
MMAA
Mestrado em Métodos Analíticos Avançados
Master Program in Advanced Analytics

NOVA Information Management School
Instituto Superior de Estatística e Gestão da Informação
Universidade Nova de Lisboa

Towards The
Deep Semantic Learning Machine
Neuroevolution Algorithm
An exploration on the CIFAR-10 problem task

Olivier Jean Marie Hofman

Dissertation submitted in partial fulfillment
of the requirements for the Master’s degree
Data Science and Advanced Analytics

NOVA Information Management School
Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

Towards The Deep Semantic Learning Machine Neuroevolution Algorithm

An exploration on the CIFAR-10 problem task

Olivier Jean Marie Hofman

December 2020

Dissertation submitted in partial fulfillment of the requirements for the Master’s

degree Data Science and Advanced Analytics

Supervisor:

Dr. Ivo Gonçalves, Universidade de Coimbra

Co-Supervisor:

Assoc. Prof. Mauro Castelli, Universidade Nova de Lisboa

Towards the Deep Semantic Learning Machine Neuroevolution Algorithm
An exploration on the CIFAR-10 problem task

Copyright © Olivier Jean Marie Hofman, Information Management School, NOVA Uni-

versity Lisbon.

The Information Management School and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research pur-

poses, as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based on the NOVAthesis template, developed at the Dep. Informática of FCT-NOVA by
João M. Lourenço.

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco

Acknowledgements

I would like to thank everyone who has been involved directly and indirectly in my

academic path so far, and particularly the people who have helped during my thesis.

I would like to thank professor Mauro Castelli and professor Ivo Gonçalves for their

guidance, shared knowledge and the effort they put in this project.

Also, I would like to thank professor Leonardo Vanneschi for his inspiring lectures

on Machine Learning and Evolutionary Algorithm, and Illya Bakurov for his always

entertaining tutorials throughout the Master’s degree.

Much love and appreciation for my parents, for giving me the opportunity to study

in Portugal and always supporting me in what I do and where I go, no matter what

happens.

I would like to thank all my Portuguese friends in Lisbon and elsewhere for teaching

the Portuguese language and showing me their beautiful country!

And, thanks to Lucas, for teaching me a lot about Data Science and life in general, and

for all the heated discussion we had on topics I actually had no clue about;)

Finally, I would like to thank Mother Nature for providing so many amazing waves and

surf sessions at all the beautiful beaches of Portugal throughout my study period!

Obrigado!

vii

Abstract

Selecting the topology and parameters of Convolutional Neural Network (CNN) for

a given supervised machine learning task is a non-trivial problem. The Deep Semantic

Learning Machine (Deep-SLM) deals with this problem by automatically constructing

CNNs without the use of the Backpropagation algorithm. The Deep-SLM is a novel

neuroevolution technique and functions as stochastic semantic hill-climbing algorithm

searching over the space of CNN topologies and parameters. The geometric semantic

properties of the Deep-SLM induce a unimodel error space and eliminate the existence

of local optimal solutions. This makes the Deep-SLM potentially favorable in terms of

search efficiency and effectiveness.

This thesis provides an exploration of a variant of the Deep-SLM algorithm on the

CIFAR-10 problem task, and a validation of its proof of concept. This specific variant

only forms mutation node → mutation node connections in the non-convolutional part

of the constructed CNNs. Furthermore, a comparative study between the Deep-SLM

and the Semantic Learning Machine (SLM) algorithms was conducted. It was observed

that sparse connections can be an effective way to prevent overfitting. Additionally,

it was shown that a single 2D convolution layer initialized with random weights does

not result in well-generalizing features for the Deep-SLM directly, but, in combination

with a 2D max-pooling down sampling layer, effective improvements in performance

and generalization of the Deep-SLM could be achieved. These results constitute to the

hypothesis that convolution and pooling layers can improve performance and general-

ization of the Deep-SLM, unless the components are properly optimized.

Keywords: Supervised Machine Learning; Deep Learning; Convolutional Neural Net-

works; Neuroevolution; Deep Semantic Learning Machine;

ix

Resumo

Selecionar a topologia e os parâmetros da Rede Neural Convolucional (CNN) para

uma tarefa de aprendizado automático supervisionada não é um problema trivial. A

Deep Semantic Learning Machine (Deep-SLM) lida com este problema construindo au-

tomaticamente CNNs sem recorrer ao uso do algoritmo de Retro-propagação. A Deep-

SLM é uma nova técnica de neuroevolução que funciona enquanto um algoritmo de

escalada estocástico semântico na pesquisa de topologias e de parâmetros CNN. As

propriedades geométrico-semânticas da Deep-SLM induzem um unimodel error space

que elimina a existência de soluções ótimas locais, favorecendo, potencialmente, a Deep-

SLM em termos de eficiência e eficácia.

Esta tese providencia uma exploração de uma variante do algoritmo da Deep-SLM

no problemo de CIFAR-10, assim como uma validação do seu conceito de prova. Esta

variante específica apenas forma conexões nó de mutação→ nó de mutação na parte non

convolucional da CNN construída. Mais ainda, foi conduzido um estudo comparativo

entre a Deep-SLM e o algoritmo da Semantic Learning Machine (SLM). Tendo sido ob-

servado que as conexões esparsas poderão tratar-se de uma forma eficiente de prevenir

o overfitting. Adicionalmente, mostrou-se que uma singular camada de convolução 2D,

iniciada com valores aleatórios, não resulta, directamente, em características generali-

zadas para a Deep-SLM, mas, em combinação com uma camada de 2D max-pooling,

melhorias efectivas na performance e na generalização da Deep-SLM poderão ser concre-

tizadas. Estes resultados constituem, assim, a hipótese de que as camadas de convolução

e pooling poderão melhorar a performance e a generalização da Deep-SLM, a não ser

que os componentes sejam adequadamente otimizados.

Palavras-chave: Aprendizado Automático Supervisionada, Aprendizado Profundo, Rede

Neural Convolucional, Neuroevolução, Deep Semantic Learning Machine

xi

xii

Contents

List of Figures xv

List of Tables xvii

Acronyms xix

1 Introduction 1

2 Theory & Background 3

2.1 Supervised Machine Learning . 3

2.1.1 Supervised Learning Theory . 4

2.1.2 Overfitting, Underfitting & Generalization Ability 6

2.1.3 Optimization In The Context Of Supervised Learning 7

2.2 Artificial Neural Networks . 8

2.2.1 Single Layer Perceptron Networks 9

2.2.2 Multilayer Perceptron Networks 10

2.2.3 The Backpropagation Algorithm 12

2.2.4 Convolutional Neural Networks 15

2.3 Evolutionary Algorithms . 19

2.3.1 Geometric Semantic Genetic Programming 21

2.3.2 Neuroevolution . 24

2.3.3 Semantic Learning Machine . 27

2.4 Deep Semantic Learning Machine . 30

2.4.1 Geometric Semantic Mutation For CNNs 30

2.4.2 The Deep-SLM algorithm . 32

2.4.3 Adaptive Learning Step . 34

2.4.4 Code Implementation . 36

3 Experimental Methodology 37

xiii

CONTENTS

3.1 Data sets . 37

3.2 Metrics . 39

3.3 Experimental Framework . 40

4 Results & Discussion 43

4.1 Defining the baseline SLM performance 43

4.1.1 Results . 44

4.1.2 Discussion . 45

4.2 Improving the baseline SLM performance 45

4.2.1 Results . 45

4.2.2 Discussion . 47

4.3 Exploration of the 2D convolution layer for the Deep-SLM 47

4.3.1 Results . 48

4.3.2 Discussion . 51

4.4 Exploration of 2D max-pooling layer for the Deep-SLM 52

4.4.1 Results . 53

4.4.2 Discussion . 55

5 Conclusion 57

Bibliography 59

xiv

List of Figures

2.1 The Rosenblatt’s Perceptron Network . 10

2.2 Example of a Multilayer Perceptron Network 11

2.3 The four most common activation functions 12

2.4 The LeNet5 Convolutional Neural Network architecture 15

2.5 Example of Convolution and Pooling operations 18

2.6 General procedure of an evolutionary algorithm 20

2.7 Example of two GP syntax trees . 21

2.8 Geometric Semantic Mutation for Feedforward Neural Networks 29

2.9 Geometric Semantic Mutation for Convolutional Neural Networks 32

3.1 Sample illustration of the CIFAR-10 dataset 39

4.1 Baseline SLM performance on the CIFAR-10 problem task 44

4.2 SLM performance with sparseness on the CIFAR-10 problem task 46

4.3 Box plot visualisation of SLM with sparseness on the CIFAR-10 problem task 46

4.4 Deep-SLM performance on the CIFAR-10 problem task 49

4.5 Various convolution layer configurations for the Deep-SLM on the CIFAR-10

problem task . 50

4.6 Various 2D Max-Pooling layer configurations for the Deep-SLM on the CIFAR-

10 problem task . 53

4.7 Box plot visualisation of the Deep-SLM and SLM on the CIFAR-10 problem

task . 54

4.8 Box plot visualisation of the Deep-SLM with various pooling layer configu-

rations on the CIFAR-10 problem task . 54

xv

List of Tables

2.1 Hyperparameters for the Deep-SLM algorithm 34

4.1 Default hyperparameter configuration of the SLM algorithm 44

4.2 Default hyperparameter configuration of the Deep-SLM 49

xvii

Acronyms

AM Adaptive Mutation

ANN Artificial Neural Network

BP Backpropagation

CE Cross-Entropy

CL Convolution Layer

CNN Convolutional Neural Network

CP Convolution Part

Deep-SLM Deep Semantic Learning Machine

EA Evolutionary Algorithm

FCL Fully Connected Layer

GD Gradient Descent

GP Genetic Programming

GSC Geometric Semantic Crossover

GSGP Geometric Semantic Genetic Programming

GSM Geometric Semantic Mutation

ML Machine Learning

MLP Multilayer Perceptron Network

NCP Non-Convolution Part

NE Neuroevolution

xix

ACRONYMS

NN Feedforward Neural Network

OA Optimization Algorithm

OP Optimization Problem

PL Pooling Layer

SLM Semantic Learning Machine

SLP Single Layer Perceptron Network

xx

C
h
a
p
t
e
r

1
Introduction

The 21th century marked itself as the century in which large amount of data ("big

data") and the ability to process big data became available. This phenomenon was driven

by the ever increasing trend in advancements in computational resources, which started

in the early 1970’s and evolved like this over the past decades (Schaller, 1997). These

advancements allowed the successful application of sophisticated Machine Learning

algorithms on big data for the first time in history.

A key role in this digital revolution is played by Artificial Neural Networks (ANNs)

(Rebala et al., 2019). ANNs encompass one of the most popular classes of ML algo-

rithms and have a wide range of industry applications, which include: the detection of

patterns and objects in images (Khan et al., 2018; Anwar et al., 2018), interpretation and

translating natural language (Lopez et al., 2017) and supervising autonomous vehicles

(Bojarski et al., 2016). Thereby, ANNs have shown to provide excellent performance

and efficiency in learning complicated patterns in various difficult problem settings.

ANNs are a sophisticated function approximation method, yet, they consist of sim-

ple structure inspired by the human brain. ANNs form networks of internally connected

nodes ("neurons") and have a set of weights ("synapses") defining the strength of the inter-

nal connections. Similar to a biological neuron, an artificial neuron accepts an input and

produces an output through a set of transformations involving an activation function.

1

CHAPTER 1. INTRODUCTION

A more advanced type of ANN is a Convolutional Neural Network (CNN). CNNs

are characterized by additional Convolution Layers (CLs) and Pooling Layers (PLs)

incorporated into their structure (LeCun et al., 1988). These layers extract spatially
invariant features from the input data through operations called convolution and pooling.

Regular artificial neurons do not consider the spatial information in the input data.

For this reason, CNNs are a powerful method due to their ability to extract spatially

invariant features, which is relevant when solving spatially structured problems (e.g.

input data based on images, videos or any other type of multidimensional data).

To achieve good performance on a certain task, a CNN needs to learn a set of weights

to induce the desired output of the problem at hand. The Backpropagation (BA) algo-

rithm iteratively fine-tunes the weights in the learning phase, by propagating backwards

the network’s error on a provided set of training examples (Rumelhart et al., 1986).

Currently, the approach with the BA algorithm is the state-of-the-art approach, how-

ever, to the question on what network topology to use, the BA algorithm does not

provide an answer, nor, it will always provide a "sufficient"good solution. The training

procedure with the BA algorithm involves usually a tedious and difficult optimization,

and is often the bottleneck in industry applications for ANNs (Sharma et al., 2017).

Neuroevolution (NE) deals with these issues by using Evolutionary Algorithms to de-

rive the topology and weights of an ANN. Recently, a novel NE technique was proposed:

the Semantic Learning Machine (SLM) - a stochastic hill-climbing algorithm search-

ing over the space of ANN typologies (Gonçalves et al., 2015b). The SLM constructs

fully-functioning ANN without the use of the BA algorithm. The SLM has shown to be

efficient in terms of performance and generalization ability against other NE techniques

(Jagusch et al., 2018).

An extension of the SLM algorithm to the search space of CNNs - the Deep Semantic

Learning Machine (Deep-SLM) algorithm - has not been provided yet. Therefore, this

thesis will explore the Deep-SLM algorithm on the CIFAR-10 problem task, and validate

its proof of concept. The geometric semantic properties of the Deep-SLM induce a

unimodal error space and eliminate the existence of local optima. This makes the Deep-

SLM potentially favorable in terms of search efficiency and effectiveness.

To provide an exploration of the Deep-SLM on the CIFAR-10 problem task and val-

idate its proof of concept, this thesis is organized as follows: chapter 2 introduces the

theory and background, chapter 3 outlines the experimental methodology, chapter 4

presents and discusses the experimental results, and chapter 5 derives the conclusion.

2

C
h
a
p
t
e
r

2
Theory & Background

This chapter introduces the theory and background of this thesis, including all con-

cepts required for understanding the research conducted in this work. Section 2.1 starts

by introducing the field of Supervised Machine Learning, building on top of that, sec-

tion 2.2 introduces the concept of Artificial Neural Networks, consecutively, section

2.3 introduces the concept of Evolutionary Algorithms and the Semantic Learning Ma-

chine, and, finally, in section 2.4 the Deep Semantic Learning Machine algorithm will

be defined.

2.1 Supervised Machine Learning

Learning is the act of acquiring new knowledge or modifying existing knowledge

over time, based on previous experiences, events or a set of examples (Holt et al., 2012).

The application of computational algorithms with the objective to induce a general

pattern or relation (a function) from a provided set of examples (instances) is a form

of computational learning. The term "learning"in this context implies that there is no

explicit information provided about the underlying function that has to be learned.

The computational algorithm has to discover this hidden function in an automated

and independent fashion, using only the information provided by the set of instances.

The result is a mathematical model or a set of rules, which not only model the under-

lying relation or pattern, but also allow for accurate predictions or decision on new

given data instances. The algorithm was not explicitly programmed to do so, but it has

3

CHAPTER 2. THEORY & BACKGROUND

"learned"the hidden function and now it successfully applies its acquired intelligence

on never-before-seen data instances. This process of computational learning, with the

objective to acquire computational intelligence, is known as Machine Learning (ML).

ML is either performed in a supervised, unsupervised or semi-supervised fashion. Which

ML strategy is selected, depends on the nature of the provided set of instances, the type

computational algorithm used and the learning strategy selected by the user.

The instances of the provided set of examples can either be labeled (supervised),

unlabeled (unsupervised) or partially labeled (semi-supervised) with their respective

target labels or values.

In a supervised ML setting, the target labels are known beforehand and allow for a

direct and qualitative feedback on the performance of the algorithm, during and after

the learning phase. This is in contrast to an unsupervised ML approach, in which the

absence of true target labels make it difficult, or in most cases impossible, to asses the

quality of the learned patterns or relations directly during and after the learning phase.

A disadvantage of supervised ML is that there might not be a labeled set of instances

available for the given problem at hand, and it might be costly and time consuming to

generate such a dataset.

In this thesis, only the the supervised ML approach will be considered.

2.1.1 Supervised Learning Theory

A supervised learning setting is defined by an input spaceX, an output space Y and a

target function r : X→ Y , which characterizes an unknown joint probability distribution

P = (X, Y).

The objective of the supervised learning algorithm is to learn a model h: X → Y ,

which approximates the target function r with arbitrary close precision. In essence,

the model h models a conditional probability distribution P = (Y |X), which describes a

relation that maps X→ Y .

To learn any model h, the learning algorithm can only consider the available empiri-

cal information. The available emperical information is the labelled set of instances X

of size n, organised as X = {(x(1),y(1)), (x(2),y(2)), . . . (x(n),y(n))}, where x(i) ∈ X, y(i) ∈ Y and

(x(i),y(i)) represent the ith instance in X drawn i.i.d. from the distribution P = (X, Y).

Let the setH hold all valid models mappingX→ Y , which include only models which

can be derived from the empirical information in X. Then, ∀ h ∈ H can be considered

by the learning algorithm. In essence, the learning algorithm "searches over all valid

4

2.1. SUPERVISED MACHINE LEARNING

models"in the model space H with the objective to find the most appropriate one; the

model hbest, which approximates the target function r the closest as possible.

A given supervised learning problem is either a regression or classification task. Both

tasks exist in single and multiple target forms. The targets in a regression task are

continuous real numbers, whilst for a classification task, the targets have a categorical

meaning and can be represented by natural integers.

Let x(i) be the ith feature vector in X of d dimensions, with its corresponding target

vector y(i) of k dimensions. Then, the matrix Xn×d contains all feature vectors of X and,

for a multi-target regression, the matrix Yn×k represents the target matrix containing

all target vectors of X. For a single target regression where k = 1, the target matrix Y is

then the single column vector Yn×1.

Assume a model hi is a solution to the supervised learning task at hand. The model

hi is then characterized by the correctness of its approximation to the target function r.

First, define Ŷi as applying the model hi to the feature matrix X:

Ŷi = hi(X). (2.1)

Then, the loss function L is used to quantify the quality of the approximation of hi to r.

It quantifies the distance between the prediction matrix Ŷi and target matrix Y. Define

loss function L: Ŷ×Y→ R as:

L(Ŷi ,Y) =M(hi(X),Y) (2.2)

where M is some metric function M : Ŷ×Y→ R.

The true risk Rtrue (or more commonly the true error) associated with the given model

hi is the integral of L with respect to the joint distribution P = (X, Y) (Vapnik, 1992).

Define Rtrue, given the model hi and the loss function L, as:

Rtrue(hi) =
∫
L(hi(X),Y) dP (X,Y). (2.3)

Note that the true risk Rtrue in equation 2.3 is equivalent to E[L(hi(X),Y)], the expected

value of the loss function L over ∀ x ∈ X (Vapnik, 1992).

By definition, the target function r is unknown and so is the distribution P (X,Y).

Therefore, it is impossible to solve the integral in equation 2.3 or calculate the true risk

Rtrue for any given hi .

Given a model hi , only the empirical risk Remp over the empirical observations in X

can be calculated. This is done by normalizing the loss L for ∀ x ∈ X by, for example,

5

CHAPTER 2. THEORY & BACKGROUND

taking the average of the loss function L over all empirical observations (Vapnik, 1992).

This can be done as follows for ∀ (x(i),y(i)) ∈ X:

Remp(hi) =
1
n

n∑
i=1

L(hi(xi),yi). (2.4)

In essence, a supervised learning algorithms performs empirical risk minimization by

searching over the model space H for a model hmin that minimizes the empirical risk

function of equation 2.4. Formally, this can be written as:

hmin = argmin
h ∈H

Remp(h), (2.5)

and is in principle an optimization problem, which can be solved by an optimization

algorithm (section 2.1.3).

2.1.2 Overfitting, Underfitting & Generalization Ability

The assumption that minimizing the empirical risk Remp of equation 2.4 results

directly in a minimization of the true risk Rtrue of equation 2.3 is wrong. A model that

minimizes the empirical risk Remp is not guaranteed to minimize the true risk Rtrue.

For example, high capacity models have the capability of simply memorizing the

empirical observations in X. These models will perform extremely well on the mini-

mization of the empirical risk Remp, but will fail to perform well on the objective of

minimizing the true risk Rtrue.

In practise, these models are useless and are said to not generalize well to new data

instances, and this is called overfitting. If the opposite is the case, and the derived model

h is too "simple"and does not grasp the overall trend of the relation within X, the model

is said to be underfitting.

In both cases, there exists a bias-variance difference. This bias-variance issue might

arise when supervised learning is performed. The most common way to counter act

this phenomenon is to divide the empirical observations of X in a training set and a test
set (and in some cases a third validation set) and monitor the loss function L over these

subsets, during and after the learning phase. The loss information over those subsets is

then taken into account when a final model is selected by the computational learning

algorithm or the end user.1

1There exist various techniques to counter act the bias-variance issue. Some of them are algorithm
specific, others are not. For an elaborate discussion on how to prevent overfitting and underfitting, the
reader can refer to Rebala et al., 2019.

6

2.1. SUPERVISED MACHINE LEARNING

2.1.3 Optimization In The Context Of Supervised Learning

Empirical risk minimization, as presented in equation 2.4, is an example of an

Optimization Problem (OP). The objective in equation 2.4 is to find a model hmin out

of many, which minimizes the loss function L of equation 2.2. The loss function L is in

this case the objective function that has to be minimized by the Optimization Algorithm

(OA).

More generally, an OP is defined by a search space S with a corresponding fitness
space f . Formally, The OP tries to minimize (or maximize) the fitness function f . Define

the general definition of a minimization problem as follows:

sglobal = argmin
s ∈ S

f (s). (2.6)

Maximizing the fitness function is the inverse of minimizing the fitness function. A

minimizing problem can be transformed into maximization problem by multiplying

the fitness function simply −1. The search space S is the domain containing all possible

solutions to the OP. The correctness of a solution s is quantified by a fitness function f:
S→ R and scores the quality of ∀ s ∈ S. The OA traverses the search space S through a

neighbourhood function N: scurrent→ snext, with the objective to find the best fit solution

sglobal for the OP at hand.

Any supervised ML problem can be considered an OP with the objective to minimize

the loss function L over a search space S. For the given supervised ML problem the

search space S is then ∀ h ∈H .

A practical example of this is the optimization of the topology, weight values and

bias values of an Feedforward Neural Network (section 2.2). Here, the search space

S consists of all possible structures of the network, as well as for each structure, all

possible combinations for the weight values and bias values. In this example, the search

space S is infinitely big due to the fact that theoretically the network can have an infinite

number of neurons and layers.

Besides that, the corresponding fitness landscape induced by the fitness function f

is usually highly multimodal (Goodfellow et al., 2016). This means there exist multiple

sub optimal solutions to the OP. Also, it can be expensive to evaluate the individual

solutions of the OP, especially when thousands of solutions need to be evaluated by the

OA when the search space S is explored.

How the search space S is explored depends on the nature of the OA used in the

optimization. Some OAs allow only for the optimization of the weight values and bias

7

CHAPTER 2. THEORY & BACKGROUND

values of the network, and not for the structural component. The numerical optimiza-

tion method Gradient Descent (section 2.2.3) is an example of this. This is in contrast

other OAs, such as Neuroevolution of Augmenting Topologies and the Semantic Learn-

ing Machine (section 2.3.3), which have the capability of optimizing the weight values

and bias values of the network at the same time as evolving the topology.

2.2 Artificial Neural Networks

ANNs are graphs of internally connected information processing units, capable of

solving complex computational problems in various domains, including: computer

vision, forecasting and clustering (Khan et al., 2018; Anwar et al., 2018; Lopez et al.,

2017; Bojarski et al., 2016; Goodfellow et al., 2016). ANNs form an independent class

of ML models and are widely applied in the fields of supervised, unsupervised and

reinforcement ML. This section will only cover the relevant theory for this thesis, which

is the ANNs in the form of a Feedforward Neural Network.

A Feedforward Neural Network (NN) is a network of artificial neurons ("neurons")

which are partially inspired by the biological neurons in the human brain. The informa-

tion flow in a NN is unidirectional, from input neurons to output neurons, and there

exist no cyclic connections. The neurons are organised in consecutive layers, with in

between the layers connections ("synapses") connecting two neurons at a time. Every

connection is characterized by a weight value, which defines the strength of that con-

nection. This weight value is not fixed but can be adjusted - it is a parameter of the

network. Accordingly, the variable θ will be used to represent all degrees of freedom

(parameters) of a NN.

By accepting an input and producing an output, a NN, in essence, represents a math-

ematical function. By altering the network’s parameters θ, a NN functions as sophis-

ticated function approximation method. A NN can be interpreted as a model h that

approximates some real function r (section 2.1.1). Each NN is then characterized by

the its unique parameters θ, and the structure in which the parameters θ are organised.

Therefore, each model hi representing a NN will be referred to as hθ.

The application of NNs are characterized by a training phase and a generalization phase.

In the training phase, the NN "learns"how to process the input information correctly.

The network’s parameters are adjusted until it produces the desired output to solve the

8

2.2. ARTIFICIAL NEURAL NETWORKS

supervised ML problem at hand. The alternation of the weights is done by executing

the Backpropagation algorithm (section 2.2.3). Then, after, the "trained"NN is used

to output accurate predictions on new incoming information in in the generalization

phase,.

2.2.1 Single Layer Perceptron Networks

A Single Layer Perceptron Network (SLP) belongs to the family of NNs. It contains

a single layer and it has n output neurons. An SLP containing only a single output

neuron is the most elementary form of a modern NN, and is known as the Rosenblatt’s

Perceptron Model (Rosenblatt, 1958).

The single neuron in the Rosenblatt’s Perceptron Model is connected to all input

neurons and each connection is represented by a weight w. Additionally the single

neuron has a bias connection. The input neurons are special neurons which do not

perform any information processing, they only facilitate the information entering the

network.

The single output neuron processes the incoming information by calculating the

linear combination of its input activations, multiplied with the corresponding weight

values and the bias value. Then, the neuron applies its (non-linear) activation function
and produces an output in the form of a single real value - the neuron’s output activation.

Formally, given n number of input neurons, let the output activation yout of a neuron

be defined as:

yout = fact(
n∑
i=1

wixi + bias) (2.7)

where fact is the activation function of the neuron, xi is the input activation of the ith

input neuron, wi the weight the connection from the ith incoming neuron to the neuron

and bias the bias value of the neuron. A schematic overview a single neuron SLP with

three input neurons is provided in figure 2.1.

The activation function of the output neurons of a NN depend on the supervised ML

task at hand. For a binary classification task, the non-linear Sigmoid function (equation

2.8) is commonly used. The Sigmoid activation transforms the neuron’s activation into

the range [0,1], which allows for a probabilistic interpretation of the network’s binary

predictions. Let the Sigmoid activation function be defined as follows:

fsigmoid =
1

1 + e−(wTx+b)
. (2.8)

9

CHAPTER 2. THEORY & BACKGROUND

For a multi-class classification task, with n separable classes, n output neurons are

required to cover all output probabilities. The Sigmoid activation function is replaced

with the Softmax activation function, which normalizes all n output probabilities of the

n output neurons into a n dimensional vector, which allows for a correct probabilistic

interpretation of the output of the SLP network. Let the Softmax activation function be

defined as follows:

fsoftmax(x) =
exi∑N
j=1 e

xj
. (2.9)

In the case of a regression task, the output activation function of the neurons is

replaced by the Identity function. The Identity function is defined as follows:

fidentity(x) = x (2.10)

Figure 2.1: Schematic overview of Rosenblatt’s Perceptron Network with three input
neurons and single output neuron

2.2.2 Multilayer Perceptron Networks

The Multilayer Perceptron Network (MLP) extends the SLP by having m Fully Con-

nected Layers (FCLs), in which each FCL has n hidden neurons. The neurons in layermi
receive the output activations of the neurons in layer mi−1 and propagate their activa-

tions into the neurons of layer mi+1. This process continues until the output neurons in

the output layer moutput are reached and the MLP’s final output prediction is produced.

10

2.2. ARTIFICIAL NEURAL NETWORKS

Except for having multiple FCLs, the same principles of the SLP (section 2.2.1) apply

the each individual neuron in the MLP. A schematic overview of the structure of a MLP

consisting of three input neurons, two hidden layers a single output neuron, is provided

in figure 2.2.

The MLP design is a deeper and more sophisticated one, which allows for the ap-

proximation of more complex functions. In fact, the Universal Approximation Theorem

of NNs states that, a single hidden layer with a finite number of hidden neurons, is

sufficient to approximate any function with a finite number of discontinuities, under

the constraint that the activation function of the hidden neurons is non-linear (Hartman

et al., 1990). Although this is a remarkable property of MLPs, the Universal Approxi-

mation Theorem does not state anything about the learnability of the parameters θ for

this approximation with arbitrary close precision. In practise, this is commonly a non

trivial task which will be discussed further in section 2.2.3.

Input
Layer

Hidden
Layer N1

Output
Layer

Hidden
Layer N2

X1

X2

X3

Figure 2.2: Schematic overview of an MLP network with three input neurons, two
hidden layer with hidden neurons and single output neuron

Deeper NNs require the use of continuous and differentiable activation functions

inside the neurons of the network. This constraint is the result of the commonly used

Backpropagation Algorithm (section 2.2.3), required for learning the correct weights of

11

CHAPTER 2. THEORY & BACKGROUND

the connections, to solve the supervised ML problem at hand. The four most commonly

used non-linear activation function in deeper NNs are provided in figure 2.3.

An important motivation for the use of non-linear activations functions lies in

the fact that these functions introduce favourable properties into the NN - their non-

linearity. The non-linear nature of these functions introduce non-linear dependencies

into the deeper network, which allow for approximating more sophisticated and non-

linear target functions and decision boundaries by the MLP. Without non-linearity,

deeper networks would effectively be linear combinations of linear combinations, and

thus, incapable of approximating non-linear functions and decision boundaries (Rojas,

2013). 2

Figure 2.3: Four commonly used non-linear activation functions in the Multilayer Per-
ceptron Network; the Sigmoid, the Hyperbolic Tangent, the Rectified Linear Unit and
the Gaussian

2.2.3 The Backpropagation Algorithm

The Backpropagation (BP) algorithm is an iterative algorithm for learning the correct

parameters θ of a NN in the training phase (Rumelhart et al., 1986; LeCun et al., 1988).

In each iteration, all parameters θ are updated once by the BP algorithm, under the

constraint of minimizing the error function E. This achieved by first propagating forward

the network the current activations (propagate_activations_forward in algorithm 1), and

then, propagating backwards the network’s prediction error on a single input activation,

or a batch of input activations (a mini-batch) (propagate_errors_backward in algorithm 1).

The error function E is similar to the loss function presented in equation 2.2. It

also quantifies the difference between the network’s predictions Ŷ and target matrix Y

by some metric M, but, additionally, it depends on the parameters θ of the network.

2There exist other non-linear activation functions and in principle every continuous function can be
used, for more information about NN activation functions, the reader can refer to Rojas, 2013 for more
information

12

2.2. ARTIFICIAL NEURAL NETWORKS

Define the error function as follows:

E(X,θ) =M(hθ(X),Y). (2.11)

Algorithm 1: Pseudo code of the Backpropagation algorithm

Set tcurrent = 0;

Initialize tmax;

Initialize network parameters θ;

while error E , 0 or tcurrent ≤ tmax do

propagate_activations_forward(X, θ);
propagate_error_backwards(activations);

end

Due to the minimization constraint on the error function E, a numerical optimization

method is required in the BP procedure to determine the weight’s update value. In

principle, an OP (section 2.1.3) is being solved in the BP procedure. Although vari-

ous numerical methods are valid for this optimization, the Gradient Descent (GD) has

proven to be the most suited for this specific task (Goodfellow et al., 2016).3

GD uses the gradient of the error function, in combination with a learning rate γ , to

update each individual weight in the network. Let n be the number of weights in the

network, then, the gradient of E, with respect to the weights, is defined as:

∇E = (
∂E
∂w1

,
∂E
∂w2

, . . . ,
∂E
∂wn

). (2.12)

The learning rule for updating a weight wi , given the learning step γ , is then

∆wi = −γ ∂E
∂wi

. (2.13)

.

The backpropagation approach with the underlying GD optimizer is well suited

if the problem at hand is linearly separable. A linear separable problem induces a

unimodal error surface E, with respect to the weights in the network. This guarantees

that the GD optimizer will converge to the global optimal solution, if the the learning

step γ is chosen correctly (Gori et al., 1992).

3For an extensive overview of numerical methods for optimizing NNs, the reader can refer to Goodfel-
low et al., 2016 for more information.

13

CHAPTER 2. THEORY & BACKGROUND

In practise, real-world ML problems are often not linearly separable and induce

a non-convex error surface. In this case, the GD optimizer is not guaranteed to con-

verge to the global optimal solution. The GD optimizer not converging to a "good

enough"solution is a major problem in the application of deep NN (Goodfellow et al.,

2016).

Some strategies can be applied to improve the convergence of GD, which are; im-

proving the initial starting point of the optimization, adjusting the learning rate γ and

introducing stochastic variation in the weight’s update value.

The initial starting point of the optimization is the initial parameters θ. An appro-

priate initialization is known to speed up convergence of the GD (Goodfellow et al.,

2016). Also, having a adjustable learning rate γ will speed up the convergence (Good-

fellow et al., 2016). Introducing stochastic variation into the weight’s update value

has also shown to be effective technique to improve convergence. This has led to the

introduction Stochastic GD, without momentum parameter α and without momentum

(Goodfellow et al., 2016).

Stochastic GD introduces stochastic variation into the weight’s update value by

sampling a mini-batch of the training set of examples, and derives the gradient over

this mini-batch. The momentum parameter α introduces another factor of stochastic

variation to the weight’s update value. It does so by introducing stochastic variation

based on the previous weight’s updated value from iteration t−1. The tweaked equation

for Stochastic GD with momentum parameter is provided in equation 2.14

∆wi = −γ ∂E
∂wi

+α∆t−1wi . (2.14)

Other variants have been introduced for the momentum parameter α. For example,

the Nesterov’s momentum, which reduces the "snowball effect"induced by the stan-

dard momentum parameter in equation 2.14. Additionally, there have been introduced

numerous other algorithms to heuristically derive the Nestrov’s momentum. Famous

examples of these are: AdaGrad, RMSProp, and Adam optimization algorithms.4.

The optimization of the topology and the parameters θ of a NN is in general a non-

trivial task. Distributed computing power, time, domain knowledge and a trial and error

hyper parameter tuning approach is the most "efficient"way of deriving the appropriate

set of parameters for a NN, to solve a given supervised ML problem. This process has

4For an extensive overview of possible techniques to improve the convergence of GD, the reader can
refer to Goodfellow et al., 2016 for more information

14

2.2. ARTIFICIAL NEURAL NETWORKS

always been, and still is, the main bottleneck in the application of NNs, and is essential

in deploying a practical model.

This shows also the importance of gradient-free optimization techniques, such as

Genetic Programming (section ??) and especially the potential of neuro-evolution algo-

rithms (section 2.3.2), which can optimize the structure and the parameters θ of NNs

without relying to on domain knowledge and gradient information of the error function.

2.2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) (LeCun et al., 1989) are a family of more

sophisticated NNs. CNNs extend the standard MLP network architecture with CLs and

PLs. The CLs an PLs compose the Convolution Part (CP) of the CNN, and this part is

located in front of the Non-Convolution Part (NCP) of the CNN, which is composed by

regular FCLs of a MLP network (section 2.2.2).

The CLs and PLs transform the input activations of the CNN through a serial combi-

nations of mathematical operations called convolution and pooling. The result of this are

convolved and down sampled representations of the original input activations, which

are called feature maps. The feature maps are then flattened and fed into the NCP of

the CNN, in which normal classification or regression is performed according to the

principles of the MLP network (section 2.2.2).

In essence, the CP of a CNN performs feature extraction and feature reduction for

the NCP of the CNN. An example of a CNN architecture is provided in figure 2.4. This

network is know as the LeNet5 network and consists of 3 CLs and 2 PLs with a 2 hidden

FCL structure in the NCP’s MLP (LeCun et al., 1998).

Figure 2.4: LeNet5 architecture for digit recognition task designed by LeCun et al.
which consists of 3 CLs and 2 PLs with a 2 hidden FCL structure in the MLP of the
NCP.

15

CHAPTER 2. THEORY & BACKGROUND

CNNs should be applied when the input data holds any type of spatial information,

which could be relevant for the solution of the problem at hand. The spatial structure

within the data can either be a grid-type topology, such as image data (satellite, com-

puterized tomography scans or a sensor data), or any other type of n dimensional data

volume, such as sequence data (video, audio or time-series data).

CNNs manage to take in consideration the spatial information present in the input

data due its CLs and PLs. The serial combination of CLs and PLs in the CP are capable

of extracting spatially invariant features. Here, the term spatially invariant implies that

the position or the rotation of the target feature in the input data is not relevant for

the detection of the feature. If the feature is present "somewhere"in the input data,

the corresponding neuron sensitive for that particular feature in the CP will detect the

feature and be activated. This ability of detecting spatially invariant features in the CP

of the CNNs is what makes CNNs excellent for the exploitation of spatial information

hidden within the input data.

Regular neurons in a FCL of an MLP network do not take in consideration the spatial

information present in the input data. The linear combination within the formula of the

activation of a regular neuron (presented in equation 2.7) shows that any spatial infor-

mation will be lost due to the summation of all the incoming activations. All incoming

activations are treated equally, with respect to the corresponding weights of the con-

nections, but any spatial information is lost. Therefore, the capability of automatically

detecting and extracting spatially invariant features in the CP, in combination with a

fully connected MLP network in the NCP, is what makes CNNs a powerful method

that has shown ground-breaking results on image classification competitions and other

difficult tasks (Rawat et al., 2017).

The CL is the characteristic component of a CNN and is part where the incoming

data is convolved over m dimensions. In principle, the convolution operation is the

application of a m dimensional filter (or kernel) on the incoming data volume. The

output a convolved representation of the input into the kernel.

This process can also be described as an m dimensional filter sliding over the input

data, and performing element wise multiplication and additions of the filter values

with the overlapping input data values (the kernel’s receptive field). In figure 2.5 shows a

practical example of the convolution operation on a 10x10 input data volume, convolved

by three 2D convolution kernels with receptive field dimensions 3x3 and stride values

of 1x1.

Formally, given the incoming data data volume I with m = 2 dimensions, K the

16

2.2. ARTIFICIAL NEURAL NETWORKS

convolution kernel and S the resulting feature map, then, the convolution operation is

defined as:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i −m,j −n). (2.15)

In equation 2.15, note that the dimensions of feature map S will be always smaller than

the dimensions of the input data volume I (if any of the receptive field dimensions of

K > 1).

In the CNN architecture, the CL is commonly followed up by a PL. Similar to the

CL, the PL contains a kernel with dimensions pxp, which is the receptive field. Let the

feature map S be fed into this PL, then, the feature map S can be represented as an

assemblage of local pooling regions of size k as S = (s1, s2, . . . , sP xP) (Zhao et al., 2018).

The resulting individual pooling region values depend on the type of pooling that

is applied on the feature map S. Figure 2.5 shows a practical example of the pooling

operation on a 3x8x8 input data volume, pooled by a 2D pooling kernel with dimension

2x2 and stride values of 2x2.

There exist various types of pooling, but the two commonly used pooling operations

are max pooling and average pooling. Max pooling selects the "most active"element within

its the receptive field of the pooling kernel and will therefore be more sensitive to texture

information (Zhao et al., 2018). Define the max-pooling operation, given the incoming

assemblage of k pooling regions S and pooling kernel dimensions of pxp, as:

Output P oolmax = max
1≤k≤P xP

(sk). (2.16)

Average pooling takes in consideration the complete receptive field and is therefore

more sensitive to the background information (Zhao et al., 2018). Define average pool-

ing operation, given the incoming pooling region S and pooling kernel dimensions of

pxp, as:

Output P ool avg =
pxp∑

1

(sk). (2.17)

A practical example of a serial 2D convolution - 2D pooling operation is provided in

figure 2.5.

CNNs are considered as one of the best success stories of biologically inspired com-

putational techniques (Bengio et al., 2009). The deep CNN architecture mimics the

functioning of the virtual cortex of a primate’s ventral pathway. With its deep hier-

archical structure, it is similar to the functioning of earlier sensor areas of the visual

17

CHAPTER 2. THEORY & BACKGROUND

Figure 2.5: Practical example of a convolution operation on a 10x10 input data volume,
followed up by a 2D pooling operation. First, three individual 2D convolution kernels
with dimensions 3x3 and strides of 1x1 convolve the input volume. Then, the resulting
feature map with dimensions 3x8x8 is pooled by a 2D pooling kernel with dimension
2x2 and strides of 2x2, resulting in the final output feature map with dimensions 3x4x4
(image taken from Zhou et al.).

cortex of the human brain (Bengio et al., 2009). The different levels in the pyramid

architecture corresponds to different levels of abstraction, which enables the network

to learn complex representations at each level abstraction with the BP.

Deeper architectures have shown to be more efficient than shallower architectures

in solving complex non-linear problems (Goodfellow et al., 2016). The accumulation

of linear and non-linear layer transformations enables the network to learn non linear

patterns and representations from the input data, and this allows the network to solve

complex problems. An example of CNN pyramid architecture is the "LeNet5"network,

designed by LeCun et al., 1998 provided in figure 2.4

The commercial application of deep CNNs dates back to 1998, when LeCun et al.’s in-

fluential handwritten digit recognition model called "LeNet-5"was effectively deployed

by NRC, and was responsible for reading over 10 percent of all the financial paychecks

in the United States.

The big boom in commercial and scientific interest happened in the past decade and

was initialized by the success of "AlexNet"in the ImageNet Large Scale Visual Recog-

nition Challenge in 2012 (Krizhevsky et al., 2012). AlexNet won the competition by

achieving an error rate of 15.3 percent on classifying 1.3 million high resolution im-

ages, over a 1000 distinguishable classes, and beat the second place’s error rate by a

18

2.3. EVOLUTIONARY ALGORITHMS

remarkable 10.8 percent.

The research in the field of CNNs accelerated in the years after and resulted in numer-

ous advancements in in the deep CNN architectures, such as the "ResNet"architecture

(He et al., 2016), "Xception"architecture (Chollet, 2017) and the "Inception"architecture

(v4) (Szegedy et al., 2017).

By 2015, the CNN architecture of He et al. surpassed the human error rate of 5.1

percent on the ImageNet classification task, by reaching a groundbreaking error rate of

4.94 percent. This was, again, a significant improvement of 26 percent relative to the

previous year’s winner "GoogLeNet", which had reached an error of 6.66 percent on the

ImageNet classification task (Szegedy et al., 2015).

2.3 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are bio-inspired meta-heuristic search and optimiza-

tion algorithms. EAs mimics biological processes in nature, such as evolution, selection,

mutation and recombination, to solve complex computational problems (Back, 1996).

The study of EAs is part of the broader field of Evolutionary Computation, and

leading sub fields within EAs are Genetic Programming (Koza, 1992), Genetic Algo-

rithms (Holland, 1975), Evolutionary Strategies (Beyer et al., 2002) and Evolutionary

Programming (Fogel et al., 1966). The field of Neuroevolution (section 2.3.2) and Se-

mantic Learning Machine algorithm (section 2.3.3) are part of the field of Evolutionary

Computation as well, and will be discussed in this section.

For n generations, an EA evolves a population of individuals, which represent a pool

of solutions to a given OP. By applying probabilistic artificial selection and artificial
variation operators on its population, it evolves the pool of solutions towards the best

fit solution for the OP at hand (Back, 1996).

Let P be the population of size n, such that P = {i1, i2, . . . , in}, where in represents the

nth individual in P . Each individual i in P represents a solution s for the subject OP at

hand. The artificial selection pressure of the EA will favour the survival of individuals

with a better fit solution, but, the selection is a stochastic process, which enables less

fitted individuals to have a probability of survival onto the next generation.

A fitness function f is used to score the quality of each solution and determines the

probability of survival the individual. Each individual in is characterized by its genotype
sn - the actual representation of the solution, and its phenotype fn - the fitness score of

the solution.

19

CHAPTER 2. THEORY & BACKGROUND

The objective of an EA is to derive an individual that either maximizes or minimizes

the fitness function, after n generations. This is done by evolving an individual in with

the goal to find a particular in for which its solution sn = sglobal . Here, the solution sglobal
maximizes (or minimizes) the fitness function f , and this is in principle an OP. Define

the OP of an EA as follows:

sglobal = argmax
s∈S

f (s). (2.18)

Besides the stochastic selection procedure, there is also stochastic variation intro-

duced into the population P . At each generation, the genetic material of the selected

individuals are recombined and randomly mutated. In this manner, new potential

solutions are created and the search space S is explored.

The general procedure of an EA is as follows: Step 1; initialize a starting population

Pinitial and promote Pinitial to the current population Pcurrent, Step 2: stochastically select

individuals from Pcurrent for the next population Pnew, Step 3: stochastically vary the

genotypes of the individuals in Pnew to create new genetic data and replace Pcurrent with

Pnew (Back, 1996). The above steps are continued until a termination criteria is met or

until N generations have evolved. Figure 2.6 illustrates an schematic overview of the

general evolutionary process of an EA.

Initialize Pinitial Evaluate Pcurent Select Pnew

Variate Pnew
Termination
criteria?

Return best of Pf inal

For N generations, do;

yes

no

Figure 2.6: Schematic overview of the evolution procedure of an EA (Back, 1996).

20

2.3. EVOLUTIONARY ALGORITHMS

2.3.1 Geometric Semantic Genetic Programming

Genetic Programming (GP) (Koza, 1989) is a particular sub-field of EA, in which

the genotype of an individual i in the population P defines a computer program or a

mathematical function. Accordingly, GP allows the automatic generation and evolution

computer code by searching the underlying space of computer programs.

The genetic computer code of a GP can be represented as sequential code instruction

(Brameier et al., 2007) or as graphs (Miller et al., 2008), but the most common approach

is the syntax tree based GP(Koza, 1992)

The syntax tree based GP is constructed from a primitive set of mathematical operators

and variables. The primitive set encompass the fundamental building blocks for the

genetic computer code in GP. The primitive includes a set of terminals - the terminating

nodes ("leaves") of syntax tree, and a set of functions - the internal nodes of the syntax

tree. The function set determines how the sub trees ("branches") of the syntax GP trees

will be combined mathematically. Figure 2.7 provides two examples of syntax GP trees

constructed from the terminal set [a,b,c,x] and the function set [+,∗].

Figure 2.7: Example of two GP syntax trees constructed from the terminal set [a,b,c,x]
and the function set [+,∗] representing the computer program a ∗ (x ∗x) + ((x ∗b) + c) (left)
and c ∗ x+ (x ∗ x) ∗ x (right). (Image taken from Kaufmann, 2013)

Stochastic variation is introduced into the population P by recombination of two

individuals ("the mating’ process") or by mutating a single individual ("a mutation").

Both operations have an independent probability Pmut and Pcrossr of taking place, at each

21

CHAPTER 2. THEORY & BACKGROUND

generation. These probabilities are also referred to as the mutation rates and crossover
rates.5

The semantics of a GP program is the behaviour of the program on the problem it is

meant to solve (Moraglio et al., 2012). In a supervised ML setting, the semantics of a GP

individual translates to the prediction vector Ŷ that the program generates (Moraglio et

al., 2015). Accordingly, each GP individual can be interpreted as a point in the semantic

space S by its semantic vector Ŷ. Note that the target vector Y also exists in the same

semantic space S.

The distance from any GP individual i to the target vector can be calculated, which

results in an error vector Ei existing in some error space E (Moraglio et al., 2012). Note

that, in the origin of the error space E exists an individual Eorigin for which its semantics

Ŷ = Y, which is the global optimal solution for the given supervised ML problem.

The GP variation operators operate directly on the syntactic trees of the GP individ-

uals and naively searches the the underlying functional space of computer programs.

The GP operators do not take in consideration their effects in semantic space S and

the error space E. A relative small change in the functional space of a GP can have a

significant change in the semantic space, and vice-versa. In other words: the resulting

offsprings do not have to be related to their parents, in either the underlying functional

or semantic space.

This is an inconvenient characteristic of standard GP and results in a rugged geno-

type→ phenotype mapping, which can make the search of GP inefficient and limit the

possibility of reaching the global optimal solution (Vanneschi, 2017; Moraglio et al.,

2012).

To tackle this particular issue, variation operators for standard GP have been de-

signed to include "semantic awareness"into the variation process.6 Also, operators which

produce offsprings more similar to their parents, in both semantic and functional space,

have been designed. And finally, this quest has led to the introduction of Geometric

Semantic Genetic Programming (GSGP) by Moraglio et al. in 2012.

GSGP is a novel form of GP in which the stochastic variation operators hold specific

geometric properties in the semantic space (Moraglio, 2007). The geometric variation

5There exist various different strategies on how to perform recombination and mutation and they can
have an influence on the performance of GP, the reader can refer to Koza et al., 2008 for more information.

6For a detailed literature review on geometric semantic techniques in GP, the reader can refer to
Vanneschi et al., 2014 and Vanneschi, 2017 for more information.

22

2.3. EVOLUTIONARY ALGORITHMS

operators for GSGP induce their geometric properties onto the semantic space S, if the

following two conditions are satisfied:

Condition 1. The problem at hand is a supervised ML problem, where the target seman-

tics satisfy Y ∈ Rn

Condition 2. The error of individual i in population P is calculated with some distance

metric M between the program’s semantics Ŷ and the target semantics Y (Moraglio,

2007).

By satisfying these two conditions, the Geometric Semantic Crossover (GSC) op-

erator returns an offspring with a better fitness than at least one of its parents. The

Geometric Semantic Mutation (GSM) operator returns an offspring with a small pertur-

bation in the semantics of its parent. The distance of this perturbation is controlled

with the mutation step (ms) parameter of the GSM operator. The formal definitions of

GSC and GSM are as follows:

Definition 1. Geometric Semantic Crossover: Given two parent functions T1 and T2 :

Rn→ R, the geometric semantic crossover returns the real function TXO = T1 · TR + (1−
TR) · T2, where TR is a random real function whose output values falls in the interval [0,

1].

Definition 2. Geometric Semantic Mutation: Given a parent functions T : Rn→ R, the

geometric semantic mutation with mutation step ms returns the real function returns

the real function TM = T +ms · (TR1 − TR2), where TR1 and TR2 are random real function.

The GSM operator outputs a mutated syntactic GP tree by linearly combining two

independent syntactic GP trees. In definition 2, the resulting mutated tree TM is a

linear combination of the parent tree T with two random trees TR1 and TR2. The linear

combination is done by weighing the random trees TR1 and TR2 by some factor, which

is the mutation step ms.

The important aspect of the geometric semantic mutation operators is that the com-

bined trees are independent. Independent implies that the semantics of one tree does

not effected the semantics of the other trees. If this constraint is fulfilled, the semantics

of the mutated tree TM can simply be derived by linearly combining the semantics of

the parent tree T and the two random trees TR1 and TR2, taking into consideration the

weighing factor ms (Moraglio et al., 2012).

The interesting property of the GSGP and the geometric semantic variation operators

is that they induce a unimodal error error space E. This means; for every point in the

23

CHAPTER 2. THEORY & BACKGROUND

semantic space S, there exists at least a single neighbouring point (individual) with a

better fitness value, which can be reached effectively through application of the GSC

and GSM operators. This particular individual will be closer in distance to the desired

target semantic vector Ytarget.

This special property eliminates the multimodal nature of error spaces, which are

commonly associated with optimization problems and algorithms (section 2.1.3).

By using GSM and GSC operators, GSGP searches directly in the semantic space of

computer programs without ever reaching a local optimal solution. This is a result of

the induced unimodal and linear nature of the corresponding error space E. This is, by

itself, an interesting property in terms of potential search efficiency and effectiveness.

2.3.2 Neuroevolution

The search for the optimal topology and hyperparameters of an ANN for a given

supervised ML problem is a difficult task. This optimization comes with an infinitely

big search space, as a consequence of the parameters θ, number of neurons and number

of layers of an ANN are theoretically not bound by any limit (section 2.2).

Neuroevolution (NE) deals with this kind of optimization by using EAs to search

underlying space of the topologies and hyperparameters of an ANN (Stanley et al.,

2019). The advantage of NE lays in the fact that the underlying EAs facilitate the

optimization over a discontinuous search space, which is a necessity for optimizing the

topology and hyperparameters of an ANN. The search space of ANN topologies and

the corresponding fitness landscape is undifferentiable and discontinuous, which make

numerical optimization methods unsuited for this kind of optimization (Stanley et al.,

2019).

Besides this, the performance of ANNs before and after the training phase depend

heavily on the initial conditions. As well, slight changes in topology of the network

change the semantics of an ANN significantly. All these factors combined result in an

irregular, ragged and highly multimodal fitness landscape, which has to be traversed

by an OA. These characteristics make EAs and NE an excellent candidate for tackling

such OP (Floreano et al., 2008).

Various NE strategies have been proposed since the late 1980s and differentiate in

the way how the structural components, the parameters θ and other hyperparameters

of the ANN are encoded into the EA. Three fundamental approaches can be identified

within the field of NE ; one in which the the NE algorithm is used to only train the ANN

24

2.3. EVOLUTIONARY ALGORITHMS

with a fixed topology, second in which the NE algorithm is only used to optimize the

topology of the network and trained with another optimization method, an a third in

which the NE is applied to both train and optimize the topology of the ANN at the same

time, during the evolutionary procedure of the NE (Stanley et al., 2019). 7

The pioneering work of Miller et al. showed that the bias values and connection

weight values of an ANN can be evolved using a EA under a fixed topology structure.

Consecutively, in 2002, Stanley et al. showed that evolving the topology and weight

connections during the evolutionary process is beneficial and leads competitive perfor-

mance compared to conventional fixed-topology approach trained with the BP. Stan-

ley et al. achieved these results by proposing a novel NeuroEvolution of Augmenting

Topologies (NEAT) algorithm, which is considered as a milestone in the field NE up

until today.

After the boom of interest in CNN research in 2014 (section 2.2.4), various attempts to

evolve CNN architectures with NE have been reported. In 2017, Real et al. showed that

it was possible by applying of various evolutionary techniques to design CNN models for

the CIFAR-10 and CIFAR-100 data sets. Real et al. started from trivial initial conditions,

but reached up to 94.6% 77.0% accuracy respectively. The authors stressed that no

human participation was involved after the initialization of the evolution procedure,

and that the output was fully-trained CNN model. The authors did place an emphasis

on the repeat-ability and variability of results, and the computational requirements

necessary for obtaining them.

In the same year, Desell introduced the Evolutionary Exploration of Augmenting

Convolutional Topologies (EXACT) algorithm. The EXACT algorithm was modeled

after the NEAT algorithm to extend to CNNs, but contained major differences to enable

scaling to a large scale distributed computing system, to speed up the evolutionary

process.

Meanwhile, Such et al. demonstrated that it was possible to evolve over 4 millions

weights of a deep ANN with a population-based genetic algorithm. The evolved network

performed well on various deep reinforcement learning problems and it was the the

largest neural network ever evolved with a traditional EA. It expanded the sense of on

what scale genetic algorithms can operate successfully.

The NE algorithm of Suganuma et al. automatically constructed CNN architectures

based on Cartesian GP, and applied this strategy successfully on the CIFAR-10 image

7For an extensive overview on NE techniques and recent trends, the reader can refer to Stanley et al.,
2019 and Floreano et al., 2008 for more information

25

CHAPTER 2. THEORY & BACKGROUND

classification task. The experimental results on the CIFAR-10 showed that the proposed

Cartesian GP method was competitive with state-of-the-art models for designing CNN

architectures.

Starting in 2019, Miikkulainen et al. introduced an extension of NEAT, Coevolu-

tion DeepNEAT (CoDeepNEAT), which reported results comparable state-of-the-art

benchmarks achieved by human designed networks in multiple fields, including object

recognition, language modeling image classification.

Zhu et al. implemented an NE solution based on Artificial Bee Colony (ABC) for

automatic design of CNN topologies. Results reported on the MNIST dataset proved

competitiveness with the state-of-the-art NE techniques for the MNIST dataset.

Consecutively, Badan et al. introduced EA4CNN (Evolutionary Algorithms for Con-

volutional Neural Networks) - an EAwhich evolves and optimizes the CNN architecture

with respect to both the classification error and the model complexity. This was done in

an attempt to avoid deriving extremely big and complicated models to reduce training

time. The complexity was expressed as the number of tuneable parameters in the CNN.

Sun et al. proposed a new method using a genetic algorithm to evolve CNN archi-

tectures and corresponding connection weight initialization distributions. A variable-

length gene encoding strategy was used, together with a new representation scheme for

the initialization of the connection weights, as well as a novel fitness evaluation method

to reduce computational resources. The proposed algorithm was compared against 22

existing algorithms on 9 image classification tasks and showed competitiveness against

state-of-the-art algorithms in terms of classification error and number of parameters.

Additionally, Sun et al. proposed a genetic algorithm designing CNN architectures

based on ResNet and DenseNet blocks. The genetic algorithm was evaluated on the

CIFAR-10 and CIFAR-100 benchmark data sets, against 18 state-of-the-art peer contes-

tants. The proposed algorithm outperformed the manually designed state-of-the-art

CNNs and CNNs designed by automatic peer contestants. The evaluation was done in

terms of the classification performance on CIFAR-10 and CIFAR-100 data sets.

Important to note is that all the above mentioned NE approaches, with the exception

of Such et al., 2017, used the conventional training approach with the Backpropagation

algorithm with the underlying Gradient Descent method to optimize the parameters θ

of the evolved CNN models. All the presented scientific papers used extensive compu-

tational resources to train hundreds up to thousands of CNNs on distributed systems.

There has not been a single method reported, up until today, which allows for evolu-

tion of the CNN topology, parameters θ and other hyperparameters, without the use of

26

2.3. EVOLUTIONARY ALGORITHMS

Gradient Descent and the Backpropagation algorithm. Also, Such et al. worked with a

fixed topology CNN and only evolved the weights the network.

2.3.3 Semantic Learning Machine

The Semantic Learning Machine (SLM) is a novel NE algorithm, recently proposed

by Gonçalves et al., which constructs fully functioning feedforward NNs without the

use of the Backpropagation algorithm. By applying the GSM operator (definition 2) on

NNs, the SLM functions as a stochastic hill-climbing algorithm in the search space of

NNs. The SLM’s evolutionary procedure is therefore based upon the principles of of

GSGP and accordingly, the geometric semantic properties defined by Moraglio apply to

the stochastic search of the SLM.

As described in section 2.3.1, the geometric semantic properties imply that the SLM

searches over the search space of feedforward NN topologies and hyperparameters,

under a unimodal error landscape, and thereby eliminating the presence of any local

optimal solutions. This makes the SLM more attractive in terms of search effectiveness

and efficiency.

Section 2.3.1 introduced the GSM operator for GP, which resulted in the definition of

GSGP. In definition 2, the GSM operator outputs a mutated syntactic Genetic Program-

ming (GP) tree by linearly combining two independent syntactic GP trees. This concept

of the GSM operator, including its geometric semantic properties, can be extended to

feedforward NNs, in which the syntactic GP trees are replaced by feedforward NNs.

In this use case, the GSM operator is applied on a given parent feedforward NN and

adds to the parent network structure a randomly initialized feedforward NN. The ran-

dom feedforward NN only receives incoming connections from the parent network, and

the random feedforward NN cannot feed its activations back into the parent’s network

hidden nodes. The output neurons of the parent network receive the last hidden layer

activations of the random network and linearly combines the output activations with its

current existing output activations. The weights for the last hidden layer nodes of the

random network is then defined by the mutation step ms. The other weights in mutated

part of the feedforward NN are initialized at random. If this architectural design is fol-

lowed, the semantics of the parent network will not be affected by the semantics of the

random network, which results in an independent combination of networks and GSGP’s

constraint of independently combining networks and their corresponding semantics are

fulfilled (Gonçalves et al., 2015c).

27

CHAPTER 2. THEORY & BACKGROUND

To provide a practical example of the GSM operator on a NN, a single mutation of

the GSM operator is performed on the the parent network Tparent, as presented in figure

2.2. This NN consists of three input neurons, two hidden layers with each two hidden

neurons and a single output neuron. A single application of the GSM operator adds

a randomly initialized network Trandom to the parent network Tparent. Here, in figure

2.8, the green nodes with green incoming connections represent the added Trandom
network and the dotted black dotted connections represent the existing Tparent network

connections. The added network Trandom consists of two added nodes in the first hidden

layer and a single hidden node in the second hidden layer. As can be observed from

figure 2.8, the internal activations of Trandom do no feed into the hidden nodes of the

parent network Tparent, with exception of the output neuron, which is shared between

the Tparent and Trandom networks. The weights of the last hidden layer of the random

network Trandom are defined by the mutation step ms.

The SLM was introduced by Gonçalves et al. in 2015, in which the algorithm was

tested on several real-life multidimensional symbolic regression datasets. This study

showed that the SLM was able to outperform GSGP in terms of learning the training

data, but did not statistically improve over GSGP on the test data.

Consecutively, Jagusch et al. showed that various SLM variants outperform other

NE approaches in terms of learning the training and test data in 9 real-world regression

and classification datasets. Even the best performing SLM variant outperformed vari-

ous topologies of a feedforward NN trained with the backpropagation-based approach.

In this research, the SLM was also used as a base estimator to build an ensemble esti-

mator which proved to outperform the Random Forest algorithm in two classification

problems. This work clearly showed the diversity and potential of the SLM.

The SLM was also used to evolve the NCP of a state-of-the-art CNN and was tested

against a state-of-the-art CNN trained with the conventional Backpropagation approach

(Lapa et al., 2019). The performance was assessed on the PROSTATEx dataset composed

of multispectral MRI sequences for the detection of prostate cancer. This study showed

that CNN evolved with the SLM was outperforming the the state-of-the-art in terms of

Area Under the Receiver Operating Characteristic (AUROC) curve performance. Besides

increased performance, there was a 14 time computational speed up reported for the

SLM procedure.

Also Teixeira reported outperforming results of the NE approach with the SLM com-

pared to a conventional Backpropagation approach with NNs with a common parametriza-

tion framework for equal comparison between the two methods.

28

2.3. EVOLUTIONARY ALGORITHMS

parent network
Tparent

random network
Trandom

MS or
OLS

X3

X2

X1

Hidden
Layer N2

Output
Layer

Hidden
Layer N1

Input
Layer

Figure 2.8: Overview of the application of the GSM operator on the MLP network of
Figure 2.2 by adding two hidden neurons to the first hidden layer and a single hidden
neuron to the second hidden layer (green labelled connections).

Finally, Gonçalves et al. studied how dynamic subsets of the training data can be

used to improve generalization ability of the SLM . Over fifteen real-world binary clas-

sification data sets, the dynamic use of training data resulted in superior generalization

of the SLM. As well, the SLM outperformed, with statistically significance, the conven-

tional MLP network approach in thirteen of the fifteen studied datasets. Furthermore,

the work showed that the stochastic nature of the SLM introduces sufficient diversity

into the base learner, wherefore an averaging ensemble approach with the SLM as base

29

CHAPTER 2. THEORY & BACKGROUND

learners is an effective technique to improve performance, with respect to other ensem-

ble approaches such as Bagging and Boosting.

2.4 Deep Semantic Learning Machine

This section introduces Deep Semantic Learning Machine (Deep-SLM) algorithm.

The Deep-SLM extends the principles of the SLM algorithm (section 2.3.3) to the search

space of CNN topologies and parameters. The Deep-SLM is a stochastic search and

CNN constructing algorithm, which functions as a stochastic hill climbing algorithm

operating in the search space of CNN topologies and parameters. The Deep-SLM au-

tomatically builds and evolves CNNs by applying the GSM operator (definition 2) on

existing CNNs in its evolution process.

The Deep-SLM originates from the elementary SLM algorithm, which is the Deep-

SLM’s analog for the search space of NNs. Therefore, the Deep-SLM also comes forth

out of the principles of GSGP (section 2.3.1) and shares the same geometric semantic

properties. From the geometric semantic properties, the most appealing one is; for any

given supervised ML problem, the Deep-SLM executes its search over a unimodel error

space and eliminates the presence of any local optimal solutions.

Another notable property of the Deep-SLM is that it derives fully functioning CNNs

without the use of the Backpropagation algorithm. These properties make the Deep-

SLM potentially favourable and more effective in terms of search effectiveness and

efficiency.

A formal description of the Deep-SLM algorithm is formulated in this section by

organising the section as follows: section 2.4.1 extends the GSM operator to CNNs,

section 2.4.2 provides a description and pseudo code Deep-SLM algorithm, section 2.4.3

discusses Adaptive and Optimal Learning Step of the Deep-SLM and finally, section

2.4.4 discusses the code implementation of the Deep-SLM.

2.4.1 Geometric Semantic Mutation For CNNs

The GSM operator defined in definition 2 can be extended to apply to any given

CNN. The GSM operation starts from any given CNN - Tparent - and linearly combines

Tparent with a randomly initialized CNN - Trandom. The addition of the Trandom to Tparent
is weighted by some weighting factor ms - the mutation step. In this manner, at every

application of the GSM operator, a new CNN TM is produced.

30

2.4. DEEP SEMANTIC LEARNING MACHINE

To induce the geometric semantic properties defined by Moraglio et al. described

in section 2.3.3, the linear combination of CNNs has to be independent. Therefore,

no connections from Trandom to Tparent can be formed, exclusively connections from

Tparent to Trandom. The semantics of Tparent are simply obtained by linearly combining

the semantics of Trandom and the semantics of Tparent weighted by the ms.

To clarify the GSM procedure, a practical example of a single GSM application on

a CNN is provided in figure 2.9. The single application of the GSM is performed on

a parent CNN Tparent with the following structure: a single 2D CL with 10 kernels,

with kernel dimensions of 5x5 and stride 1x1, followed by a 2D Max PL with kernel

dimensions of 2x2 and stride 2x2, and finally a single FCL with 50 nodes with an output

layer consisting of 10 nodes. The input into this network consists of a data volume of

32x32x3 (which could represent a 32x32 RGB colour image) and the connections of this

parent network Tparent are indicated with the black dotted arrows in figure 2.9.

Then, the GSM operator for CNNs adds random nodes to each layer and these con-

nections are indicated with the green arrows. To the first 2D CL, 2 kernels are added,

which are down sampled by the 2D Max PL and then fed into the single FCL layer. The

single FCL has been extended with 20 nodes and the resulting output activation of this

layer are fed into the final output nodes of the network. In figure 2.9, the new formed

connections of the Trandom network are indicated with the green arrows.

31

CHAPTER 2. THEORY & BACKGROUND

Input
Image

2D Conv
Layer

Kernel Size:

5x5

Stride: 1x1

Output
Layer

2D MaxPool
Layer

Kernel Size: 2x2

Stride: 2x2

Flatten
Layer

Hidden
Layer N1

random network
Trandom

parent network
Tparent

20 nodes
392 nodes

14x14x2

2D MaxPool

Node

28x28x2

2D Conv Node

2 kernels

50 nodes
1960 nodes

14x14x10

2D MaxPool

Node

28x28x10

2D Conv Node

10 kernels

(32x32x3)

10 nodes

Figure 2.9: Single application of the GSM operator of the Deep-SLM on a Tparent net-
work consisting of a single 2D CL , 2D Max PL and a single PL. The black dotted
arrows represent the connections of Tparent and green arrows represent the connections
of Trandom

2.4.2 The Deep-SLM algorithm

The pseudo code of the Deep-SLM algorithm is provided in algorithm 2. Here, P0

represents the initial population of CNNs and the starting point Deep-SLM’s search.

The CNN Tbest represents the current best individual at iteration i and the CNN Ti
represents the ith neighbor of the Tbest.

The hyper parameters that have to be defined for the initialization of the Deep-SLM

algorithm are presented and clarified in table 2.1. Certain hyperparameters should

be defined for both the Convolution Part (CP) and Non-Convolution Part (NCP) of

the Deep-SLM, these parameters include: max nodes, max layers, probability add nodes,
probability add layers, sparseness, skip-connections, node activations.

32

2.4. DEEP SEMANTIC LEARNING MACHINE

Algorithm 2: Deep Semantic Learning Machine

initialize Deep-SLM parameters (table 2.1);

initialize P0;

set Tbest;

iteration i = 0;

while i < imax do

Apply n time the GSM to Tbest to generate neighbourhood N of Tbest;

for Ti ∈N do

evaluate Ti ;

if f itness Ti > f itness Tbest then

Tbest = Ti ;

else

continue;

end

end

end

Table 2.1 introduces two new parameters of the Deep-SLM (which also apply to the

SLM but not discussed in section 2.3.3); the sparseness and skip-connections parameters.

The sparseness of a given neuron i defines the sparsity of the incoming connections

of that neuron. Neuron i receiving all possible incoming connections is said to have

a sparseness of 0%. If all weights of all incoming connections are set to a value of 0,

which means all incoming connections are inactive, then, the sparseness of that neuron

is said to be 100%. Define the sparseness for a given neuron i as follows:

Sparseness =
N connections where w,0

N all possible connections
x 100%/ (2.19)

Skip-connections parameter for a given neuron i in the layer mi works according

to same principle as the sparseness parameter, but, it applies only to the incoming

connections from neurons in the layers mj for which mj ≤ mi−2. For a given neuron i

in the layer mi , which receives only connections from the neurons in the previous layer

mi−1, the skip-connections parameter is said to be 0%. If the given neuron i receives

connections from all previous neurons in the network, the skip-connections parameter

for neuron i is said to be 100%. Define the skip-connections parameter in % for a given

33

CHAPTER 2. THEORY & BACKGROUND

neuron i as follows:

Skip Connections =
N incoming connections(layers Mj≤Mi−2)

N all possible connections(layers Mj≤Mi−2)
x 100%. (2.20)

Parameters: Data type: Clarification:

number iterations int number of iterations of the evolution procedure
neighbourhood size int size of the neighborhood to be explored at each iteration
max layers int max number of layers to be added in the mutation
max nodes int max number of nodes to be added in the mutation
mutation step float size of the mutation step
probability add nodes float [0 ≤ x ≤ 1] probability of adding nodes in the mutation
probability add layers float [0 ≤ x ≤ 1] probability of adding layers in the mutation
sparseness float [0 ≤ x ≤ 1] max fraction of sparse connections of a node
skip-connections float [0 ≤ x ≤ 1] max fraction of skip-connections of a node
conv kernel dim (int, int) range of the 2D convolution kernel dimensions
conv strides (int, int) range of the 2D convolution strides
pool kernel dim (int, int) range of the 2D pooling kernel dimensions
pool strides (int, int) range of the 2D pooling strides
node activation function the activation function to be used in the node
weight initialization distribution distribution for weight initialization
bias initialization distribution distribution for bias initialization

Table 2.1: List of hyperparameter definitions for the Deep-SLM. Parameters that apply
to both the CP and NCP of the Deep-SLM are: max nodes, max layers, probability add
nodes, probability add layers, sparseness, skip-connections, node activations.

2.4.3 Adaptive Learning Step

In the GSM application, the mutation step - ms - determines the size of the random

perturbation in the semantic space of the Tparent network. In other words, the ms the

size of the n dimensional ball mutation when thinking of the GSM as a ball mutation in

the semantic space of Tparent (Vanneschi, 2017).

The random perturbation in the semantics of Tparent can be bounded or unbounded.

This depends on the random individual Trandom in the GSM operation being bounded

by a bounding function or not. For example, in GSGP, if the random tree is bounded

by a logistic function, which maps the output in the interval [0,1], then the maximum

perturbation in the semantics is given by the interval [−ms,ms].

34

2.4. DEEP SEMANTIC LEARNING MACHINE

The ms can also be optimally computed for each application of the GSM operator

and is referred to as the Adaptive Mutation (AM) (Moraglio et al., 2013). The linear

combination obtained from the application of the GSM operator can be written as

equation 2.21, in which RI represents the random tree or network Trandom, t the target

vector and P the parent tree or network Tparent

P +RI ·ms = t, (2.21)

with the objective to reach the target semantic vector t. Equation 2.21 can be rewritten

to

RI ·ms = (t − P), (2.22)

which satisfies the condition of a general linear system

A · x = y. (2.23)

Thus, the linear system of equation 2.23 can be solved deterministically using the Moore-

Penrose pseudo inverse.

Also, the parent tree or network P can be weighted by another factor resulting in a

little adjustment of equation 2.21 to equation 2.24

P ·wp +RI ·ms = t. (2.24)

This is referred to as Double Adaptive Mutation (Gonçalves et al., 2015a). Gonçalves

et al. experimented for the first time with the adaptive mutation step on real world

multidimensional data sets.

The linear system in equation 2.23 can be solved with a computational method and

results in a solution x. The solution x is the mutation step ms in equation 2.22 for that

particular application of the GSM operator.

Consider the the application of the GSM for CNNs, the semantics of the last hidden

layer of the randomly generated CNN - Trandom - is considered as RI in the the linear

system of equation 2.22, then, the solution of this linear system - ms - represent the

values for weights of the connections of the last hidden layer of Trandom to the final

output nodes of Tparent.

This means that, with every application of the GSM for CNNs, the optimal weights

of the last hidden layer of Trandom to the output nodes of Tparent can be calculated by

solving the linear system of equation 2.22.

35

CHAPTER 2. THEORY & BACKGROUND

The fact that the last hidden layer connection weights (and theoretically all the

weights of the network) can be optimally computed in the GSM for CNNs, is an inter-

esting property of the GSM operator which could make the Adaptive Mutation Step a

favourable property of the Deep-SLM.

2.4.4 Code Implementation

For experiments conducted in this thesis described in chapter 4, the Deep-SLM was

implemented in the Python Programming language. The source code can be down-

loaded from: https : //github.com/olehof man/deepSLM_src.

The CP of the Deep-SLM was implemented with support of the Tensorflow library

and the NCP of the Deep-SLM was implemented with support of the Numpy library.

Due to limited computational resources, only a specific variant of the Deep-SLM was

used in the experimental study. This variant only forms parent node → mutation node

connections in the CP of the CNNs constructed. In the NCP of the CNNs constructed,

only mutation node → mutation node connection were formed. Therefore, the final

CNNs have a fully connected CP structure, whilst, a sparse NCP structure. The motiva-

tion for this design was the lack of Random-access Memory (RAM) caused by the nature

of the GSM operator.

The GSM operator linearly combines two networks producing an offspring network

(definition 2). This offspring network will always be bigger in terms of size compared

to its parent network Tparent.

To derive the semantics of the offspring network, the internal node activations of the

parent network Tparent are required, if the offspring network is fully-connected between

all layers. When only the mutation nodes are connected to previous mutation nodes,

only the activations of the previous mutation nodes are required for calculating the

semantics of the new offspring network. Therefore, it was decided to only connect the

mutation nodes in the NCP internally. With this implementation, it was achieved to

perform significant longer runs without running into RAM storage issues.

36

C
h
a
p
t
e
r

3
Experimental Methodology

This chapter presents the experimental methodology for the conducted research

in this thesis. This includes: a description of dataset (section 3.1), a validation of the

metrics (section 3.2) and an explanation of the adapted experimental framework to

tackle the research objectives.

Chapter 2 introduced the relevant theory and background for this thesis. Here, the

Deep-SLM algorithm was introduced by extending the principles of the SLM to the

search space of CNNs. The Deep-SLM is therefore a novel NE algorithm which has

never been validated in a scientific experiment before, which has led in chapter 1 to the

establishment of main research objective of this thesis:

Research Objective Validation of the proof of concept of the Deep-SLM

3.1 Data sets

To qualitatively asses performance the Deep-SLM algorithm and to directly compare

the Deep-SLM algorithm’s performance against the performance of the SLM algorithm,

one needs to decide on an appropriate problem setting first. This is, in essence, the

dataset (or sets) on which the performance of the algorithms will be evaluated in the var-

ious benchmark experiments. A higher number of datasets and a higher variety between

37

CHAPTER 3. EXPERIMENTAL METHODOLOGY

them is favourable and allow for a more fair and valid assessment and comparison of

the two algorithms.

The Canadian Institute For Advanced Research 10 (CIFAR-10) dataset was selected to

be used to benchmark the performance of the Deep-SLM and SLM algorithms (https://

www.cs.toronto.edu/ kriz/cifar.html). The CIFAR-10 dataset is one of the most com-

monly used datasets for Computer Vision benchmarks experiments and therefore is a

valid choose to validate the proof of concept of the Deep-SLM.

The CIFAR-10 dataset is a balanced dataset consisting of 60000 32x32 labelled colour

images of each 10 classes, with each class having exactly 6000 images. By default the

dataset is divided in a training set of 50000 training images and a test set of 10000 test

images. All the classes are listed in Figure 3.1 and are completely mutually exclusive,

there exist no overlap between the classes. Figure 3.1 displays an image sample per

class of the CIFAR-10 dataset.

38

3.2. METRICS

Figure 3.1: Sample illustration of the 10 classes of the CIFAR-10 dataset (taken from
https://www.cs.toronto.edu/ kriz/cifar.html)

3.2 Metrics

For the performance assessment of the Deep-SLM and the comparative benchmarks

between the Deep-SLM and the slm algorithms, an appropriate metric needs to be

chosen which assigns a quantitative scores to each benchmark run. This metric scores

quality of the performance of each specific run under the specific set of experimental

conditions used in that run.

The appropriate metric is dependent on the problem setting at hand, which is in

this case a balanced image classification task. Also, important to note is that every error

in the algorithm’s prediction is of equal importance, as opposed to certain other image

classification applications. For example, in cancer detection methods, a false negative
prediction is an error which should be avoided at all times, whilst a false positive is an

39

CHAPTER 3. EXPERIMENTAL METHODOLOGY

error of less importance.

In the CIFAR-10 problem setting, all errors are from equal importance and the dataset

is balanced. Thus, the CIFAR-10 dataset allows for the use of the most conventional

performance metric in classification problem setting - the accuracy.

The accuracy metric simply provides the percentage of correctly classified classes

in a classification task. Equation 3.1 provides the formula of the accuracy for multi-

classification setting, in which Tp represents True Positive and N the number of total

instances. The accuracy is usually given in terms of percentage where multiplied with

a factor of 100.

Accuracy% =
Tp
N
x 100% (3.1)

Also, the Cross-Entropy (CE) loss will be monitored during the benchmark experi-

ments. The CE loss is the objective function minimized by the LBFGS-algorithm and

is, therefore, relevant to be monitored during the evolution process. The formula for

multiclass CE loss is given in equation 3.2, in which C represents all the classes of the

multi-classification task, foutput(s)i the output probability of the model for the class Ci
and ti the corresponding target

CE Loss = −
C∑
i

ti · log(foutput(s)i) (3.2)

3.3 Experimental Framework

An experimental framework was designed to tackle the research objective presented

in chapter 1. Since the Deep-SLM has not been tested before in a scientific experi-

ment, the experimental framework will consist of exploratory parts. Each individual

exploratory part is then followed up by a more comprehensive analysis of the selected

hyperparameter settings for the SLM and Deep-SLM algorithms and includes statistical

assessing.

In the exploratory parts, only the behaviour of the Deep-SLM and SLM under various

hyperparameter settings will be explored. The objective of the exploratory parts is

not to provide a comprehensive analysis of the hyperparameters and their effect, but

rather to get an understanding of the behaviour of the algorithms on the CIFAR-10

dataset. In these exploratory experiments, only a single run will be used due to limited

computational resources and due to the exploratory objective.

40

3.3. EXPERIMENTAL FRAMEWORK

The exploratory parts are then followed up by a more profound analysis, in which

statistical tests will be performed on a selected set of hyperparameters for both the Deep-

SLM and SLM algorithms. The statistical tests will be conducted as follows: first, the ob-

tained scores will be tested for normality with the non-parametric Kolmogorov-Smirnov

Test, consecutively, the parametric Unpaired Students T-test or the non-parametric

Mann-Whitney U will be used to analyse for potential differences between expected

values of the score means of the sample scores. These experiments will be run using 30

runs each.

Framework

1. Define the SLM baseline performance on the CIFAR-10 dataset

• Explore the baseline SLM’s performance and generalization ability on CIFAR-

10

• Grid search various NCP structures of the SLM to establish the baseline SLM

performance (done with 1 run)

2. Explore possible improvements of the baseline SLM’s performance and generalization
ability on the CIFAR-10 dataset

• Perform hyperparameter tuning of the SLM to investigate if performance

and generalization ability can be improved over the baseline SLM performer

(done with 1 run)

• Validate the potential improvement by assessing the results for a statistical

significant improvement (done with 30 runs)

3. Explore the effects of a 2D CL in the CP of the Deep-SLM on CIFAR-10 dataset

• Grid search various 2D convolution kernel sizes and stride values to explore

the effect of a 2D CL as single random feature generation in the CP of the

Deep-SLM (done with 1 run)

• Validate the performance and generalization ability by assessing the results

for a statistical significant difference (done with 30 runs)

4. Explore possible improvements in performance and generalization the single 2D CL in
the Deep-SLM’s CP

41

CHAPTER 3. EXPERIMENTAL METHODOLOGY

• Perform hyperparameter tuning to the 2D CL of the Deep-SLM to investigate

if the performance and generalization ability can be improved (exploration

done with 1 run)

• Validate the potential improvement of the performance and generalization

ability by assessing the results for a statistical significant difference (done

with 30 runs)

5. Explore the effect of a 2D max-PL with the 2D CL in the CP of the Deep-SLM

• Grid search various 2D max-pooling kernel dimensions and stride values to

explore the effect of the down sampling layer with the 2D CL in the CP of

the Deep-SLM (exploration done with 1 run)

• Validate the potential improvement in performance and generalization abil-

ity by assessing the results for a statistical significant difference (done with

30 runs)

42

C
h
a
p
t
e
r

4
Results & Discussion

This chapter presents the experimental results obtained from the research conducted

in this thesis. This includes a presentation of the result of the initial exploration phase,

and, for a selected set of experiments, a deeper statistical analysis. The research con-

ducted in this thesis was based upon the earlier defined experimental framework in

section 3.3.

For each conducted experiment in this chapter, the used hyperparameter settings

and methods are shortly discussed. Consecutively, the obtained results are presented

and discussed. Note that in all following experiments, a variant of the Deep-SLM was

used as explained in section 2.4.4. This variant only forms parent node → mutation node

connections in the CP of the CNNs constructed. In the NCP of the CNNs constructed,

only mutation node → mutation node connection are formed.

4.1 Defining the baseline SLM performance

The establishment of the SLM baseline performance on the CIFAR-10 dataset was

done by grid searching various (and randomly selected) NCP structures of the SLM .

The NCP structures which were included in the grid search were; [20], [50], [200], [400],

[100, 50] and [200, 50] respectively. Here, the first number represents the number of

nodes in the NCP first hidden layer. The second number represents the nodes in the

second (and last) hidden layer. The + sign in the respective label (Figure 4.1) represents

the number of nodes added to to each hidden layer at mutation respectively.

43

CHAPTER 4. RESULTS & DISCUSSION

Weight values and bias values of the NCP connections were initialized using a ran-

dom uniform distribution within the interval [-0.1, +0.1]. The the weight values and

bias values of the last hidden layer connecting to the output layer were optimally com-

puted using the LBFGS-numerical optimization algorithm. The CE Loss was used as the

objective function to be minimized for the optimization. The numerical optimization

was run for 50 iterations with default settings of the LBFGS-algorithm.

The results obtained from the grid search have been achieved with a single run, no

statistical significant differences between the runs were assessed. Table 4.1 summarizes

the default settings used in the following benchmarks.

Table 4.1: Default parameter settings of the SLM

Parameter:

LBFGS Iterations 50
Weight Initialization RandomUniform [-0.1 <x <+0.1]
Bias Initialization RandomUniform [-0.1 <x <+0.1]
Sparseness 0%
Mutation Configuration Only previous mutation nodes

4.1.1 Results

0 50 100 150
Iteration

1.0

1.2

1.4

1.6

1.8

2.0

Tr
ai

n
C

E
L

os
s

Training
Test Set
Training
Test Set

0 50 100 150
Iteration

1.0

1.2

1.4

1.6

1.8

2.0

Te
st

C
E

L
os

s

[200,50] +[200,50]

[100,50] +[100,50]

[50] +[50]

[400] +[400]

[200] +[200]

[20] +[20]

Figure 4.1: SLM performance on CIFAR-10 problem task with various NCP structures.
The label [X, X] represents the initialization of NCP structure. +[X, X] represents the
number of nodes added to each layer at each mutation. More nodes in the final hidden
layer tends to show more overfitting. Deeper NCP structures did not have any beneficial
effect.

44

4.2. IMPROVING THE BASELINE SLM PERFORMANCE

4.1.2 Discussion

Figure 4.1 displays the results obtained from the grid search of the NCP structures

of the SLM on the CIFAR-10 dataset. Figure 4.1 shows that all variants of the baseline

SLM are capable of learning the training data, but overfit clearly on test data. All tested

structures show a converging Test CE Loss around 1.5 and start overfitting afterwards.

There is a clear trend that indicates a higher number of nodes in the last hidden

layer of the SLM results into more overfitting. More nodes in the final hidden layer of

the NCP results in more degrees of freedom when solving the numerical optimization

problem in the OLS calculation in the GSM operation. This could be an explanation for

the more extreme and quicker overfitting trend.

Additionally, multiple hidden layers (deeper structures) do not seem to have a pos-

itive effect on the performance of the SLM. The application of the OLS could be an

explanation for this behaviour as well. For this reasons, the single hidden layer SLM

with +50 nodes added at each mutation was chosen as a baseline performer in the future

benchmarks with the Deep-SLM .

4.2 Improving the baseline SLM performance

To improve the SLM baseline performance established in section 4.1, the effect of

applying sparse connections in the NCP of the SLM was investigated. In addition to

the SLM baseline performer, the SLM variant having 100 nodes in last hidden layer and

adding +100 nodes at each mutation was included in the exploratory analysis.

The SLM with 0%, 50% and 99% sparseness in the NCP were tested and compared

against the baseline SLM performance established in section 4.1. The experimental

settings for the SLM were the same as explained in section 4.1 and table ??. The effect

of the sparse connections was explored using a single run exploration (figure 4.2).

Consecutively, the best performing variant was selected and benchmarked for 30

runs to asses for a statistical significant improvement over the the baseline SLM per-

formance. This procedure was done by first testing for normality with non-parametric

Kolmogorov-Smirnov Test, and consecutively, a non-parametric rank-based Mann-Whitney

U Test was performed to asses for statistical significant differences between the sample

means of both performance scores of the two SLM hyperparameter variants (figure 4.3).

4.2.1 Results

The results obtained from the experiments are visualised in figure 4.2 and 4.3.

45

CHAPTER 4. RESULTS & DISCUSSION

0 50 100 150 200
Iteration

1.0

1.2

1.4

1.6

1.8

2.0

Tr
ai

n
C

E
L

os
s

Training
Test Set
Training
Test Set

0 50 100 150 200
Iteration

1.0

1.2

1.4

1.6

1.8

2.0

Te
st

C
E

L
os

s

100 +100 99%
100 +100 0%
50 +50 99%
50 +50 50%
50 +50 0%

Figure 4.2: SLM performance on CIFAR-10 problem task with various degrees of sparse-
ness. The same label structure of figure 4.1 applies to this figure. Additionally, the last
% indicates the percentage of sparseness applied to the SLM. A higher percentage (50%
and 99%) of sparseness tends to reduce overfitting in combination with fewer nodes
(50).

SLM SLM sparse=99%

66.6

66.8

67.0

67.2

67.4

67.6

67.8

68.0

Tr
ai

n
A

cc
u

ra
cy

%

SLM SLM sparse=99%

49.0

49.5

50.0

50.5

51.0

51.5

52.0

Te
st

A
cc

u
ra

cy
%

Figure 4.3: Box plot visualisation of the Train Set Accuracy and Test Set Accuracy of the
SLM with 99% sparseness and without sparseness on the CIFAR-10 problem task. The
experiment was done using 30 runs and the expected mean accuracies were found to be
significantly different.

46

4.3. EXPLORATION OF THE 2D CONVOLUTION LAYER FOR THE Deep-SLM

4.2.2 Discussion

Figure 4.2 displays the results of the exploratory study of the use of sparse connec-

tions in the NCP in the SLM . A more stable convergence of the Test CE Loss can be

observed when a higher percentage of sparseness (50% and 99%) is applied to the NCP

of the SLM. The SLM variants adding +50 nodes in each mutation, with percentage of

sparseness of 50% and 99%, results in the lowest Test CE Loss of around 1.45. Therefore,

a hypothesis can be formulated that applying sparse connections to the standard SLM

can help reduce overfitting.

To asses if these improvements are indeed statistically significant, the SLM variants

of [+50] with 99% sparseness and no sparseness were benchmarked for 30 runs. The

resulting scores are visualized in the box plots in figure 4.3. The mean of the training

set accuracies were 66.8% and 67.6% respectively. The test set accuracies resulted to be

49.8% and 51.2% respectively.

To validate if these values come from a normal distribution, the Kolmogorov-Smirnov

test was performed. The p-values obtained from this test were respectively 4.45e-69

and 7.68e-69, and thus, suggesting that the alternative hypothesis, which states that the

scores are not normally distributed, cannot be rejected. In this test, a significance level

α of 0.05 was considered.

Consecutively, the non-parametric Mann-Whitney U test was performed to evaluate

if the both score samples have equal means, and if the alternative hypothesis, which

states that the SLM with no sparseness has a lower expected sample mean than the

SLM with 99% sparseness, could be rejected. The p-value returned from this Mann-

Whitney U test was 1.83e-11, and thus the alternative hypothesis could not be rejected,

indicating that the SLM variant with 99% sparseness outperforms the baseline SLM

performer with statistical significance on the test set accuracy metric. Also in this test,

a significance level α of 0.05 was considered.

4.3 Exploration of the 2D convolution layer for the Deep-SLM

In this experiment, the application of a single 2D CL in the CP of the Deep-SLM on

the CIFAR-10 dataset was explored. Various 2D CL configurations were tested and the

accuracy and CE loss were monitored. This exploration was done using a single run.

At each generation, the GSM operator adds a 2D convolution node to the single CL

in the CP of the Deep-SLM. The convolution kernels are initialized with random kernel

47

CHAPTER 4. RESULTS & DISCUSSION

values wherefore the new convolution node will produce random convolved feature

maps. The random convolved feature maps form the input activations for the NCP of

the Deep-SLM. Like this, the random convolution nodes function as random feature

transformers for the NCP of the Deep-SLM.

The NCP of the Deep-SLM consists of a single hidden layer with 50 nodes and in

each mutation 50 new nodes are added to the single hidden layer. Therefore, NCP

structure is equivalent to the previous experiments with the SLM in sections 4.1 and

4.2.

In the following experiments, the convolution kernel dimensions and number of

kernels were varied. The kernel dimensions explored were (2,2), (5,5), (10,10) and

(32,32) respectively. The different number of kernels were 1, 10, 25 and 100 respectively.

The stride value of the 2D CL was kept constant at (1,1). Note that a higher number of

kernels result in higher number feature maps, and thus, in a higher number of flattened

input connections into the NCP. For the kernel dimensions, a bigger kernel induces a

smaller feature maps and thus, less flattened nodes feeding their activations into the

NCP of the Deep-SLM.

The convolution kernel values were initialized with a random uniform distribution

within the interval [-0.1, +0.1]. The random convolved feature maps were fed directly

into the single layer NCP with +50 nodes added to the single hidden layer. The weight

connection values of the single hidden layer to the output nodes of the Deep-SLM were

optimized by the LBFGS-algorithm. The default Deep-SLM parameters are displayed

in Table 4.2. As well in this exploration, the effect of using sparse connections in the

NCP of the Deep-SLM was explored. Various degrees of sparseness were tested, which

were 0%, 50% and 99% respectively. This exploration was also done using a single run.

4.3.1 Results

The results obtained from the experiments are visualised in figure 4.5 and 4.4.

48

4.3. EXPLORATION OF THE 2D CONVOLUTION LAYER FOR THE Deep-SLM

Table 4.2: Default parameter settings of the Deep-SLM

Parameter:

LBFGS Iterations 50
NCP structure single fully connected layer
NCP n nodes init 50
NCP n nodes mut +50
NCP Weight Initialization RandomUniform [-0.1 <x <+0.1]
NCP Bias Initialization RandomUniform [-0.1 <x <+0.1]
NCP Sparseness 0%
NCP Mutation Configuration Only previous mutation nodes
CP structure single 2D Convolution Layer (stride=(1,1))
CP Weight Initialization RandomUniform [-0.1 <x <+0.1]
CP Bias Initialization RandomUniform [-0.1 <x <+0.1]
CP Sparseness 0%
CP Mutation Configuration Only previous mutation nodes

0 100 200
Iteration

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

C
E

L
os

s

0 100 200
Iteration

10

20

30

40

50

60

70

80

A
cc

u
ra

cy
%

Training
Test Set

SLM_sparseness=99%
DSLM sparseness=99%
DSLM sparseness=50%
DSLM no_sparseness

Figure 4.4: Deep-SLM benchmark on CIFAR-10 problem task. CP contains a single 2D
CL with kernel dimensions=(5,5) and various percentages of sparseness applied to the
NCP. Black curve represents the baseline SLM performance. Sparseness id not improve
the performance or generalization ability of the Deep-SLM, as opposed to the SLM

49

CHAPTER 4. RESULTS & DISCUSSION

0 100 200
Iteration

1.0

1.5

2.0

C
E

L
os

s

a) Conv(2,2) > SLM

0 100 200
Iteration

20

40

60

80

A
cc

u
ra

cy
%

Training
Test Set

SLM
DSLM n_kernels=25
DSLM n_kernels=10
DSLM n_kernels=1

0 100 200
Iteration

1.0

1.5

2.0

C
E

L
os

s

b) Conv(5,5) > SLM

0 100 200
Iteration

20

40

60

80

A
cc

u
ra

cy
%

Training
Test Set

SLM
DSLM n_kernels=25
DSLM n_kernels=10
DSLM n_kernels=1

0 100 200
Iteration

1.0

1.5

2.0

C
E

L
os

s

c) Conv(10,10) > SLM

0 100 200
Iteration

20

40

60

80

A
cc

u
ra

cy
%

Training
Test Set

SLM
DSLM n_kernels=25
DSLM n_kernels=10
DSLM n_kernels=1

0 100 200
Iteration

1.0

1.5

2.0

C
E

L
os

s

d) Conv(32,32) > SLM

0 100 200
Iteration

20

40

60

80

A
cc

u
ra

cy
%

Training
Test Set

SLM
DSLM n_kernels=25
DSLM n_kernels=10
DSLM n_kernels=1

Figure 4.5: Deep-SLM benchmarks on CIFAR-10 problem task with kernel dimensions
a) (2,2), b) (5,5), c) (10,10) and d) (32,32) with various number of kernels with constant
stride (1,1). Black curve is the SLM baseline reference. Kernel dimension does not seem
to have significant effect on performance of the Deep-SLM. Higher number kernels
increase learning rate but not significantly improve overfitting.

50

4.3. EXPLORATION OF THE 2D CONVOLUTION LAYER FOR THE Deep-SLM

4.3.2 Discussion

Figure 4.5 displays the results obtained from the exploratory analysis of using a

single 2D CL in the CP of the Deep-SLM.

From the observations in this figure 4.5, it seems that the use of a single 2D CL,

initialized with a random kernel values, did not improve the performance of the Deep-

SLM. The black curve in figure 4.5 represents the baseline SLM benchmark performer

and in all evolution graphs, the performance of baseline SLM performer was not ex-

ceeded, or only to a very limited extend. The CE loss and accuracy of all tested variants

show minor to no improvements over the baseline SLM (black curve).

Different convolution kernel dimensions did not seem to have an effect on the per-

formance of the Deep-SLM . Increasing the kernel dimensions (increasing the number

of weights in the convolution kernels) did not seem to have any effect as well. The

maximum kernel dimension possible for the CIFAR-10 dataset (32x32), which results

in a single pixel feature map, is highly unfavourable (figure 4.5d) and did not allow for

learning either the training data or test data.

Adding a higher number of convolution kernels (10, 25) in each mutation step will

result in more feature maps in that mutation. This does seem to have a minor effect on

generalization ability and performance of the Deep-SLM. More random feature maps

also induce more input connections feeding into NCP of the Deep-SLM, although this

effect of is minimal.

From this exploratory analysis, the hypothesis can be proposed stating that the ran-

dom weight initialization for a 2D CL does not produce relevant random transforma-

tions (random feature maps), which generalize well to both the training set data and

test set data. Potentially, an approach with optimizing the weights of the convolution

nodes could be a solution to overcome this problem. But, in this case, the advantage

of deriving fully function CNNs without the use of a numerical optimization method,

would be lost.

Besides the exploration of a single 2D CL in the CP of the Deep-SLM , applying

sparse connections to the NCP of the Deep-SLM was also explored. Figure 4.4 shows

the results obtained from this analysis.

As previously observed in the SLM baseline, sparseness effectively improved perfor-

mance and generalization ability of the SLM (figure 4.3). For the Deep-SLM, this effect

can be observed, to a minimal extend, as well when analysing the evolution of the CE

loss on the test set in figure 4.4. Both variants of the SLM and Deep-SLM with 99%

51

CHAPTER 4. RESULTS & DISCUSSION

sparseness show a more stable convergence of the the Test CE loss, whilst the Deep-SLM

variants with less sparseness start to increase their Test CE loss scores when the evolu-

tion is continued for more generations. These observations did not translate to accuracy

metric.

Nevertheless, applying sparse connections to the NCP of the Deep-SLM did not seem

to have any influence on the performance of the Deep-SLM. Note that due to the 2D CL

in the CP of the Deep-SLM, the number of input connections feeding into the NCP is

smaller as compared to the SLM variants. This could be a potential explanation for the

absence of the positive effect when applying sparse connections in the Deep-SLM.

4.4 Exploration of 2D max-pooling layer for the Deep-SLM

In addition to section 4.3, the Deep-SLM was explored by adding a 2D max-PL to the

CP of the Deep-SLM. By adding a 2D max-PL, the Deep-SLM’s CP structure consisted

of a single 2D CL followed up by a 2D max-PL.

The 2D CL randomly convolves the CIFAR-10 input data and produces random

feature maps. Consecutively, the 2D max-PL down samples the random feature maps

and feeds the activations into the NCP of the Deep-SLM. Here, likewise as all the other

previous benchmarks, a single hidden layer in the NCP consisting of 50 nodes was used

in the Deep-SLM.

The effect of down sampling of the random feature maps by the 2D max-PL was

evaluated by testing two variants of the PL, whilst keeping the 2D CL parameters

constant. Two different kernel dimensions and stride values of the max-PL were tested,

which were respectively (2,2) and (4,4) for the kernel dimensions, and (2,2) and (4,4) for

stride values. Note that the effect of pooling with bigger kernel dimensions and strides

results in more down sampled features with smaller dimensions. This induces "more
general, less detailed and precise" representation of the original random convolved feature

maps.

The parameters of the 2D CL layer were kept constant and were the following; kernel

dimension=(5,5), n_kernels=10, stride=(1,1). The same parameter settings as displayed

in table 4.2 were used in the following benchmark experiments.

Additionally, the effect of using sparse connections in the NCP of the Deep-SLM

was explored. This was done by applying 50% and 99% sparseness to the NCP of the

Deep-SLM. These variants were also compared against the variants without sparseness

and these exploratory benchmarks were performed using a single run (figure 4.6).

52

4.4. EXPLORATION OF 2D MAX-POOLING LAYER FOR THE DEEP-SLM

For all the following benchmarks, standard NCP and CP parameter settings were

used as reported in table 2.1.

In a final experiment, the 2D max-PL with kernel dimensions=(4,4) and stride=(4,4)

was benchmarked over 30 runs to asses for a statistical significant improvement (figure

4.7 and 4.8). This procedure consisted of first assessing the score samples for normality

with non-parametric Kolmogorov-Smirnov Test, and secondly, the non-parametric rank-

based Mann-Whitney U Test to asses for a statistical significant difference between the

expected means of the sample scores.

4.4.1 Results

0 100 200
Iteration

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

C
E

L
os

s

a) Conv > MaxPool(2,2) > SLM

0 100 200
Iteration

10

20

30

40

50

60

70

80
A

cc
u

ra
cy

%

Training
Test Set

SLM_sparseness=99%
DSLM sparseness=99%
DSLM sparseness=50%
DSLM no_sparseness

0 100 200
Iteration

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

C
E

L
os

s

b) Conv > MaxPool(4,4) > SLM

0 100 200
Iteration

10

20

30

40

50

60

70

80

A
cc

u
ra

cy
%

Training
Test Set

SLM_sparseness=99%
DSLM_sparseness=99%_kernel_dim=2
DSLM_sparseness=99
DSLM_sparseness=50%
DSLM_no_sparseness

Figure 4.6: 2D max-PL with kernel dimensions (2,2) (a) and kernel dimensions (4,4)
(b) with various percentages of sparseness applied the NCP of the Deep-SLM on the
CIFAR-10 problem task. A bigger receptive field of the 2D max-PL seems to have a
beneficial effect on the performance of the Deep-SLM

53

CHAPTER 4. RESULTS & DISCUSSION

SLM
sparse=99%

Deep-SLM
sparse=99%

63

64

65

66

67

68

Tr
ai

n
A

cc
u

ra
cy

%

SLM
sparse=99%

Deep-SLM
sparse=99%

51

52

53

54

55

56

Te
st

A
cc

u
ra

cy
%

Figure 4.7: Box plot representation of baseline SLM performance and the Deep-SLM
with 2D max-PL with kernel dimensions (2,2) and 99% sparseness on the CIFAR-10
problem task. The experiment was run with 30 runs. The 2D max-PL in combination
with the 2D CL improves the performance of the Deep-SLM by increasing Test Set
Accuracy from 51.5% to 54.2%. The results were found to be statistically significant.

DSLM sparse=99%
kernel_size=2

DSLM no sparse
kernel_size=4

64

66

68

70

72

Tr
ai

n
A

cc
u

ra
cy

%

DSLM sparse=99%
kernel_size=2

DSLM no sparse
kernel_size=4

53

54

55

56

57

58

59

Te
st

A
cc

u
ra

cy
%

Figure 4.8: Box plot visualisation of the Deep-SLM with 2D max-PL with kernel dimen-
sions of (2,2) and 99% sparseness and kernel dimensions of (4,4) with no sparseness.
The experiment was performed on the CIFAR-10 problem task and was run with 30
runs. A bigger receptive field of the 2D max-PL improves the performance of the Deep-
SLM by increasing test set accuracy from 54.2% to 57.2%. The results were found to be
statistically significant.

54

4.4. EXPLORATION OF 2D MAX-POOLING LAYER FOR THE DEEP-SLM

4.4.2 Discussion

Figure 4.6 displays the results obtained from the exploration of the Deep-SLM with

the 2D max-PL in the CP on the CIFAR-10 dataset. Figure 4.6 (a) shows the effect of

using a smaller receptive field and stride in the 2D max-PL. Figure 4.6 (b) shows the

effect of using a bigger receptive field and stride in the down sampling layer.

Figure 4.6 (a) shows that the use of a 2D max-PL with a 2D CL in the CP of the Deep-

SLM does not seem to have an effect on the performance metrics (red and green curves

figure 4.6 (a)), but, when sparseness is applied to the NCP, the CE loss on the test set

is decreased from 1.45 to 1.40, and, the accuracy on the test set is increased 51.5% to

54.2% (blue curve figure 4.6 (a)).

To validate the improvements of the 2D max-PL, the Deep-SLM variant with 99%

sparseness was benchmarked over 30 runs and the Kolmogorov-Smirnov test was per-

formed to test the sample for normality, and consecutively, the rank-based Mann-Whitney

U Test was used to asses for a statistical significant difference with the expected mean

performance of the baseline SLM performer with 99% sparseness.

The results of this analysis are shown in figure 4.7 in box plot format. The Kolmogorov-

Smirnov p-values obtained for both score samples were respectively 7.68e-69 and 3.52e-

695, and thus, suggesting that the alternative hypothesis, which states that both scores

are not normally distributed, cannot be rejected. In this test, a significance level α of

0.05 was considered. Consecutively, the p-values obtained from the ranked-based Mann-

Whitney U Test was 7.00e-12, which suggest that the alternative hypothesis, which states

that the SLM with 99% sparseness has a lower expected mean of the sample score than

the Deep-SLM variant with 99% sparseness, cannot be rejected either. This indicates

that the Deep-SLM variant with 99% sparseness outperforms the standard SLM with

99% sparseness, with statistical significance on the test set accuracy metric.

In figure 4.6 (b), the effect of a bigger receptive field and stride value in the 2D max-PL

was explored. What can be observed from figure 4.6(b)) is that a bigger receptive field

and stride value, in combination with a less sparseness (green curve) or no sparseness

(red curve) applied to the NCP, decreases the Test CE loss to 1.37, and increases Test

Set Accuracy up to 57.2%.

These observations are in contrary with the findings in figure 4.6 (a), in which a

higher amount of sparseness in the NCP had a favourable effect on the performance of

the Deep-SLM .

55

CHAPTER 4. RESULTS & DISCUSSION

Nevertheless, increasing the amount of down sampling of the randomly convolved

feature maps seems to have a favourable effect on the performance of the Deep-SLM ,

under the constraint that the other hyperparameters are properly tuned.

The 2D max-PL seems to increase generalization ability and performance of the Deep-

SLM on the CIFAR-10 dataset. Note that in the configuration of the 2D max-pooling

operation there exist no weights that can be optimized, as opposed to the 2D CL, which

consists of tuneable weights. This property could support the hypothesis that randomly

sampling the weights of a 2D CL does not result in the generation of useful and well-
generalizing random features for the Deep-SLM. This is opposed to a non-tuneable down

sampling component, which does seem to have a favourable effect on generalization

ability and performance of the Deep-SLM .

To asses for the statistical significant improvements of these results, the Deep-SLM

variant with pooling kernel dimensions of (4,4) was tested for 30 runs and the Kolmogorov-

Smirnov test was used to asses the score samples for normality. Consecutively, the

rank-based Mann-Whitney Test was used to asses if the scores have the same expected

mean as the Deep-SLM variant with 99% sparseness and pooling kernel dimensions of

(2,2), and, if the alternative hypothesis, which states that the expected mean accuracy

score on the test set of the Deep-SLM variant with 99% sparseness and pooling kernel

dimensions of (2,2) is lower than the the expected mean accuracy score on test set of

the Deep-SLM variant with pooling kernel dimensions of (4,4) and no sparseness, can

be rejected.

The results of this analysis are summarised in box plots in figure 4.8. The p-values

returned from the Kolmogorov-Smirnov test were 3.52e-65 and 1.39e-47 respectively.

This indicates that th sample means are not normally distributed. The p-value returned

from the rank-based Mann-Whitney U Test was 2.01e-11, indicating that the expected

means of test set accuracy scores of both variants are different, and that the alternative

hypothesis, stating that the expected mean value of the Deep-SLM variant with 99%

sparseness with pooling kernel dimensions of (2,2) is lower than the variant with pooling

kernel dimensions of (4,4), cannot be rejected.

56

C
h
a
p
t
e
r

5
Conclusion

The aim of this thesis was to explore the Deep-SLM algorithm on the CIFAR-10 prob-

lem task, and to provide a validation of its proof of concept. To accomplish this objective,

a comparative benchmark study between the Deep-SLM and SLM algorithms was per-

formed, in which the behaviour of the Deep-SLM algorithm was studied. The accuracy

and CE loss metrics were selected as the performance metrics for the experiments and

based on these metrics, both algorithms were explored, analysed and compared against

each other in a disquisition.

Due to limited computational resources, it was only succeeded to test a variant of the

Deep-SLM algorithm. This variant only constructs parent node → mutation node con-

nections in the CP of the CNN. In the NCP of the CNN, it forms connections exclusively

between the mutation nodes, which results in the formation of sparse network struc-

tures in the NCP of the CNN. Further research must be conducted to investigate the

limitations of this design, and whether the findings and conclusions in this thesis still

hold if fully connected layers are formed throughout the complete network structure.

The SLM baseline performance on the CIFAR-10 problem task was established by

grid-searching various NCP topologies. Here, it was observed that deeper NCP topolo-

gies did not improve the performance of the SLM. It was also observed that a higher

number of nodes added to the last hidden layer of the NCP increased the learning rate

of the training set, but resulted in more overfitting on the test set. The SLM structure

consisting of a single hidden layer and adding +50 nodes in each mutation was decided

57

CHAPTER 5. CONCLUSION

as the baseline SLM performer to be used in future comparisons. The test set accuracy

was established at 49.8%. Applying sparse connections improved the baseline perfor-

mance of the SLM to a limited extent. A higher percentage of sparseness was found to be

more effective compared to a lower percentage. The SLM variant with 99.2% sparseness

improved the test set accuracy to 51.2%, which was found to be statistically significant

compared the SLM variant with no sparseness.

A single 2D CL in the CP of the Deep-SLM was added and explored. For a valid

comparison, the Deep-SLM’s NCP structure was kept equivalent to the SLM baseline

structure. The convolution kernels of the single 2D CL were initialized with random

kernel weights. A variety of kernel dimensions and stride values were tested, but none

of these improved the performance significantly over the SLM baseline. Also, sparseness

applied to the NCP the Deep-SLM did not improve the performance. A small effect was

observed with an increased number of feature maps (the number of kernels) added in

each mutation. This resulted also in an increased number of input dimensions into the

NCP, which could be an explanation for the improved performance. All in all, these

observations point in the direction that random sampling of the weights of convolution

kernels will not provide useful transformations for the Deep-SLM. The weights have to

be optimized beforehand, to produce well generalizing features for the Deep-SLM.

The effect of adding a 2D max-PL to the CP of the Deep-SLM was explored and various

pooling kernel dimensions and stride values were tested. This experiment showed that

a pooling layer can improve the performance of the Deep-SLM, unless it is properly

tuned. Max-pooling kernels with kernel dimensions of (2,2) and 99.2% sparseness

applied to the NCP increased, with statistically significance, the test set accuracy up to

54.2%. Bigger kernel dimensions of (4,4) without sparseness in the NCP increased test

set accuracy up to 57.2%. This improvement was also found to be statistically significant.

The improvements with PLs, which have zero tun-able degrees of freedom, support the

hypothesis that convolutional or pooling operations can improve generalization of the

Deep-SLM, unless the components are properly tuned.

All in all, this work has shown that the performance of the Deep-SLM can be im-

proved with a simple 2D convolution - pooling structure in the CP of the Deep-SLM.

Nevertheless, it should be acknowledged that the performance achieved with the Deep-

SLM at this moment is not compatible with the state-of-the-art performance of CNNs

trained with the conventional BP approach.

58

Bibliography

Anwar, S. M., M. Majid, A. Qayyum, M. Awais, M. Alnowami, and M. K. Khan (2018).

“Medical image analysis using convolutional neural networks: a review.” In: Journal
of medical systems 42.11, p. 226.

Back, T. (1996). Evolutionary algorithms in theory and practice: evolution strategies, evolu-
tionary programming, genetic algorithms. Oxford university press.

Badan, F. and L. Sekanina (2019). “Optimizing Convolutional Neural Networks for

Embedded Systems by Means of Neuroevolution.” In: International Conference on
Theory and Practice of Natural Computing. Springer, pp. 109–121.

Bengio, Y. et al. (2009). “Learning deep architectures for AI.” In: Foundations and
trends® in Machine Learning 2.1, pp. 1–127.

Beyer, H.-G. and H.-P. Schwefel (2002). “Evolution strategies–A comprehensive intro-

duction.” In: Natural computing 1.1, pp. 3–52.

Bojarski, M., D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,

M. Monfort, U. Muller, J. Zhang, et al. (2016). “End to end learning for self-driving

cars.” In: arXiv preprint arXiv:1604.07316.

Brameier, M. F. and W. Banzhaf (2007). Linear genetic programming. Springer Science &

Business Media.

Chollet, F. (2017). “Xception: Deep learning with depthwise separable convolutions.” In:

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1251–

1258.

Desell, T. (2017). “Large scale evolution of convolutional neural networks using volun-

teer computing.” In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion, pp. 127–128.

Floreano, D., P. Dürr, and C. Mattiussi (2008). “Neuroevolution: from architectures to

learning.” In: Evolutionary intelligence 1.1, pp. 47–62.

Fogel, L. J., A. J. Owens, and M. J. Walsh (1966). “Artificial intelligence through simu-

lated evolution.” In:

59

BIBLIOGRAPHY

Gonçalves, I., M. Seca, and M. Castelli (2020). “Explorations of the Semantic Learn-

ing Machine Neuroevolution Algorithm: Dynamic Training Data Use, Ensemble

Construction Methods, and Deep Learning Perspectives.” In: Genetic Programming
Theory and Practice XVII. Springer, pp. 39–62.

Gonçalves, I., S. Silva, and C. M. Fonseca (2015a). “On the generalization ability of

geometric semantic genetic programming.” In: European Conference on Genetic Pro-
gramming. Springer, pp. 41–52.

— (2015b). “Semantic learning machine: a feedforward neural network construction

algorithm inspired by geometric semantic genetic programming.” In: Portuguese
Conference on Artificial Intelligence. Springer, pp. 280–285.

— (2015c). “Semantic learning machine: a feedforward neural network construction

algorithm inspired by geometric semantic genetic programming.” In: Portuguese
Conference on Artificial Intelligence. Springer, pp. 280–285.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. http : / / www .

deeplearningbook.org. MIT Press.

Gori, M. and A. Tesi (1992). “On The Problem Of Local Minima In Backpropagation.”

In: IEEE Transactions on Pattern Analysis and Machine Intelligence 14, pp. 76–86.

Hartman, E. J., J. D. Keeler, and J. M. Kowalski (1990). “Layered neural networks with

Gaussian hidden units as universal approximations.” In: Neural computation 2.2,

pp. 210–215.

He, K., X. Zhang, S. Ren, and J. Sun (2015). “Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification.” In: Proceedings of the IEEE
international conference on computer vision, pp. 1026–1034.

— (2016). “Deep residual learning for image recognition.” In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 770–778.

Holland, J. (1975). “Adaptation in natural and artificial systems: an introductory

analysis with application to biology.” In: Control and artificial intelligence.

Holt, N. J., A. Bremner, E. Sutherland, M. Vliek, M. Passer, and R. Smith (2012). Psy-
chology: The science of mind and behaviour. McGraw-Hill Education.

Jagusch, J.-B., I. Gonçalves, and M. Castelli (2018). “Neuroevolution under unimodal

error landscapes: an exploration of the semantic learning machine algorithm.” In:

Proceedings of the genetic and evolutionary computation conference companion, pp. 159–

160.

Kaufmann, P. (2013). Adapting Hardware Systems by Means of Multi-Objective Evolution.

Logos Verlag Berlin GmbH.

60

http://www.deeplearningbook.org
http://www.deeplearningbook.org

BIBLIOGRAPHY

Khan, S., H. Rahmani, S. A. A. Shah, and M. Bennamoun (2018). “A guide to convo-

lutional neural networks for computer vision.” In: Synthesis Lectures on Computer
Vision 8.1, pp. 1–207.

Koza, J. R. (1989). “Hierarchical genetic algorithms operating on populations of com-

puter programs.” In: Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence IJCAI-89. Ed. by N. S. Sridharan. Vol. 1. Detroit, MI, USA:

Morgan Kaufmann, pp. 768–774. url: http://www.genetic-programming.com/

jkpdf/ijcai1989.pdf.

— (1992). Genetic programming: on the programming of computers by means of natural
selection. Vol. 1. MIT press.

Koza, J. R., W. Langdon, R. Poli, and N. Mcphee (Jan. 2008). “Genetic Programming:

An Introduction and Tutorial, with a Survey of Techniques and Applications.” In:

vol. 115, pp. 927–1028. doi: 10.1007/978-3-540-78293-3_22.

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). “Imagenet classification with

deep convolutional neural networks.” In: Advances in neural information processing
systems, pp. 1097–1105.

Lapa, P., I. Gonçalves, L. Rundo, and M. Castelli (2019). “Semantic learning machine im-

proves the CNN-based detection of prostate cancer in non-contrast-enhanced MRI.”

In: Proceedings of the Genetic and Evolutionary Computation Conference Companion,

pp. 1837–1845.

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.

Jackel (1989). “Backpropagation applied to handwritten zip code recognition.” In:

Neural computation 1.4, pp. 541–551.

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). “Gradient-based learning applied

to document recognition.” In: Proceedings of the IEEE 86.11, pp. 2278–2324.

LeCun, Y., D Touresky, G Hinton, and T Sejnowski (1988). “A theoretical framework

for back-propagation.” In: Proceedings of the 1988 connectionist models summer school.
Vol. 1. CMU, Pittsburgh, Pa: Morgan Kaufmann, pp. 21–28.

Lopez, M. M. and J. Kalita (2017). “Deep Learning applied to NLP.” In: arXiv preprint
arXiv:1703.03091.

Miikkulainen, R., J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju, H.

Shahrzad, A. Navruzyan, N. Duffy, et al. (2019). “Evolving deep neural networks.”

In: Artificial Intelligence in the Age of Neural Networks and Brain Computing. Elsevier,

pp. 293–312.

Miller, G. F., P. M. Todd, and S. U. Hegde (1989). “Designing Neural Networks using

Genetic Algorithms.” In: ICGA. Vol. 89, pp. 379–384.

61

http://www.genetic-programming.com/jkpdf/ijcai1989.pdf
http://www.genetic-programming.com/jkpdf/ijcai1989.pdf
https://doi.org/10.1007/978-3-540-78293-3_22

BIBLIOGRAPHY

Miller, J. F. and S. L. Harding (2008). “Cartesian genetic programming.” In: Proceed-
ings of the 10th annual conference companion on Genetic and evolutionary computation,

pp. 2701–2726.

Moraglio, A. (2007). “Towards a geometric unification of evolutionary algorithms.” In:

Moraglio, A. and K. Krawiec (2015). “Semantic genetic programming.” In: Proceedings of
the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary
Computation, pp. 603–627.

Moraglio, A., K. Krawiec, and C. G. Johnson (2012). “Geometric semantic genetic

programming.” In: International Conference on Parallel Problem Solving from Nature.

Springer, pp. 21–31.

Moraglio, A. and A. Mambrini (2013). “Runtime analysis of mutation-based geometric

semantic genetic programming for basis functions regression.” In: Proceedings of the
15th annual conference on Genetic and evolutionary computation, pp. 989–996.

Rawat, W. and Z. Wang (2017). “Deep convolutional neural networks for image classifi-

cation: A comprehensive review.” In: Neural computation 29.9, pp. 2352–2449.

Real, E., S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. Le, and A. Kurakin

(2017). “Large-scale evolution of image classifiers.” In: arXiv preprint arXiv:1703.01041.

Rebala, G., A. Ravi, and S. Churiwala (2019). An introduction to machine learning.

Springer.

Rojas, R. (2013). Neural networks: a systematic introduction. Springer Science & Business

Media.

Rosenblatt, F. (1958). “The perceptron: a probabilistic model for information storage

and organization in the brain.” In: Psychological review 65.6, p. 386.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). “Learning representations by

back-propagating errors.” In: nature 323.6088, pp. 533–536.

Schaller, R. R. (1997). “Moore’s law: past, present and future.” In: IEEE spectrum 34.6,

pp. 52–59.

Sharma, P. and A. Singh (2017). “Era of deep neural networks: A review.” In: 2017 8th
International Conference on Computing, Communication and Networking Technologies
(ICCCNT). IEEE, pp. 1–5.

Stanley, K. O., J. Clune, J. Lehman, and R. Miikkulainen (2019). “Designing neural

networks through neuroevolution.” In: Nature Machine Intelligence 1.1, pp. 24–35.

Stanley, K. O. and R. Miikkulainen (2002). “Evolving neural networks through aug-

menting topologies.” In: Evolutionary computation 10.2, pp. 99–127.

62

BIBLIOGRAPHY

Such, F. P., V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune (2017). “Deep

neuroevolution: Genetic algorithms are a competitive alternative for training deep

neural networks for reinforcement learning.” In: arXiv preprint arXiv:1712.06567.

Suganuma, M., S. Shirakawa, and T. Nagao (2017). “A genetic programming approach to

designing convolutional neural network architectures.” In: Proceedings of the genetic
and evolutionary computation conference, pp. 497–504.

Sun, Y., B. Xue, M. Zhang, and G. G. Yen (2019a). “Completely automated CNN archi-

tecture design based on blocks.” In: IEEE transactions on neural networks and learning
systems 31.4, pp. 1242–1254.

— (2019b). “Evolving deep convolutional neural networks for image classification.” In:

IEEE Transactions on Evolutionary Computation 24.2, pp. 394–407.

Szegedy, C., S. Ioffe, V. Vanhoucke, and A. A. Alemi (2017). “Inception-v4, inception-

resnet and the impact of residual connections on learning.” In: Thirty-first AAAI
conference on artificial intelligence.

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich (2015). “Going deeper with convolutions.” In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 1–9.

Teixeira, M. J. S. (2019). “Improving malware detection with neuroevolution: a study

with the semantic learning machine.” Doctoral dissertation.

Vanneschi, L. (Aug. 2017). “An Introduction to Geometric Semantic Genetic Program-

ming.” In: 663, pp. 3–42. doi: 10.1007/978-3-319-44003-3_1.

Vanneschi, L., M. Castelli, and S. Silva (June 2014). “A survey of semantic methods

in genetic programming.” In: Genetic Programming and Evolvable Machines 15. doi:

10.1007/s10710-013-9210-0.

Vapnik, V. (1992). “Principles of risk minimization for learning theory.” In: Advances
in neural information processing systems, pp. 831–838.

Zhao, Q., S. Lyu, B. Zhang, and W. Feng (2018). “Multiactivation pooling method in

convolutional neural networks for image recognition.” In: Wireless Communications
and Mobile Computing 2018.

Zhou, P., G. Zhou, Z. Zhu, C. Tang, Z. He, W. Li, and F. Jiang (Aug. 2018). “Health

Monitoring for Balancing Tail Ropes of a Hoisting System Using a Convolutional

Neural Network.” In: Applied Sciences 8, p. 1346. doi: 10.3390/app8081346.

Zhu, W., W. Yeh, J. Chen, D. Chen, A. Li, and Y. Lin (2019). “Evolutionary convolutional

neural networks using abc.” In: Proceedings of the 2019 11th International Conference
on Machine Learning and Computing, pp. 156–162.

63

https://doi.org/10.1007/978-3-319-44003-3_1
https://doi.org/10.1007/s10710-013-9210-0
https://doi.org/10.3390/app8081346

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Theory & Background
	Supervised Machine Learning
	Supervised Learning Theory
	Overfitting, Underfitting & Generalization Ability
	Optimization In The Context Of Supervised Learning

	Artificial Neural Networks
	Single Layer Perceptron Networks
	Multilayer Perceptron Networks
	The Backpropagation Algorithm
	Convolutional Neural Networks

	Evolutionary Algorithms
	Geometric Semantic Genetic Programming
	Neuroevolution
	Semantic Learning Machine

	Deep Semantic Learning Machine
	Geometric Semantic Mutation For CNNs
	The DSLM algorithm
	Adaptive Learning Step
	Code Implementation

	Experimental Methodology
	Data sets
	Metrics
	Experimental Framework

	Results & Discussion
	Defining the baseline SLM performance
	Results
	Discussion

	Improving the baseline SLM performance
	Results
	Discussion

	Exploration of the 2D convolution layer for the DSLM
	Results
	Discussion

	Exploration of 2D max-pooling layer for the Deep-SLM
	Results
	Discussion

	Conclusion
	Bibliography

