arrays Data

The contributions of this effort are two-fold. First, we introduce a discrete forward model of

transmembrane potential based on a diffusion-reaction model with an anisotropic inhomoge-

neous electrical conductivity tensor field. Second, we propose a novel parallel optimization

algorithm for solving the complex inverse problem of estimating the conductivity tensor

field. Specifically, we propose a single-step approximation with a parallel block-relaxation

optimization method. This combination simplifies the joint tensor field estimation problem

into a set of computationally tractable problems, allowing the use of efficient standard opti-

mization algorithms. We analyze the performance of our algorithm using numerical examples

of several electrical conductivity field topologies and noise levels, and discuss its application

to real measurements obtained from cardiac tissue, using a high resolution MEA system.

Scaling Multidimensional Inference for Structured Gaussian Processes

While efficient methods for structured GPs are known in the case of scalar inputs, many

regression applications involve multivariate inputs. We present a novel algorithm for GPs

with a multiplicative kernel structure, where multidimensional inputs are on a lattice (GP-

grid). We extend our GP-grid algorithm to handle two limitations of the basic algorithm

by allowing for (i) incomplete data and (ii) heteroscedastic noise. Lastly, we enhance the

method by incorporating expressive kernels, which learn hidden patterns in the data. These

extensions to standard GP have certainly been used to good purpose in previous GP settings,
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but their success can not be replicated in the largeN case without additional advances related

to this specific multidimensional grid structure.

Image Interpolation and Denoising for Division of Focal Plane Sensors using

Gaussian Processes

This chapter presents an efficient GP inference for improved interpolation of DoFP po-

larimeter data. The GP statistical inference is able learn the properties of the data, and

it incorporates an estimation of the sensor noise in order to increase the accuracy of the

polarization information and improve spatial resolution.

Denoising fMRI data using Gaussian Processes

This chapter introduces an efficient GP-based analysis for denoising fMRI data. GP regres-

sion is a convenient, rigorous, and powerful method that generalizes and unifies previous

ideas on smoothing, temporal filtering, statistical modeling, and drift removal. We will show

that our GP-based method allows for several advances: 1)It removes drift removal by learn-

ing the drifts’ properties simultaneously on the entire brain. 2)It jointly learns the localized

spatial and temporal correlations and the heteroscedastic voxels’ noise. 3)It adaptively varies

the smoothing level of the voxel. 4)It shows significant improvement for real fMRI data over

fixed-width smoothers, while lessening the sensitivity/specificity tradeoff.

1.4 Organization of the dissertation

The rest of the dissertation is organized as follows. Chapters 2 and 3 consider the the problem

of distributive optimization with separable constraints. In Chapter 2, we develop a new

general method of parallel distributive optimization for problems with separable constraints.

We provide a convergence analysis as well as experimental results on simulated data. In

Chapter 3, based on our parallel method, we develop a mathematical framework for solving

the inverse problem of estimating effective electrical tissue conductivities from a set of electric

potentials and stimulus measurements. In Chapter 4, we consider the problem of scaling

Gaussian process regression for structure problems with multidimensional input. We develop

an efficient algorithm that can be extended to cases of incomplete grid, heteroscedastic noise,

and expressive kernels. In Chapter 5, we apply our efficient GP method to interpolate and

denoise division of focal plane images. In Chapter 6, we use our GP method as part of a
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routine for denoising fMRI data. We finally summarize the dissertation in Chapter 7, and

point out potential future directions.

1.5 Notations

The notational conventions adopted in this work are as follows: We write a scalar as x, a

vector as x, a matrix as X. The ith element of a vector is in the typeface of a scalar xi. The

ith row and jth column of X is X(i, j) or Xi,j. The ith row of X is Xi,: or xi. The ith column

of X is X:,i or xi. We write a function as g(t), and a lowercase bold Roman font indicates

a vector function, e.g., gt. Writing the time index as a subscript indicates the vector at the

nth timepoint, e.g., xn ≡ x[n∆t] We represent an inclusive range between a and b as a : b

or a, . . . , b. By standard convention, even though Gaussian Process hyperparameters form a

vector, we represent them with the typeface of a scalar, θ.

Symbols used

R The real numbers.

R+ Positive real numbers.

C The complex numbers.

Q The rational numbers.

Z The integers.

Z+ Positive integers.

x∗ The complex conjugate of x.

X⊗Y The Kronecker product of X and Y.

1 A vector of ones.

0 A vector of zeros or a matrix of zero, depending on context.

ID The identity matrix of size D.

Sn Denotes the vector space of symmetric n× n.

Sn+ Denotes positive semi definite matrices.

Sn++ Denotes positive definite matrices.

|| · ||F The Frobenius norm, defined as ||X||F =
√
∑m

i=1

∑n
j=1 |Xij |2.

vec(X) The vectorization of a matrix X.

diag(X) The diagonal of a matrix X.

tr(X) The trace of a matrix X.

XT The transpose of a matrix X.

KL(p||q) The Kullback-Leibler (KL) divergence between distributions p and q.

H(p) The entropy of distribution p.

E(X) Expectation of a random variable X .
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V(X) Variance of a random variable X .

Ep(·)(X) Expectation of a random variable X with respect to p.

Vp(·)(X) Variance of a random variable X with respect to p.

Cov(X) Covariance of a vector random variable X.

N (µ,Σ) A Gaussian distribution with specified mean µ and (co-)variance Σ. Ran-

dom variable symbol is omitted.

N (x;µ,Σ) A Gaussian distribution with specified mean µ and (co-)variance Σ. Ran-

dom variable symbol not omitted.

Student-tν(µ,Σ) A multivariate Student’s t distribution with mean µ, covariance Σ, and ν

degrees of freedom.

Γ(α, β) A gamma distribution with shape α and inverse scale β.

Poisson(λ) A Poisson distribution with mean λ.

GP(µ, k) A Gaussian process (GP) with mean function µ(·) and kernel k(·, ·).
x ≡ y x defined as y.

O(·) The big-O asymptotic complexity of an algorithm.

← An assignment operation in an algorithm.

w.r.t. Shortening of the phrase “with respect to”.

IID Shortening of the phrase “independent, identically distributed”.

p.d.f. Shortening of the phrase “probability density function”.

c.d.f. Shortening of the phrase “cumulative distribution function”.
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Chapter 2

Distributed Optimization via

Adaptive Regularization for Large

Problems with Separable Constraints

2.1 Abstract

Many practical applications require solving an optimization over large and high-dimensional

data sets, which makes these problems hard to solve and prohibitively time consuming. In

this work, we propose a parallel distributed algorithm that uses an adaptive regularizer

(PDAR) to solve a joint optimization problem with separable constraints. The regularizer is

adaptive and depends on the step size between iterations and the iteration number. We show

theoretical convergence of our algorithm to an optimal solution, and use a multi-agent three-

bin resource allocation example to illustrate the effectiveness of the proposed algorithm.

Numerical simulations show that our algorithm converges to the same optimal solution as

other distributed methods, with significantly reduced computational time.

2.2 Introduction

With the sensor and the storage technologies becoming increasingly cheaper, modern ap-

plications are seeing a sharp increase in big data. The explosion of such high-dimensional

and complex data sets makes optimization problems extremely hard and prohibitively time

consuming [21]. Parallel computing has received a significant attention lately as an effective

tool to achieve the high throughput processing speeds required for processing big data sets.
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Thus, there has a been a paradigm shift from aggregating multi-core processors to utilizing

them efficiently [22].

Although distributed optimization has been an increasingly important topic, it has not re-

ceived sufficient attention since the seminal work by Bertsekas and Tsitsiklis until recently.

In the 1980’s, Bertsekas and Tsitsiklis extensively studied decentralized detection and con-

sensus problems [17] and developed algorithms such as parallel coordinate descent [145]

and the block coordinate descent (BCD) (also called the block Jacobi) [17, 144]. In 1994,

Ferris et. al. proposed parallel variable distribution (PVD) [40] that alternates between a

parallelization and a synchronization step. In the parallelization step, several sub-optimal

points are found using parallel optimizations. Then, in the synchronization step, the optimal

point is computed by taking an optimal weighted average of the points found in the parallel

step. Although PVD claims to achieve better convergence rate than BCD, the complexity

of solving optimization in both the steps make it impractical for high dimensional problems.

There are other efficient distributive methods in literature, such as the shooting [46], the

shotgun [22], and the alternating direction method of multipliers (ADMM) [21], however,

these methods apply to only a specific type of optimization problems: ℓ1-regularization for

shooting and shotgun, and linear constraints for ADMM.

In this work, we propose a fully distributed parallel method to solve optimization problems

over high-dimensional data sets, which we call the parallel distributive adaptive regulariza-

tion (PDAR). Our method can be applied to a wide variety of nonlinear problems where

the constraints are block separable. The assumption of block separable constraints is valid

for many practical problems, such as, multi-agent resource allocation where resources are

being distributed amongst several agents that influence the choice of allocation. In order to

coordinate among the subproblems we introduce an adaptive regularizer term that penalizes

the large changes in successive iterations. Our method can be seen as an extension of the

classical proximal point method (PPM) [16] with two novel advances. First, our motivation

for using the PPM framework is very different than the original. We use PPM as a means

to coordinate among the parallel subproblems and not for handling non differentiability.

Second, we enforce coordination by using adaptive regularizers that vary across different

subproblems.

The rest of the chapter is organized as follows. In Section 2.3, we formulate the problem;

in Section 2.4 we propose our parallel distributive algorithm and show convergence to an
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optimum solution; in Section 2.5 we provide numerical simulations, and we conclude the

chapter in Section 2.6.

2.3 Problem Formulation

Consider an optimization problem given as:

minimize f(x) (2.1)

subject to x ∈ X , (2.2)

where the objective is to find the optimal vector x∗ that minimizes the function f(x) ∈ R,

with x ∈ Rd. The problem is often very complex, nonlinear, and high dimensional, and

solving it is prohibitively time consuming. We assume that the constraint x ∈ X can be

separated into several blocks, such that

x = [x1,x2, . . . ,xi, . . . ,xN ] where, xi ∈ Xi, (2.3)

with xi ∈ Rni and
∑N

i=1 ni = d. Once the problem is separated into blocks, distributed

iterative approaches (such as the ones mentioned in the Introduction section) can be applied.

However, these methods are time consuming when the sub-problems are themselves complex.

2.4 Distributed Optimization via Adaptive Regular-

ization

In this section, we describe our distributed optimization framework with adaptive regulariza-

tion. We solve the optimization problem given by Eq. (2.1) in a parallel and iterative manner.

Let k denote the iteration index and x̂k = (x̂k
i , x̂

k
−i), with x̂k

−i =
[
x̂k
1, . . . , x̂

k
i−1, x̂

k
i+1, . . . , x̂

k
N

]

denote the solution to the optimization problem in the kth iteration. In order to obtain a

solution in a distributed manner, we define a set of N augmented objective functions at each
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iteration k as 1

Lk
i (xi; x̂

k−1) = f(xi, x̂
k−1
−i ) + λki (h

k−1
i )‖xi − x̂k−1

i ‖2, (2.4)

where hk−1
i = x̂k−1

i − x̂k−2
i is the step taken by the ith block in the (k − 1)th iteration,

and λki (h
k−1
i ) is an adaptive regularization coefficient which depends on both the indices i

and k. We will describe the form of this regularization coefficient shortly. After defining

the objective functions Lk
i (.), i = 1, . . . , N , we solve N optimization problems in a parallel

fashion:

x̂k
1 = argmin

x1∈X1
Lk
i (x1; x̂

k−1),

x̂k
2 = argmin

x2∈X2
Lk
i (x2; x̂

k−1),

...

x̂k
N = argmin

xN∈XN
Lk
i (xN ; x̂

k−1). (2.5)

This optimization framework is in the form of a decomposition-coordination procedure [21],

where N agents are trying to minimize their own augmented objective functions, and the

new joint vector x̂k is obtained by simply aggregating the N blocks. If we consider a single

objective function Lk
i (x

k
i ) at a single iteration k, the minimization of the objective functions

is only with respect to he variables of the ith block. However, since the objective function

depends also on variables from other blocks, a change in them will cause a change to the

objective function, namely Lk+1
i (xk

i ) 6= Lk
i (x

k
i ).

Next, we discuss the choice of the regularization coefficient λki (h
k−1
i ). We chose λki (h

k−1
i ) to

be of the form:

λki (h
k−1
i ) =

{

max(φ(‖hk−1
i ‖), β) if k < K

αk otherwise,
(2.6)

where K is a threshold on the iteration index, α > 0, and β > 0 are parameters chosen

depending on the problem. Intuitively, the threshold K divides each optimization problem

into two phases. The goal of the first phase is to coordinate the parallel optimization. In

this phase, each of the agents change their solution in response to the solutions of other

1We use a semicolon notation in Eq. (2.4) to clarify that only the variables on the left of the semicolon
are allowed to change.
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agents. This alternating behavior can be enforced by choosing the function φ(‖hk−1
i ‖) to be

a nondecreasing with respect to ‖hk−1
i ‖. This choice will increase the value of regularization

coefficient, λki (h
k−1
i ) as ‖hk−1

i ‖ increases. The increase in λki (h
k−1
i ) will in turn enforce a

smaller stepsize on the agents that had large change in the previous iteration, to allow other

agents to react in the current iteration. The goal of the second phase is to fine tune the

solution and to enable it to reach a local optimum.

Stepsize adaptability comes very naturally when using PDAR. As illustrated in Fig. 2.1,

for the same objective function, the step size depend on the value of λ (Fig. 2.1(a)); and

the objective functions rates of decrease (Fig. 2.1(b)). The adaptive stepsize is used here to

regularize and coordinate the separated problems. We also mention here that a non-adaptive

regularizer, e.g., φ(‖hk−1
i ‖) = C, will cause the convergence to be highly sensitive to the

choice of C. Although the choice of the function φ and the parameters α, and β theoretically

effect the convergence of the optimization, we observed using numerical simulations that

the convergence was not sensitive to these choices. In this work we choose φ(‖hk−1
i ‖) =

N2‖hk−1
i ‖. The algorithm is summarized in Table 2.1.
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(a) Step size dependence on penalty.
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(b) Step size dependence on objective function

Figure 2.1: Convex functions with additive quadratic penalties at x = 2.5. Different com-
binations of convex functions and penalties result in different stepsizes. In Fig. 2.1(a), the
save objective function was used with different penalties, resulting in a different step size.
In Fig. fig:2fun1pen, the same penalty was used for two different objective functions. The
step size changed depending on the rate of decrease of the objective functions.
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Algorithm: PDAR

k = 1; % Iteration counter
Initialize x0 and λ0

i ∀ i

do

parfor i in 1 : N

x̂k
i = argminxi∈Xi

Lk
i (xi; x̂

k−1)

Set hk
i = x̂k

i − x̂k−1
i

Update λk
i

end parfor

k := k + 1
until ‖f(xk)− f(xk−1)‖ ≤ δ

Table 2.1: Algorithm for Parallel Distributed Optimization

2.4.1 Discussion on the Convergence

In this section, we show that the algorithm described in the previous subsection converges

to an optimum solution. Assume that the function f(x) is convex. Since the augmented

function Lk
i (.), i = 1, . . . , N is the sum of two convex functions, it is convex. We then have

x̂k
i = argmin

xi∈Xi
Lk
i (xi; x̂

k−1). (2.7)

Since x̂k
i is a minimizer of Lk

i (xi; x̂
k−1), we have by the first order necessary conditions for

local optimum that

∇iL
k
i (xi; x̂

k−1)

∣
∣
∣
∣
xi=x̂

k
i

= 0,

∇if(x̂
k
i , x̂

k−1
−i ) + 2λki (h

k−1
i ) (x̂k

i − x̂k−1
i )

︸ ︷︷ ︸

h
k
i

= 0,

⇒ ∇if(x̂
k
i , x̂

k−1
−i ) = −2λki (hk−1

i )hk
i ,

⇒ hk
i =
−∇if(x̂

k
i , x̂

k−1
−i )

2λki (h
k−1
i )

, (2.8)
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where the operator ∇i is a gradient operator with respect to xi. For k > K we have

λki (h
k−1
i ) = αk, and therefore Eq. (2.8) simplifies as

hk
i =

1

2αk

(
−∇if(x̂

k
i , x̂

k−1
−i )

)

︸ ︷︷ ︸

d
k
i

, (2.9)

where dk
i is the negative gradient direction of the ith agent. By concatenating all the direc-

tions into a single vector dk = [dk
1,d

k
2, . . . ,d

k
N ], we get the next iterate xk as

x̂k = x̂k−1 + hk, (2.10)

where hk = d
k

2αk
. We prove the convergence properties of the algorithm using the following

two prepositions.

Proposition 1: For the sequence of non-stationary iterates x̂k obtained from the PDAR

algorithm, ∇f(x̂k−1)′dk < 0. 2

Proof: From the definition of dk
i , we have

dk
i = −∇if(x̂

k
i , x̂

k−1
−i ). (2.11)

Therefore,

∇f(x̂k−1)′dk =

N∑

i=1

−∇if(x̂
k−1)∇if(x̂

k
i , x̂

k−1
−i ). (2.12)

Since x̂k
i is a result of minimizing Lk

i (xi; x̂
k−1), the corresponding step hk

i must be in a

descending direction. Thus

∇iL
k
i (x̂

k−1)′hk
i = ∇if(x̂

k−1)′hk
i ≤ 0, ∀ i (2.13)

However, there must exist at least one block where the strict inequality ∇if(x
k−1
i )′hk

i < 0

holds. We prove this by contradiction. Assume that ∀i, ∇if(x
k−1
i )′hk

i = 0. If hk
i =

2For brevity, if all the blocks in the function are from the same iteration, we will simplify the notation,
i.e., f(x̂k−1

i , x̂
k−1
−i ) = f(x̂k−1)
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0, ∀i, then x̂k is a stationary point which contradicts the assumption of convergence to a

nonstationary point. Hence there exists some i, for which hk
i 6= 0. Now, since Lk

i (x
k; x̂k−1)

is a convex function, it must lie above all of its tangents, i.e.,

Lk
i (x̂

k
i ; x̂

k−1
−i ) ≥ Lk

i (x̂
k−1) +∇iL

k
i (x̂

k−1)′hk
i . (2.14)

Since∇iL
k
i (x̂

k−1)′hk
i = ∇if(x̂

k−1)′hk
i = 0, we have from Eq. (2.14), that Lk

i (x̂
k) ≥ Lk

i (x̂
k−1).

This is a contradiction, since every iterate should reduce the objective function corresponding

to the block. Intuitively, this inequality implies that if the step size is perpendicular to the

gradient of the objective function, then such steps do not decrease the value of the objective

function. Hence there exists at least one block that satisfies inequality ∇if(x
k−1
i )′hk

i < 0.

Finally, since at least one block satisfies the strict inequality, their summation satisfies strict

inequality:

N∑

i=1

∇if(x̂
k−1
i )′hk

i < 0,

⇒
N∑

i=1

∇if(x̂
k−1)′∇if(x̂

k
i , x̂

k−1
−i ) < 0,

⇒ ∇f(x̂k−1)′dk < 0.

Proposition 2: Assume that f gradients to be uniformly continuous in the ℓ2 norm, and

that its gradients are bounded. The sequence x̂k converges to an optimal solution.

Proof: Formally, we need to show that for any subsequence {x̂k} that converges to a non-

stationary point, the corresponding subsequence {dk} is bounded and satisfies [16]:

lim
k→∞

supk∈K∇f(x̂k−1)′d(x̂k) < 0, (2.15)

where d(x̂k) = −∑N
i=1∇if(x̂

k
i , x̂

k−1
−i ). Let ǫ > 0, and {xk}k∈K be an arbitrary sequence of

nonstationary points such that

lim
k→∞

supk∈Kx̂
k = x̄,

where ∇f(x̄) 6= 0. Then ∀k ∈ K the gradients are not equal to zero, ∇f(x̂k) 6= 0,

since the sequence has nonstationary points. Using Proposition 1, we have that ∀k ∈
K, ∇f(x̂k−1)′d(xk) < 0, and specifically ∇f(x̄)′d(x̄) = D1 < 0.
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By the continuity assumption of the gradients, there ∃ δ > 0 such that ‖∇f(y)′d(y) −
∇f(x̄)′d(x̄)‖ < ǫ, ∀ ‖y− x̄‖ < δ. Since xk → x̄, ∃ N ∈ N such that ∀k > N, ‖xk− x̄‖ < δ,

and thus

‖∇f(xk−1)′d(xk)−∇f(x̄)′d(x̄)‖ < ǫ.

This implies that∇f(xk−1)′d(xk) < D1+ǫ. As ǫ > 0 is arbitrary, limk→∞ supk∈K∇f(xk−1)′d(xk) =

D1 < 0. Hence the sequence of iterates xk converges to an optimal solution.

2.5 Numerical Results

In this section, we provide numerical results to compare the convergence of the proposed

distributed algorithm to those of the block coordinate descent (BCD) and parallel variable

distribution (PVD) . We consider a three-bin resource allocation example for the numerical

simulation. Let there be N = 100 agents. Each agent has fixed quantity of resources that are

to be allocated among three bins. Let xi = [xi,1, xi,2, xi,3]
′ denote the allocation scheme of

the ith agent. Without loss of generality, let
∑3

j=1 xi,j = 1, ∀ i. The objective is to minimize

the sum of the individual costs, where the cost of agents depends on their own scheme and

the schemes of other agents.

Let x = [x′
1,x

′
2, . . . ,x

′
N ]

′ denote the collective scheme of all agents. The cost function of the

ith agent is taken as

fi(x) = x′
iP ig(x), (2.16)

where P i = diag(pi,1, pi,2, pi,2) denotes the preference matrix of the ith agent for each bin,

and g(x) = [g1, g2, g3]
′ is a function dependent on the schemes of all agents, with

gm =

(
N∑

i=1

xi,m

)2

, m ∈ {1, 2, 3}. (2.17)

The goal is to solve the optimization problem:

min
x

N∑

i=1

fi(x) subject to

3∑

j=1

xi,j = 1, ∀ i. (2.18)
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In order to find the solution to the above joint optimization problem, we solved N = 100

subproblems in parallel using our proposed PDAR. The optimization problem of the ith agent

in the kth iteration is given as

min
xi

fi(xi, x̂
k−1
−i ) + λki (h

k−1
i )‖xi − x̂k−1

i ‖2

subject to

3∑

j=1

xi,j = 1.
(2.19)

In Fig. 2.2(a), we plot the value of the objective function as a function of the “normalized

time” for BCD, PVD and our PDAR approach. We say “normalized time” to note the run-

time of the parallel algorithms if we were not limited by the number of cores. In our example,

we ran all the simulations on a 4 core machine; however in principle the parallel methods can

run on 100 cores simultaneously. In order to make the comparison computer independent,

the time axis corresponding to parallel methods was divided by 25. As illustrated, the con-

vergence rate of our method is of an order of magnitude faster compared to BCD and PVD

algorithms. The advantage comes from the fact that we can solve all the 100 optimization

problems in parallel, whereas BCD is a sequential method. The PVD method, on the other

hand, is worse even though it has a parallel update step. The additional time it takes to

converge is due to the synchronization step, and due to the complexity of the optimization

problems that are to be solved in both steps. In Fig. 2.2(b), we show the oscillatory behavior

when the parallel algorithm is used with out a regularizer. This figure further emphasizes

the importance of a regularizer.

2.6 Conclusions

In this chapter, we proposed a distributed optimization framework to solve large optimiza-

tion problems with separable constraints. Each agent solves a local optimization problem,

which is much simpler compared to the joint optimization. In order for the agents to coor-

dinate among themselves and to reach an optimum solution, we introduced a regularization

term that penalized the changes in the successive iterations with an adaptive regularization
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Figure 2.2: Value of the objective functions vs time for the three bin resource allocation
problem. Fig. 2.2(a) shows that PDAR converges much faster compared to BCD and PVD.
Fig. 2.2(b) shows the oscillatory behavior of the parallel optimization without regularization.

coefficient. We proved that our solution always converges to a local optimum, and to a global

optimum if the overall objective function is convex. Numerical simulations showed that the

solutions reached by our algorithm are the same as the ones obtained using other distributed

approaches, with significantly reduced computation time.

18



Chapter 3

Estimating Electrical Conductivity

Tensors of Biological Tissues from

Microelectrode Arrays Data

3.1 Abstract

Finding the electrical conductivity of tissue is highly important for understanding the tissue’s

structure and functioning. However, the inverse problem of inferring spatial conductivity

from data is highly ill-posed and computationally intensive. In this chapter, we propose a

novel method to solve the inverse problem of inferring tissue conductivity from a set of trans-

membrane potential and stimuli measurements made by microelectrode arrays (MEA). We

first formalize the discrete forward model of transmembrane potential propagation, based on

a reaction-diffusion model with an anisotropic inhomogeneous electrical conductivity-tensor

field. Then, we use our novel parallel optimization algorithm from Chapter 2for solving the

complex inverse problem of estimating the electrical conductivity-tensor field. Specifically,

we propose a single-step approximation with a parallel block-relaxation optimization rou-

tine that simplifies the joint tensor field estimation problem into a set of computationally

tractable subproblems, allowing the use of efficient standard optimization tools. Finally, us-

ing numerical examples of several electrical conductivity field topologies and noise levels, we

analyze the performance of our algorithm, and discuss its application to real measurements

obtained from smooth-muscle cardiac tissue, using data collected with a high-resolution MEA

system.
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3.2 Introduction

Transmembrane potential propagation in biological tissue results when the ionic concen-

trations change in either the intracellular or extracellular domains. Potential propagation

is correlated to the medium’s conductivity, and as a mechanism of intercellular commu-

nication it plays an important role in tissue and organ functioning, e.g., exocytosis and

muscle contractions [77]. However, in order to relate transmembrane potential measure-

ments to the electrophysiological states of cells in the tissue, we depend on mathematical

and computational models to capture the interaction. A classical approach to modeling spa-

tiotemporal transmembrane potential propagation is based on the generalized cable theory,

combined with dynamic models of ionic concentration gradients. This parametric model

relates changes in the transmembrane potential to changes in ionic currents through the

membrane, taking into account the effective electrical conductivity and geometry of the tis-

sue. The bidomain model treats the tissue as two continuous domains, and is a macroscale

model of the electrical behavior averaged over many cells, taking into account both the in-

tracellular and extracellular current flows. Although this model has been used extensively

in numerical simulations of the electrical behavior of anisotropic myocardiac tissues [111], in

neuroscience it has recently been used for analyzing the non-homogeneity of the extracellular

domain in nerve tissues [12, 13].

In the last few years, much progress has been made in developing high-resolution microelec-

trode arrays (MEA) that allow electrophysiological measurements of biological tissues with

high spatiotemporal resolution [14,68]. Using this technology, it is possible to effectively and

directly measure transmembrane potential propagation by parallel measurements of the tis-

sue at different locations. By employing the biodomain model to analyze the MEA data, we

gain a deeper understanding of the underlying biophysical nature of tissue. However, several

model parameters must first be estimated, including ones related to the ionic current dynam-

ics, cell geometry, and electrical tissue conductivities. Several approaches are available to

model and estimate cellular ionic currents, and the interested reader is referred to the tech-

nical literature for details [35,65,154]. However, inferring the conductivity parameters from

the data by inverse techniques is a highly challenging problem [55]. The estimation prob-

lems becomes even more significant when the tissue is assumed to be composed of multiple

anisotropic inhomogeneous regions.
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In this chapter, we develop a mathematical framework for solving the inverse problem of

estimating the effective electrical tissue conductivities from a set of electric potentials and

stimulus measurements. In particular, we formulate the problem in a system identification

framework, using a parametric model based on the generalized cable theory. In this frame-

work, experiments are performed by exciting the system and observing its input/output

over a time interval [138]. Unfortunately, solving this ill-posed inverse problem is highly

complex [141]. Specifically, it suffers from high dimensionality (as one must estimate the

tensor matrix for each point in space), nonlinearity (due to the nonlinear extracellular field

potential dynamics), and stochasticity (as the observations are corrupted by noise). The

application of sophisticated methods, such as nonlinear filters (e.g., particle and Unscented

Kalman filters [133]) or traditional constraint optimizations (e.g., augmented Lagrangian

methods [103]), becomes computationally prohibitive due to the complexity of the estima-

tion problem, especially when a high resolution grid is considered.

The contributions of this work are two-fold. First, we introduce a discrete forward model of

transmembrane potential based on a diffusion-reaction model with an anisotropic inhomoge-

neous electrical conductivity tensor field. Second, we propose a novel parallel optimization

algorithm for solving the complex inverse problem of estimating the conductivity tensor

field. Specifically, we propose a single-step approximation with a parallel block-relaxation

optimization method. This combination simplifies the joint tensor field estimation problem

into a set of computationally tractable problems, allowing the use of efficient standard opti-

mization algorithms. We analyze the performance of our algorithm using numerical examples

of several electrical conductivity field topologies and noise levels, and discuss its application

to real measurements obtained from cardiac tissue, using a high resolution MEA system.

The notational conventions adopted in this work are as follows: Italic font indicates a scalar

quantity, e.g., a; lowercase boldface indicates a vector quantity, e.g., a; upper case italic bold

indicates a matrix quantity, e.g., A. The matrix transpose is indicated by a superscript “T”

as in AT , and the identity matrix of size n × n is denoted as In. A lowercase Roman font

indicates a function, e.g., g (t), and a lowercase bold Roman font indicates a vector function,

e.g., gt. The set Sn denotes the vector space of symmetric n×n matrices, and the subsets of

nonnegative definite matrices and positive definite matrices are denoted by Sn+ and Sn++,

respectively. || · ||F is the Frobenius norm, defined as ||A||F =
√∑m

i=1

∑n
j=1 |aij |2. Writing
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the time index as a subscript indicates the vector at the nth timepoint, e.g., an ≡ a[n∆t],

or indicates vectors from a set of timepoints, e.g., a0:n ≡ {a0,a1, · · · ,an}.

The remaining part of this work is organized as follows: In Section 3.3, we present the

numerical scheme used to discretize the forward problem. Then we formulate the inverse

problem in a discrete setting and propose a method to solve the complex inverse problem.

Finally, in Section 3.4 we present results of the proposed method for both simulated and real

data.

3.3 Materials and Methods

3.3.1 Forward Model

To model electrical propagation in biological tissue composed of elements of different con-

ductivities, we use generalized cable theory, namely, the monodomain approach [125]. The

monodomain is a specific case of the bidomain models which have been successfully used

for modeling extracellular potentials in several tissues [97, 98, 107, 146]. In the monodomain

model, biological tissue is reduced to a two- or three-dimensional cell grid, where the electri-

cal behavior is governed by a set of reaction-diffusion equations [111]. The diffusion part of

this model represents the spatial evolution of the transmembrane potential in a domain with

changing conductivities. The reaction part models the voltage-dependent dynamics of the

tissue as a function of three local currents: (i) a capacitative current through the cells’ mem-

branes, (ii) a cell-ionic current with a voltage-dependent dynamic jion(v(r, t),w,φ, t), and

(iii) external or spontaneous stimulations jstim(r, t). Our system can be written as follows:

∇ ·D(r)∇v(r, t)
︸ ︷︷ ︸

Diffusion

= am

(

cm
∂v(r, t)

∂t
+ jion(v(r, t),w,φ, t)− jstim(r, t)

)

︸ ︷︷ ︸

Reaction

, (3.1)

v(r, 0) = v0, (3.2)

∇v(r, t) · n(r) = 0, r ∈ ∂C, (3.3)
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where t ∈ [0, T ], the spatial vector r belongs to C ⊆ Rp, the domain C is a bounded

Euclidean subset, n denotes the normal to the boundary, and ∂C is the boundary of domain

C. In this work we consider the 2D case, where p = 2. Furthermore, jstim(r, t) is the stimulus

volume current density (A/m3); cm is the membrane capacitance per unit area (F/m2); am is

the surface-to-volume ratio of the membrane (1/m); and D(r) ∈ S2++ is the positive definite

conductivity tensor [10]. jion(v(r, t),w,φ, t) is the ionic volume current density (A/m3) of

a biological cell, and it can be chosen to fit a specific dynamic, with w corresponding to

the internal state vector, and φ to the model parameters. For simplicity, we consider a

homogenous cell dynamic in the tissue; namely, φ is consistent in all the cells (in the results

section, we used the extended FitzHugh-Nagumo (FHN) equations [111, 124] as a fairly

general and simple representation of a cell’s ionic currents; however, more extensive models

can be used). Eqs. (3.2) and (3.3) present the initial temporal and boundary conditions,

respectively. In particular, we use the homogenous Neumann boundary condition since we

assume that there will be no current through the borders of the domain, and we use the zero

state response [117] for the initial values since we assume that the system is initially relaxed

at its resting potential v0 and cannot initiate a spontaneous response.

3.3.2 Modeling Tissue Anisotropy

In order to infer the underlying conductivity structure of the tissue, we represent biolog-

ical tissue as a continuous field of conductivity tensors, D(r) in Eq. (3.1), which models

local extracellular conductivities within the tissue [125]. To simplify the problem, we con-

sider working with only a thin slice of tissue that can be represented as a 2D plane. The

conductivity tensor is given by

D(x, y) =

[

σx(x, y) σxy(x, y)

σxy(x, y) σy(x, y)

]

, (3.4)

where σx(x, y), σxy(x, y), σy(x, y) are the conductivity values in the horizontal, diagonal, and

vertical directions, respectively. The tensor field is an indexed set of tensors in space, and

is referred to as isotropic if all the conductivity tensors are directionally independent (sym-

metric), that is, σx(x, y) = σy(x, y) = σ0 and σxy(x, y) = 0 for all x, y. Otherwise, if some

conductivity tensors in the field are directionally dependent, it is referred to as anisotropic.
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If the conductivity tensors are constant throughout the field, then the field is referred to as

homogeneous ; otherwise, it is inhomogeneous.

A diffusion tensor can be expressed in terms of its eigenvalues λ = (λ1, λ2, λ3) and eigenvec-

tors E = (e1, e2, e3) as D = ETdiag(λ)E. The tensor can be represented as an ellipsoid

(Fig. 3.1), whose radii (eigenvalues) represent the amount of diffusion (flow) in each of the

main directions (eigenvectors) [2].

Figure 3.1: Diffusion tensors shown as ellipsoids with their corresponding eigenvectors [59].

In Fig. 3.2, we can see the general representation of a tensor and a tensor field in 3D, and

examples of homogeneous and inhomogeneous anisotropic 2D tensor fields. The anisotropy

inhomogeneity property of the conductivity tensors plays a major role in the spatial evolution

of the wave propagation in the tissue [23]. In this work, we will focus on developing a

mathematical formulation for finding the best tensor field representation to fit the electrical

measurements.

(a) (b) (c) (d)

Figure 3.2: Fig. 3.2(a) depicts a general tensor in 3D space, while Fig. 3.2(b) illustrates a 3D
spatially-discrete tensor field, where each tensor is represented by an ellipsoid. Figs. 3.2(c)
and 3.2(d), illustrate 2D constant anisotropic-homogeneous and anisotropic-inhomogeneous
2D fields, respectively.
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3.3.3 Discretization

To transfer our model from a continuous domain into a discrete vector space formulation,

we will first proceed to discretize the continuous diffusion term of Eq. (3.1), which is given

as

∇ ·D(x, y)∇v(x, y, t) =

[
∂
∂x
∂
∂y

]T [

σx(x, y) σxy(x, y)

σxy(x, y) σy(x, y)

][
∂v(x,y,t)

∂x
∂v(x,y,t)

∂y

]

, (3.5)

to a discrete term over the regular lattice domain C ′ = [x1, xK ]× [y1, yK].

In particular, we apply the Finite-Difference Method (FDM) with an forward-time central-

space scheme [140] to approximate the derivatives, taking into account the spatially varying

tensor field of Eq. (3.5). In the following, we present the two main steps for discretization of

Eq. (3.5), but for brevity we will ignore the temporal component of the extracellular voltage

v(x, y, t). First, we expand the matrix multiplication of ∇v(x, y) with D(x, y), and are

left with three second derivatives, which correspond to current densities: jx, jxy, and jy.

Therefore, Eq. (3.5) can be written as

∇ ·D(x, y)∇v(x, y) =
∂
(

σx(x, y)
∂v(x,y)

∂x

)

∂x
︸ ︷︷ ︸

jx

+
∂
(

σy(x, y)
∂v(x,y)

∂y

)

∂y
︸ ︷︷ ︸

jy

+
∂
(

σxy(x, y)
∂v(x,y)

∂x

)

∂y
+
∂
(

σxy(x, y)
∂v(x,y)

∂y

)

∂x
︸ ︷︷ ︸

jxy

. (3.6)

Second, each term of Eq. (3.6) is further expanded using a central-space difference FDM

scheme. For example, jx can be expanded as
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jx(σx, σxy, σy) =

([
σx(x+∆x, y)− σx(x−∆x, y)

2∆x

] [
v(x+∆x, y)− v(x−∆x, y)

2∆x

])

+σx(x, y)

(
v(x+∆x, y) + v(x−∆x, y)− 2v(x, y)

∆x2

)

. (3.7)

The term jx(σx, σxy, σy) represents the current density along the x direction at a single point

on the grid (x, y). Concatenating all points into a column stack vector, we can write Eq. (3.7)

as

jx(Θ) = Gxdiag(σx)Gxv + diag(σx)Gxxv, (3.8)

where Θ = {Θ1,Θ2, . . . ,ΘK} is a joint set of K tensors of the form Θk =

[

σxk σxyk
σxyk σyk

]

at

location k. We will refer to this set Θ as the discrete conductivity-tensor field. The matrices

Gx ∈ RK×K and Gxx ∈ RK×K (where K is the number of nodes) are the linear operators

of the first and second discrete spatial derivative operators in Eq. (3.7) [140]. The vectors

v and σx are column stack representations of the two dimensional potential function v(x, y)

and tensor function σx(x, y), respectively, at time t [26]. We derive jxy and jy similarly.

Noting the dependence in t, we can write the three current densities as

jxt(Θ) = Gxdiag(σx)Gxvt + diag(σx)Gxxvt,

jxyt(Θ) = 2Gxydiag(σxy)vt +Gxdiag(σxy)Gyvt +Gydiag(σxy)Gxvt,

jyt(Θ) = Gydiag(σy)Gyvt + diag(σy)Gyyvt. (3.9)

Next, using the forward-time central-space FDM scheme, we discretize the right side of

Eq. (3.1). We obtain the following discrete form of Eq. (3.1):

jxn(Θ) + jxyn(Θ) + jyn(Θ) = am

(

cm
vn+1 − vn

∆t
+ g (v0:n,w0:n,φ) + un

)

. (3.10)

Finally, separating vn+1 to left side of the equation and discretizing the boundary and initial

value conditions, we arrive at the following discrete representation of the system:

vn+1 =
∆t

amcm

(
jxn(Θ) + jxyn(Θ) + jyn(Θ)

)
− ∆t

cm
(g (v0:n,w0:n,φ) + un) + vn,(3.11)
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where the external stimulus input jstim(r, n) is written as the vector un. Further, g (v0:n,w0:n,φ)

is a nonlinear function that depends on the cell dynamic model, model parameters φ, previ-

ous states v0:n, and previous internal states w0:n. For full derivation on state discretization

in for the FHN model, please refer to the supplemental materials. To completely define

the discrete system, we add the following discretized initial and Neumann boundary condi-

tions: initially in homogenous resting potential v0 = v01, no current through the boundaries

Gxvn = 0, Gyvn = 0 for horizontal, vertical boundaries, respectively.

Note that we can write our discrete system as

vn+1 = A(∆t, am, cm,∆x,∆y,Θ)vn + g (v0:n,w0:n,φ) + bun, (3.12)

where the A matrix depends on the model parameters. As can be observed from Eq. (3.12),

even when we ignore the nonlinear part, the discrete system’s stability is sensitive to the

model parameters (am and cm), the FDM parameters (∆t, ∆x, and ∆y), the conductive-

tensor field estimation Θ, and the input values un. Finding an analytical formulation for

the stability criterion is highly challenging and will be considered in future work. However,

consideration is needed when choosing parameter values, and in some cases of instability,

more complex numerical approximation methods should be considered [140]. Furthermore,

it is beneficial to use a numerical optimization method that can recover from instability,

e.g., the standard Matlab implementation of the sequential quadratic programming method

described in [104].

3.3.4 Measurement Model

In a highly dense sensor system such as an MEA, the electrodes capture the extracellular

field potential, which is the product of a highly complex network of neighboring cells, making

interpretation very difficult. The complexity of the system is greatly simplified when using

the monodomain model, as it is a macroscopic model that describes the average behavior of

the bioelectric fields on a larger scale than the size of a single cell [129]. Hence, the state

vn in our model represents the average local extracellular field, which is measured through

a noisy sensor to give spatiotemporal measurements yn ∈ RQ. Here we will assume that

yn are corrupted with an additive white Gaussian noise of mean zero and variance γ2, and

27



that the wavelengths of the dynamics are large compared to the spatial density of the MEA.

Therefore, the discretized evolution and measurement models are given by

vn+1 = f(v0:n,w0:n,φ,Θ) + bun, (3.13)

yn = vn + ν. (3.14)

Note that in this work we set Q = K as we assume that the MEA is dense enough to

allow complete coverage of the region in interest (ROI); however, in cases where the system

exhibits subsampling, Q will be less than K.

3.3.5 Solving the Inverse Problem

To restate the inverse problem, the goal is to estimate Θ, the discretized conductivity tensor

field, from the set of measurements y0:T , the set of inputs u0:T , and the discrete system

model of Eqs. (3.13) (3.14). We use an indirect method to estimate Θ, by transforming the

problem into an optimization problem [141]. One indirect approach to solve this problem

is using a constraint optimization scheme, specifically, the augmented Lagrangian method.

This method has been used successfully in the field of geoscience for solving problems of

permeability identification in convection-diffusion models [102, 103]. In the augmented La-

grangian method, the problem is written as a joint optimization routine, where the error

between the model and observations is minimized (usually in a least squares sense), with the

model parameters acting as constraints. However, this method can easily become computa-

tionally prohibitive. Even for efficient algorithms, one must alternate between optimization

steps with high dimensionality: the number of nodes in the grid O(K), and the number of

grid points times the number of time-steps O(KT ). These optimizations will quickly become

intractable as either the number of grid points or number of samples increases.

Another optimization approach that can be considered is the initial value approach. This

method uses the fact that the model evolution function in Eq. (3.13) is deterministic, de-

pending entirely on the initial values of the states and the known control sequence. An

intuitive approach is to minimize the least-squares (LS) difference between the observations

and the model trajectory by altering only the initial values v0 and w0. This Initial Value
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Approach (IVA) objective function can be written as

VIVA

(
v0,w0,y

N ,uN ,φ,Θ
)
=

N∑

n=1

K∑

k=1

(

yn,k − f (v0,w0,φ,Θ)n,k − bun,k

)2

, (3.15)

where the entire deterministic trajectory of the model is calculated and compared against

the measurements. This method, which has a recurrent structure as can be seen in Fig.

3.3(a), is a member of the nonlinear output error (NOE) family [135], and has the benefit of

avoiding feeding the measurement noise into the nonlinear evolution function. However, the

recurrence structure of the model makes it difficult to determine the stability of the solution,

and increases the complexity in calculating the gradients for the model parameters estimation

[135]. Furthermore, the solution is very susceptible to noise and depends sensitively on initial

conditions and parameters, which makes the initial value approach inapplicable unless chosen

in very close proximity to the unknown true values [134].

(a) (b)

Figure 3.3: illustrates the iterative estimation process using the discrete system model and
a feedback loop. The model parameters θ[k] are estimated from the error vector eN (dif-
ference between the measurements and the model outputs) of the previous iteration. Fig.
3.3(a), illustrates a nonlinear output error (NOE) procedure with a feedback loop on the
output of the model, which makes it a recurrence structure. Fig. 3.3(b), illustrates a nonlin-
ear autoregressive exogenous (NARX) procedure with a feedforward assembly, feeding the
measurements of the model.

Rather than using such a recurrence approach, another method that shows more promising

results is a recursive state space technique that evaluates the cost function in a sequential way,

using the observations [134]. Filtering is used to approximate the system state variables from

the noisy observations. However, traditional filtering methods such as Kalman or Extended

Kalman will not be sufficient to deal with the complex nonlinear dynamics of the system [69].

A particle filter will also prove problematic since even for a very modest size grid, the system

will be in a high dimensional space, which makes the particle filter ineffective. Earlier work

has also been done with the Unscented Kalman Filter (UKF) for nonlinear reaction-diffusion
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models [134]. However, a problem with using the UKF is approximation errors in cases of

strong nonlinearity, such as in a polynomial of high degree (> 2). Another difficulty is

that this approach will offer computationally tractable solutions for only low dimensional

systems. For systems with even a modest grid size (e.g., 9 × 9), the problem becomes too

complex to be solved directly, and some works suggest using a patch filter as a dimension

reduction scheme [133]. However, using the dimension reduction scheme in our problem

might adversely reduce the spatial resolution. As the inverse problem is too complex to

allow filtering, we propose a simpler, nonrecurrent method based on the ideas of one-step

prediction and block-relaxation optimization.

3.3.6 One-Step-Ahead Prediction

When dealing with invasive electrophysiological recordings, it is acceptable to assume low

sensor measurement noise and use the observed data as a direct measurement of the average

local field potential states, yn ≈ vn [68, 148]. A high signal to noise ratio (SNR) is further

supported when different methods of noise reduction are used, e.g., applying a smoothing

filter between consecutive observations or experiments [70]. This assumption simplifies the

model by substituting the observed measurements for the hidden states, and the simplified

discrete system model can be written as

ŷn+1 = f(yn,wn,φ,Θ) + bun. (3.16)

We notice from Eq. (3.16) that this method is a feedforward predictive model, and is a mem-

ber of the classical nonlinear autoregressive exogenous (NARX) family, where the nonlinear

model depends on past measurements (filtered), and current and past values of the input

(exogenous) series [101]. However, feeding noisy measurements to the nonlinear model will

affect the stability of the system, and hence robustness to noise is an important considera-

tion in the algorithm design. A robust design can be found by using a suitable performance

bound for estimated noise, and is an important subject of future research. In this work,

we will discuss the effects of noise on the algorithm, and examine possible ways to improve

robustness in the Results Section (3.4.4).
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The one-step-ahead prediction (OSP) score function can be formulated as the LS difference

between the one-step predictions at each point in time and the measurements [135], and is

given by 3

VOSP (y0:N ,w0,u0:N ,φ,Θ) =
N∑

n=1

K∑

k=1

(

yn,k − f
(
yn−1,w0,φ,Θ

)

n,k
− bun,k

)2

. (3.17)

However, the estimation of the unknown tensors Θ = {Θ1,Θ2, . . . ,ΘK} using Eq. (3.17) is

still highly complex due to its high dimensionality and the dependencies between the compo-

nents of each tensor, which must be positive definite (PD), and between different tensors in

the field. The interdependencies between the tensors in the field occur because every tensor

can affect the overall score function, and a change in one could result in different optimal

values for the others. Solving the joint complex interdependent estimation problem requires

a highly complicated semi-definite programming routine, which will often be intractable,

time consuming, or converge to a local optimum. In order to simplify the problem, we

propose a novel method that uses parallel relaxation optimization to separate the highly

complex semi-definite optimization into a set of smaller, less complex optimizations but still

maintains mutual influence in order to converge to a better overall solution.

3.3.7 Parallel Block Relaxation Optimization

To develop a computationally efficient optimization algorithm to solve the complex joint non-

linear semi-definite problem, we use a variance on the common sequential block-relaxation

method [32], commonly known as alternating optimization (AO) [18]. To restate our prob-

lem, the unknown parameters, on which we are trying to perform optimization, are positively

defined tensor matrices with inner dependencies in their components. Performing optimiza-

tion in the tensor space is a highly nontrivial task. In recent years, a few methods have been

developed to perform gradient descent in tensor space using an intrinsic geodesic marching

scheme with the Riemannian framework [108]. However, these methods come with a high

3To simplify our inference algorithm, for certain dynamic models such as the FitzHugh-Nagumo, we
can use the method of variation of parameters in order to have the evolution function dependence on w0:n

brought down to depend only on w0 and v0:n (see supplementary materials Eq. (A-4)).
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computational burden in the form of intensive use of matrix inverses, square roots, loga-

rithms; moreover, exponentials are usually involved [4]. A simpler approach will be to break

down the tensors to their components and use constraints to guarantee PD; however, this

will dramatically increase the dimensionality of the problem.

In order to solve this complex problem, we turned to the block-relaxation optimization class

of algorithms. In this class, a complex optimization problem is solved by iteratively solving

a series of easily handled subproblems. The optimization algorithm for each subproblem

is simpler since only a subset of the parameters are considered, keeping the rest of the

parameters constant at their current value. The algorithm then iteratively cycles through

the different subproblems and updates the parameters in each subset until convergence is

reached. However, even for a modest size grid, the high-dimensionality of the problem will

make the alternating optimization algorithm computationally expensive because it will have

to sequentially alternate between many parameter subspaces. To improve computational

costs, we vary the sequential block-relaxation optimization algorithm (i.e., AO) so that

instead of simply using a sequential scheme for solving the subproblems, we parallelize the

algorithm, solving them all at once and joining them after each iteration.

To use parallel block-relaxation optimization, we start with the complex joint optimization

problem given by

Θ̂
[j] ← argminΘ={Θ1,Θ2,...,ΘK}

∀k,Θk∈S2++

VOSP

(

y0:N ,w0,u0:N ,φ, Θ̂
[j−1]

,Θ
)

, (3.18)

and separate it into K optimization problems of the form

Θ̂
[j]

k ← argminΘk={σxk ,σxyk,σyk}
Θk∈S2++

[

VOSP

(

y0:N ,w0,u0:N ,φ, Θ̂
[j−1]

i 6=k ,Θk

)]

, (3.19)

where Θ̂
[j−1]

are known values from the previous iteration. The argmin function of Eq. (3.19),

evaluates the new value of the tensor Θ̂k that will optimally decrease (or increase) the ob-

jective function when only that single tensor is allowed to change.

Using a parallel scheme, however, can introduce convergence problems because the separate

subproblems are greedily optimized within each iteration. This can often lead to a poor con-

vergence rate and convergence to a local optimum. To improve the convergence properties

of the algorithm we use out parallel method of Chapter 2. We introduce an additional term
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to the argmin in Eq. (3.19), penalizing large changes of the parameters between consecutive

iteration steps. The step-size penalty feature is added to the algorithm to reduce the proba-

bility of the algorithm becoming stuck at a local minimum that is worse than the global one.

This feature is very similar to the idea behind the acceptance probability in Monte-Carlo

methods, such as simulated annealing, where the acceptance probability function is usually

chosen so that the probability of accepting a move decreases when it causes a large change,

thus making small uphill moves more likely than large ones [116].4 Further, having this

penalty term in the optimization score function guarantees that the tensors will remain PD.

In this work, we use a standard Frobenius norm as the distance function between tensors;

however, there are other distance measures, e.g., Riemannian Metrics or log-Euclidean met-

rics, that offer a more rigorous and general framework for handling tensor operations, but

they are more computationally intensive [4, 10].

The K optimization routines can then be written as

Θ̂
[j]

k ← argminΘk={σxk,σxyk,σyk}
Θk∈S2++

[

VOSP

(

y0:N ,w0,u0:N ,φ, Θ̂
[j−1]

i 6=k ,Θk

)

+ λd
(

Θk, Θ̂
[j−1]

k

)]

,

(3.20)

where λ is the Lagrangian hyper-parameter. The joint parameter set at iteration j, Θ̂
[j]
, is

simply the union of the solutions to the K optimization problems, and is given by

Θ̂
[j]

= {Θ̂[j]

1 , Θ̂
[j]

2 , . . . , Θ̂
[j]

K }. (3.21)

Finally, we use these ideas to write a parallel OSP algorithm (pOSP) which iterates between

parallel estimation of conductivity tensors and estimation of the initial internal states w0.

In order to simplify the optimization of w0, we assume that initially the system is close to

the resting state and is homogeneous. This assumption lowers the dimensions of w0 since

we can treat it as a scalar w0 multiplied by a vector of ones, 1. However, in situations where

this assumption does not apply, standard vector optimization methods can be used. The full

iterative pOSP algorithm is presented in Alg. 1. 5

4This parameter can also be viewed, in a game theoretic framework, as quantifying the amount of coop-
eration or “trust” the players (tensors) have in one another.

5Minimization is performed using a standard Matlab implementation of the sequential quadratic pro-
gramming method described in [104].
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Algorithm 1 Parallel OSP

procedure pOSP(Θ0,w0
0) ⊲ Θ0 ∈ S2++, w

0
0 ∈ R

Θ0
∀k∈K ← Θ0

w0
0 ← w0

01
j ← 0
repeat

j ← j + 1
parfor k ∈ K do

Θ̂
[j]

k ← argminΘk∈S2++
VOSP

(

Θk, Θ̂
[j−1]

i 6=k ,w
[j−1]
0 ,y

)

+ λd
(

Θk, Θ̂
[j−1]

k

)

+

h
(

Θk, Θ̂
[j−1]

)

end parfor
ŵ

[j]
0 ← argminw0∈R

V (Θ[j], w0,y)

w
[j]
0 ← ŵ

[j]
0 1

until convergence
return

end procedure

The last term of the argmin is an optional spatial penalization function h
(

Θk, Θ̂
[j−1]

)

, which

penalizes large spatial deviations from a priori information of the tissue. Prior information

can be provided by other sources, such as anatomical data, or from biological knowledge of

the tissue properties, such as smoothness in smooth muscle tissues. We will further explore

the effects of adding a spatial penalization in the Results Section 3.4.

As we elaborated above, the conductivity-tensor inference procedure developed depends on

the stimulus and continuity of the tensor field. We can have situations where a particular

area is stimulated and a transmembrane potential is generated, however, because some parts

of the tissue might be weakly or not be completely connected, the waveform may not reach

the entire domain. Therefore, when estimating the conductivity tensor at a particular point

where no transmembrane potential waveform has passed through it (unexplored area), the

measurement consists of noise only. In this case, also refer as no-informative measurements,

the estimated tensor will be isotropic and symmetric since the noise is spatially homogeneous.

On the other hand, if a transmembrane potential did pass, then we will have information

to provide a conductivity tensor estimate that relates to the tissue conductivity. Hence, in

order to improve the conductivity-tensor inference procedure, one straightforward strategy is

to excite the domain in several locations at different instances. Since each instance of tissue

stimulation will provide us with one conductivity-tensor field estimate, we need a strategy to
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merge (fuse) the different tensor field estimates into a joint estimate that will better infer the

conductivity-tensor field. There are several methods to utilize the information from different

experiments. In the following, building on the representing of a tensor as an anisotropic

ellipsoid, we will provide three criterion to fuse the set of tensor-field estimates into one.

There are several scalar indices to measure a tensor anisotropy, a simple yet effective invariant

anisotropy index is the ratio of principle components (RPC) [8] and is given by,

Rij ≡ RPC (Θij) =
max(λij)

min(λij)
. (3.22)

where Θij is the tensor at node i = 1, . . . , K from experiment j = 1 . . . ,M . A high ratio

corresponds to high anisotropy, while a ratio closer to one corresponds to an isotropic sphere.

Note that there are many other anisotropy indices that exist in literature and could be

incorporated here as well, e.g.,, fractional anisotropy (FA), and geodesic anisotropy (GA)

[4, 9, 10].

A common method to fuse the tensor field estimates of M independent experiments is with

a weighted sum of the results as follows:

Di =
M∑

j=1

s (R, i, j)Θij, (3.23)

where the experiment index is j, and the tensor position index is i. Dj is the fused tensor,

Θij is the i tensor of experiment j, and s (R, i, j) is a scalar nonnegative weight function.

By using a nonnegative weight function we are guarantee that the fused tensor Di is PD.

This can be easily shown by multiplying by a general vector x on both sides,

xTDix =

M∑

j=1

xT s (R, i, j)Θijx =

M∑

j=1

s (R, i, j)
︸ ︷︷ ︸

≥0

xTΘijx
︸ ︷︷ ︸

>0

> 0 (3.24)

where ∀i, ∃j s.t. s (R, i, j) > 0. The fusion results highly depends on the weight function

s (R, i, j), we will consider five fusion schemes (three are anisotropy based and two are

Euclidean distance based):
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Average Anisotropy

Based on the idea that a more anisotropic estimate represents a more informative estimate,

a good choice for a fusing scheme is to give a stronger weight to the anisotropic tensors.

In the average anisotropy weight function, the weights of the tensors correspond to their

normalized anisotropy ratio

s (R, i, j) =
rij

∑

j rij
. (3.25)

Max Anisotropy

The weight function is an indicator function for the tensor of highest anisotropic value

s (R, i, j) =

{
1 if j = argmaxjrij, (3.26)

0 otherwise. (3.27)

This is a mixture of the previous two schemes where the weights correspond to the normalized

anisotropy ratio of all tensors that are bigger than a certain threshold T

s (R, i, j) =







1

Bj
rij if rij > T , (3.28)

0 otherwise. (3.29)

where Bj is a normalization constant is given by,

Bj =
∑

j|rij>T

rij. (3.30)
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Euclidean Distance

The weights correspond to the Euclidean distance from the tensor center dij to the stimulus

center cj

s (R, i, j) = ||dij − cj||−1. (3.31)

fourth Order Euclidean Distance

This approach is similar to the Euclidean Distance approach when using the fourth power

of the norm in order to get a more localized weighting effect around the stimuli.

s (R, i, j) = ||dij − cj||−4. (3.32)

3.4 Results

To analyze the performance of the pOSP algorithm, we compiled a number of test simulations

to examine the algorithm’s ability to estimate the tensor field of different field topologies

under varying noise levels. For a fairly general and simple representation of a cell’s ionic

current dynamics, we use the extended FitzHugh-Nagumo (FHN) equations [124]. Then, the

continuous model can be written as follows:

jion(v(r, t), t) = − 1

ǫ1
(k(v(r, t)− v1)(v2 − v(r, t))(v(r, t)− v3)− w(r, t)), (3.33)

∂w(r, t)

∂t
= ǫ2(βv(r, t)− γw(r, t) + δ), (3.34)

where jion(r, t) is the ionic volume current density (A/m3) of a biological cell. Here, jstim(r, t)

is the stimulus volume current density (Am3) and is a known deterministic input series, and

w(r, t) is the internal state of the system. The rest of the model parameters and their

simulation values are presented in Table 3.1. After discretizing the FHN system, we can

write the nonlinear evolution function as follows:

f(v0:n,w0:n,φ,Θ) = c
(
jxn(Θ) + jxyn(Θ) + jyn(Θ)

)
− dnw0 − g (v0:n,φ) , (3.35)
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Table 3.1: In this table, we list the FitzHugh-Nagumo reaction parameters (φ) categorized
by their corresponding control, and the values used for the simulations. The values of the
reaction parameters for the simulations were fitted to a slow wave from a pregnant human’s
uterine myocyte, as presented in [125]

am Surface-to-volume ratio of the membrane 5.758710 · 105 m−1

cm Membrane capacitance per unit area 0.01 Fm−2

ǫ1 Sharpness of the edges 100 Ωm2

ǫ2 Excitability duration 1 s−1

γ Control the excitability threshold of the cell 0.1
β 1
δ 0.0520 V
v1 Control the range of v(r, t) -0.02 V
v2 -0.04 V
v3 -0.065 V
κ 1e4 1/V2

where w0 is the vector of the initial state w, and dn = camκ
ǫ1
e−ǫ2γn∆t is a known scalar

function.

3.4.1 Step-Size Penalty λ

The hyper-parameter λ, which was introduced in the previous section, is the weight of the

penalty term we added in order to control the step size of the pOSP algorithm. To better

understand the influence of this parameter on the convergence properties of the algorithm,

we varied λ and recorded the resulting squared error, as shown in Fig. 3.4(b). Theoretically,

low λ results in greedy optimizations of each tensor and the “strongest survive” phenomenum

(convergence to a local optimum). This phenomenon can be observed in Fig. 3.4(c), where

a few dominating tensors appear while others are diminished. On the other hand, high λ

corresponds to a slow convergence rate, as illustrated in Fig. 3.4(d), where after ten iteration

the estimate is still close to the initial field. For this problem, the optimal λ value can be

observed from Fig. 3.4(b) at around 10−4, and the corresponding estimate is illustrated in

Fig. 3.4(e). As can be observed from Fig. 3.4(e), the estimated conductivity-tensor field,

although much better then the other two estimations, is still only partially accurate, namely,

only on the main diagonal. This is a typical example where increasing the number of stimuli
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will greatly improve the estimated results. We will further discuss this topic in the following

section. In the following simulations and analysis, we used a constant λ = 10−4 for all the

subproblems. The effect of noise, inhomogeneity, or time-dependence on the optimal λs, and

an efficient way for finding the optimal λs, are not tackled in this work and are left open for

future research.

(a) (b)

(c) (d) (e)

Figure 3.4: Estimation results of the pOSP algorithm on the constant 9 × 9 tensor field
(Fig. 3.4(a)) for different values of λ. Fig. 3.4(b) shows the square error sensitivity of the
algorithm to the parameter λ. All the pOSP estimations were calculated with ten iterations
and same initial values. Figs. 3.4(c) and 3.4(d),3.4(e) illustrate the results of using the pOSP
estimation using a low, high, and optimal (10−4) λ, respectively. The plots of the tensor
fields were made using the matlab tool as described in [7].

To test the significance of the step-size penalty on the optimization algorithm, we compared

the standard sequential alternating optimization to the parallel block-relaxation optimiza-

tion, with and without a step-size penalty (λ = 10−4), for various noise levels. We compared

both the accuracy and the computational time for the algorithms, using ten iterations on a

toy 8 × 8 Gaussian mixture as illustrated in Table 3.2. From Fig. 3.5, we can observe that

parallel block-relaxation optimization algorithm with step-size penalty (PBROSP) achieves
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considerably better estimation results than the one without the step-size penalty. Further-

more, for all tested noise levels, the PBROSP estimation offers comparable estimation accu-

racy to the standard alternating optimization algorithm at a significantly lower computation

time.
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Figure 3.5: This figure illustrates a comparison between the standard sequential alternating
optimization (AO), alternating optimization with step-size penalization (AOSP), parallel
block-relaxation optimization (PBRO), and parallel block-relaxation optimization with step-
size penalization (PBROSP) algorithms. As can be observed from Fig. 3.5(a), addition of
a step-size penalty improves the accuracy of both the parallel and sequential optimizations
schemes. Both the PBROSP and AOSP produced the best estimations, and their error
was almost identical for all noise levels. However, as figure 3.5(b) shows, the PBROSP had
considerably faster execution time than any of the other optimization schemes, at all noise
levels. (All runs were executed on a Windows7 system with parallel Matlab package.)

3.4.2 Richness of Inputs

The choice of input signals used to excite the system is a fundamental factor in the algorithm’s

ability to correctly estimate the spatially varying conductivity-tensor field [96, 138]. The

input must possess sufficient richness in both its spatial and temporal excitations to provide

enough information to fully identify the system. In this work, we do not attempt to analyze

the optimal experimental design but rather present a few examples of the improvement that

can be achieved by using a rich input set.
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For our simulations, we considered three types of spatially varying tensor fields: constant,

Gaussian mix, and circular (Table 3.2). We chose these spatial structures because they

correspond respectively to a constant field, piecewise constant field with discontinuous edges,

and a completely varying smooth field. Furthermore, in all fields the size of the tensors were

chosen at random.

We tested the improvement of the pOSP conductivity-tensor estimation with varying num-

bers of stimuli (Table 3.2). The stimuli were sequential, with 150 time-steps between consec-

utive stimuli. We used a 8× 8 grid and ran the simulation for 400 time-steps ∆t, for a total

of 20 seconds. The evoked stimuli were half a second each, with amplitudes of one millivolt.

In Fig. 3.6, we present the resulting log mean squared error (MSE) between the estimated

conductivity-tensor field and the original simulation field, for the three fields considered, as a

function of a number of stimuli.For both the constant and circular fields, the MSE (using the

Frobenius norm) is monotonically decreasing, meaning that the additive inputs improved the

overall estimate. Furthermore, we can observe that the greatest improvement in estimation

occurred when the spatial location of a new stimulus created a significantly different wave

propagation compared to the waves that were created by previous stimuli. This can be seen

in the constant field in Table 3.2, where the first three stimuli were along the same main

direction based on the topology of the field, and as a result, they all produced a similar wave

propagation. However, the fourth stimulus location was different enough to produce a new

wave that allowed for more information on the structure of the top left corner of the field.

The results were not as conclusive in the Gaussian mix case, where not enough time was

given between sequential stimuli, causing interference in the waves, which eventually lowered

the accuracy of estimation.

3.4.3 Sensitivity to Modeling Error

Although the extended FitzHugh-Nagumo equations model the extracellular field dynamics

for a wide variety of excitable systems, they also present a challenge: A potentially small

deviation in the parameters could cause a large modeling error. In fact, trying to infer

the conductivity tensor field without properly fitting these parameters will almost certainly

result in inaccurate results. We study the robustness of the algorithm by assuming an error

of one parameter at a time (Fig. 3.7). The purpose of this study is to illustrate how much of
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Figure 3.6: This figure illustrates the effect of an increasing number of stimuli on the log
mean squared error (using the Frobenius norm), between the original conductivity-tensor
field and its estimate.

an error we will have in the tensor field estimation (Fig. 3.7(a)), and in the OSP estimation

(Fig. 3.7(b)) if the reaction parameters are not properly fitted. Studying the parameters v1,

v2, v3, ǫ1, and ǫ2, we can see that the algorithm is especially sensitivity to the polynomial

root v3, which controls the minimum range of the FHN model. However, v3 is easy to

estimate since the minimum range of the extracellular potential can be inferred from both

data and prior knowledge. From Fig. 3.7, we can also observe that the OSP prediction

error and conductivity tensor errors each have a minimum when the parameters used for the

estimation were equal to the true parameters that were used to simulate the wave phenomena.

Further, both errors decrease smoothly and monotonically as the parameters get closer to

the true value. These results suggest that even though the estimation is sensitive to the

reaction parameters, a good approximation can still be achieved by inferring the reaction

parameters from the data, using the OSP error and prior knowledge.
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(a) (b)

Figure 3.7: Sensitivity of the pOSP estimation to changes in the reaction parameters, using
estimations over the Gaussian mix tensor field and varying one parameter each time. The
reaction parameters used for estimation varied from 0.5 its true value to 3/2. Hence, if
the ratio variable r is the ratio of the value chosen for estimation to the true value, then
r ∈ [0.5, 1.5]. Fig. 3.7(a), illustrates the OSP prediction error from Eq. (3.17), and Fig.
3.7(b) illustrates the actual tensor field error, calculated using the Frobenius norm between
the true and the estimated tensor fields.

3.4.4 Sensitivity Measurement Noise

In this section, we test the sensitivity of the pOSP (using the PBROSP optimization method)

to measurement noise. We used a constant 9 × 9 tensor field separated into two sections

by a zero tensor column in the middle (Fig. 3.8(a)). By stimulating only the left section

(Fig. 3.8(c)) at different noise levels, we were able to examine noise effects on both the areas

which the wave passed through (explored) and the unexplored areas where the wave did not

reach (which hence contain no information). As can be seen from Fig. 3.8(f), the pOSP

estimation gives accurate results for low noise levels, with high anisotropy in the explored

area, and low conductivity tensors in the middle column. In the unexplored area, due to

lack of information needed to improve the estimation of the conductivity tensors, the tensors

remained close to their initial values. As we increase the noise, moving our system away

from the assumption of high SNR (Fig. 3.8(e)), the results of the pOSP estimation begin to

degrade. In Fig. 3.8(g), the estimation of the tensors in the explored areas worsen, with many

tensors losing their anisotropic information and becoming isotropic. Problems also occur in

the unexplored area, where the tensors exhibit a false directional anisotropic property, as

can be seen in the right side of Fig. 3.8(g). This false directionality can easily mislead

experimentalists into arriving at wrong conclusions about the conductivities in this area. To
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improve the algorithm’s robustness to noise, several filtering and constraining schemes can

be employed. For clarity, we will divide the methods into three categories: (i) preprocessing,

(ii) processing within pOSP, and (iii) postprocessing. In this subsection we analyze three

approaches in the preprocessing step and within the pOSP algorithm, leaving discussion on

postprocessing, such as fusion of conductivity-tensor field estimation, to future work.

Temporal Filter

In this method, a sliding temporal window filter is applied to the noisy measurements in the

preprocessing step, prior on using them in the pOSP algorithm. The method exploits the fact

that often in experiments where the wave propagation is measured, the sampling frequency

is high compared to the propagation speed of the wave. Thus, consecutive measurements

would be fairly similar, and averaging them will achieve higher SNR. However, yields poor

results using a three time-steps window in this example, as can be seen in Fig. 3.8(i), is

because the wave propagation dynamics were too rapid and were significantly degraded by

the averaging.

Spatial Penalization

In this method, robustness to noise is achieved by using a constraint within the pOSP

algorithm. Spatial penalization can be added to bring in prior knowledge of the tissue,

such as anatomical structure, from other modalities. In this work, we will consider the less

constraining assumption of smoothness as our spatial penalty. The idea is to penalize large

variations between neighboring tensors, thereby directing the algorithm to choose a smoother

solution for the tensor field. For the spatial penalization functions, we choose a function in

the following form,

h
(

Θk, Θ̂
[j−1]

)

=

K∑

k=1

µ
(
L2

xyσx +L2
xyσxy +L2

xyσy

)
, (3.36)

where L2
xy is the 2D discrete Laplace operator [26], and µ is the penalty weight. The

penalization gives particularly good results in cases, such as our example, where the data

was taken from a tissue that exhibits a high degree of smoothness (see Fig. 3.8(h)).
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Multiple Post-Stimulus Averaging

In cases where conditions are stationary enough to conduct multiple trials of the same post-

stimulus experiment, averaging the data across trials can efficiently reduce the noise without

degrading the dynamics. As we can see from Fig. 3.8(j), the tensor field estimated by this

method is similar to the one the in low noise case (Fig. 3.8(f)), and the method was very

effective in reducing the noise and improving the results.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.8: This figure illustrates the effect of noise on the pOSP algorithm in both the ex-
plored and unexplored areas. The wave propagation was simulated using the true conductiv-
ity tensor field (3.8(a)), and an isotropic tensor field as the initial field for the pOSP(3.8(b)).
The stimulus in all simulations was at location (x, y) = (2, 3) (3.8(c)), and the observations
were corrupted with additive noise of 50dB (3.8(d)) and 35dB SNR (3.8(e)). Figs. 3.8(f)
and 3.8(g) illustrate pOSP estimations for cases of low noise (50dB SNR) and high noise
(35dB SNR), respectively. Figs. 3.8(h), 3.8(i), and 3.8(j), show the effects of adding a spa-
tial penalization (µ = 10−13), temporal filter (three time-steps), and multiple experiments
averaging (five trials), respectively.

Finally, we tested the pOSP estimation using five stimuli (an “all stimuli” experiment) under

different noise levels. We considered three cases: 25dB SNR with no temporal filtering, 25dB

SNR with a low pass sliding window of three time-steps, and 50dB SNR with no temporal

filtering. As we can observe from the results in Table 3.3, even with high noise the pOSP can

produce good estimates of the original conductive-tensor fields. Ten runs of the pOSP with

differing initial fields were performed to check for sensitivity to the initial guess, all produced

similar results. The estimated tensor fields from the first run are illustrated in Table 3.3.
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In this section, we will explore different methods of incorporating the information of multiple

experiments by fusing their tensor field estimations. As described in Section 3.3.7, there are

cases where the stimuli in a certain experiment will only expose part of information needed

in order to completely infer the entire tensor field. In such situations, it is useful to consider

a postprocessing analysis that fuse the inferred tensor fields of different experiments in order

to get a more complete estimation. To test this approach, we considered the three types of

spatially varying tensor fields from before: constant, Gaussian mix, and circular. To test

for noise sensitivity, we considered three cases: 25dB SNR with no temporal filtering, 25dB

SNR with a low pass sliding window of five time-steps, and 50dB SNR with no temporal

filtering. Every simulation was composed of five runs where in each run we stimulated the

grid at a different position (as can be seen in Appendix 3.4.6). The rest of the simulation

setup was the same as in the previous section.

We considered the five fusion methods from Section 3.3.7, specifically: Euclidean distance

L2, fourth order Euclidean distance L4, average anisotropy, max anisotropy, and anisotropy

threshold. For the goodness of fit criterion we calculated the squared error for each fusion

method compared to the original tensor field (Table 3.4). Additionally, we also compared two

additional methods that fuse the information in the preprocessing step, namely “concatenate

stimuli” and “all stimuli” methods. The “concatenate stimuli” method performs the set of

individual experiments, then concatenates all of the results into a single joined time series

before inputting it to the pOSP algorithm. In contrast, the “all stimuli” method perform a

single experiment using all the different stimuli and input its results to the pOSP algorithm.

From the Table 3.4, we can see that the preprocessing fusion methods, under low noise,

achieve better estimation than the posterior methods. This shows that the pOSP algorithm

will converge to a solution closer to the global optimum given more information. However,

although these preprocessing fusion methods achieve more accurate results, it comes with

a computation price as the optimization routine of the pOSP algorithm will have to deal

with a greater amount of data. Another disadvantage of using the “all stimuli” is the fact

that experiments must run for a longer time period, and special care must be taken in order

to make sure that the effects of the stimuli do not cancel each other. Examining the result

of Table 3.4, it seems that the “all stimuli” has a very slight improvement compared to

the “concatenate stimuli” method, which does not require long multi-stimulus experiments.

On the other hand, the preprocessing and postprocessing do not have to be considered as

alternatives, and could also be used together to further enhance the estimation. If we focus
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only on comparing the results of the postprocessing fusion methods, the method that seems

to give the most robust and accurate results, under both low and high SNR, is the anisotropy

threshold fusion method.

The problem of insufficient information for accurate estimation is even more evident when the

estimation is performed for systems with low SNR. In these systems, the strong homogeneous

Gaussian noise overshadows the wave propagation signal, and results in large-isotropic tensor

estimations. Another interesting phenomena that is observed from the fusion results, is that

under high noise levels (e.g., 25dB SNR) some of the estimated tensors volume approach

zero. This is likely due to the increase in the nonidentifiability of the estimation problem,

with the algorithm converging to a less optimal local minimum. This phenomena can be

reduced by adding some tensor volume constraints according to a priori knowledge of the

tissue’s expected flow dispersion and conductivities.

3.4.5 Testing on Real Data

We applied the pOSP method to a normalized data set from cardiomyocyte tissue of a

newborn mouse, recorded at the Italian Institute of Technology using the high-resolution

4096-channel MEA platform of 3Brain GmbH, Switzerland.

Since the data is already normalized, and to simplify our computational effort, we scaled the

data to a particular range of values between [−0.07,−0.01], while the reaction parameters φ

were chosen to fit the dynamics of distinct waves of the normalized measurements. However,

when possible, the method should be applied directly to the real transmembrane potential

measurements. To simplify the computations, we lowered the resolution of the data into a

20 × 20 grid by performing block averaging. In Fig. 3.9(a), we present both snapshots of

the transformed measurements and an activity measure of the tissue. The activity measure

was calculated as the average potential of the five most active measurements. We can divide

the observed wave phenomenon into three phases: In the first 15 milliseconds, the wave

propagates from the center toward the periphery. In the second phase, between 15-23 ms,

we can observe a much faster wave propagation speed. The wave propagates to the right in

a funnel shape, then disperses as it reaches the boundary. In the following third phase, no
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propagation is observed and the measurements are of noise only. For purposes of illustration,

we estimated the conductivity tensor field corresponding to the first phase of propagation.

To use the pOSP algorithm, first the optimal reaction parameters must be inferred from

the data. Finding the optimal reaction parameters is a complex task, and ideally should be

estimated as an added step to the iterative pOSP algorithm, using prior biological knowledge

of the tissue as constraints. There are many important questions, such as what is the

optimal fitting strategy, how to handle spatial and temporal varying systems, and how to

best integrate the reaction parameters’ inference with the conductivity inference. However,

these questions are not tackled in this work and are left for future research. In this work

we limit ourself to the simplifying assumption of spatially homogeneous dynamics with time

invariant parameters. Since the difference in propagation between the first and second phase

suggests that there is a difference between the reaction parameters of the cells involved

in these phases, we infer the reaction parameters by fitting the FHM model to the wave

dynamics of single sensor measurements, which present wave propagation in the first phase

only (Fig. 3.9(b)).

To define the boundary conditions of the tissue, locations where the sensors had a total

cumulative activity less than the threshold were considered to be not conductive, and hence

the conductivity tensors in these locations were set to zero. The initial state values were

set to the theoretical resting state potential of a membrane potential v0 = v01, and the

first set of measurements was used as input to the system u0 = y0. We used tensor-volume

constraints of [0.3, 2], a spatial penalization penalty of µ = 10−12 (see Section 3.4.4), and

a step-size penalty λ = 10−4. The conductivity tensor field was estimated using the pOSP

algorithm and the measurements in the first phase, and is shown in Fig. 3.9(c).

Next we checked that our estimated tensor field indeed significantly improves the model pre-

diction results compared to using a noninformative tensor field. For the null hypothesis, we

calculated the one-step-ahead prediction (OSP) errors for 30 random tensor fields, and used

these results to find the mean OSP error and confidence interval. In Fig. 3.9(d), we noted

the mean OSP error of random fields as “Mean Random Tensor Field”, and the confidence

interval, corresponding to 98%, is presented in gray. Further, we also compared the OSP

errors for other noninformative tensors: an isotropic homogenous field (circles), a zero tensor

field (all tensors set to zero), and a constant tensor field (Table 3.2). While all of the nonin-

formative tensor fields tested were within the confidence interval of the random fields, we can
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observe that for the first 13 ms the estimated tensor field resulted in an improvement to the

OSP error which is statistically significant (3.9(d)). After 13 milliseconds, the OSP errors of

the estimated and noninformative fields are relatively equal, and are within the confidence

interval. This effect can be explained by the changes in both the spatial location of the wave

and the change in dynamics, as explained above (Fig. 3.9(a)). These changes resulted in the

estimated tensor field from the first phase of the wave becoming noninformative for the rest

of the propagation.

3.4.6 Postprocessing Fusion Results

Below are the results of the pOSP algorithm corresponding to five stimuli at different spatial

locations (red dot illustrate the location of the stimulus).

3.5 Discussion

Estimating the electrical conductivity from the reaction diffusion model and a set of mea-

surements can be thought of as estimating of the functional electrical conductivity of the

tissue, in the sense that we estimate the electrical conductivity tensors only from areas in

the domain where the transmembrane potential wave travels (flow of information.) The ben-

efits of our approach are: (i) It provides anisotropic heterogeneous values of conductivity,

and (ii) the conductivity values represent the ability of the media to allow the passage of

information, and thus, are tightly related to the underlying dynamics and functional con-

nections of the tissue (for example, in nerve tissue, cells can be connected anatomically but

not functionally.)

Our proposed method could also potentially be applied for extracellular analysis of nerve

tissues. A popular macroscale approach of modeling cortical neural tissue, with its immense

number of intertwined connections, is a continuous two-dimensional medium with neural field

equations describing the tissue dynamics [23]. Furthermore, this approach can represent the

propagation of traveling wavefronts, which play an important role in cortical information

processing [14, 89]. Although the reaction-diffusion model is a simplification of the general
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neural field equations as it is limited to only local interactions [89], the two models share

many dynamic characteristics [149] suitable for modeling wave propagation in nerve tissue.

To achieve better results with the pOSP algorithm, a learning scheme (e.g., cross-validation)

can be used in order to infer the model parameters from the data. These parameters con-

sist of the penalty term λ, the reaction parameters (ionic current dynamics), cell geometry

parameters, boundary conditions, bounds on expected conductivity tensors (how much cur-

rent is reasonable), and the spatial penalty function. Setting the spatial penalty should be

based on prior biological knowledge of the tissue considered. In this work we used a simple

smoothness penalty as we assumed the tissue conductivity should present a smooth tensor

field. However, the actual penalty value does not have a direct biological meaning (10−12).

For our real data analysis, we chose the penalty value that gave the best results for the sim-

ulated field that seem to fit our prior assumption of partwise smooth tissue (Gaussian Mix

in Table II). We wish to emphasize that this is a heuristic approach, based on experiments

from simulated data. How to optimally decide on this penalty term, or perhaps how to learn

it from the data, is a subject of future research.

Another important part of the pOSP algorithm is the knowledge of the evoked stimuli;

however, in spontaneous stimuli experiments, this knowledge is rarely available. There are

several methods for dealing with the lack of information. We can either try to estimate

the stimuli by using Laplacian methods that incorporate high-pass spatial filters to enhance

focal activities and reduce widely distributed activity, or we can use a latent approach and

infer it from the data.

The penalty hyper-parameter λ is a very important component of this algorithm, especially

when a parallel scheme is utilized. Its value will affect the rate of convergence and the amount

of influence each subproblem has on the others. This concept can be understood as “mutual

cooperation” between the different tensors and is analogous to the game theoretic idea of

trust relationship between players [94]. The main principle behind trust games is that players

must cooperate to maximize their mutual gain. However, cooperation means that players

must risk not playing their dominant strategy , and trust the other players to do the same. In

our algorithm, the players are the tensors’ matrices, and the mutual score function is the OSP

function from Eq. (3.17). In every iteration, each tensor Θk is estimated using the values of

all other tensors from the previous iteration. This allows separation of the algorithm into a

parallel optimization scheme which highly reduces computational costs. The “trust” concept
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is introduced by adding an additional term λ, to penalize setting the tensors to their greedy

individual optimum (dominant strategy). This in turn, directs them to cooperate in order

to achieve a joint global optimum (see Section 3.4.1). Having the players (tensors) make

their decisions in parallel is a slight variation compare to previous works which talk about

sequential trust games [94], however, individually, each player makes its decision according

to the other players previous actions, hence making the action sequential than parallel. In

this work the “trust” parameter is constant for all players, making it more a property of the

system rather than a strategic decision. In future work, we would like to explore using a

separate dynamic parameter for each tensor. This approach would allow the use of the game

theoretical approach of trust and reciprocity [94], thereby making the algorithm more of an

active strategic game between players with a mutual score function.

Finally, we showed that for the tested simulations and initial fields used in this study, the

parallel block-relaxation optimization with step-size penalty achieved better convergence

behavior than the common alternating optimization algorithm (whose convergence properties

are proven and well understood [18]). However, a more rigorous study must be made in order

to fully understand the convergence properties of our algorithm.

In order for our model to achieve similar dynamics as presented in the data, the model

parameters needed to be tweaked. A standard approach for fitting the model parameters

is to disregard the diffusion part of the equation and perform least-square techniques to

minimize a cost function with respect to the reaction parameters in an admissible set [1]. In

our case, we did not use this approach, but rather used a simplified method of normalizing the

amplitude of the measurements and fitting the reaction parameters to get model dynamics

similar to a distinct short wave in the measurements. Of course, both of these approaches

might not work for all dynamics, and at times, one should consider using a different reaction

model than FHN. Of course, this might not work for all dynamics, and at times, one should

consider using a different reaction model than FHN.

To achieve better results with the pOSP algorithm, knowledge of the evoked stimuli is needed.

In spontaneous stimuli experiments, on the other hand, this knowledge is rarely available.

In order to estimate the stimuli, we assume the stimulus to be an impulse effect, located

at singular points in space and time. To locate these points, we use Laplacian methods

that incorporate high-pass spatial filters to enhance the focal activity and reduce widely

distributed activity. Once the stimuli are found, their amplitude is set by calculating the
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offset between the observations values at these points and their initial resting values. It is

also possible to extend the stimuli periods to achieve a longer stimulus effect.

3.6 Conclusion

We formulated a novel method for solving the inverse problem of inferring the conductivity

structure of a biological tissue from a set of spatiotemporal measurements. We lowered the

complexity of the optimization by using a single-step approximation employing a parallel

block-relaxation optimization method of Chapter 2. This method breaks the original joint

problem into a set of smaller subproblems that are solved in parallel, and avoids converging

to local minima by forcing cooperation. Cooperation was achieved using a step-size penalty,

and the score function was formulated using a one-step-ahead prediction. We analyzed the

performance of our method using numerical examples of several electrical conductivity field

topologies and noise levels, and discussed its application to real measurements obtained

from a smooth cardiac mouse tissue slice, using data collected with the high-resolution

4096-channel MEA platform. In the future, we will consider optimizing model parameter

fitting from the data by employing more advanced learning schemes and better utilizing

prior biological information. Further, we will extend the model to nonhomogeneous reaction

dynamics and establish a methodology for fusing conductivity tensor field information from

different post-stimulus experiments.
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Table 3.2: These figures illustrate the results of the pOSP algorithm for three 8× 8 conductivity-tensor fields, constant,
Gaussian mix, and circular. With each sequential experiment, we introduced an additional stimulus to the simulation
and observed the resultant conductivity-tensor field estimation of the pOSP. In the figures, the red dots illustrate the
locations of the stimuli, and there was a period of 150 time-steps between consecutive stimuli.

Real Field One Stimulation Two Stimulations Three Stimulations Four Stimulations Five Stimulations

C
on

st
an

t
G
au

ss
ia
n
M
ix

C
ir
cu
la
r

53



Table 3.3: These figures illustrate pOSP estimations for “all stimuli” experiments under different noise levels. We
considered three cases: 25dB SNR with no temporal filtering, 25dB SNR with a low pass sliding window of three
time-steps, and 50dB SNR with no temporal filtering.

Real Field High Noise (25dB SNR) High Noise (25dB SNR) with filter Low Noise (50dB SNR)
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Field
Type

Noise
Level
(dB
SNR)

Filter L2 L4 Average
Anisotropy

Max
Anisotropy

Anisotropy
Thresh-
old

Concatenate
Stimuli

All
Stimuli

co
n
st
an

t 25 No 111.7079 72.2485 145.5941 162.2369 108.8599 129.0596 134.6183

25 Yes 11.2345 12.1416 11.1544 10.4285 10.5909 5.5346 4.7329

50 No 10.5327 11.4056 10.3955 11.4825 10.5987 4.0376 2.7392

G
au

ss
ia
n
M
ix 25 No 189.7867 220.9213 183.3025 115.0018 107.2119 121.5367 120.6116

25 Yes 12.97 16.2267 12.391 13.3538 11.0813 5.9701 5.4956

50 No 10.3222 11.6649 9.9753 11.0284 10.2125 3.7667 3.5269

ci
rc
u
la
r

25 No 271.2292 266.2753 268.3646 188.0492 181.3074 272.5795 171.7289

25 Yes 14.2658 15.9545 13.7617 12.9575 12.0746 6.214 4.8002

50 No 11.6463 13.3173 10.7275 12.2634 11.8121 4.1814 2.9201

Table 3.4: We calculated the MSE using the Frobenius norm between the resulting esti-
mated conductivity-tensor field after each fusion and the original field. Each row in the
table correspond to a different noise level on the simulated data from the three original
conductivity-tensor fields. We marked in red the fusion method that allowed for the lowest
MSE with out taking into account the preprocessing methods (“Concatenate Stimuli” and
“All Stimuli”).
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(a) (b)

(c) (d)

Figure 3.9: Conductivity tensor field estimation of propagating waves in a slice of cardiomy-
ocyte tissue from a newborn mouse. Fig. 3.9(a) illustrates the instantaneous tissue activity,
calculated as the average of the five most active measurements at each point in time, and
depicts the instantaneous measurement grid (yk) of certain time points. The FHN reaction
parameters were fitted to a wave from a single measurement sensor (3.9(b)), and the con-
ductivity tensor field was estimated from the first 15 milliseconds of data (3.9(c)), which
corresponds to the expanding wave phenomena. Fig. 3.9(d) illustrates the mean (“Mean
Random Tensor Field”) and confidence interval (98%, in gray) of one-step-ahead prediction
(OSP) errors for 30 random tensor fields. Further, comparison of the OSP errors is shown
for the estimated conductivity tensor field, an isotropic homogenous field (circles), a zero
tensor field (all tensors set to zero), and a constant tensor field (Table 3.2). While all of the
noninformative tensor fields tested were within the confidence interval of the random fields,
it can be observed that for the first 13 ms the estimated tensor field resulted in a statisti-
cally significant improvement (3.9(d)). After 13 ms, the estimated tensor field OSP error
converged with the rest of the noninformative fields. This convergence occurred because the
wave’s dynamics and location has changed, resulting in the estimated tensor becoming a
noninformative tensor field.
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Noise Level Filter Stimulus 1 Stimulus 2 Stimulus 3 Stimulus 4 Stimulus 5

25 dB SNR No

25 dB SNR Yes

50 dB SNR No

Table 3.5: Simulations for a Constant tensor field using different noise levels. On the right are
the results of the pOSP algorithm corresponding to five stimuli at different spatial locations.
Red dot illustrate the location of the stimulus.

Noise Level Filter Stimulus 1 Stimulus 2 Stimulus 3 Stimulus 4 Stimulus 5

25 dB SNR No

25 dB SNR Yes

50 dB SNR No

Table 3.6: Simulations for a Gaussian mixture tensor field using different noise levels. On
the right are the results of the pOSP algorithm corresponding to five stimuli at different
spatial locations. Red dot illustrate the location of the stimulus.
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Noise Level Filter Stimulus 1 Stimulus 2 Stimulus 3 Stimulus 4 Stimulus 5

25 dB SNR No

25 dB SNR Yes

50 dB SNR No

Table 3.7: Simulations for a circular tensor field using different noise levels. On the right are
the results of the pOSP algorithm corresponding to five stimuli at different spatial locations.
Red dot illustrate the location of the stimulus.
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Chapter 4

Scaling Multidimensional Inference

for Structured Gaussian Processes

4.1 Abstract

Exact Gaussian process (GP) regression has O(N3) runtime for data size N , making it

intractable for large N . Many algorithms for improving GP scaling approximate the covari-

ance with lower rank matrices. Other work has exploited structure inherent in particular

covariance functions, including GPs with implied Markov structure, and inputs on a lattice

(both enable O(N) or O(N logN) runtime). However, these GP advances have not been

well extended to the multidimensional input setting, despite the preponderance of multidi-

mensional applications. Here we extend the initial work of [127] on multiplicative kernel GPs

with inputs on a multidimensional grid.

4.2 Introduction

Gaussian processes (GP) have become a popular tool for nonparametric Bayesian regression.

Naive GP regression has O(N3) runtime and O(N2) memory complexity, where N is the

number of observations. At ten thousand or more observations, this problem is for all

practical purposes intractable, given current hardware.

A variety of approaches are suggested in the literature for improving the computational

complexity of GP for large data sets. Some approximate the GP using simpler models on

a lower dimensional subspace, e.g., kernel convolution [66, 161], moving averages [159], or

fixed number of basis functions [29]. Other approaches enable fast computation by working
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in the spectral domain or using algorithms based on the fast Fourier transform (FFT) [45,

47, 106]. Though these methods confer great advantage in the univariate case, extensions

to the multivariate case often require restrictive assumptions [45]. A significant amount

of research has also gone into sparse approximations, including covariance tapering [48, 71,

139], conditional independence to inducing inputs [119, 121], or a Gaussian Markov random

field approximation [126]. However, the results of these algorithms depend strongly on the

properties of the data [119, 126]. Since different assumptions fit different datasets, it is

imperative to explore alternative avenues for attaining scalability.

While efficient methods for structured GPs are known in the case of scalar inputs, many

regression applications involve multivariate inputs. We present a novel algorithm for GPs

with a multiplicative kernel structure when multidimensional inputs are on a lattice (GP-

grid). In Sec. 4.3.3 we extend the GP-grid algorithm to handle two limitations of the basic

algorithm by allowing for (i) incomplete data, and (ii) heteroscedastic noise. Lastly, we

enhance the method by incorporating expressive kernels, which learn hidden patterns in the

data. Certainly these extensions to standard GP have been used to good purpose in previous

GP settings, but their success can not be replicated in the large N case without additional

advances related to this specific multidimensional grid structure.

4.2.1 Gaussian Process Regression

In brief, GP regression is a Bayesian method for nonparametric regression, where a prior

distribution over continuous functions is specified via a Gaussian process (the use of GP in

machine learning is well described in [121]). A GP is a distribution on functions f over an

input space X (in the general D dimensional input space case X = RD) such that any finite

selection of input locations x1, . . . ,xN ∈ X gives rise to a multivariate Gaussian density over

the associated targets, i.e.,

p(f(x1), . . . , f(xN)) = N (mN ,KN ), (4.1)

where mN = m(x1, . . . ,xN) is the mean vector and KN = {k(xi,xj ; θ)}i,j is the covariance

matrix, for mean function m(·) and covariance function k(·, · ; θ). Throughout this work, we
use the subscript N to denote that KN has size N × N . We are specifically interested in
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the basic equations for GP regression, which involve two steps. First, for given data y ∈ RN

(making the standard assumption of zero-mean data, without loss of generality), we calculate

the predictive mean and covariance at L unseen inputs as

µL = KLN

(
KN + σ2

nIN
)−1

y, (4.2)

ΣL = KL −KLN

(
KN + σ2

nIN
)−1

KNL, (4.3)

where σ2
n is the variance of the observation noise (the homogeneous noise case, where σ2

n is

constant across all observations), which is assumed to be Gaussian. Because the function

k(·, · ; θ) is parameterized by hyperparameters θ such as amplitude and lengthscale, we must

also consider the log marginal likelihood Z(θ) for model selection:

logZ(θ) = −1
2

(
y⊤(KN + σ2

nIN)
−1y + log |KN + σ2

nIN |+N log(2π)
)
. (4.4)

Here we use this marginal likelihood to optimize over the hyperparameters in the usual

way [121]. The runtime of full-GP regression and hyperparameter learning is O(N3) due to

the (KN + σ2
nIN)

−1
and log |KN + σ2

nIN | terms, so we focus on these two objects to achieve

computational efficiency.

4.3 Gaussian Processes on Multidimensional Grids

When data locations lie on a grid, such as pixels in an image, we can exploit the ordinary

structure of the problem to significantly reduce the complexity of the GP algorithm. In

this section, we present a novel method to perform exact GP inference in O(DN D+1
D ) time

for any multiplicative kernel with D-dimensional grid inputs, using properties of Kronecker

products.

Much work has gone to applications of scalar lattice data, such as Toeplitz and spectral

approaches [30,47,106]. However, these methods are very restrictive when extended to mul-

tidimensional grid input [45]. Another approach that is used extensively in the fields of

computer vision and image analysis is the Gaussian-Markov random field (GMRF) model;

however, this model often proves too simplistic for real data, and is known to be inconsis-

tent over different subsets of lattice data [95]. Other work exploits separability with the
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Kronecker product [152], but this approach is rarely used in practice because it requires

the restrictive assumptions of noiseless, full (regular) grid measurements. Here we present a

novel extension of the Kronecker method to perform exact inference in O(DN D+1
D ) time for

cases of incomplete grids, missing observations, and variable noise.

To enable our GP-grid algorithm, we revisit the two critical assumptions from Sec. 5.2. Our

first key assumption is multiplicative kernel structure. One example of many is the popular

squared exponential kernel, which is multiplicative across its input dimensions:

k(xi,xj) = σ2
f exp

(

−
D∑

d=1

1

2ℓ2d
(xdi − xdj )2

)

= σ2
f

D∏

d=1

exp

(

− 1

2ℓ2d
(xdi − xdj )2

)

. (4.5)

Our second key assumption was that of the multidimensional input space X = X 1 × X 2 ×
. . .×XD. If our dataset contains all possible input vectors on the grid X, we say the dataset

is “grid-complete”. The assumption of grid-completeness is a necessary first step but also the

primary limitation of this first GP-grid algorithm (and previous works that have considered

Kronecker structure [127, 152]), and we will eliminate this limitation in Sec. 4.3.3.

With these two assumptions, we can readily show (e.g., [91,127,152]) that the multiplicative

kernel matrix decomposes to a Kronecker product over the kernel matrices of individual

dimensions:

KN = K1
N1/D ⊗K2

N1/D ⊗ . . .⊗KD
N1/D , (4.6)

where Kd
N1/D is the covariance matrix of the input space of dimension d. Note that, while

KN is N × N , each Kd
N1/D is only N1/D × N1/D .6 Used correctly, this observation can

enable significant computational and memory savings, because we can operate cheaply on

a collection of small matrices instead of expensively on a large matrix. Realizing these

savings requires three properties of Kronecker products: first, memory complexity: per

standard practice in large scale optimization, we never store the large kernel matrix (O(N2)

in runtime and memory). Instead we treat it as an implicit linear operator. Then, since

each Kd
N1/D in Eq. (4.6) is of size N1/D ×N1/D , we only require O(DN2/D) memory, which

6In the general case, Xd has cardinality |Xd| and thus the implied data size N =
∏

d |Xd|. For simplicity
and clarity of the complexity analysis, in the remainder we assume equal cardinalities, namely |Xd| = N1/D

for all dimensions d, without loss of generality.
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is a substantial reduction even for D = 2 (i.e., we now have linear memory complexity for

images). Second, we will exploit eigendecomposition: the eigenvectors and eigenvalues

matrices KN = QNVNQ
⊤
N can be calculated efficiently in O(DN3/D) by noting that QN =

Q1
N1/D ⊗Q2

N1/D ⊗ . . .⊗QD
N1/D and VN = V1

N1/D ⊗V2
N1/D ⊗ . . .⊗VD

N1/D . Each of the above

two steps are standard Kronecker properties, and they will confer huge savings. Third, we

exploit matrix-vector product: by cascading a common trick from multilinear algebra,

we show in Sec. 4.3.1 that multiplication of a vector with a Kronecker matrix can be done

at a reduced computational complexity of O(DN D+1
D ), vs the full cost O(N2).

4.3.1 Matrix-vector Product for Kronecker Matrices

Here we develop the matrix-vector product algorithm for Kronecker matrices which was first

introduced in [127]. We first define a few operators from standard Kronecker literature. LetB

be a matrix of size p×q. The reshape(B, r, c) operator returns a r-by-c matrix (rc = pq) whose

elements are taken column-wise from B. The vec(·) operator stacks the matrix columns

onto a single vector, vec(B) = reshape(B, pq, 1), and the vec−1(·) operator is defined as

vec−1(vec(B)) = B. Finally, using the standard Kronecker property (B ⊗ C)vec(X) =

vec(CXB⊤), we note that for any N argument vector u ∈ RN we have

KNu =

(
D⊗

d=1

Kd
N1/D

)

u = vec



KD
N1/DU

(
D−1⊗

d=1

Kd
N1/D

)⊤


 , (4.7)

where U = reshape(u, N1/D, N
D−1
D ), and KN is the covariance matrix from Eq. (4.6). With

no change to Eq. (4.7) we can introduce the vec−1(vec(·)) operators to get

KNu = vec





(

vec−1

(

vec

( (
D−1⊗

d=1

Kd
N1/D

)

(
KD

N1/DU
)⊤

)) )⊤


 . (4.8)

The inner component of Eq. (4.8) can be written as

vec

((
D−1⊗

d=1

Kd
N1/D

)

(
KD

N1/DU
)⊤

IN1/D

)

= IN1/D ⊗
(

D−1⊗

d=1

Kd
N1/D

)

vec
((

KD
N1/DU

)⊤
)

. (4.9)
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Notice that Eq. (4.9) is in the same form as Eq. (4.7) (Kronecker matrix-vector product).

By repeating Eqs. (4.8-4.9) over all D dimensions, and noting that
(
⊗D

d=1 IN1/D

)

u = u, we

see that the original matrix-vector product can be written as

(
D⊗

d=1

Kd
N1/D

)

u = vec
([

K1
N1/D , . . .

[

KD−1
N1/D ,

[
KD

N1/D ,U
]]])

(4.10)

def
= kron mvprod

(
K1

N1/D ,K
2
N1/D , . . . ,K

D
N1/D ,u

)
(4.11)

where the bracket notation denotes matrix product, transpose then reshape, i.e.,
[
Kd

N1/D ,U
]
=

reshape
((

Kd
N1/DU

)⊤
, N1/D, N

D−1
D

)

. Iteratively solving the kron mvprod operator in Eq.

(4.11) requires O(DN D+1
D ), because each of the D bracket operations requires O(N D+1

D ). We

present the algorithm for the general D case, though throughout the results we will only con-

sider D = 2 (restricting ourselves to image data), which will result in the stated complexity

of O(N3/2), which is smaller than the O(N2) of naive matrix-vector product.

4.3.2 GP-grid with Homogeneous Noise

Here we first introduce the GP-grid algorithm for computing exact GP inference over grid-

complete data with homogeneous noise at orders of magnitude lower cost than full-GP. The

introduction of homogeneous observation noise makes our inversion of interest be (KN +

σ2
nIN)

−1, which is no longer a Kronecker matrix due to the perturbation on the main diagonal.

The key step is to exploit the eigendecomposition of the Kronecker matrix, such that the

key GP inference operation (Eq. 4.2) is:

(
KN + σ2

nIN
)−1

y =
(
QNVNQ

⊤
N + σ2

nIN
)−1

y = QN

(
VN + σ2

nIN
)−1

Q⊤
Ny. (4.12)

The right-hand side of Eq. (4.12) involves three matrix vector multiplications which, moving

from right to left, can be solved efficiently with kron mvprod in O(DN D+1
D ), diagonal matrix-

vector multiplication in O(N), and again kron mvprod on the result. The logdet term can

also be solved efficiently as

log |K+ σ2I| = log |QVQ⊤ + σ2I| =
N∑

i=1

log(λi + σ2) , (4.13)
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where λi are the eigenvalues of K. Thus inference is done in O(DN D+1
D ), which in the case

of images yields O(N3/2), vs the naive cost with full-GP of O(N3).

In the next section we will extend GP-grid to efficiently handle the case of K + D, where

K is not a Kronecker matrix, and D is a positive diagonal matrix of known heteroscedastic

noise.

4.3.3 Generalizing GP-grid for an Incomplete Grid and Heteroscedas-

tic Noise

Unfortunately, for many applications the above assumptions - (1) a grid-complete dataset

with (2) homogeneous noise σ2
nIN - are too simplistic, and will cause GP-grid to substantially

underfit, resulting in degraded estimation power of the method (this claim will be substan-

tiated later in Sec. 4.5). First, incomplete grids often occur due to missing values (e.g.,

malfunctioning sensors), or non-grid input space (e.g., a segment of an image). Second, the

homogeneous noise assumption is also not valid in many real systems because sensor noise

can vary between sensors or can be input-dependent. In this section we will extend GP-grid

to efficiently handle both incomplete grids and heteroscedastic noise.

In [91] the authors deal with missing observations by using a sampling approach to approx-

imate the posterior (since the implied covariance matrix lacks Kronecker structure and is

computationally intractable), whereas our algorithm does inference exactly and efficiently.

However, although their method improves scaling of GP inference over the full-GP, the Gibbs

sampler used for learning still necessitates a high runtime cost. In [90] the authors handle

missing data as a series of rank-1 updates. Their method resulted in a O(R2N +RDN
D+1
D )

runtime and O(RN) memory, where R is the number of missing data points. Although this

method allow for exact GP inference and is very efficient for small R, in the general case

where R = O(N) (as in Section 4.5) this method will still incur cubic complexity.

Inference

Incomplete grids often occur due to missing values (e.g., malfunctioning sensors), or non-

grid input space (e.g., a segment of an image). Previous work in literature tried to handel
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missing observation for grid input using either sampling [91], or a series of rank-1 updates [90];

however, both of these methods incur high runtime cost with the increase of the number of

missing observations.

We will use the notation KM to represent a covariance matrix that was computed using

multiplicative kernel over an input set χM , |χM | = M , which do need to lie on a complete

grid. Hence, KM is not necessarily a non Kronecker matrix, and can be represented as

KM = EKNE
⊤, where the KN is a Kronecker matrix computed from the set χN (χM ⊆ χN)

of N inputs that lie on a complete grid. The E matrix is a selector matrix of size M × N ,

choosing the inputs from the complete-grid space that are also in the incomplete-grid space.

The E matrix is a sparse matrix having only M non-zero elements.

This representation is helpful for matrix vector multiplication because it allows us to project

the incomplete observation vector to the complete grid space yN = E⊤yM , perform all

operations using the properties of the Kronecker matrices, and then project the results back

to the incomplete space.

We use preconditioned conjugate gradients (PCG) [5] to compute (KM +D)−1 y. Each

iteration of PCG calculates the matrix vector multiplication

(KM +D)v = EKNE
⊤v +Dv. (4.14)

The complexity of matrix vector multiplication of the diagonal and selector matrices isO (N),

hence the complexity of the multiplication above will depend on the matrix vector multipli-

cation of KN . Exploiting the fast multiplication of Kronecker matrices, PCG takes O(JN 3
2 )

total operations (where the number of PCG iterations J ≪ N) to compute (KM +D)−1 y,

which allows for exact inference.

Learning

For learning (hyperparameter training) we must evaluate the marginal likelihood of Eq. (4.4).

We cannot efficiently compute the complexity penalty in the marginal likelihood log |KM+D|
because K = KM +D is not a Kronecker matrix. We can alleviate this problem by replacing

the exact logdet complexity with an efficient upperbound. Using an upperbound allows
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to keep the computational and memory complexities low while maintaining a low model

complexity. We emphasize that only the log determinant (complexity penalty) term in the

marginal likelihood undergoes a small approximation, and inference remains exact.

In [41], the author showed that for a n × n hermitian positive semidefinite matrices A, B

with eiganvalues α1 ≤ α2 ≤ . . . ≤ αn and β1 ≤ β2 ≤ . . . ≤ βn, respectively,

|A+B| ≤
n∏

i=1

(αi + βn+1−i) . (4.15)

These estimates are best possible in terms of the eigenvalues of A and B. Using Eq. (4.15),

we can write an upperbound on the complexity penalty as:

log |KM +D| ≤
M∑

i=1

log
(
λMi + dM+1−i

)
, (4.16)

where di = sort(diag(D))i. However, finding λ
M
i , the eigenvalues of KM , is still O (N3). We

instead approximate the eigenvalues λMi using the eigenvalues of KN , such that λ̃Mi ≈ M
N
λNi

for i = 1, . . . ,M [153], which is a particularly good approximation for large M (e.g., M >

1000).

4.4 Kernels for Pattern Discovery

The heart of a Gaussian process model is its kernel, which encodes all inductive biases –

what sorts of functions are likely under the model. Popular kernels are not often expressive

enough for automatic pattern discovery and extrapolation. To learn rich structure in data,

we now present highly expressive kernels which combine with the scalable exact inference

procedures introduced previously in this chapter.

In general it is difficult to learn covariance structure from a single Gaussian process reali-

sation, with no assumptions. Most popular kernels – including the Gaussian (SE), Matérn,

γ-exponential, and rational quadratic kernels [122] – assume stationarity, meaning that they

are invariant to translations in the input space x. In other words, any stationary kernel k is

a function of τ = x− x′, for any pair of inputs x and x′.
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Bochner’s theorem [19] shows that any stationary kernel k(τ) and its spectral density S(s)

are Fourier duals:

k(τ) =

∫

S(s)e2πis
⊤τds , (4.17)

S(s) =

∫

k(τ)e−2πis⊤τdτ . (4.18)

Therefore if we can approximate S(s) to arbitrary accuracy, then we can also approximate

any stationary kernel to arbitrary accuracy, and we may have more intuition about spectral

densities than stationary kernels. For example, the Fourier transform of the popular SE

kernel is a Gaussian centered at the origin. Likewise, the Fourier transform of a Matérn

kernel is a t distribution centered at the origin. These results provide the intuition that

arbitrary additive compositions of popular kernels have limited expressive power – equivalent

to density estimation with, e.g., scale mixtures of Gaussians centered on the origin, which

is not generally a model one would use for density estimation. Scale-location mixtures of

Gaussians, however, can approximate any distribution to arbitrary precision with enough

components [72], and even with a small number of components are highly flexible models.

Suppose that the spectral density S(s) is a scale-location mixture of Gaussians,

S(s) =

A∑

a=1

w2
a[N (s;µa, σ

2
a) +N (−s;µa, σ

2
a)]/2 , (4.19)

noting that spectral densities for real data must be symmetric about s = 0 [67], and assuming

that x, and therefore also s, are in R1. If we take the inverse Fourier transform (Eq. (4.18))

of this spectral density in Equation (4.19), then we analytically obtain the corresponding

spectral mixture (SM) kernel function:

kSM(τ) =

A∑

a=1

w2
aexp{−2π2τ 2σ2

a} cos(2πτµa) , (4.20)

which was derived by [156], and applied solely to simple time series examples with a small

number of datapoints. We extend this formulation for tractability with large datasets and

multidimensional inputs.
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The squared exponential kernel for multidimensional inputs, for example, decomposes as a

product across input dimensions. This decomposition helps with computational tractability

– limiting the number of hyperparameters in the model – and like stationarity, provides a

bias that can help with learning. For higher dimensional inputs, x ∈ RP , we propose to

leverage this useful product assumption for a spectral mixture product (SMP) kernel

kSMP(τ |θ) =
P∏

p=1

kSM(τp|θp) , (4.21)

where τp is the p
th component of τ = x−x′ ∈ RP , θp are the hyperparameters {µa, σ

2
a, w

2
a}Aa=1

of the pth spectral mixture kernel in the product of Eq. (4.21), and θ = {θp}Pp=1 are the hy-

perparameters of the SMP kernel. With enough components A, the SMP kernel of Eq. (4.21)

can model any product kernel to arbitrary precision, and is flexible even with a small number

of components. We use SMP-A as shorthand for an SMP kernel with A components in each

dimension (for a total of 3PA kernel hyperparameters and 1 noise hyperparameter).

A GP with an SMP kernel is not a finite basis function method, but instead corresponds

to a finite (A component) mixture of infinite basis function expansions. By combining

the fast Gaussian process framework of Section 4.3.3 with the expressive SMP kernel, we

introduce a new Bayesian nonparametric framework GPatt, which enables automatic pattern

extrapolation with Gaussian processes on large multidimensional datasets.

4.5 Results

4.5.1 Runtime Complexity

First, we compare the runtime complexity of GP-grid from Section 4.3.3 to both full-GP

(naive implementation of Sec. 4.2.1 using Cholesky decomposition) and GP-grid with grid-

complete and homogeneous noise. We conduct the comparison using a segment of real image

data of a cone (Fig. 4.1). We consider only the input locations within the segment (size M),

except for GP-grid homogeneous where we used the entire grid-complete segment (size N).

At each iteration the size of the window N is increased, thereby increasing the number of

input locations M (pixels we did not mask out). Fig. 4.1 illustrates the time complexity of
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the three algorithms as a function of input size (pixels). For every comparison we also note

the ratio of unmasked input to the total window size for each point. The time complexity

presented for all algorithms is for a single calculation of the negative log marginal likelihood

(NLML) and its derivatives (dNLML), which are the needed calculations in GP learning

(and which carry the complexity of the entire GP algorithm). In GP-grid, the noise model

is not learned but assumed to be known from the apparatus used to capture the image [110],

which is:

σ2
i = 0.47Ii + 56.22, (4.22)

where at location i, σ2
i is the noise variance and Ii is the image intensity. Since we do not have

Ii we use the measured yi instead as an approximation, which is a common heuristic (though

it technically violates the generative model of the GP) of known camera properties that we

discuss later in this work. As can be seen in Fig. 4.1, GP-grid does inference exactly and

scales only superlinearly with the input size, while full-GP is cubic. While the more general

GP-grid (Sec. 4.3.3) does slightly increase computational effort, it does so scalably while

preserving exact inference, and we will show that it has significant performance implications

that easily warrant this increase. All other commonly used interpolation methods (e.g.,

bilinear, bicubic, and bicubic-spline) scale at least linearly with the data.

4.5.2 Application to Image Data

In this section we present the performance of GP-grid for real image data interpolation, and

the improvement compared to commonly used image interpolation methods. As a reminder,

GP-grid is an exact GP algorithm so the previous runtime-accuracy tradeoff comparison is

not needed (since our method is always superior to Full-GP). Hence here we briefly present

the application to images to show that it is a competitive method against other image

processing methods. We use three novelties from Sec. 4.3.3 to test this method: the use of

GP itself (enabled by GP-grid), the ability of GP to accept segmented data, and the ability

of GP to accept a known noise model (Eq. (4.22)).

For comparison, we used real images acquired by a CCD imaging array,7 where over a

thousand pictures of the same four scenes were taken. We manually segmented the images

into two exclusive segments, one of the object and one of the background, an example of

7Kodak KAI-4022 4-Mega pixel.
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Figure 4.1: Runtime complexity of full-GP, GP-grid, and GP-grid homogeneous, for a single
calculation of the negative log marginal likelihood (NLML) and its derivatives. For input,
we used segmented data from the cone image of the right. At every comparison the size of
the segment N (red dotted line) was increased, thereby increasing the input size M (pixels
not masked out). The ratio of input size to the complete grid size (M/N) is shown next
to the GP-grid plot. The slope for the full-GP is 2.6, for GP-grid is 1.0, and for GP-grid
homogeneous is 1.1 (based on the last 8 points). This empirically verifies the improvement
in scaling. Other interpolation methods also scale at least linearly, so the cost of running
GP-grid is constant (the runtime gap is not widening with data).

which is shown in Fig. 4.2. In all pictures the empirical noise model fit reasonably well

to the camera-specific noise model used in Eq. (4.22) (line shown in red). To estimate

the true image, we averaged over the majority of the pictures, leaving a small subset for

testing. In order to test interpolation performance, we interpolated the entire image using

only a subset of the image (down-sampled by 1/4, a factor of two in both the vertical

and horizontal directions). All images are 200× 200 pixels, hence, even their down-sampled

version will be impractical for Full-GP. The interpolated images were then compared to their

corresponding averaged images for accuracy analysis. For an accuracy criterion, we compared

the standardized mean square error (SMSE) between the interpolated images and the average

images, as defined in [121]. Note that in all the comparisons we intentionally changed the

test conditions so they would be most favorable to non-GP methods: we discarded the pixels

by the border pixels (5 pixels width), and allowed non-GP methods access to the entire
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image. These choices are conservative as the non-GP methods fail particularly badly at the

edges, and so we discarded those results to clarify that these improvements have nothing to

do with the failure modes of other methods. We chose to compare GP-grid with the common

interpolation algorithms: bilinear, bicubic, bicubic-spline (Bic-sp) and NEDI [82]. Although

this is by no means an exhaustive comparison, it allows for a benchmark for comparison with

GP performance.

(a) (b) (c)

Figure 4.2: An example of the face image separated to an object segment (Fig. 4.2(a)) and
a background segment (Fig. 4.2(b)), which are used for interpolation comparison along with
their empirical noise vs. intensity model (Fig. 4.2(c)). The red line corresponds to the
camera specific linear noise model in Eq. (4.22).

We ran GP-grid using both the Matérn(1/2) and Matérn(5/2) covariance functions, and

learned the hyperparameters: lengthscales (l1, l2), signal variance (σ2
f ), and noise variance

(σ2
n) [121]. For brevity, we will use GP-grid(·) for GP-grid Matérn(·), and we will add “sph”

when we used GP-grid to learn the spherical noise variance hyperparameter σ2
n. We tested

the algorithms on images such as the one from Fig. 4.2 when taken as a whole (W), object

segment (O), and background segment (B). As a reference, we also added GP-grid(1/2)

spherical and GP-grid(5/2) spherical. As Table 4.1 shows, the GP-grid algorithm with

the camera specific noise model improved performance in all images compared with GP-grid

spherical and best overall interpolation results of all the algorithms tested. The improvement

over GP-grid spherical is perhaps most evident in the moose object image, where both the

GP-grid spherical algorithms severely underfit the results. These improvements may be in

part due to the fact that the GP-grid is the only algorithm with knowledge of a noise model

(Eq. (4.22)). The GP framework is a natural choice for enabling this noise model, and its

use is critically enabled by our GP-grid method (which is the point of this section).
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4.5.3 Application to Temperature Data

Finally, to show the extension of our GP-grid algorithm to higher dimensional data, we

show a spatio-temporal example (D = 3) of monthly land surface temperatures in North

America.8 Fig 4.3 (left column) shows monthly temperature readings from 1950. We used

temperature readings from 9 months (excluding April, August, and December) as our train-

ing set, corresponding to n = 24939 data points on an irregular grid. This data comprises

44% of the full 66 × 71 × 12 grid. and is irregular both in time (held-out test data) and

space (incomplete land coverage). Note that this data size is already well beyond the range

of a Full-GP (c.f., Fig 4.1), and the incomplete grid structure precludes the use of GP-grid

spherical. Hence, our GP-grid method (Sec. 4.3.3) is a critical enabler of this application.

We chose the Matérn(5/2) kernel and learned the hyperparameters (including global noise

σn). The GP-grid inference results are shown the second column for the held-out test set of

April, August and December, with their corresponding 95% confidence intervals (two stan-

dard deviations of the posterior are plotted) in the third column. Note the higher posterior

variance in December (which had only past data, not past and future as in April and Au-

gust), indicating that this data has significant temporal structure in addition to its spatial

structure. Our GP-grid required only 4.6 seconds for inference and 5 minutes for learning,

in a dataset of roughly 25 thousand points where other GP methods are intractable. The

critical point of these results is that our computational advances enable GP to be applied in

a new application domain where large data sets are the norm.

4.5.4 Application to Pattern Extrapolation

In our experiments we combine the SMP kernel of Eq. (4.21) with the fast exact inference

and learning procedures of section 4.3.3, in a GP method we henceforth call GPatt9,10. As

GPs have successfully been used for image denoising and interpolation, we focus on the more

challenging problem of extrapolating a variety of sophisticated patterns embedded in large

datasets.

8Data from the Joint Institute for the study of Atmosphere and Ocean
(http://jisao.washington.edu/data/satmergedarctic)

9We write GPatt-A when GPatt uses an SMP-A kernel.
10Experiments were run on a 64bit PC, with 8GB RAM and a 2.8 GHz Intel i7 processor.
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Figure 4.3: Average monthly land surface temperatures in North America in 1950. The left
column presents the real measurements. Small images (9 months) were used as a training
set, and April, August, and December were used as a held-out test set. The middle and
right columns show the corresponding GP-grid posterior mean and 95% confidence intervals
for April, August, and December.

We contrast GPatt with many alternative Gaussian process kernel methods. In particular,

we compare to the recent sparse spectrum Gaussian process regression (SSGP) [80] method,

which provides fast and flexible kernel learning. SSGP models the kernel spectrum (spec-

tral density) as a sum of point masses, such that SSGP is a finite basis function model,

with as many basis functions as there are spectral point masses. SSGP is similar to the

recent models of [81] and [120], except it learns the locations of the point masses through

marginal likelihood optimization. We use the SSGP implementation provided by the authors

at http://www.tsc.uc3m.es/ miguel/downloads.php.

To further test the importance of the fast inference used in GPatt, we compare to a GP which

uses the SMP kernel of section 4.4 but with the popular fast FITC [100, 137] inference, im-

plemented in GPML11. We also compare to GPs with the popular squared exponential (SE),

rational quadratic (RQ) and Matérn (MA) (with 3 degrees of freedom) kernels, catalogued

in [122], respectively for smooth, multi-scale, and finitely differentiable functions. Since GPs

with these kernels cannot scale to the large datasets we consider, we combine these kernels

with the same fast inference techniques that we use with GPatt, to enable a comparison.12

11http:/www.gaussianprocess.org/gpml
12We also considered the model of [36], but this model is intractable for the datasets we considered and is

not structured for the fast inference of section 4.3.3.
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Moreover, we stress test each of these methods in terms of speed and accuracy, as a function

of available data and extrapolation range, and number of components.

In all experiments we assume Gaussian noise, so that we can express the marginal likeli-

hood of the data p(y|θ) solely as a function of kernel hyperparameters θ. To learn θ we

optimize the marginal likelihood using BFGS. We use a simple initialisation scheme: any

frequencies {µa} are drawn from a uniform distribution from 0 to the Nyquist frequency

(1/2 the sampling rate), length-scales {1/σa} from a truncated Gaussian distribution, with

mean proportional to the range of the data, and weights {wa} are initialised as the empirical

standard deviation of the data divided by the number of components used in the model. In

general, we find GPatt is robust to initialisation.

This range of tests allows us to separately understand the effects of the SMP kernel and

proposed inference methods of section 4.3.3; we will show that both are required for good

extrapolation performance.

4.5.5 Extrapolating a Metal Tread Plate Pattern

We extrapolate the missing region, shown in Figure 4.4a, on a real metal tread plate texture.

There are 12675 training instances (Figure 4.4a), and 4225 test instances (Figure 4.4b). The

inputs are pixel locations x ∈ R2 (P = 2), and the outputs are pixel intensities. The full

pattern is shown in Figure 4.4c. This texture contains shadows and subtle irregularities,

no two identical diagonal markings, and patterns that have correlations across both input

dimensions.

To reconstruct the missing region, as well as the training region, we use GPatt with 30

components for the SMP kernel of Eq. (4.21) in each dimension (GPatt-30). The GPatt

reconstruction shown in Figure 4.4d is as plausible as the true full pattern shown in Figure

4.4c, and largely automatic. Without hand crafting of kernel features to suit this image, ex-

posure to similar images, or a sophisticated initialisation procedure, GPatt has automatically

discovered the underlying structure of this image, and extrapolated that structure across a

large missing region, even though the structure of this pattern is not independent across the

two spatial input dimensions. Indeed the separability of the SMP kernel represents only a

soft prior assumption, and does not rule out posterior correlations between input dimensions.
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Figure 4.4: Extrapolation on a Metal Tread Plate Pattern. Missing data are shown in black.
a) Training region (12675 points), b) Testing region (4225 points), c) Full tread plate pattern,
d) GPatt-30, e) SSGP with 500 basis functions, f) FITC with 500 inducing (pseudo) inputs,
and the SMP-30 kernel, and GPs with the fast exact inference in section 4.3.3, and g) squared
exponential (SE), h) Matérn (MA), and i) rational quadratic (RQ) kernels.

Figure 4.5: Automatic Model Selection in GPatt. Initial and learned weight and frequency
parameters of GPatt-30, for each input dimension (a dimension is represented in each panel),
on the metal tread plate pattern of Figure 4.4. GPatt-30 is overspecified for this pattern.
During training, weights of extraneous components automatically shrink to zero, which helps
indicate whether the model is overspecified, and helps mitigate the effects of model overspec-
ification. Of the 30 initial components in each dimension, 15 are near zero after training.
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The reconstruction in Figure 4.4e was produced with SSGP, using 500 basis functions. In

principle SSGP can model any spectral density (and thus any stationary kernel) with in-

finitely many components (basis functions). However, since these components are point

masses (in frequency space), each component has highly limited expressive power. More-

over, with many components SSGP experiences practical difficulties regarding initialisation,

over-fitting, and computation time (scaling quadratically with the number of basis func-

tions). Although SSGP does discover some interesting structure (a diagonal pattern), and

has equal training and test performance, it is unable to capture enough information for a

convincing reconstruction, and we did not find that more basis functions improved perfor-

mance. Likewise, FITC with an SMP-30 kernel and 500 inducing (pseudo) inputs cannot

capture the necessary information to interpolate or extrapolate. On this example, FITC had

a runtime of 2 days and SSGP-500 had a runtime of 1 hour, compared to GPatt which took

under 5 minutes.

GPs with SE, MA, and RQ kernels are all truly Bayesian nonparametric models – these

kernels are derived from infinite basis function expansions. Therefore, as seen in Figure 4.4

g), h), i), these methods are completely able to capture the information in the training region;

however, these kernels do not have the proper structure to reasonably extrapolate across the

missing region – they simply act as smoothing filters. We note that this comparison is only

possible because these GPs are using the fast exact inference techniques in section 4.3.3.

Overall, these results indicate that both expressive nonparametric kernels, such as the SMP

kernel, and the specific fast inference in section 4.3.3, are needed to be able to extrapolate

patterns in these images.

We note that the SMP-30 kernel used with GPatt has more components than needed for this

problem. However, as shown in Fig. 4.5, if the model is overspecified, the complexity penalty

in the marginal likelihood shrinks the weights ({wa} in Eq. (4.20)) of extraneous components,

as a proxy for model selection – an effect similar to automatic relevance determination

[92]. As per Eq. (4.13), this complexity penalty is a sum of log eigenvalues of a covariance

matrix K. Components which do not significantly contribute to model fit will therefore

be automatically pruned, as shrinking the weights decreases the eigenvalues of K and thus

minimizes the complexity penalty.
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Figure 4.6: Stress Tests. a) Runtime Stress Test. We show the runtimes in seconds, as
a function of training instances, for evaluating the log marginal likelihood, and any relevant
derivatives, for a standard GP with SE kernel (as implemented in GPML), FITC with 500
inducing (pseudo) inputs and SMP-25 and SMP-5 kernels, SSGP with 90 and 500 basis
functions, and GPatt-100, GPatt-25, and GPatt-5. Runtimes are for a 64bit PC, with 8GB
RAM and a 2.8 GHz Intel i7 processor, on the cone pattern (P = 2), shown in the supplement.
The ratio of training inputs to the sum of imaginary and training inputs for GPatt (section
4.3.3) is 0.4 and 0.6 for the smallest two training sizes, and 0.7 for all other training sets.
b) Accuracy Stress Test. MSLL as a function of holesize on the metal pattern of Figure
4.4. The values on the horizontal axis represent the fraction of missing (testing) data from
the full pattern (for comparison Fig 4.4a has 25% missing data). We compare GPatt-30 and
GPatt-15 with GPs with SE, MA, and RQ kernels (and the inference of section 4.3.3), and
SSGP with 100 basis functions. The MSLL for GPatt-15 at a holesize of 0.01 is −1.5886.

4.5.6 Stress Tests

We stress test GPatt and alternative methods in terms of speed and accuracy, with varying

datasizes, extrapolation ranges, basis functions, inducing (pseudo) inputs, and components.

We assess accuracy using standardized mean square error (SMSE) and mean standardized

log loss (MSLL) (a scaled negative log likelihood), as defined in [122] on page 23. Using

the empirical mean and variance to fit the data would give an SMSE and MSLL of 1 and 0

respectively. Smaller SMSE and more negative MSLL values correspond to better fits of the

data.

The runtime stress test in Figure 4.6a shows that the number of components used in GPatt

does not significantly affect runtime, and that GPatt is much faster than FITC (using 500

inducing inputs) and SSGP (using 90 or 500 basis functions), even with 100 components
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(601 kernel hyperparameters). The slope of each curve roughly indicates the asymptotic

scaling of each method. In this experiment, the standard GP (with SE kernel) has a slope

of 2.9, which is close to the cubic scaling we expect. All other curves have a slope of 1± 0.1,

indicating linear scaling with the number of training instances. However, FITC and SSGP

are used here with a fixed number of inducing inputs and basis functions. More inducing

inputs and basis functions should be used when there are more training instances – and these

methods scale quadratically with inducing inputs and basis functions for a fixed number of

training instances. GPatt, on the other hand, can scale linearly in runtime as a function of

training size, without any deterioration in performance. Furthermore, the big gaps between

each curve – the fixed 1-2 orders of magnitude GPatt outperforms alternatives – are as

practically important as asymptotic scaling.

The accuracy stress test in Figure 4.6b shows extrapolation (MSLL) performance on the

metal tread plate pattern of Figure 4.4c with varying holesizes, running from 0% to 60%

missing data for testing (for comparison the hole shown in Figure 4.4a is for 25% missing

data). GPs with SE, RQ, and MA kernels (and the fast inference of section 4.3.3) all steadily

increase in error as a function of holesize. Conversely, SSGP does not increase in error as a

function of holesize – with finite basis functions SSGP cannot extract as much information

from larger datasets as the alternatives. GPatt performs well relative to the other methods,

even with a small number of components. GPatt is particularly able to exploit the extra

information in additional training instances: only when the holesize is so large that over 60%

of the data are missing does GPatt’s performance degrade to the same level as alternative

methods.

In Table 4.2 we compare the test performance of GPatt with SSGP, and GPs using SE,

MA, and RQ kernels, for extrapolating five different patterns, with the same train test split

as for the tread plate pattern in Figure 4.4. All patterns are shown in the supplement.

GPatt consistently has the lowest SMSE and MSLL. Note that many of these datasets are

sophisticated patterns, containing intricate details which are not strictly periodic, such as

lighting irregularities, metal impurities, etc. Indeed SSGP has a periodic kernel (unlike the

SMP kernel which is not strictly periodic), and is capable of modelling multiple periodic

components, but does not perform as well as GPatt on these examples.

We end this section with a particularly large example, where we use GPatt-10 to perform

learning and exact inference on the Pores pattern, with 383400 training points, to extrapolate
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Figure 4.7: Recovering sophisticated product kernels. A product of three kernels (shown in
green) was used to generate a movie of 112500 3D training points. From this data, GPatt-20
reconstructs these component kernels (the learned SMP-20 kernel is shown in blue). All
kernels are a function of τ = x− x′. For clarity of presentation, each kernel has been scaled
by k(0).

a large missing region with 96600 test points. The SMSE is 0.077, and the total runtime was

2800 seconds. Images of the successful extrapolation are shown in the supplement.

4.5.7 Recovering Complex 3D Kernels From a Video

With a relatively small number of components, GPatt is able to accurately recover a wide

range of product kernels. To test GPatt’s ability to recover ground truth kernels, we simulate

a 50× 50× 50 movie of data (e.g. two spatial input dimensions, one temporal) using a GP

with kernel k = k1k2k3 (each component kernel in this product operates on a different

input dimension), where k1 = kSE + kSE × kPER, k2 = kMA × kPER + kMA × kPER, and

k3 = (kRQ + kPER)× kPER + kSE. (kPER(τ) = exp[−2 sin2(π τ ω)/ℓ2], τ = x − x′). We use 5

consecutive 50× 50 slices for testing, leaving a large number N = 112500 of training points,

providing much information to learn the true generating kernels. Moreover, GPatt-20 can

reconstruct these complex out of class kernels in under 10 minutes. We compare the learned

SMP-20 kernel with the true generating kernels in Figure 4.7. In the supplement, we show

true and predicted frames from the movie.

4.5.8 Wallpaper and Scene Reconstruction

Although GPatt is a general purpose regression method, it can also be used for inpainting:

image restoration, object removal, etc.
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Figure 4.8: Image inpainting with GPatt. From left to right: A mask is applied to the
original image, GPatt extrapolates the mask region in each of the three (red, blue, green)
image channels, and the results are joined to produce the restored image. Top row: Removing
a stain (train: 15047×3). Bottom row: Removing a rooftop to restore a natural scene (train:
32269× 3). We do not attempt to extrapolate the coast, which is masked during training.

We first consider a wallpaper image stained by a black apple mark, shown in Figure 4.8. To

remove the stain, we apply a mask and then separate the image into its three channels (red,

green, and blue), resulting in 15047 pixels in each channel for training. In each channel we

ran GPatt using SMP-30. We then combined the results from each channel to restore the

image without any stain, which is especially impressive given the subtleties in the pattern

and lighting.

In our next example, we wish to reconstruct a natural scene obscured by a prominent rooftop,

shown in the second row of Figure 4.8. By applying a mask, and following the same procedure

as for the stain, this time with 32269 pixels in each channel for training, GPatt reconstructs

the scene without the rooftop. This reconstruction captures subtle details, such as waves

in the ocean, even though only one image was used for training. In fact this example has

been used with inpainting algorithms which were given access to a repository of thousands

of similar images [63]. The results emphasized that conventional inpainting algorithms and

GPatt have profoundly different objectives, which are sometimes even at cross purposes:

inpainting attempts to make the image look good to a human (e.g., the example in [63]

placed boats in the water), while GPatt is a general purpose regression algorithm, which

simply aims to make accurate predictions at test input locations, from training data alone.
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4.6 Open Extensions to GP-grid

In this section I will describe extensions to the GP-grid algorithm of Sec. 4.3.3. Although

the extensions work well in practice, further work is necessary for understanding when these

extensions will fail. I will present some of our initial directions in the hope that they will be

helpful for future research.

4.6.1 Extension to Logdet Approximation for Small Datasets

As discussed in Sec. 4.3.3, the approximation λ̃Mi ≈ M
N
λNi for i = 1, . . . ,M is a particularly

good approximation for largeM (e.g., M > 1000) [153]. However, this approximation might

prove problematic for complex kernels with short length scales. In these cases it might

be necessary to extend the approximation in order to achieve a tighter bound. In this

section we will show an extension to the case where the number of data points M is small

with comparison to the amount of samples needed for fully expressing the Gaussian process

kernel.

Numerical approximation of continues process

Let us start by understanding why the λ̃Mi ≈ M
N
λNi approximation of [153] works. Kernel

matrices are realizations of an underline continues process, where the matrix eigenvalues

and eigenvectors are discretized approximations of the continues process eigenvalues and

eigenfunctions [6].

λiφi(x
′) =

∫

k(x,x′)p(x)φ(x)dx ≃ 1

N

N∑

i=1

k(xl,x
′)φi(xl) (4.23)

where the xl’s are sampled from p(x). Plugging in x′ = xl for l = 1, . . . , N we obtain the

matrix eigenproblem

Kui = λmat
i ui (4.24)

with φi(xj) ∼
√
N(ui)j , and

λi ≈
1

N
λmat
i =

1

N
λNi (4.25)
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[Rasmussen 2006], where we use the convention λNi for the eigenvalue of λmat
i of a matrix

of size N × N . In [6], the author showed that approximation λNi improves as N increases,

and converge to λi as N → ∞. Since this approximation is true for every N , for a dif-

ferent discretization of size M we have 1
M
λMi ≈ λi ≈ 1

N
λNi , hence we can use N

M
λMi as an

approximation for λNi .

This approximation is the basis for the Nyström method [6,153] , where a large p.s.d. matrix

N (size N ×N) is approximated by a low-rank p.s.d. matrix M (size M ×M) using the top

ρ eigenvectors and eigenvalues. The Nyström equations are given by:

λNi
def
=

N

M
λMi , i = 1 . . . , ρ (4.26)

uN
i

def
=

√

M

N

1

λMi
KN,MuM

i , i = 1 . . . , ρ (4.27)

However, for this approximation to work well we need that ρ ≤ M ≤ N , meaning that the

low-rank matrix must have more samples then the underline rank of the continuous process.

For the case of ρ ≥M , the approximation of Eq. 4.26 can be highly inaccurate.

Improving the Logdet Approximation

To improve the logdet approximation for the case of ρ ≥M , we will use another equality for

stationary kernels.

For a stationary kenrel k(·), we have:

tr(KN) = Nk(0) =

N∑

i=1

λNi , (4.28)

for any N. In particular then:

k(0) =
1

N

N∑

i=1

λNi =
1

M

M∑

i=1

λMi . (4.29)
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Let us deal with the first sum, where we will multiply and divide by a sum over the first M

eigenvalues of the KN matrix:

k(0) =
1

N

(
1
M

∑M
i=1 λ

N
i

1
M

∑M
i=1 λ

N
i

)
N∑

i=1

λNi , (4.30)

which, but rearranging terms, we get:

k(0) =
1

M

(
M

N

)

︸ ︷︷ ︸

R

1
(∑M

i=1 λ
N
i∑N

i=1 λ
N
i

)

︸ ︷︷ ︸

φ−1

N∑

i=1

λNi , (4.31)

Returning to Equation (4.32), we then get:

k(0) =
1

M

M∑

i=1

R

φ
λNi =

1

M

M∑

i=1

λMi →
M∑

i=1

R

φ
λNi =

M∑

i=1

λMi , (4.32)

So far all of the equations were exact, however, it is difficult to extend the results to the

log determinant calculation since here we need to calculate
∑M

i=1 log(λ
M
i ). Although it is

possible to show, using the Jensen’s inequality, that both
∑M

i=1 log
(

R
φ
λNi

)

and
∑M

i=1 log |λMi |
are lower bounds ofM log(k(0)), it is still difficult to bound the error between the two terms.

However, using R
φ
λNi as an improve approximation for λMi , for i = 1, . . . ,M , works well in

practice. Notice that in cases where ρ ≤ M ≤ N , φ → 1, which will result back in the

previous approximation of λ̃Mi ≈ M
N
λNi for i = 1, . . . ,M [153].

4.6.2 Extension to Additive Multidimensional Kernels

In this section we will extend GP-grid to efficiently handle the general case of

KM = KM1 +KM2 + . . .+KMZ +D+ σ2I (4.33)

where KM is composed of Z [M × M ] multiplicative matrices KMz, a positive diagonal

matrix D representing known heteroscedastic noise, and an unknown global homogeneous

noise.
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Inference

To compute (KM)−1 y we will again use the PCG calculations in Eq. (4.14). The PCG

iterations will now be of the form:

KMv =

Z∑

z=1

EzKNzE
⊤
z v +

(
D+ σ2I

)
v. (4.34)

Hence, the complexity of will only change by a factor of Z, resulting in O(JZPN P+1
P ) total

operations (where the number of iterations J ≪ N) to compute (KM)−1 y, which allows for

exact inference.

Learning

We showed that for Z = 1 we could use an upperbound to approximate the logdet term

(Eq. (4.16)).

Next, we will handle the cases where Z > 1, given by

log |KM | = log |KM1 +KM2 + . . .+KMZ +D + σ2I|. (4.35)

We can not use the upperbound calculations as before on this equation since it does not

generalize to multiple hermitian matrices case. However, we can still construct a tight

lowerbound and use that as an approximation. As in Sec. 4.3.3, we again use the results

of [41] showing that for n×n hermitian positive semidefinite matrices A, B with eiganvalues

α1 ≤ α2 ≤ . . . ≤ αn and β1 ≤ β2 ≤ . . . ≤ βn, respectively,

n∏

i=1

(αi + βi) ≤ |A+B|. (4.36)

These estimates are best possible in terms of the eigenvalues of A and B.
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The lower bound of Eq. 4.36, can be generalized to the case of sum over Z hermitian positive

semidefinite matrices. Using Eq. 4.36, we can bound Eq. 4.35

log |KM | = log |KM1 +KM2 + . . .+KMZ +D+ σ2I| (4.37)

≥ log
M∏

i=1

(

di + σ2 +
Z∑

z=1

λMzi

)

(4.38)

=

M∑

i=1

log

(

di + σ2 +

Z∑

z=1

λMzi

)

(4.39)

≃
M∑

i=1

log

(

di + σ2 +
Z∑

z=1

Rz

ψz
λNzi

)

(4.40)

where di = sort(diag(D))i. The right side is an approximation to the lowerbound on the

complexity of the general kernel matrix.

Solving Eq. 4.37 can be done efficiently in close to O (N) complexity; however, using a

sum-of-kernels can results in an over-specified model. Since an over-specified model is very

sensitive to noise and initial conditions, in order to gain anything from using the complicated

sum-of-kernels, it is crucial to find ways to constrain the problem. Our empirical experiments

showed that under all tested conditions, the SMP kernel (Sec. 4.4) was flexible enough and

achieved better results than using a sum-of-kernels. However, since the sum-of-kernels is a

more general prior, it might prove important under certain cases, which warrant additional

research in the topic.

4.6.3 Approximations Comparison

We compare the enhanced Nyström logdet approximation that was presented in Sec. 4.6.1

to the true logdet value, and to other approximation methods. For the comparison, we ran

the GP learning stage with a small number of data points (M = 1000), as to allow for

exact calculation of the logdet and the NLML terms. For every iteration of the optimization

routine we calculated the values of the exact logdet, the enhanced Nyström approximation,

the Skilling approximation [165], Hadamard bound, and the Hadamard tight bound [56]. As

can be seen from Fig. 4.9, the enhanced Nyström approximation allows for a tight upper-

bound that fluctuates closely to the real logdet values. This allows the enhanced Nyström
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approximation to be a good scalable replacement of the true logdet term for the optimization

routines.

4.7 Discussion and Conclusion

Gaussian processes are perhaps the most popular nonparametric Bayesian method in machine

learning, but their adoption across other fields - and notably in application domains - has

been limited by their burdensome scaling properties. While important sparsification work

has somewhat addressed this scalability issue, the problem is by no means closed. Here

we focused on structured GP models, making nontrivial advances to existing lattice-input

GP methods in order to extend structured GP techniques into the multidimensional input

domain.

Notably, this GP-grid method opens up an entirely new set of applications for GP, such as

image and video processing, or financial engineering applications such as implied volatility

surfaces. Our future work is pursuing these application domains.

Gaussian processes are often used for smoothing and interpolation on small datasets. How-

ever, we believe that Bayesian nonparametric models are naturally suited to pattern extrap-

olation on large multidimensional datasets, where extra training instances can provide extra

opportunities to learn additional structure in data.

The support and inductive biases of a Gaussian process are naturally encoded in a covariance

kernel. A covariance kernel must always have some structure to reflect these inductive biases;

and that structure can, in principle, be exploited for scalable and exact inference, without the

need for simplifying approximations. Such models could play a role in a new era of machine

learning, where models are expressive and scalable, but also interpretable and manageable,

with simple exact learning and inference procedures.

Understanding how our existing nonparametric models can scale and be used in real data,

and how these models connect to other areas of statistics, will increase the utility of machine

learning algorithms in general. This is perhaps most important with Gaussian processes,

which promise a wide range of useful applications. The code is available at

https://mloss.org/software/view/503/.
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Figure 4.9: Comparison of different approximations for logdet. We present the values of the
different approximations for multiple optimization iterations of the GP Algorithm with a
SMP-30 kernel. We used a small number of data points (M = 1000) as to allow for exact
calculation of the logdet and the NLML terms. As can be seen from the figures, the Skiling
approximation is the tightest around the true logdet; however, its random fluctuations make
it impractical to be used in an optimization routine. The Nyström method (Sec. 4.6.1) is an
upperbound, and show similar fluctuations, to the true logdet. The Hadamard approxima-
tions are very loose (out of the scope of the plots) and show very different trends than the
true logdet.
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Table 4.1: Comparison of standardized MSE interpolation results for images with additive variable Gaussian noise. We
tested each image when taken as a whole (W), object segment (O), and background segment (B).

Sphere Moose Cone Face
Alg O B W O B W O B W O B W

GP-grid(1/2) 0.39 0.40 0.69 1.08 0.35 0.86 0.56 0.39 1.74 1.28 0.88 2.67
GP-grid(5/2) 0.33 0.15 0.73 1.10 0.08 0.91 0.52 0.17 1.24 1.10 0.70 1.98
GP-grid(1/2)
sph

0.40 0.30 0.71 2.98 0.11 1.54 0.84 0.19 3.81 1.30 0.69 3.02

GP-grid(5/2)
sph

0.38 0.23 0.92 4.37 0.08 3.05 3.33 0.19 4.99 1.73 0.64 2.97

Blinear 0.56 0.56 0.68 1.12 0.56 0.97 0.64 0.61 1.63 1.27 1.06 2.60
Bicubic 0.59 0.61 0.83 1.01 0.57 0.91 0.69 0.67 2.05 1.32 1.03 2.69
Bic-sp 0.74 0.76 0.80 1.16 0.76 1.06 0.80 0.82 1.24 1.23 1.12 2.04
NEDI 0.56 0.53 0.74 1.11 0.52 0.97 0.72 0.59 1.97 1.61 1.21 3.86
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Table 4.2: We compare the test performance of GPatt-30 with SSGP (using 100 basis func-
tions), and GPs using squared exponential (SE), Matérn (MA), and rational quadratic (RQ)
kernels, combined with the inference of section 4.5.6, on patterns with a train test split as
in the metal treadplate pattern of Figure 4.4.

GPatt SSGP SE MA RQ

Rubber mat (train = 12675, test = 4225)

SMSE 0.31 0.65 0.97 0.86 0.89
MSLL −0.57 −0.21 0.14 −0.069 0.039

Tread plate (train = 12675, test = 4225)

SMSE 0.45 1.06 0.895 0.881 0.896
MSLL −0.38 0.018 −0.101 −0.1 −0.101

Pores (train = 12675, test = 4225)

SMSE 0.0038 1.04 0.89 0.88 0.88
MSLL −2.8 −0.024 −0.021 −0.024 −0.048

Wood (train = 14259, test = 4941)

SMSE 0.015 0.19 0.64 0.43 0.077
MSLL −1.4 −0.80 1.6 1.6 0.77

Chain mail (train = 14101, test = 4779)

SMSE 0.79 1.1 1.1 0.99 0.97
MSLL −0.052 0.036 1.6 0.26 −0.0025
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Chapter 5

Image Interpolation and Denoising for

Division of Focal Plane Sensors using

Gaussian Processes

5.1 Abstract

Image interpolation and denoising are important techniques in image processing. These

methods are inherent to digital image acquisition as most digital cameras are composed of a

2D grid of heterogeneous imaging sensors. Current polarization imaging employ four differ-

ent pixelated polarization filters, commonly referred to as division of focal plane polarization

sensors. The sensors capture only partial information of the true scene, leading to a loss of

spatial resolution as well as inaccuracy of the captured polarization information. Interpola-

tion is a standard technique to recover the missing information and increase the accuracy of

the captured polarization information.

Here we focus specifically on Gaussian process regression as a way to perform a statistical

image interpolation, where estimates of sensor noise are used to improve the accuracy of the

estimated pixel information. We further exploit the inherent grid structure of this data to

create a fast exact algorithm that operates in O
(
N3/2

)
(vs. the naive O (N3)), thus making

the Gaussian process method computationally tractable for image data. This modeling ad-

vance and the enabling computational advance combine to produce significant improvements

over previously published interpolation methods for polarimeters, which is most pronounced

in cases of low signal-to-noise ratio (SNR). We provide the comprehensive mathematical

model as well as experimental results of the GP interpolation performance for division of

focal plane polarimeter.
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5.2 Introduction

Solid state imaging sensors, namely CMOS and CCD cameras, capture two of the three fun-

damental properties of light: intensity and color. The third property of light, polarization,

has been ignored by traditional sensors primarily due to the fact that our visual system is

blind to polarization. However, in nature, many species are capable of sensing polarization

properties of light in addition to intensity and color. The visual system in these species com-

bines photoreceptors and specialized optics capable of filtering the polarization properties

of the light field. Recent development in nanofabrication and nano-photonics has enabled

the realization of compact and high resolution polarization sensors. These sensors, known

as division of focal plane polarimeters (DoFP), monolithically integrate pixelated metallic

nanowire filters, acting as polarization filters, with an array of imaging elements [57]. One

of the main advantages of division-of-focal-plane sensors is the capability of capturing po-

larization information at every frame. The polarization information captured by this class

of sensors can be used to extract various parameters from an imaged scene, such as mi-

croscopy for tumor margin detection [88], 3-D shape reconstruction from a single image [99],

underwater imaging [128], material classification [74], and cancer diagnosis [3].

The idea of monolithically integrating optical elements with an array of photo sensitive

elements is similar to today’s color sensors, where a Bayer color filter is integrated with an

array of CMOS/CCD pixels. The monolithic integration of optics and imaging elements has

been the chief reason for the proliferation of color cameras and the dawn of proliferation of

polarization imaging and applications. Another important reason for the wide acceptance of

color imaging technologies is the utilization of interpolation algorithms. Since pixelated color

filters are placed on the imaging plane, each sensor only observes partial information (one

color), and thus it is standard practice to interpolate missing components across the sensors.

Cameras using division of focal plane polarization sensors utilize four pixelated polarization

filters, whose transmission axis is offset by 45 degree from each other (see Fig. 5.1). Hence,

each pixel represents only 1/4 of the polarization information, severely lowering the resolution

of the image and the accuracy of the reconstructed polarization information.13 Interpolation

techniques allow to estimate the missing pixel orientations across the imaging array, thereby

13Although the four pixels are spatially next to each other, their instantaneous field of view is different,
resulting in different intensities. The pixels intensities are used to reconstruct the polarization information,
such as Stokes vector, angle and degree of linear polarization.
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improving both the accuracy of polarization information and mitigate the loss of spatial

resolution.

Figure 5.1: Division of focal plane polarization sensors on the imaging plane. Each pixel
captures only 1/4 of the polarization information. Interpolation is needed for recovering the
full camera resolution.

Similar problems were encountered in color imaging sensors, when the Bayer pattern for

pixelated color filters was introduced in the 1970s [11]. In order to recover the loss of spatial

resolution in color sensors and improve the accuracy of the captured color information,

various image interpolation algorithms have been developed in the last 30 years. For DoFP,

the common use is of conventional image interpolation algorithms such as bilinear, bicubic,

and bicubic-spline, which are based on space-invariant non-adaptive linear filters [49,50,123,

147]. More advanced algorithms for color sensors use adaptive algorithms, such as the new

edge-directed interpolation (NEDI) [82], or utilize the multi-frame information, such as [60].

Recently, there has been a growing interest in the use of GP regression for interpolation and

denoising of image data for color sensors [64,87]. GP is a Bayesian nonparametric statistical

method that is a reasonable model for natural image sources [82], and fits well the DoFP

interpolation setting by accounting for heteroscedastic noise and missing data, as we will

discuss next.

Whereas conceptually attractive, exact GP regression suffers from O(N3) runtime for data

size N , making it intractable for image data (N is the number of pixels which is often on the

order of millions for standard cameras). Many authors have studied reductions in complexity

via approximation methods, such as simpler models like kernel convolution [66,161], moving

averages [159], or fixed numbers of basis functions [29]. A significant amount of research has

also gone into sparse approximations, including covariance tapering [48,139], conditional in-

dependence to inducing inputs [119,121], sparse spectrum [79], or a Gaussian Markov random
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field approximation [126]. While promising, these methods can have significant approxima-

tion penalties [27, 119]. A smaller number of works investigate reduction in complexity by

exploiting special structure in the data, which avoids the accuracy/efficiency tradeoff at the

cost of generality. Examples of such problems are: equidistant univariate input data where

the fast Fourier transform can be used (e.g., [30]); additive models with efficient message

passing routines (e.g., [37, 51, 52]); and multiplicative kernels with multidimensional grid

input [52], as we discuss here.

Image data is composed of multiple pixels that lie on a two dimensional grid. However, the

input data might not lie on a complete grid. This can often occur due to missing values (e.g.,

malfunctioning sensors), or when analyzing irregular shaped segment of the image. Further-

more, captured image data often contain heteroscedastic signal-dependent noise [110]. In

fact, the heteroscedastic nature of the data is often overlooked by most of the image inter-

polation techniques in the literature and can significantly reduce the interpolation accuracy

(see Sec. 4.5). The multidimensional grid input data induces exploitable algorithmic struc-

tures, as described in Chapter 4, that can naturally utilize the actual noise statistics of the

data acquisition system. With these advances, it is possible to significantly improve both

the interpolation and denoising performance over current methods.

The main contribution of this chapter is to present an efficient GP inference for improved

interpolation for DoFP polarimeters. The GP statistical inference is able learn the properties

of the data and incorporates an estimation of the sensor noise in order to increase the accuracy

of the polarization information and improve spatial resolution.

5.3 Application to Division of Focal Plane Images

In this section we test GP-grid on real division of focal plane image data, and we demonstrate

improvement in accuracy of polarization (Stokes) parameters compared to commonly-used

methods. For better comparison we used four different scenes, each captured multiple times

using (i) a short shutter speed resulting in low signal-to-noise ratio (SNR) images, and (ii) a

long shutter speed resulting in high SNR images. We acquired hundreds of images for each

scene using a CCD imaging array (Kodak KAI-4022 4MP) and a polarization filter. We used

four polarization filters corresponding to angles: 0, 45, 90, and 135 (see Fig. 5.2).
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Decimation(Downsample)small subset Interpolated Images

Averaged Images

Figure 5.2: The original image on the left is passed through four polarization filters with
different phases. Over a hundred filtered images are captured. A small subset of the filtered
images is used for the interpolation testing and the rest are averaged to approximate the
noiseless filtered images. The filtered images used for testing are downsampled by four (using
different downsampling patterns) and then interpolated back to original size.

To extract the noiseless ground-truth (the basis of our comparisons), we averaged over the

majority of the pictures, holding out a small subset for testing. In order to test the in-

terpolation performance, we interpolated the entire image using only a subset of the image

(downsampled by four). All images are around 40000 pixels, hence, even their down-sampled

version will be impractical for the standard naive GP implementation. The interpolated im-

ages were then compared to their corresponding averaged images for accuracy analysis. The

accuracy criterion we used was the normalized mean square error (NMSE) between the

interpolated images and the average images, defined as:

NMSE(y, ȳ) =
1
N

∑N
i (yi − ȳi)2
var(ȳ)

, (5.1)

where ȳ is the data of averaged image.14 Normalization is used in order to compare between

the results of the low and high SNR images since they have a different intensity range.

14If we consider ȳ to be our signal, the NMSE can be seen as an empirical inverse of the SNR.
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We compare GP-grid with the common interpolation algorithms: bilinear, bicubic, bicubic-

spline (Bic-sp) and NEDI [82]. Although this is by no means an exhaustive comparison,

it does allow for a benchmark for comparison with GP performance. Note that in all the

comparisons we intentionally discarded the border pixels (five pixels width) so they would

be most favorable to non-GP methods as the non-GP methods fail particularly badly at the

edges. Had we included the border pixels, our GP-grid algorithm would perform even better

in comparison to conventional methods.

We explore real data using our improved GP-grid model. Performance of course depends

critically on the noise properties of the system, which in captured images is primarily sen-

sor noise. Other works in the literature consider additional GPs to infer a heteroscedastic

noise model [53, 155], which brings additional computational complexity that is not war-

ranted here. Instead, the simple model of Eq. (4.22) works robustly and simply for this

purpose. We ran GP-grid using a multiplicative Matérn(1
2
) covariance function, and learned

the hyperparameters: lengthscales (l1, l2), signal variance (σ2
f ) [121].

The first set of results presented is for the “Mug” scene (Fig. 5.3). The scene is composed

of a bright mug in front of a bright background. The brightness of the images is important

as a brighter image will produce higher luminance and a higher signal in the camera. The

top row of the figure shows a summary of the results for short shutter speed images and

the bottom row shows the results for long shutter speed images. As can be expected, the

intensity range of the low SNR test image on the top is much lower than the high SNR test

image on the bottom. Also, we can see that the normalized error is significantly higher for

the top row (NMSE = 0.062904) than the bottom row (NMSE = 0.017713). Following the

scheme presented in Fig. 5.2, we used the interpolated and averaged images to compute the

Stokes parameters

S0 = I0 + I90, S1 = I0 − I90, S2 = I45 − I135. (5.2)

In the left side of Fig. 5.3 we show a comparison of the normalized error between the Stokes

parameters calculated using the interpolated images (using different interpolation methods)

and the Stokes parameters calculated from the averaged images. It is clear that GP outper-

formed all the other methods in this scene.
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A similar comparison was done for the three additional scenes: Horse (Fig. 5.4), Toy

(Fig. 5.5), and Tennis ball (Fig. 5.6). Differently than the Mug scene analysis, here we

separated the comparison for the object and the background. The reason for the separation

is because the two segments have very different properties (spatial frequencies) and learning

on the entire image will result in a kernel that will be suboptimal on each region separately.

Close analysis of the results show two important facts. First, the improvement was higher

for low SNR images than high SNR images. This is not surprising as all the interpolation

methods are excepted to perform well when the noise level is low compared to the signal

level. Second, S1 and S2 show higher improvement compared to S0. This is because S0 by

construction is less sensitive to noise (similar to an average operator), while S1 and S2 are

significantly more sensitive. The results of the computed Stokes parameters for the tennis

ball scene in Fig. 5.7 clearly show the failure of the common interpolation algorithms for

low SNR images. Improving the accuracy of S1 and S2 are especially important because

of their nonlinear dependent to the other polarization parameters: angle of polarization

φ = (1/2) tan−1(S2/S1) and the degree of linear polarization ρ =
√

S2
1 + S2

2/S0.
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Figure 5.3: Left column shows the noisy test image before decimation (subsampling) and
interpolation. Middle column illustrates the absolute normalized error for each pixel and
the average NMSE. As can be seen, in the low SNR image the normalized error values are
much higher than in the high SNR image. The Stokes parameters comparison is shown on
the right for the five interpolation methods tested.
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Figure 5.4: Horse Scene. See caption of Fig. 5.3.

5.4 Conclusion

Image analysis is a critical and common machine learning application, but the use of non-

parametric Bayesian algorithms in this domain is infrequent. Our GP-grid algorithm impor-

tantly enables the use of exact GP technologies in this application area by greatly reducing

the computational burden of full-GP. In this paper we showed that GP-grid can be gener-

alized to incorporate incomplete grids and heteroscedastic noise, both of which contribute

to significant improvement in interpolation and denoising of image data. In this work we

did not consider the question of optimal segmentation for the use of GP, which is a research

topic in its own right. Furthermore, other methods such as spline based interpolation could

perhaps be extended to achieve similar improvements when using the camera specific noise

model, but that is beyond the scope of this work. Here we have shown that GP-grid is a

useful and elegant tool to enable these large performance improvements.
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Figure 5.5: Toy Scene. See caption of Fig. 5.3.

Overall, the results show that the GP framework allows for improved results over conventional

interpolation methods. GP allows for statistical interpolation that can naturally incorporate

the camera noise model, and improvement is most evident for low SNR images where having

a good prior can help reduce the effect of the noise.

Another interesting realization that came out of the comparison presented in this paper

is that the Bicubic-spline algorithm performance greatly degrades in the presence of noise.

This result is different than other papers in the literature where the comparison was done

on the averaged images only [49, 50].

GP becomes tractable for image data by using the GP-grid algorithm we introduce here, and

it is a convenient technology to naturally incorporate our two performance-critical advances:

segmentation (incomplete grids) and a known noise model. As the results show, all of these

advances are important in order for GP to be considered a general framework for image data.
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Figure 5.6: Tennis Ball Scene. See caption of Fig. 5.3.

It is common practice in image processing to mix different methods in order to improve the

overall results, e.g., alternate methods close to an edge. Integrating GP-grid together with

other state-of-the-art interpolation methods to achieve further improvement is an interesting

topic for future work.
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Figure 5.7: Results of the Stokes parameters for the different interpolation methods. The
first row shows the Stokes parameters computed using the averaged images which we use as
the underline ground truth. The GP interpolation achieves significantly better polarization
accuracy in the low SNR case. The improvement is most evident for the S1 and S2 parameters
since they are more susceptible to noise.
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Chapter 6

Gaussian Processes for Denoising

fMRI Data

6.1 Abstract

Traditional approaches to denoising fMRI data underutilize the rich information available

in the data. A more powerful approach utilizes spatiotemporal models that exploit tem-

poral and spatial correlations. Fitting a full spatiotemporal model to fMRI data is highly

challenging. Although there is a growing interest in Bayesian nonparametric frameworks for

inference with spatiotemporal models, they are computationally intensive for practical use.

As an alternative, we offer a novel methods based on Gaussian processes regression, which

recent advances have made attractive for denoising fMRI data. Our GP-based framework

learns and adapts to spatial neural activity patterns and applies smoothing based on the

noise levels.

6.2 Introduction

The high spatial resolution of functional Magnetic Resonance Imaging (fMRI) allows study-

ing fine-scale activity patterns in the brain. However, fMRI data is corrupted by complicated

noise from multiple sources, which degrades the sensitivity of statistical tests to differentiate

between different conditions. Commonly, noise is reduced in fMRI by spatially smoothing

the data as part of a preprocessing step. This approach is based on the assumption of an

intrinsic smoothness of neural activations [25, 93]. Under the Matched Filter Theorem, a

spatial smoother, which matches the intrinsic smoothness of the neural data, will optimally
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detect the neural signal that is embedded in white noise [62]. However, it is widely accepted

in neuroscience that smoothing the data carries an inherent tradeoff between sensitivity and

the spatial specificity of statistical tests [15, 43, 75, 160].

Sensitivity and specificity are two commonly used metrics for summarizing statistical classi-

fication tests. In the context of fMRI, the sensitivity of a method is the ability to correctly

detect neural activity across different experimental conditions. The spatial specificity of a

method is the ability to correctly exclude spatial inactive regions. This metric captures

whether the structure of the spatial neural activity detected is an accurate reflection of the

underlying true neural activity structure. Although sensitivity and spatial specificity are

functions of the chosen statistical test, they are implicitly also dependent on two properties

of the data, namely, the amplitudes of the signal and noise components. A stronger signal

allows for clearer separation between conditions, but stronger noise increases the uncertainty

in the measured data and blurs the differences between conditions. In the smoother method

context, the sensitivity/spatial-specificity tradeoff is more properly recast as the tradeoff

between improving the ratio between the amounts of signal to noise in the data (SNR) and

corrupting the signal (fidelity).15

The majority of smoothing methods in the literature utilize a fixed-width Gaussian spatial

smoother. For fixed-width smoothers, there is an inherent tradeoff between sensitivity and

spatial specificity. Under-smoothing allows retaining the fine details of the data but will

not reduce the noise. Under-smoothing results in low SNR and high fidelity, but often leads

to a loss of sensitivity. Over-smoothing the data reduces the noise but also removes the

fine details (high SNR, low fidelity, often results in loss of spatial specificity). Finding the

optimal tradeoff is difficult and often requires setting multiple parameters, causing many

practitioners to either excessively smooth the data or abandon smoothing altogether.

However, the sensitivity and spatial specificity metrics are distinct, and, in theory, a method

could achieve good performance on both metrics. Thus, there is not always a tradeoff

between the two. The tradeoff is especially pronounced in fixed-width smoothers because

they cannot adapt to spatially varying neural activity patterns. For example, some brain

regions may have very smoothly varying neural activity patterns, whereas other regions may

have quickly changing (rugged) neural activity patterns. Fixed-width smoothers also cannot

15In the rest of the paper we will refer to the tradeoff as the sensitivity / spatial-specificity tradeoff for
consistency with previous works.
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adapt to spatially varying noise levels. For example, for voxels with low noise levels, strong

smoothing corrupts the signal far more than it reduces the noise, while weak smoothing is

ineffective for high noise voxels [78].

Here we propose the use of Gaussian process (GP) regression for denoising fMRI data. GP is

a nonparametric Bayesian regression method that has received much attention in the machine

learning literature [121]. Applying GP to fMRI data offers the two main advantages lacking

in fixed-width smoothers. First, it adapts to the spatial structure of the signal across voxels,

learning the smoother structure from the data. Second, it learns and adapts to the noise

level in the data, varying the amount of smoothing applied for each voxel, depending on the

learned voxel’s noise level.

Although conceptually attractive, GP use in the neuroscience community has been limited

by burdensome scaling properties. Naively solving exact GP inference is limited to datasets

with only a few thousands data points. In a standard fMRI experiment the number of data

points (voxels) can easily reach hundreds of thousands, if not millions, making GP infeasible.

Fortunately, recent advances in GP research have allowed significant scaling reduction for

certain structured datasets, where the data lie on a multidimensional grid [51]. The grid

structure is implicit in fMRI data, where the inputs (voxels) are indexed on a 4D grid (3D

space + time). This makes exact GP inference, for the first time, competitive for fMRI

analysis.

The central aim of this paper is to introduce efficient GP-based analysis for denoising fMRI

data. It is not our intention to compare the GP method to the numerous other smoothing

heuristics, but rather show the benefits of GP as an efficient statistical smoothing method.

We will show that our GP-based method allows for several advances: 1) It removes ultra-low

temporal frequency fMRI noise (henceforth called the drift) by learning the drifts’ properties

simultaneously on the entire brain. 2) It jointly learns the localized spatial and temporal

correlations and the heteroscedastic voxels’ noise. 3) It adaptively varies the smoothing

level of the voxel. 4) It shows significant improvement for real fMRI data over fixed-width

smoothers, while lessening the sensitivity/specificity tradeoff.
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6.3 Statistical Smoothing

FMRI data is smoothed both to improve the voxel signal and to reduce unwanted artifacts

(noise) by combining information from neighboring voxels. However, there are numerous

ways to perform smoothing. A naive way, for example, is to smooth the data by taking

localized averages of neighboring voxels in regions of interest. A more realistic method

than the simple average is to use weighted averages, where the weight given to neighboring

voxels (representing similarity between voxels) decreases with distance. When we model this

weight-distance function as a Gaussian, we are performing the common preprocessing step of

smoothing with a fixed-width Gaussian kernel. The fixed-width Gaussian kernel is typically

set to have a full width at half maximum (FWHM) of around 3-8 mm [109]. Gaussian

smoothing is popular for its simplicity and computational efficiency. However, the main

drawback with fixed-width smoothers is their inability to address the variation of spatial

activation across the brain, leading to a tradeoff between increased sensitivity and spatial

specificity [24, 136, 142, 163].

In the literature, a series of methods have been suggested to address the sensitivity/specificity

tradeoff by using more complex adaptive methods [83,84,86,115,132,150,160]. The common

thread among these methods is adaptively choosing the input of the smoother (informative

neighbors) to improve its accuracy.

Other methods considered a statistical smoother approach, adapting the smoothing level

according to the degree of uncertainty in the data (e.g., due to high noise variance in a

voxel). However, utilizing a noise dependent smoother is challenging since the true voxel

noise is unknown and must be estimated from the data. Since traditionally the smoothing

step is separated from the statistical model, and since the noise estimation is only as good

as the statistical model used, this can cause cyclic problems. For example, a bad model

choice will result in a bad noise estimation that can cause unwarranted smoothing, which

will result in an even worse model fit. In order to avoid this cycle, a number of Bayesian

spatiotemporal models have been proposed to combine the smoother with the statistical

model. Using Bayesian models has been done almost exclusively by extending the popular

general linearized model (GLM) with the additional smoothness priors on the regression

parameters [20,54,61,109,163]. Although these works presented an important shift from the

traditional concept of smoothing, they proved highly computationally intensive and required
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significant approximations for running on the massive data of a standard fMRI study. Here,

instead, we propose the use of an alternative statistical smoother method based on GP

regression, one that will not only enables incorporating the idea of adaptive noise-based

smoothing, but also allows for a spatiotemporal model that learns its structure from the

data, and runs in practicable time.

6.4 From GLM to GP

The commonly used generalized linear model (GLM) is a parametric mass univariate statis-

tical model (Eq. (6.1), wherein a finite number of parameters (matrix B) control the contri-

butions of predefined predictors (X) in order to best explain the observed data (Y ) [20]. 16

In parametric methods, such as GLM, the data is explained using a specific family of sta-

tistical models, where the predictors are predefined based on prior knowledge. Parametric

models assume that we have sufficient knowledge of the problem to predefine the form of

the predictors that will explain the data. For example, it is standard practice in GLM to

use a design matrix based on the known experimental design along with predefined hemo-

dynamic response functions (HRF). However, parametric methods critically depend on the

choice of model and the assumptions about the data [78]. For example, common basic GLM

assumptions are that voxels are independent, time points are independent, the error variance

is the same, and the same design matrix based model (and commonly the same the form

of HRF) is appropriate for all the voxels [78]. These unrealistic assumptions might prove

too restrictive to allow useful inference. Attempting to improve flexibility by increasing the

model complexity (e.g., number of predictors) requires fitting multiple parameters (such as

shape, curvature, delay, length, amplitude, etc.) and can quickly become computationally

prohibitive or overfit to the noise [85]. Placing a distribution over parametric functions

(such as in [20, 54, 61, 109]) is challenging since it is difficult to capture properties such as

smoothness and differentiability from priors of parameters of complicated predictors [127].

The limitations of parametric methods suggest that we should explore alternative frame-

works. A prime candidate is the stochastic processes framework, which allows a natural way

to generalize probability distribution to functions [121]. In this family, the Gaussian processes

16Other covariates (H), such as the drift, can be included in the model to allow for a better fit to the data.
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(GPs) are commonly used in the machine learning community for Bayesian nonparametric

regression. GPs are popular for two reasons. First, their ability to learn the model structure

from the data makes the method less susceptible to preconceived (and somewhat arbitrary)

notions and assumptions [78]. Second, they provide a closed form posterior distribution over

functions, which is rarely feasible with other Bayesian models. The form of GLM and GP

models can written as:

GLM : Y (v) = XB(v) +Hu(v) + e(v) (6.1)

GP : y(v, t) = f(v, t) + h(v, t) + e(v) (6.2)

f ∼ GP(0, k(·)),

where the main difference is that GLM is a mass univariate model that uses predefined

predictors, while GP allows for more flexible regression functions. The GLM model only

change as a function of space, while the GP the model depends on both space and time. In

the GLM model the prior knowledge is used to make the predictor matrices X and H , and

perhaps for priors over the parameter matrix B. In GP, prior knowledge is used for choosing

the covariance function k(·) [121].

Nonparametric approaches are typically computationally intensive. Exact GP regression

suffers from O(N3) runtime for data size N , making it intractable for fMRI data, where often

N is on the order of millions of voxels. Recently, advances in GP regression have allowed

overcoming the GP scaling burden in applications that possess a grid data structure [51].

This condition applies very naturally to fMRI data, which lie on a four dimensional grid (3

spatial dimensions + time).17 New extensions, such as the ability to process incomplete grid

data, account for heteroscedastic noise [51], and utilize expressive kernels [157], make GP,

for the first time, an attractive model for fMRI data analysis. In our method section we

will introduce two GP-based components for drift removal and statistical smoothing. These

components can either present an alternative to conventional fMRI data processing methods

or work in conjunction with these methods. We will develop this last point further in the

discussion.

17By considering the runs as another dimension, the data is a 5D structure.
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6.5 Validation of the Proposed Method

6.5.1 Comparison using Simulated Data

We start our analysis by comparing our GP smoother with a traditional fixed-width Gaussian

smoother. The purpose of this comparison is to present the rational behind the improvement

of using GP as an adaptive noise-based smoother. We considered main properties that effect

the results of a smoother, namely smoothness, and noise level of the data. We simulated data

corresponding to 30 neighboring voxels along the x axis. For simplicity, in this comparison

we only consider single dimensional data. We produced two random true plots with different

smoothness properties (shown in blue in Fig. 6.1). For each true data we added two levels

(low and high) of additive noise in order to get the observed data. For the low noise variance

we used 1/20 of the max signal value, and for the high noise we used 1/4 of max signal value.

Figure 2.1 illustrates the four conditions tested. We compared our GP smoother with two

fixed-width Gaussian smoothers of size 3mm and 6mm FWHM. We ran the analysis multiple

times, each time drawing new observed points from the same true data. We used to criterions

as a summarizing statistics. We used the signal to signal plus noise ration (SSNR) as a metric

to show the reduction of noise compared to the signal. The SSNR was calculated by running

the smoother on the signal and noise separately and then use the energies of post-smoother

values to calculate ratio. We used the fidelity metric to measure how much was the signal

corrupted by the smoother. To measure fidelity we used the normalized correlation between

the true data and the data after smoothing. An ideal smoother will significantly reduce

the noise without corrupting the signal. Thus, an ideal smoother will have both SSNR and

fidelity reaching 1. We show the results of the three smoothers and compare it also to using

the unsmoothed data (Raw). It is clear to see from Fig. 6.1 that all the smoothers improve

the SNR, however the fixed-width smoothers typically pay for it by corrupting the signal.

On the other hand, GP is able to achieve both high SNR and high fidelity. GP superior

performance can best be seen in for the rugged data, where GP is able to adapt based on

the noise level. For low noise, GP performs no smoothing, achieving similar results as the

Raw. For high noise, GP adapt a structure that is closer to the 3mm fixed-width Gaussian

smoother.
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6.5.2 Results of Real fMRI Data

Here we analyze real fMRI data of six healthy adults with normal or corrected-to-normal

visual acuity (mean age 27 years, range 26-31, 1 female), with no past history of psychiatric

or neurological disease. All subjects had extensive experience in psychophysical and fMRI

experiments and were paid for their participation. We mapped responses to polar angle (mea-

sured from the contralateral horizontal meridian around the center of gaze) and eccentricity

(distance from the center-of-gaze) using standard phase-encoded retinotopic stimuli [130].

The stimuli were presented using a wide-field display [112] and consisted of high contrast

light/dark colored checks flickering in counterphase at 8 Hz in either a wedge or a ring con-

figuration (polar angle and eccentricity mapping, respectively) extending up to 100 degrees

of visual angle (see SI). The eccentricity ring expanded linearly with a uniform velocity 1

degrees/s. The average luminance of the stimuli was 105 cd/m2. The duration of one com-

plete polar angle or eccentricity cycle was 64 s; 8 cycles were presented during each fMRI

run. During retinotopic mapping, subjects were required to maintain fixation on a central

cross.

Drift analysis

The most significant component in the fMRI signal variation is the long-range (low-frequency)

drift caused by instabilities in the electromagnetic field. Removal of drift noise is crucial for

any statistical inference method. However, accurate modeling of the drift is challenging due

to its complex nonlinearities and heterogeneity. Parametric methods, such as GLM, are very

susceptible to biases due to model selection, such as the number and type of basis functions

to use. As a nonparametric Bayesian regression framework, GP allows for great flexibility

in modeling the drift by learning the model structure from the fMRI data and fitting it to

each individual voxel’s data. Fig. 6.2a illustrates the GP learned drifts (after mean removal)

from nine neighboring voxels. In Fig. 6.2b we illustrate the spectral contents of a single

voxel’s raw data, learned drift, and the data after drift removal. As can be seen, GP was

able to accurately model the ultra-low frequencies, which correspond to the drift, while still

preserving important components of the signal (e.g., the 1/64 Hz). Moreover, the spectrum

of the raw data shows no clear separation between the drift noise components and the signal
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frequency band, making it difficult to model as a simple temporal filter, such as a Butter-

worth high pass filter. The GP learned drift has spectral components going well into the

signal frequency band. The drift standard deviation maps are shown in Fig. 6.2c. From the

STD maps we can see that the drifts energy are heterogeneous across the brain and across

different runs. The spectral contents of the learned drift for a single voxel in four different

runs are shown in Fig. 6.2d. As can be seen, for each run GP adapted the drift spectral

properties according to the data.

GP Statistical Smoothing

Following drift removal, GP is used again to learn the structure of the signal and the noise

level of each voxel, for the entire block. As opposed to parametric models that attempt

to summarize the signal with a small number of basis functions, the GP framework learns

the correlation functions for each of the data dimensions. The learned correlations, seen in

Fig. 6.3a, support three interesting observations. First, the learned spatial correlations (x,

y, z) have FWHM 5-9mm in all the blocks. This range fits well with previous assumptions

that the fMRI point-spread functions are consistent throughout the brain and are expected

to be around 4-12mm [78]. Second, by using the expressive SMP kernel, it was possible to

discern meaningful correlation functions that vary throughout the brain and to show that the

expected regions respond to the stimuli. Finally, almost no information was shared between

different runs, showing that local averaging within the same run is the most informative.

The lack of sharing might be explained by the changing conditions between consecutive runs

(tiredness, experimental learning).

The learned noise for each voxel is shown in Fig. 6.3b for a subset of voxels. The initial

noise variance of each voxel was set, using a univariate empirical estimate, by calculating the

variance of the residuals after removing the task. As can be seen from Fig. 6.3b, the learned

noise is frequently lower than the empirical estimate. This finding is not surprising since the

univariate model cannot model spatial dependencies, causing an increase in estimated error

due to poor modeling. The bottom of Fig. 6.3 illustrates the corresponding time courses of

voxels from Fig. 6.3b, pre- and post-GP. Each voxel’s plot shows the across-trial statistics of

four runs. The trial means of each run (8 trials per run) are illustrated in red, green, blue,

and cyan traces, and the mean for all trials is shown in bold blue. The gray envelope around
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the mean shows one standard deviation of the across-trials. It can be seen from the pre-

and post-GP time courses that the effect of running GP varied significantly among different

voxels. A closer examination shows that voxels with low signal and a low noise (plots marked

with a blue outline) or voxels with a high signal and a low noise (yellow outline), were not

changed much by the GP smoothing. Thus the smoothing did not corrupt voxels with low

noise. On the other hand, voxels with high noise (red outline) were significantly smoothed

to improve their SNR.

Searchlight Results

Next, we tested whether GP processing improves the results of standard neuroscience mul-

tivariate analysis. The first analysis we considered was the searchlight method [73] with

a linear discriminant analysis (LDA) classifier, for checking the ability of voxels to differ-

entiate between two polar angles (shown at the bottom of Fig. 6.4a). We compared the

results using the original data pre-GP (after removing the drift), the data after GP process-

ing, and the original data using a standard Gaussian convolution kernel with 3mm FWHM.

Fig. 6.4a illustrates the classification accuracies for four slices. Comparing the results of the

searchlight on the original data to the results using GP processing shows that the shape of

significant regions did not change, while there was a clear improvement in accuracy in the

GP processed data. As a further comparison, data that was smoothed using a 3mm FWHM

Gaussian shows a loss in the separation between the regions. This loss in distinction between

the regions is a clear example of the loss in spatial specificity that is a known drawback of

standard smoothing methods.

For a more detailed comparison of individual regions, we compared the accuracy probability

distribution of the voxels in each region (Fig. 6.4b). This distribution can be understood

as the probability of randomly choosing a voxel from the region with specific classification

accuracy. In the visual areas, where we conducted the comparison, we expected that at least

some areas would accurately differentiate between the two polar angles. For each region, we

plotted the accuracy distribution for the searchlight using the original data (red), and the GP

processed data (blue). Fig. 6.4b shows that the searchlight accuracies of GP processed data

are shifted toward higher accuracy values, meaning that more voxels showed a significant

distinction between the two polar angles.
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Retinotopic Results

Retinotopic mapping are commonly used to define borders of early visual areas in occipital

cortex [130]. In Fig. 6.5, we created retinotopic maps for data before GP smoothing (pre GP)

and after GP smoothing (post GP). The colors in the retinotopic maps give a representation

of the sensitivity of an neural area to a polar angle stimulus. The maps show only areas that

are more significant than a chosen threshold. For all the maps we use the same significance

threshold. Similar to previous results, we see here that the retinotopic maps that used the

GP smoothed data improved the significance in areas that were not significant otherwise.

Furthermore, the spatial information that was presented in the Pro GP case was preserved in

the Post GP maps. We also compared the results averaged over two runs. Averaging multiple

runs the traditional method for improving the quality of retinotipic maps. Comparing the

results of the two runs for the pre GP and post GP we can see that more areas are significant

than for a single run. However, it is clear to see that by utilizing GP smoothed data, certain

areas become significant that were not significant when averaged over unsmoothed data.

6.6 Discussion

We propose statistical-smoothing-based Gaussian process regression, an alternative to the

classical fixed-width Gaussian filter and the statistical-smoothing-based GLM approaches.

The core idea is to learn the smoother structure from the fMRI data, and alternate its

smoothing intensity per each voxel, depending on the amount of noise present. Our results

show that spatial areas with high noise levels were not corrupted, while noisy areas were

significantly improved. The adaptive nature of our GP method along with its powerful and

convenient modeling ability allow us to avoid the sensitivity/specificity tradeoff and gain

insights about activity pattern properties across brain regions.

When can GP statistical smoothing be use?

GP smoothing is a general method that can be applied for any fMRI experiment. In this

context the block designs and event-related designs are mostly needed for better estimation

of the voxel noise levels to be used as an initial guess values for GP. Thus, a standard

experimental design-based GLM can be used as a prior step to GP. This joint method allows
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utilizing the knowledge of the experimental design without overly constraining the model to

that structure.

For improved performance it is important to have a good initial estimation of the voxel

noise. The commonly used GLM method constraints provide a good restriction bias for

robust initial estimation of the voxel noise. A combination of the constrained but robust

GLM as a starting point for the flexible GP should provide improved denoising results in

fMRI. How to best integrate these methods is an interesting topic problem for future work.

6.7 Methodological Details

Our method is a two-stage procedure (see Fig. 6.6). Initially, we applied GP to model

the drift. The input for the method was the raw fMRI data after motion and movement

correction only. For each run, the drift temporal properties were learned simultaneously on

the entire brain. Next, we ordered the multiple runs in a single 5D data structure, where

the fifth dimension indexed the runs. We applied GP a second time, jointly learning the

correlation functions over all dimensions (spatial, temporal, and runs). We used two common

simplifying assumptions in the prior distribution: stationarity (correlations are unaffected

by shifts in space or time) and separability (a multiplicative kernel separates correlations

in each dimension). These assumptions help with computational tractability by limiting

the number of hyperparameters in the model, and they provide a restriction bias that can

help with learning [158]. Since we assume that the neural activity is only locally stationary

but varies between spatial areas, the correlation functions were learned separately on 189

spatially overlapping parcellated blocks of data. Running the analysis over blocks allowed

for both an efficient parallelism of the method and for variation in the correlation functions

across the brain, while still holding the assumption of local stationarity within each block.

Note that under GP there are no artifacts near the borders of each block, which commonly

appear with other filtering methods.

To model the spatial correlations, we used the squared exponential correlation function

[121] which relates to the commonly used FWHM Gaussian convolution kernel. To model

the temporal correlation, we used the spectral mixture product (SMP) kernel [157]. The

expressivity of the SMP kernel allows it to discover complex temporal correlations, which
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can depend on the experiment design and vary across the brain. To model the correlation

between different runs, we again used a simple squared exponential kernel.

Next, GP uses the data in each block to learn the hyperparameters of the correlation func-

tions and to estimate the voxels’ noise variance. The learned correlations and the voxels’

noises were used in the adaptive smoother for denoising the block fMRI data. In the final

step, all the denoised blocks were joined together, averaging overlapping areas.

Fourier analysis retinotopic data were analyzed using UCSD/UCL FreeSurfer [31, 42] based

on standard procedures described in detail in many previous publications (e.g., [58,112–114,

130, 143]. The first (pre-magnetization steady-state) four volumes were discarded. Motion

correction and cross-scan alignment were performed using the AFNI (Analysis of Functional

NeuroImages) 3dvolreg (3T data). Phase-encoded retinotopic data were analyzed by voxel-

wise Fourier transforming the fMRI time series (after removing constant and linear terms).

This Fourier analysis generated real and imaginary components (equivalently, amplitude and

phase) at each frequency. To estimate the significance of the BOLD signal modulation at

the stimulus frequency (eight cycles per scan), the squared Fourier amplitude was divided by

the summed mean squared amplitude (power) at all other frequencies, which included noise.

The ratio of two chi-squared variates follows the F-distribution [76], with degrees of freedom

equal to the number of time points from which statistical significance can be calculated.

The second harmonic of the stimulus frequency and very low frequencies (1 and 2 cycles per

scan, residual motion artifacts) were ignored. The response phase at the stimulus frequency

was used to map retinotopic coordinates (polar angle or eccentricity). In these maps, hue

represents phase, and saturation represents a sigmoid function of the response amplitude.

The sigmoid function was arranged so that visibly saturated colors begin to emerge from the

gray background at a threshold of p < 10−2. The computed significance at the most acti-

vated cortical surface loci ranged from p < 10−5 to 10−10. Since this analysis does not take

into account fMRI time series autocorrelation [164], these p-values are properly regarded

as descriptive. Boundaries of retinotopic cortical areas were defined on the cortical surface

for each individual on the basis of phase-encoded wide field retinotopy [33, 34, 38, 39, 130]

and subsequent calculation of the visual field sign. This latter provides an objective means

of drawing borders between areas based on the angle between the gradients (directions of
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fastest rate of change) in the polar angle and eccentricity with respect to the cortical sur-

face [130,131]. Each field sign map used here was based on at least four scans (two scans for

polar angle and two scans for eccentricity).

Time course analysis For each individual, the AFNI-preprocessed data were coregistered

across sessions and then registered (12-parameter affine transform) to Talairach space using

an atlas-representative template conforming to the SN method of Lancaster et al. (1995).

After composition of transforms, the functional data were resampled in one step to 3 mm

isotropic voxels. Polar angle modulations were extracted independently for each time point

(32 frames per cycle) using a general linear model (GLM) [44, 105]. The GLM included

nuisance regressors representing baseline, linear trend, and low frequency components (¡

0.009 Hz).

6.8 Conclusions

The advances of using GP are threefold. First, it extends the previous ad-hoc fixed-width

Gaussian filter methodology to a more rigorous framework where the optimal filter learns

the structure of the smoother from the data. Second, it allows jointly processing space and

time, thereby better utilizing spatiotemporal dependence. Third, different from previous

methods, where the filter was homogenously applied to all the voxels in the region, GP

learns and varies the amount of smoothing for each voxel, depending on the amount of noise

present in the voxel. We illustrated the power of these advances using real data, showing

improvements over previous state-of-the-art methods. The significant improvement in the

signal to noise ratio was accompanied by a significant reduction in trial-to-trial variability.

The GP processed data provided more accurate multivariate analysis and more significant

retinotopic phase maps.

Improving the signal to noise ratio of fMRI data will allow for shorter scanning time, more

comprehensive experimental design, higher resolution, more significant findings, and major

savings in both time and money.
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Figure 6.1: Smoothing comparison of simulated data. The figure shows results for combina-
tions of two conditions - smoothness of the true data (top) and the amount of added white
noise (left). We compared the GP smoothing results to 3mm and 6mm FWHM Gaussian
fixed-width smoothers, and to the not smoothing at all (Raw). For each of the two true
patterns we drew multiple noisy observations. On the right of each of the plots we added
a summary statistics for each smoother. The metrics used are signal to signal plus noise
(SSNR) and fidelity (see text for further details).
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Figure 6.2: This figure illustrates the different behaviors of the fMRI ultra-low temporal
frequency noise (drift). Fig. 6.2a shows the GP learned drifts (after mean removal) from
nine neighboring voxels. Fig. 6.2b illustrates the spectral contents of a single voxel’s raw
data, learned drift, and the data after drift removal. Fig. 6.2 shows the standard deviation
of the drift in each voxel across a slice of brain. Fig. 6.2d shows the spectral components of
the learned drift for the same voxel over four different runs
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Figure 6.3: Results of the GP statistical smoother for real fMRI data. Figure 6.3a shows the
learned correlations for the five dimensions. The figure also show a 2D representation of the
block of neural data that was used in the analysis (The block is actually 3D). Fig. 6.3b shows
the learned noise for each voxels in the block. The background of the each plot corresponds
to the anatomical T1 grayscale from Fig. 6.3a. Fig. 6.3c shows the a per-trial representation
of each voxel. The trial mean is shown in bold blue and the trial-to-trial variance is shown by
the gray envelope. Fig. 6.3d shows for the same data as in Fig. 6.3c after GP smoothing. The
colored outlines represent three types of cases: voxels with high signal low noise (yellow),
voxels with low signal low noise (blue), and voxels with high noise (red).
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Figure 6.4: Comparison of searchlight results for smoothed and unsmoothed data. Fig-
ure 6.4a shows classification accuracy results of four brain slices. The classification problem
was to classify between the two polar angles shown in the bottom left. The top row results
are for unsmoothed data (after drift removal), the middle and bottom rows show results for
GP and 3mm FWHM smoothed data, respectively. Figure 6.4b shows the accuracy distribu-
tions for several early visual areas. The anatomical locations of the visual areas are shown
in the bottom right.
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Figure 6.5: Results of retinotopic analysis. This figure shows the retinotopic maps for the
data before and after GP smoothing, pre GP and post GP, respectively. On the left we show
results for a single run, and on the right we show results for an average of two runs. The
white lines show the borders between the retinotopic visual areas. The same significance
threshold was used for all maps. We show the retinotopic maps both as a flat and inflated
maps.
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Figure 6.6: Methodological sketch of our GP-based statistical smoothing. Top panel shows
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statistical modeling (such as GLM) or used directly for testing (such as with multivariate
analysis). The bottom panel shows in greater details the steps of the GP-processing.
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Chapter 7

Conclusions and Future Work

7.1 Summary and Conclusions

In this dissertation we studied ways to reduce the scaling burden of inference methods for

multidimensional structured data. Often powerful inference methods are limited by their

burdensome scaling properties. By exploiting the useful structure that commonly exists in

engineered systems it was possible to lower the memory and runtime complexity of these

problems without affecting the modeling accuracy of the inference methods. We explored

two types of structured problems: optimization problems with block separable constraints

(Chapters 2-3), and Gaussian Process for multidimensional lattice input (Chapters 4-6). We

showed the use of our methods on a wide range of difficult applications that were often

intractable for inference methods due to their large dataset size.

Optimization problems with block separable constraints (Chapters 2-3): We pro-

posed a distributed optimization framework where each agent solves a simple local optimiza-

tion problem. The different subproblems are dependent but only a small subset of global

information is shared (such as cost per hour scheduling problems), while private information

(such as preferences) is not shared. Coordination between the subproblem was achieved

with a regularization term that penalized the changes in the successive iterations with an

adaptive regularization coefficient. Our numerical simulations showed that our distributed

algorithm converged to similar optimum points such as more complicated joint optimization

algorithms where all the information was shared, at a much lower computational time. We

next used this algorithm for the complicated problem of solving the inverse problem of esti-

mating the local conductivities of a excitable tissue. To solve this problem we first modeled

the excitable tissue using a diffusion-reaction model. We then used a set of spatiotemporal

measurements taken with a high resolution microelectrode array in order to solve the inverse
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problem. Solving the inverse problem proved highly difficult as it is an ill posed problem and

required solving a very high dimensional optimization problem that was very unstable. We

lowered the complexity of the optimization by using a single-step approximation employing a

parallel block-relaxation optimization method. We analyzed the performance of our method

using numerical examples of several electrical conductivity field topologies and noise levels,

and discussed its application to real measurements obtained from a smooth cardiac mouse

tissue slice.

Gaussian Process for multidimensional lattice input (Chapters 4-6): We made

nontrivial advances to extend structured GP techniques for real multidimensional applica-

tions. We extended our GP-grid to deal with incomplete grids, heteroscedastic noise, and

to utilize expressive SMP kernels, while still maintaining close to linear complexity in both

memory and time. These advances allow the use of GP-grid on a wide range of applications.

An application that showed good results was for interpolation and denoising of division of

focal plane cameras. We showed in Chapter 5 that GP-grid is a useful and elegant tool that

enables performance improvements in recovered phase information. The results show that

the GP framework allows for improved results over conventional interpolation methods. GP

allows for statistical interpolation that can naturally incorporate the camera noise model,

and improvement is most evident for low SNR images where having a good prior can help

reduce the effect of the noise.

Finally, we used our GP-grid framework for denoising fMRI data. The advances of using GP

are threefold. First, it extends the previous ad-hoc fixed-width Gaussian filter methodology

to a more adaptive data-driven framework where the smoother structure is learned from

the data. Second, it allows jointly processing the data in both space and time, thereby

better utilizing spatiotemporal dependence. Third, GP varies the amount of smoothing for

each voxel, depending on the amount of learned noise of each voxel. We illustrated the

power of these advances using real data, showing improvements over previous state-of-the-

art methods. The significant improvement in the signal to noise ratio was accompanied by

a significant reduction in trial-to-trial variability. The GP processed data provided more

accurate multivariate analysis and more significant retinotopic phase maps.
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7.2 Future Directions

In this section, we point out several potential future research directions.

Optimization problems with block separable constraints (Chapter 2): The con-

vergence proof necessitates a switch between states of the λ function (Eq. 2.6). The second

state is needed for guaranteeing asymptotic convergence. This requires a difficult choice of

defining the switching iteration (which is often done ad-hoc). We believe that there should

be a λ that will achieve convergence without needing this change. It is also important to

explore other λ functions and understand their effect on the convergence rate. This will

allow a rigorous way for choosing the optimal λ for a given dataset.

Estimating Electrical Conductivity Tensors of Biological Tissues Using Micro-

electrode Arrays (Chapter 3): In the future, it is important to consider optimizing

model parameter fitting from the data by employing more advanced learning schemes and

better utilizing prior biological information. Further, it will be useful to extend the model

to nonhomogeneous reaction dynamics and establish a methodology for fusing conductivity

tensor field information from different post-stimulus experiments.

Scaling Multidimensional Inference for Structured Gaussian Processes (Chapter

4): Our GP-grid method opens up an entirely new set of applications for GP, such as

image and video processing, or financial engineering applications such as implied volatility

surfaces. In the future it will be interesting and explore the benefits of GP inference in

these application domains. Our GPatt methods is a small step in the direction of using GPs

for automatic pattern discovery on large multidimensional datasets, with scalable and exact

inference procedures. We believe that Bayesian nonparametric models are naturally suited

to pattern extrapolation on large multidimensional datasets, where extra training instances

can provide extra opportunities to learn additional structure in data. Such models could

play a role in a new era of machine learning, where models are expressive and scalable,

but also interpretable and manageable, with simple exact learning and inference procedures.

Understanding how our existing nonparametric models can scale and be used in real data,

and how these models connect to other areas of statistics, will increase the utility of machine

learning algorithms in general.
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Image interpolation and denoising for division of focal plane sensors using Gaus-

sian Processes (Chapter 5) GP becomes tractable for image data by using the GP-grid

algorithm, and it is a convenient technology to naturally incorporate our two performance-

critical advances: segmentation (incomplete grids) and a known noise model. As the results

show, all of these advances are important in order for GP to be considered a general frame-

work for image data. It is common practice in image processing to mix different methods

in order to improve the overall results, e.g., alternate methods close to an edge. Integrat-

ing GP-grid together with other state-of-the-art interpolation methods to achieve further

improvement is an interesting topic for future work.

Gaussian Processes for Denoising fMRI Data (Chapter 6): For improved perfor-

mance it is important to have a good initial estimation of the voxel noise. The commonly

used GLM method constrains provide a good restriction bias for robust initial estimation of

the voxel noise. A combination of the constrained but robust GLM as a starting point to

the flexible GP should provide improved denoising results in fMRI. How to best integrate

these methods is again an important problem for future work.
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