
Applying neural networks for improving
the MEG inverse solution

Joni Latvala

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Helsinki 27.11.2017

Thesis supervisor and advisor:

Prof. Lauri Parkkonen

aalto university
school of science

abstract of the
master’s thesis

Author: Joni Latvala

Title: Applying neural networks for improving the MEG inverse solution

Date: 27.11.2017 Language: English Number of pages: 8+85

Department of Neuroscience and Biomedical Engineering

Professorship: Human Neuroscience and Technology

Supervisor and advisor: Prof. Lauri Parkkonen

Magnetoencephalography (MEG) and electroencephalography (EEG) are appealing
non-invasive methods for recording brain activity with high temporal resolution.
However, locating the brain source currents from recordings picked up by the
sensors on the scalp introduces an ill-posed inverse problem. The MEG inverse
problem one of the most difficult inverse problems in medical imaging. The current
standard in approximating the MEG inverse problem is to use multiple distributed
inverse solutions – namely dSPM, sLORETA and L2 MNE – to estimate the source
current distribution in the brain. This thesis investigates if these inverse solutions
can be "post-processed" by a neural network to provide improved accuracy on
source locations.

Recently, deep neural networks have been used to approximate other ill-posed
inverse medical imaging problems with accuracy comparable to current state-of-
the-art inverse reconstruction algorithms. Neural networks are powerful tools for
approximating problems with limited prior knowledge or problems that require
high levels of abstraction. In this thesis a special case of a deep convolutional
network, the U-Net, is applied to approximate the MEG inverse problem using the
standard inverse solutions (dSPM, sLORETA and L2 MNE) as inputs.

The U-Net is capable of learning non-linear relationships between the inputs
and producing predictions about the site of single-dipole activation with higher
accuracy than the L2 minimum-norm based inverse solutions with the following
resolution metrics: dipole localization error (DLE), spatial dispersion (SD) and
overall amplitude (OA). The U-Net model is stable and performs better in aforesaid
resolution metrics than the inverse solutions with multi-dipole data previously
unseen by the U-Net.

Keywords: deep learning, inverse problem, ill-conditioning, magnetoencephalog-
raphy, convolutional neural networks

iii

Preface
After all these years I am finally at the verge of graduation. Working full-time and
running a company does not mix well with finishing studies. These last couple of
years have been incredibly exhausting, and I have to say I understand why some
people who are heavily involved in working life decide to drop out of school.

Applying to and getting accepted to former BECS (current NBE) has to be one of
the best decisions I’ve made. Modelling complex interactions in the brain managed
to reignite a burning passion for computational science and mathematics: It is as if I
would be a child again, filled with curiosity! For better or worse, NBE got me into
the world of data science and artificial intelligence, and there is no turning back.

I have to apologize for being too ambitious with my thesis. The wise researches at
NBE warned me that this subject would be too difficult and complex for a master’s
thesis. I wish I had paid more attention to their educated views. Nevertheless, here
we are. During last summer after hundreds of iterations with distinct neural network
models and countless adjustments to the hyperparameters I lost the hope of finding
a model that would converge. The gradients would either vanish into void or explode
through the roof, which is the main issue I have had throughout the development.
Exploding and vanishing gradients are typical problems in neural networks that are
overemphasized with ill-posed problems. Then, one day I found what I was looking
for: batch normalization. It turned out that that was the final piece I needed to solve
this puzzle.

I realized that my years of achieving with school and work life has put me in a
situation where I feel grateful and also sorry for all the amazing people in my life. I
want to thank my friends and family for supporting and tolerating me at times when
I was the biggest jerk to you. I want to thank the amazing experts in mathematics
and machine learning I’ve had the pleasure to ask for guidance along the way. I
also want to thank Aalto University and Professor Lauri Parkkonen for enabling this
flexibility I needed to get the job done; it would not have been possible without it. I
am also grateful for the in-depth discussions of this thesis’ subject with Professor
Parkkonen. His expertise enabled me to avoid pitfalls beforehand and to get this
thesis done in this schedule. He is an expert extraordinaire.

Helsinki, 27.11.2017

Joni Latvala

iv

Contents
Abstract ii

Preface iii

Contents iv

Symbols and abbreviations vi

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions of the thesis . 2

2 Background 3
2.1 Magnetoencephalography . 3

2.1.1 Instrumentation . 5
2.1.2 Noise suppression and data pre-processing 6
2.1.3 The forward problem . 8
2.1.4 The inverse problem . 10
2.1.5 Inverse modelling strategies 12
2.1.6 Regularization . 14

2.2 Artificial neural networks . 16
2.2.1 Neurons in the network . 17
2.2.2 Network structures . 18
2.2.3 Activation functions . 20
2.2.4 Learning and loss functions 22
2.2.5 Gradient descent . 23
2.2.6 Training protocols . 25
2.2.7 Gradient optimization methods 26
2.2.8 Weight initialization . 30
2.2.9 Overfitting and regularization 31
2.2.10 Imbalanced data . 32

2.3 Deep convolutional neural networks 34
2.3.1 Data pre-processing . 37
2.3.2 Ill-conditioning . 38
2.3.3 The U-Net . 39

2.4 Improving the MEG inverse solution 41

3 Materials and methods 44
3.1 Hardware . 44
3.2 Software packages . 44

3.2.1 MEG-inverse-UNet . 44
3.2.2 MNE-Python . 45
3.2.3 FreeSurfer . 45
3.2.4 PySurfer . 45

v

3.2.5 TensorFlow . 45
3.2.6 CUDA and cuDNN . 46
3.2.7 Scikit-Learn . 47

3.3 Data simulation procedure . 47
3.4 Data providing and processing . 48
3.5 Custom U-Net . 50
3.6 Training procedure . 51
3.7 Predictions . 53
3.8 Resolution metrics . 54

4 Results 56
4.1 MEG U-Net . 57

4.1.1 Dipole localization error . 58
4.1.2 Spatial dispersion . 60
4.1.3 Overall amplitude . 61
4.1.4 Differences in source space . 63

4.2 M/EEG U-Net . 66
4.3 Stability of the method . 68

4.3.1 Regularization . 68
4.3.2 MEG and EEG channels . 70
4.3.3 Multi-dipole localization . 73

5 Discussion 76
5.1 Summary . 76
5.2 Model improvements . 77
5.3 What’s next? . 78

Appendices 85

Appendix A Quasi-static approximation of Maxwell’s equations 85

vi

Symbols and abbreviations

Symbols
E electric flux density
B magnetic flux density
J current field
H Hessian matrix
Id identity matrix
J Jacobian matrix
L lead field matrix

Operators
A ⊆ B A is a subset of B
a← b a is assigned with b (in algorithm context)
A ≡ B A is equivalent to B
|x| absolute value of x
P (A | B) conditional probability of A given B
A ∧ B conjunction of A and B
∇× a curl of vector a
x := y definition of x as y
d
dt derivative with respect to variable t

diag (A) diagonal of matrix A
a · b dot product of vectors a and b
δ(x) Dirac delta function
θ̂ estimate of the parameter θ
∇f gradient of function f
A�B Hadamard product of matrices A and B
A =⇒ B implication; if A then B∫
i integral over index i

A-1 inverse of matrix A
x(t) ∗ y(t) linear convolution of x(t) and y(t)
f : X → Y mapping of set X to set Y with function f
‖a‖ norm of vector a
N (µ, σ2) normal distribution with mean µ and variance σ2

∂

∂t
partial derivative with respect to variable t

∇⊥f perpendicular gradient of function f∑
i sum over index i

AT transpose of matrix A
U (a, b) uniform distribution with minimum a and maximum b
A ∪ B union of A and B
x ∈ A x is an element of A

vii

Abbreviations

ANN artificial neural network
API application programming interface
BEM boundary element method
CNN convolutional neural network
CPU central processing unit
CT computed tomography
CTF cross-talk function
DLE dipole localization error
dSPM dynamic statistical parametric mapping
ECD equivalent current dipole
FFA fusiform face area
fMRI functional magnetic resonance imaging
GPGPU general-purpose computing on graphics processing unit
GPU graphics processing unit
ECD equivalent current dipole
EEG electroencephalography
EOG electrooculogram
FBP filtered back projection
FEM finite element method
FIR finite impulse response
GRU gated recurrent unit
HPI head-position indicator
ICA independent component analysis
IID independent and identically distributed
L2 MNE L2 minimum-norm estimate
LASSO least absolute shrinkage and selection operator
LCMV linearly-constrained minimum variance
LSTM long short-term memory
MCE minimum current estimate
M/EEG magneto- and electroencephalography
MEG magnetoencephalography
MNE minimum-norm estimate
MRI magnetic resonance imaging
MSE mean squared error
MUSIC multiple signal classification
MxNE mixed-norm estimate
NMF non-negative matrix factorization
LS least-squares
OA overall amplitude
OLS ordinary least squares
PCA principal component analysis
PDF probability density function
PET positron-emission tomography

viii

PSF point-spread function
RAM Random Access Memory
ReLU rectified linear unit
RGB red, green, blue (color channels)
RNN recurrent neural network
RLS regularized least-squares
SD spatial dispersion
SGD stochastic gradient descent
sLORETA standardized low-resolution brain electromagnetic tomography
SNR signal-to-noise-ratio
SQUID superconducting quantum interference device
SSP signal-space projection
SSS signal-space separation
SVD singular-value decomposition
VRAM video random access memory
WMNE weighted minimum-norm estimate
ZCA zero components analysis

1 Introduction

1.1 Motivation
Magnetoencephalography (MEG) along with electroencephalography (EEG) and
functional magnetic resonance imaging (fMRI) are the main means of measuring
brain activity. Lately, MEG has become more available in clinical research. It is
also a fantastic method for measuring brain activity thanks to its non-invasiveness.
MEG allows recordings of cortical function and dysfunction without attenuation nor
distortion caused by the skull or other intervening tissue layers. When compared
to other brain imaging methods, MEG has a superior temporal resolution but lacks
in spatial resolution (Figure 1). The lack of spatial resolution limits the clinical
applicability of MEG as a stand-alone method. MEG is often combined with methods
that have superior spatial resolution – such as fMRI – in situations where superb
spatio-temporal resolution is needed. However, such multimodal functional imaging
methods require robust quantitative methods for addressing the coupling between the
haemodynamic response and electrophysiological activity in the brain. This limits
the applicability of MEG in situations where extreme spatial resolution is needed,
such as in MEG-guided surgery (Sato et al., 2004; Knowlton, 2008; Liu et al., 2006).

The recent rise of deep learning methods has enabled deep models to solve more
and more challenging and complex problems. Convolutional neural networks (CNNs)
have been shown to outperform inverse solutions and state-of-the-art reconstruction
algorithms in another field of medical imaging, namely in computed tomography
(CT). Jin et al. demonstrated in 2017 how the U-Net (a special case of CNN) can be
trained with the inverse solution – filtered backprojection (FBP) – as the input for
the model. The U-Net was capable of "post-processing" the FPB closer to ground
truth, improve signal-to-noise ratio (SNR) and outperform state-of-the-art inverse
reconstruction algorithms with real-life biomedical data set. The motivation of this
thesis is to test if a similar neural network model can be built to "post-process" the
inverse solution of MEG closer to the ground truth and improve its resolution metrics
in terms of accuracy and precision.

Neural networks are also interesting in terms of neuroscientific research. The
intuition and reasoning behind which models work well with different problems and
why follows that of neural circuits and brain areas dedicated for certain features.
Recently, deep learning has been applied in approximating encoding-decoding problems
directly in the brain. One of such experiments applied CNNs to predict from processed
fMRI data which objects the subjects had seen in the presented visual stimuli. This
experiment also explored the functional alignment between downstream brain areas
and object categories in deeper layers of the CNN. One such finding was that in the
CNN "a face neuron" was formed that had a significant correlation with activation in
the fusiform face area (FFA) further illustrating the potential connection between
biological and artificial neural networks (Wen et al. 2017). At its best, research on
neural networks may shed light on some neuroscientific questions.

2

1.2 Contributions of the thesis
The software created with this thesis is by no means complete. There are still
numerous improvements to be done as discussed in Section 5.2. The repository
MEG-inverse-UNet created for this thesis is available in GitHub (https://github.
com/jjlatval/MEG-inverse-UNet). The goal of this thesis is to present the code
base to MEG researchers and enable them to test the model and develop it further.
Additional areas of application still remain in the domain of other fields in medical
imaging. Naturally, medical imaging is not the only area in physics with ill-posed
inverse problems, so the software can be applied in other fields of physics as well.

https://github.com/jjlatval/MEG-inverse-UNet
https://github.com/jjlatval/MEG-inverse-UNet

3

2 Background

2.1 Magnetoencephalography
Magnetoencephalography (MEG) is a technique used for measuring weak magnetic
fields caused by electrical activity of the neurons in cortical areas of the brain. When
the brain processes information, small currents in the neural system produce a
weak magnetic field which can be measured non-invasively by an array of sensitive
superconducting quantum interference device (SQUID) magnetometers. SQUIDs
are placed outside of the skull in an array of roughly 300 sensors. The temporal
resolution of MEG and electroencephalography (EEG) is the best amongst other
modern brain imaging methods at less than 1 ms. However, MEG lacks in spatial
resolution and under favorable circumstances reaches a spatial resolution of 2 – 3
mm for sources in cerebral cortex (see Figure 1). One of the biggest challenges
in MEG is locating the electrical activity that caused the minute magnetic fields
measured by the SQUIDs. This inverse problem is severely ill-posed and has no
unique solution. In order to approximate the inverse problem suitable constraints
have to be artificially introduced.

Figure 1: Spatiotemporal resolution of modern brain imaging methods (Lystad &
Pollard 2009).

A sensory stimulus activates a small portion of the cortex. The movement of
ions through the cell membrane according to their chemical gradients give rise to
impressed currents. Impressed currents give rise to primary currents Jp, inside the
dendrites. Also, passive ohmic currents known as volume currents Jv, are caused by
both impressed and primary currents. Primary and volume currents are the main
sources behind the magnetic fields measured in MEG. Thus, impressed currents can
be omitted.

4

In magneto- and electroencephalography (M/EEG) modelling the source area
inside and outside of the neuron cells are considered a black box. Impressed and
ohmic currents inside such a black box can be represented by a single primary current,
which in turn is usually modelled as an equivalent current dipole (ECD). The extent
of the black box is determined by the spatial resolution of the measurement, and the
primary current is normally described as point-like. All currents outside of the black
box are defined as volume currents or secondary currents. The total current density
is the sum of primary and secondary current densities:

J(r′) = Jp(r′) + Jv(r′). (1)

If the primary source and the surrounding conductivity distribution are known,
the resulting electric potential and magnetic field can be calculated using quasi-static
Maxwell’s equations, which means that in the calculation of the electric field E, and
the magnetic field B, their partial derivatives ∂E/∂t and ∂B/∂t can be ignored as
source terms. The usage of ∇× E = 0 simplifies derivation of formulas describing
electromagnetic fields because the electric field (see Appendix A for full justification
of using quasi-static approximation of Maxwell’s equations).

The current field J gives rise to a magnetic field B, which can be measured by
MEG sensors. The magnetic induction B at position r, arising from N dipoles at
positions r′i with moments di with the permeability µ in an infinite volume with
homogeneous and isotropic conductivity can be derived using Maxwell’s equations:

B∞(r) = µ

4π

N∑
i=1

di ×
(r− r′i)
| r− r′i |3

. (2)

Equation (2) is one way to write the well-known Biot-Savart law which describes a
magnetic field generated by an electric current. The magnetic fields caused by electric
activity in the brain as seen by MEG sensors is called the forward problem, which is
a well-posed problem and it has a unique solution, as stated above. Only currents
that have a component tangential to the surface of a spherical conductor produce a
magnetic field outside making radial sources externally silent and unobservable by
MEG. Therefore MEG mainly measures activity in the fissures of the cortex where
all primary sensory areas of the brain also happen to be. In addition to the primary
current distribution, the forward model typically includes a conductor model to take
into account a realistic conductivity and geometry of the subject’s head. The forward
problem will be discussed in-depth in Section 2.1.3.

The main problem of M/EEG is the inverse problem. The inverse problem
concerns with solving the source currents responsible for the externally measured
electromagnetic field. Unlike the forward problem, the inverse problem is severely ill-
posed and was shown already in 1853 not to have a unique solution. Therefore source
models, current dipoles and special estimation techniques are needed to superimpose
restrictions that enable unique estimates on the given problem (Hämäläinen et al.,
1993; Somersalo, 2007; Gramfort et al., 2012). The inverse problem will be described
in more detail in Section 2.1.4.

5

2.1.1 Instrumentation

The magnetic field B, is measured by roughly 300 sensors of the MEG sensor
array. An MEG sensor array contains a combination of flux transformers called
magnetometers and gradiometers (Figure 2). Magnetometers measure the magnetic
field Bz and gradiometers measure the spatial derivative of the magnetic field.
Gradiometers come in two variety: axial gradiometers and planar gradiometers.
Axial gradiometers measure the change of the radial field along the radius, ∆Bz/∆z.
Planar gradiometers are the most sensitive to signals directly under them and measure
∆Bz/∆x or ∆Bz/∆y depending on the orientation. Magnetometers and gradiometers
are illustrated in Figure 2.

Figure 2: Flux transformer types by geometry: (a) magnetometer, (b) planar
gradiometer and (c) axial gradiometer. Illustration (d) represents integration of the
flux in a planar gradiometer measuring ∆Bz/∆x (Hansen et al. 2010, p. 32).

The sensor model concerns on computing the magnetic fields as measured by
the sensors in the sensor array. Formally, the spatial sensitivity of the sensors can be
described with the concept of lead field, which is a fictitious vector field whose value
at a spatial location gives the direction of the current that yields the maximal output
at that location, and the gain with which the source current affects the output of
the sensor. Knowing the lead field Li for the ith sensor, the output of that sensor bi
can be expressed as:

bi =
∫
G

Li(r)jpdG, (3)

where the integration is carried out through a volume conductor G and r points to
the center of the integration element dG. The lead field can be estimated by scanning
the volume conductor G with a set of three orthogonal unit-strength current dipoles.
The signals elicited by x, y and z directed dipoles correspond to the lead field vector
at that location. By using the Biot-Savart law (Equation (2)), the lead field L, can
be expressed with the total magnetic field B at location r in order to get the output

6

of the ith channel:
bi =

∫
A

B(r)dA ≈
N∑
k=1

wkB(rk)nk, (4)

where the integral is calculated over surface A of the pick-up and compensation
coils with r pointing to the center of the surface patch dA (as in Figure 2 (a)).
The approximation by N points uses unit normal vectors nk and surface areas wk

associated with each point k.

The dewar houses the MEG sensor array submerged in liquid helium in order
to maintain superconductivity (Figure 3). Superconductivity is needed to measure
the magnetic fields caused by electrical activity in the brain that are 8–9 orders of
magnitude weaker than the Earth’s magnetic field. Therefore, MEG instrumentation
has to be shielded with a magnetically shielded room.

Figure 3: MEG dewar (Lystad & Pollard 2009).

The magnetically shielded room is made of high-permeability µ-metal which
shields the instrumentation from the impinging magnetic field with a low-reluctance
path along the walls of the room, thus reducing the field strength inside the room.
This helps to shield the room from low-frequency interferences. At higher frequencies
the shielding relies on the eddy currents flowing in a high-conductivity metal, such
as aluminium. In order to shield the room from both low and high frequency
interferences, the walls are typically made of both µ-metal and aluminium plates
(Hämäläinen et al., 1993; Hansen et al., 2010, p. 26–46).

2.1.2 Noise suppression and data pre-processing

Signal processing techniques are used in addition to instrumentation choices in
order to suppress unwanted noise from data and to increase the low signal-to-

7

noise ratio (SNR). External interference can be further suppressed by signal-space
separation (SSS) methods (Taulu et al. 2005). However, MEG measurements are
also susceptible to artifacts in the subject, such as head movements, saccades and
the heart rate. Biomagnetic signals are extracted from environmental noise with
signal-space projection (SSP) methods or extrapolation based on reference channels
(Somersalo 2007).

Filtering is a common pre-processing method. The signal of interest often
occupies certain frequency bands. Typical methods for filtering containl low-pass,
high-pass or band-pass filtering. The thresholds for each of these are set by channel
types, e.g. an MEG channel high-pass filter is typically set to 40 Hz. Band-stop,
notch filtering and multi-taper methods are optionally used for suppressing power-line
artifacts which are often confined to narrow frequency bands.

Artifact rejection aims to reduce interference from biological and environmental
sources. There are two categories for artifact rejection: (1) exclusion of contaminated
data segments and (2) attenuation of artifacts caused by the use of signal-processing
techniques. Contaminated data can be excluded by setting a threshold for peak-to-
peak amplitude and flat signal detection. Visual inspection of channel data is also
used in order to identify and exclude bad channels. The typical artifact suppression
techniques combine SSP and independent component analysis (ICA).

Signal-space projection (SSP) estimates an interference subspace and uses
a linear projection operator which is applied to the sensor data to remove the
interference from the data. SSP assumes the noise subspace to be orthogonal or
at least sufficiently different from the signal subspace to avoid signal loss in the
projection. SSP is then determined by principal component analysis (PCA) of data
with noise or artifacts and then using the strongest principal components in order to
construct the projection operator. In MEG, the noise subspace is usually estimated
from empty-room data in order to suppress environmental artifacts. SSP operators
can also be constructed with M/EEG sensors to include time segments that contain
endogenous artifacts in order to remove the most prominent artifacts from the data.

Independent component analysis (ICA) assumes that the measured data is
the result of a linear combination of statistically independent time series, which
are also called sources. ICA estimates a mixing matrix and source time series that
are maximally non-Gaussian by kurtosis and skewness. The time series that reflect
artifacts can be dropped before reverting the mixing process. ICA is often combined
with SSP. In contrast to SSP, which gives a better model for environmental noise,
ICA is typically better with physiological signal-artifact separation. On the other
hand, ICA does not have an explicit noise term, which means that artifacts with
noise-like distribution may not be reliably detected with ICA.

Signal space separation (SSS) is used in MEG to separate the external interfer-
ence signals from the biomagnetic signal of interest. It idealizes magnetic multichannel
signals by transforming them into device-independent idealized channels representing

8

the measured data in uncorrelated form. The transformation contains separate
components for the biomagnetic and external interference signals, and therefore the
biomagnetic signals can be reconstructed by leaving out the contribution of the
external interference (Taulu et al. 2005).

Epochs refer to a collection of single trials or short segments of time-locked raw
data. MEG often uses a separate trigger channel which contains information about
the times of the different stimuli presented to the subject. Raw data can then be
split into epochs depending based on the type of stimuli presented. Epochs are often
averaged across trials as evoked responses.

The noise-covariance matrix is used for weighting each channel correctly in
the calculations. The noise-covariance matrix contains information about field and
potential patterns representing noise sources of human and environmental origin.
The noise-covariance matrix can be computed in several ways depending on the goal
of the study: In evoked-response studies a subject noise can be estimated from pre-
stimulus intervals. If the goal is to study on-going activity, the separation of subject
noise is less plausible. In such cases the conservative choice is to use empty-room
noise-covariance. Empty room noise is measured with the MEG instrumentation
without the subject in place (Gramfort et al. 2014).

2.1.3 The forward problem

The MEG forward problem concerns with producing the lead field matrix L, which
describes the magnetic field B, as measured by the sensors in the sensor model.
As described in Section 2.1, the magnetic field B, caused by the current field J
can be calculated with the Biot-Savart law (Equation (2)) using the quasi-static
approximation of Maxwell’s equations (Appendix A). However, Equation (2) is not
sufficient for modelling the forward problem as it does not take into account the
inhomogeneities in the conductivity of the tissue. The conductivity geometry affects
the total magnetic and electric field outside of the head as the volume currents Jv
are dependent on the geometry of the conducting medium. Also, an anatomically
representative space of the brain – the source space – is needed. The source space is
the space where the volume currents are place in MEG modelling (Supek & Aine
2014, p. 108–110).

Cortex segmentation is the first step in creating a source space for the forward
model. Cortex segmentation uses high resolution, T1-weighted, 3D magnetic reso-
nance imaging (MRI) of the subject’s brain. Next, extra-cerebral voxels are removed
with a skull-stripping procedure. The skull-stripped image is operated with a segmen-
tation procedure to separate the white matter from the grey matter. Cutting planes
are then computed in order to separate the cerebral hemispheres and disconnect
sub-cortical structures from the cortical component. This preliminary segmentation
is then partitioned using a connected components algorithm. Possible interior holes
in the components representing the white matter are filled producing a single, filled
volume for each cortical hemisphere. Finally, the volume is covered with triangular

9

tessellation and deformed to produce an accurate and smooth representation of the
gray and white matter interface and the pial surface (Dale et al. 1999). This entire
procedure can be carried out in the FreeSurfer software (Section 3.2.3).

The source space is the ensemble of available locations of elementary dipolar
sources. The source space is either volumetric or a surface source space. In a
volumetric source space, grid spacing between neighboring points in 3D space must
be specified, whereas in a surface-spaced source space the surface and the sub-
sampling scheme have to be specified. In a surface-spaced source space the space
between gray and white matters is typically used. In MNE-Python (Section 3.2.2)
the surface mesh is decimated using subdivided icosahedron or octahedron in order
to preserve surface topology. The resulting polyhedron is overlaid on the cortical
surface inflated to a sphere, and the cortical vertices closest to the vertices of the
polyhedron are included in the source space (Figure 4) (Gramfort et al. 2014). The
process of cortex segmentation and source space creation is a much more complex
topic and they will not be discussed in greater detail in this thesis.

Figure 4: A left hemisphere source space computed in PySurfer using MNE-Python
sample data with oct6 subdivision yielding 4098 locations per hemisphere.

The Boundary Element Method (BEM) is a method for estimating a realistic
conductivity model for the head using numerical differential or integral methods.
The brain consists of layers with different conductivities, e.g. the brain itself has high
conductivity compared to the surrounding skull. The BEM model is derived from
Poisson’s equation ∇2ϕ = f , and Cauchy boundary conditions: (1) the potential has
to be continuous across the boundary: ϕ+ = ϕ−, and (2) the perpendicular component
of the current has to be continuous across the boundary: σ+ (∇⊥ϕ)+ = σ− (∇⊥ϕ)−,
where the superscripts ()+ and ()− refer to the values on either side of the boundary,
and ∇⊥ is the derivative with respect to the normal direction of the boundary. With
this, the electric potential and magnetic induction for the BEM can be formulated
as:

σ+
k + σ−k

2 ϕ(r) = σsϕ∞(r)−
N∑
j=1

σ−j − σ+
j

4π

∫
Sj

ϕ(r′)n(r′)× r− r′

|r− r′|3
dS ′, (5)

10

B(r) = B∞(r)− µ

4π

N∑
j=1

(
σ−j − σ+

j

) ∫
Sj

ϕ(r′)n(r′)× r− r′

|r− r′|3
dS ′, (6)

where σs refers to the conductivity of the source compartment, n is the normal vector
of the boundary, r and r′ denote the positions where the potential is calculated, Sj is
the jth boundary between compartments with different conductivity, N is the total
number of different compartments, µ is the permeability, and k is the index of a
given boundary. The magnetic induction and electric potential are both computed
as a sum of the respective term for the infinite volume conductor and a correction
term according to the geometry. The BEM-model is subject-specific and contains
individual structural head geometry information derived from anatomical MRI (Supek
& Aine 2014, p. 108–115).

Coordinate system alignment combines knowledge of the relative location
and orientation from M/EEG and MRI coordinate systems. The head coordinates
are defined by identifying the fiducial landmark locations (two pre-auricular points
and the nasion) that make the orientation and origin of the head coordinate system
slightly user-dependent. In the beginning of MEG study, the locations of fiducial
landmarks, the head-position indicator (HPI) coils, EEG electrodes and scalp surface
points are digitized and the MEG head coordinate system is set up. The digitization
and head position data also enable post-measurement correction of head movements
(Gramfort et al. 2014).

The MEG forward model concerns with computing the MEG signal generated
by neural activity in the brain. In more general terms, the forward model can be
formulated as:

O = T (I,θ), (7)
where I are the inputs, O are the outputs and T (·) is some transformation function
that maps the inputs as outputs, i.e. T : I→ O. In the forward modelling case the
transformation function is built upon the theory of electrodynamics which reduces
MEG to quasi-static Maxwell equations. Finally, θ are the implicit parameters of
the model. Predicting observations from a theoretical model with a given set of
parameters is essentially what the MEG forward modelling problem is (Hansen et al.
2010, p. 86–96).

2.1.4 The inverse problem

The general inverse problem of finding the sources of electromagnetic fields outside
a volume conductor (Equation (6)) has an infinite number of solutions. This issue
is not specific to MEG but applies for all volume conductors. Theoretically, an
infinite number of source models would equivalently fit M/EEG observations which –
without any a prior assumptions – would render the predictive power of the system
to null. This non-unicity causes an inverse problem to also become ill-posed. The
mathematics of ill-posed and inverse problems have means for bringing additional
constraints and contextual information to the equation and artificially creating unique
solutions. Ultimately, the inverse problem is a modelling problem.

11

The least-squares method (LS) attempts to find a set of parameter values that
minimizes the square of the difference between the observations and the prediction
of the model. Most inverse modelling methods are based on the LS method. The LS
approach is a reasonable approach for experimental observations of biosignals that
are naturally subject to high amounts of environmental noise. For this reason, an
error term ε is added to the model:

O = T (I,θ) + ε. (8)

The error term ε, adds some uncertainty to the estimation of parameters. In theory,
with 300 sensors the problem would also need 300 additional unknowns if the noise
components are independent and identically distributed (IID). This is not possible
in practice, so typically a selection of signal-processing manipulations such as trial
selection, averaging and filtering are used instead. The relevant problem to be solved
is to minimize the variance of the deviation εLS. This transforms the LS equation to:

Î = arg min
I

(
‖O− T (I,θ)‖2

)
= arg min

I

(
‖εLS‖2

)
. (9)

Least-squares dipole fitting models are used to fit a number of dipoles to estimate
the unknowns from the observations. How is it possible to know how many dipoles to
fit in order to estimate the outputs O? Imagine estimating 300 unknowns by fitting
an arbitrary number of dipoles from 300 observations. This could be understood by
rewriting Equation (7) as:

O = T (θ)I, (10)
where θ is the set of orientation and location parameters and I is a set of dipole
amplitudes. In this case the magnetic fields generated by current dipoles depend
linearly on current amplitude I and non-linearly on source locations θ. If all values
of θ are fixed by random, the resulting matrix T (θ) is almost certainly full-rank, i.e.
it is invertible. This leads to the case, that knowing θ, a solution to the estimate of
the inputs Î, also exists and is unique:

Î = T (θ)−1O. (11)

With noise it is possible to write Equation (11) as:

Î = T (θ)−1 (T (θ)I + ε) = I + T (θ)−1ε. (12)

The fact that noise is needed in order to perfectly fit arbitrary MEG observations
illustrates that the MEG inverse problem is severely ill-posed. However, even if the
true source orientations and locations θ are known, adding noise ε to such a data set
would still overfit the data by producing a model for Î that would also fully account
for noise in the data (see Equation (12)), and force the least-squares of the error εLS
to be zero. Given this, fitting as many parameters as there are unknowns does not
make the problem well-posed because the third Hadamard condition of well-posedness
is violated (i.e. continuous dependency). The canonical inverse Equation (11) was
obtained by estimating the amplitude parameters I after the source parameters θ

12

were fixed. With all source parameters {I,θ} unconstrained, Equation (7) is still
linear in terms of I but not in terms of θ. The full LS optimization problem needs
to still be solved:

{Î, θ̂} = arg min
I,θ

(
‖O− T (I,θ)‖2

)
. (13)

Equation (13) does not reduce to a linear analytical solution for θ. This implies that
numerical optimization techniques are needed. Optimization methods will search
for a minimum for Equation (13). The minimum of εLS exists and is theoretically
unique if sources are constrained to be dipolar. There are two things to watch out for
when solving Equation (13) with non-linear optimization methods: overfitting and
local minima. Overfitting means that the inverse model accounts also for the noise
components in the observations. Local minima are small "valleys" in the landscape of
‖O− T (I,θ)‖2 in the dimensions of I and θ that hinder the model from finding the
optimal solution, i.e. the global minimum (Figure 5) (Hansen et al. 2010, p. 89–97).

Figure 5: Sensibility of functions to initial conditions with non-convex energy land-
scapes. Two initial conditions (blue spheres) may end up in different minima. The
solution may get trapped in some local minimum (red sphere) instead of finding a
way to the global minimum (green sphere) (Hansen et al. 2010, p. 98).

2.1.5 Inverse modelling strategies

The main approaches for inverse modelling are divided into two categories: The
localization approach and the imaging approach. The localization approach (or
parametric methods) aim to fit individual equivalent current dipoles (ECDs) and
find both their locations and dipole moments during the iterations. The imaging
approach distributes a large number of dipoles throughout the brain volume and
estimates their dipole moments based on MEG data. Filtering and classification

13

methods such as beamformers and signal classifiers are also used in MEG inverse
modelling.

The localization approach estimates activations as point-like, equivalent cur-
rent dipoles (ECDs), whose parameters will be adjusted to minimize the least-squares
error εLS. The aim is to bring the LS-error εLS, down to a level compatible with
the SNR and to yield a model with reasonable stability across observations on a
time-window compatible with the waveforms measured at the sensor level. An ECD
at location r′ with orientation and strength q can be expressed as:

J(r) = δ(r− r′)q. (14)

But how is it possible to know how many dipoles to fit in the model? Figuring out
how many dipoles to fit is an optimization problem that is ruled by the non-linear
dependency to keep the complexity of the estimation as low as possible. Dipole
models (or multi-dipole models in case of multiple ECDs) require specific assumptions
to work properly. The a priori often has to contain the number of ECDs accurately
enough at a given moment in time. This limits the applicability of dipole models
when prior information is limited.

Beamformers and signal classifiers are scanning techniques used for figuring
out how a predetermined source model would fit into the data at a specific region
of space. Spatial filters are built on a source model defined a priori. Instead of
minimizing the LS-error, beamformers scan the expected source space and test the
source and forward models on the observations creating a model score map. The
most widely-used beamformer is the linearly-constrained minimum variance (LCMV)
beamformer. Beamformers have some drawbacks such as they are sensitive to the
covariance statistics of the data, and also to errors in the head model, and they are
fooled by simultaneous highly correlated activations.

Signal classifiers such as the multiple signal classification (MUSIC) algorithm
considers that the signal and noise components within observations are uncorrelated.
Signal subspace theory shows that such uncorrelated components reside in separate
subspaces which can be identified e.g. with PCA of the data time series (Hansen
et al., 2010, p. 98–102; Somersalo, 2007; Bai & He, 2005).

The imaging approach does not use point-like source models. Instead, the
source models are built from a distribution of elementary source currents. This
approach reflects the underlying brain activity better as sources may often be too
extended to be represented by a dipole. The imaging approach estimates the source
amplitudes using the observations while the locations and orientations on the surface
or in the brain volume are constrained. When using a brain volume, the brain is
gridded with a 3D lattice of voxels, which are inferred from an MRI template using
an appropriate tessellation.This imaging source space also needs to be accompanied
by appropriate a priori information in order to remedy the ill-posedness. Therefore
the imaging source space needs regularization.

14

2.1.6 Regularization

Regularization is used to create a unique solution to a given ill-posed problem.
Regularization is done by introducing a priori restrictions to the model. The
most commonly used regularization methods in MEG inverse modelling are the L2
minimum-norm estimates (L2 MNE), which will be also used in the neural network
model. The goal of regularizing in MEG inverse modelling is the objective of the LS
method (Equation (9)), i.e. to minimize the error εLS, in conjunction with some a
priori function f(I). This can be written as:

ÎRLS = arg min
I

(
‖O− LI‖2 + λf(I)

)
= arg min

I
εRLS. (15)

Equation (15) has excluded non-linear elementary source locations θ as they are
considered fixed and pre-determined. The lead field matrix L, is the MEG forward
solution for all elementary sources in the distributed model with arbitrary unit
current amplitudes. The lead field matrix is often referred also as the gain matrix.
The a priori f(I), is usually a monotonic function of source amplitudes. The
regularization parameter λ, is a positive scalar that balances parameter optimization
between unregularized ordinary least squares (OLS), prediction error εLS(λ � 1)
and excessive trust in the priors regardless of observations (λ� 1). The solution for
εRLS is strongly dependent on the selection of the a priori f(I).

Minimum-norm (MN) based priors are widely used in the field of image recon-
struction. An MN-based prior considers the expected source amplitudes I to be in
average as small as possible. This model can be written as:

f(I) = ‖I‖p. (16)

Equation (16) describes an Lp minimum-norm prior. The selection of the norm p, is
a debated topic and it yields different types of solutions with distinct pros and cons.
In MEG inverse modelling p = 2 minimum-norm priors are more common. The
imaging approach (Section 2.1.5) prefers L2 minimum-norms because they provide a
diffuse solution that reflects the underlying brain activity better than single dipoles
or sparse L1 minimum-norm solutions. The type of norm used is dependent on the
problem and the prior knowledge available (Hansen et al. 2010, p. 102–106).

L2 minimum-norm is the most widely used norm in MEG inverse modelling.
L2 minimum-norm solutions use p = 2, i.e. they use a squared prior f(I) = ‖I‖2.
The L2 minimum-norm is easy to compute, and it accounts for non-focal sources. L2
minimum-norm solutions can also be computed without heuristic choices that are
often needed in multi-dipole models. They can also process lower SNR data (low SNR
is a typical problem in MEG), they can incorporate anatomical and functional fMRI
constraints, and the transformation of data to brain space does not contain strong
assumptions about the sources. L2 prior based inverse solvers are also known as
distributed inverse solvers that produce a diffuse solution by building a distribution
of the estimated currents over a discrete set of locations where current dipoles are
positioned (Gramfort et al. 2012). In the case of the L2 minimum-norm, the error

15

εRLS is quadratic to I and has a unique analytical solution:

ÎRLS = LT
(
LLT + λC

)−1
L, (17)

where C is the noise covariance matrix, which can also be an identity matrix (Id) if
noise covariance is omitted or not known (Hansen et al. 2010, p. 104–105). The MNE
minimizes the difference between the model and data, and the amplitude of each
current dipole. The MNE tends to favour superficial brain regions and underestimate
the contribution of deeper source areas. This is why MNE is often combined with
depth-weighting in order to calculated a weighted minimum-norm estimate (WMNE).
WMNE weights each elementary source amplitude by the inverse of its contribution to
the sensors. MNE, dynamic statistical parametric mapping (dSPM) and standardized
low-resolution brain electromagnetic tomography (sLORETA) are the most common
L2 minimum-norm based inverse modelling methods in use. Equation (17) is based
on the common expression for the classical MNE:

GMNE = LT
(
LLT + λC

)−1
. (18)

The resolution matrix for Equation (18) is basically Equation (17), so it is possible
to denote that RMNE := ÎRLS, which leads to:

RMNE = LT
(
LLT + λC

)−1
L. (19)

Both dSPM and sLORETA are derived from GMNE by normalizing its rows, which
can be formulated as multiplying GMNE by a diagonal matrix W from the left:

GdSPM = WdSPMGMNE, (20)

GsLOR = WsLORGMNE, (21)
and the resolution matrices for dSPM and sLORETA are respectively:

RdSPM = WdSPMRMNE, (22)

RsLOR = WsLORRMNE. (23)
The normalization matrix for dSPM contains the minimum-norm estimates of the
noise at each source:

W2
dSPM = diag

(
GMNECGT

MNE

)
. (24)

sLORETA uses the diagonal of the MNE resolution matrix RMNE in its normalization
matrix:

W2
sLOR = diag (RMNE)

= diag (GMNEL)
= diag

(
GMNE

(
LLT + C

)
GT

MNE

)
.

(25)

In MEG inverse modelling it is typical to use multiple metrics for source lo-
calization given the fact that not a single method gives a uniformly solid solution

16

throughout the source space. MNE, dSPM and sLORETA differ in multiple resolution
metrics, as seen later in Section 4 (Hauk et al. 2011).

Other norm estimates include L1 minimum-norm estimates and mixed-norm
estimates (MxNEs). L1 minimum-norm estimates use p = 1 norm priors f(I) = ‖I‖,
for norm minimization. L1 minimum-norm priors are also called minimum current
estimates (MCE). L1 minimum-norm solutions are computationally more demanding
than L2 minimum-norm solutions because they do not have a closed-form solution.
L1 minimum-norm solutions also produce a more compact, focal current distribution.
MxNEs have the ability to structure the prior in order to incorporate some additional
assumptions about the sources. MxNEs can promote spatially focal sources with
smooth temporal estimates with a L1/L2 mixed-norm (Somersalo, 2007; Gramfort
et al., 2012).

2.2 Artificial neural networks
Artificial neural networks (ANNs) are information processing systems, whose opera-
tions and structure are inspired by biological nervous systems. Like their biological
counterparts, ANNs consists of a large number of simple units, neurons, which
communicate by sending information in form of activation signals to each other. Like
our brain, ANNs do not need task-specific programming but are instead able to learn
the underlying rules themselves when they are trained with training examples.

The connection between each neuron in the ANN is analogous to a synapse in
biological neural networks. In ANNs, the "strength" of a synapse is modelled with a
weight that is updated as the learning progresses. The weights influence the signal
that the neuron sends forward in the network. Single neurons are by themselves not
enough to solve complex learning problems. As is the case with the brain, in ANNs
neurons are also organized in layers: information flows from one layer to another
and is being gradually converted into conceptual understanding from raw sensory
input. ANNs are divided into feedforward (Figure 6) and recurrent networks (Figure
7) depending on the acyclicity of the network. Generally, recurrent neural networks
are more suitable for tasks where "cell memory" is needed, such as natural language
generation and time series analysis whereas feedforward networks are typically used
in computer vision tasks (Buduma, 2017, p. 1–15; Kruse et al., 2013, p. 1–10).

17

Input
layer

Hidden
layer

Output
layer

Figure 6: A feedforward network.

Input
layer

Hidden
layer

Ouput
layer

Figure 7: A recurrent network.

2.2.1 Neurons in the network

In ANNs neurons are modelled as threshold logic units, which means that if a neuron
receives enough excitation that is not compensated by equally strong inhibition,
it becomes active and sends activation to other neurons. A threshold logic unit

18

or a perceptron is a simple processing unit for real-valued numbers with n inputs
x1, ..., xn and one output y. The unit processes a threshold θ, to each input xi, with
a corresponding weight wi. A threshold logic unit computes the function:

y =

1 if ∑n
i=1 wixi ≥ θ,

0 otherwise.
(26)

The inputs and weights are often combined into vectors x = (x1, ..., xn) and w =
(w1, ..., wn). Using a scalar product the condition tested by the threshold logic unit
can be formulated as wx ≥ θ. A threshold logic unit is illustrated in Figure 8 (Kruse
et al. 2013, p. 15–16).

x1

θ

x2

y

w1

w2

Figure 8: A threshold logic for conjunction x1 ∧ x2. y = 1 if x1w1 + x2w2 ≥ θ (Kruse
et al. 2013).

The weights w of neurons are updated as the ANN is being trained with training
data. The rate at which the weights are updates is called the learning rate. Weights
can be updated after each full iteration of the data set (epoch), or after the network
has seen the next subset (batch) of the training data (batch learning). Data sets
are typically split into training, validation and testing data sets. The ANN uses
only training data set for training its weights and validation data set for testing
the error after each mini-batch or epoch in order to adjust the learning rate on the
gradient descent. Testing data set is typically reserved for prediction purposes after
the training (Kruse et al. 2013, p. 25–26).

2.2.2 Network structures

The most basic form of an ANN is the perceptron, which is a simple neuron model as
described in Section 2.2.1. If one hidden layer is added to the perceptron between the
input and the output, it is called a feedforward network. Add another hidden layer,
and it becomes a deep feedforward network. Hidden layers enable the network to
solve problems that are not linearly separable, i.e. deep networks are able of solving
non-linear problems with increasing complexity. As an example, the perceptron can
only deal with linearly separable problems (Figure 9), such as AND or OR problems.
In order to solve XOR problems, the network needs to have hidden layers.

19

Figure 9: Linearly separable and non-separable problems.

Feedforward networks are networks where the connections between neurons
do not form a cycle. The types of feedforward networks range from simple single-layer
perceptrons to multilayer perceptrons and deep convolutional networks. The goal
of a feedforward network is to approximate some function f ∗ that maps an input x
into a category y. This mapping can be defined as:

y = f(x;θ). (27)

The feedforward network learns the parameters θ. The information flows through
the network in one direction: from the input to the output, i.e. from x through f to
y.

Feedforward networks are inspired by the visual cortex of the brain: In the earlier
hidden layers simple visual features such as edges of objects are detected. The latter
layers detect more complex visual features such as corners and contours. In a similar
way the earlier areas of the human visual cortex, such as the V1 region, are dedicated
for identifying simple visual cues such as edges and corners (Goodfellow et al., 2016,
p. 168–175).

Recurrent networks (RNN) are networks specialized in processing sequential
data, such as a sequence of values x(1), x(2), . . . , x(τ). The most common types of
recurrent neural networks are the long short-term memory (LSTM) network and the
gated recurrent unit (GRU) network. Consider a classical form of a dynamic system:

s(t) = f(s(t−1);θ), (28)

where s(t) is the state of the system at time step t. The state of the system is
dependent in time of the previous state t− 1. For a finite number of time steps τ ,
the recurrent neurons in the RNN graph (Figure 7) can be unfolded by applying the
definition of τ − 1 times. For τ = 3 time steps Equation (28) becomes (Goodfellow
et al. 2016, p. 375):

s(3) = f(s(2);θ)
= f(f(s(1);θ)θ).

(29)

20

2.2.3 Activation functions

Activation functions are used to introduce non-linearities in the computations of
neurons in an ANN. Non-linear computations allow the ANN to learn non-linear and
complex relations. If it were not for the non-linearities in the activation function, any
feedforward network with only linear neurons could be expressed as a network without
hidden layers. Typical activation functions include sigmoid, tanh and rectified linear
unit (ReLU). The choice of activation is dependent on the data set and the problem
that the ANN is solving. The selection of activation function is still in many cases
highly empirical.

The sigmoid neuron computes the output between range [0, 1]: When the logit
is small, the output of the sigmoid neuron approaches 0 and when the logit is large,
the output approaches 1. The sigmoid neuron assumes an S-shape, as seen in Figure
10. The sigmoid is expressed as:

f(z) = 1
1 + e−z

. (30)

−1.0 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

z

y
f(z) = 1

1+e−10z

Figure 10: A sigmoid activation function.

The tanh neuron is similar to the sigmoid neuron, and it uses a similar kind of
S-shaped non-linearity. Tanh neurons compute their output between range [−1, 1]
(Figure 11). Tanh neurons are the preferred choice over the sigmoid neurons when
S-shaped non-linearities are used because their output is zero-centered. The tanh
neuron can be written as (Buduma 2017, p. 13–14):

f(z) = tanh(z). (31)

21

−3.0 −2.0 −1.0 1.0 2.0 3.0

−1.0

−0.5

0.5

1.0

z

y
f(z) = tanh z

Figure 11: A tanh activation function.

The rectified linear unit (ReLU) uses a different kind of non-linearity when
compared to sigmoid and tanh neurons. The ReLU outputs in a range between
[0,∞]. The ReLU produces a characteristic hockey-stick-shaped response as seen in
Figure 12. The ReLU is defined as:

f(z) = max(0, z). (32)

−2.0 −1.5 −1.0 −0.5 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

z

y
f(z) = max(0, z)

Figure 12: A rectified linear unit activation function.

The ReLU was originally introduced in 2000 by Hahnloser et al.. Since then,
the ReLU has become the most popular choice of neuron activation in computer
vision tasks. The ReLU has many benefits and requires less optimization than
other activation functions. The ReLU is more resistant to saturation and exploding
and vanishing gradients. ReLU neurons also tend to converge quicker, and are
several times faster to compute than tanh units. They are also scale-invariant as
max(0, ax) = a max(0, x) and do not require normalization of the input data. The
ReLU is biologically plausible as it is one-sided compared to the anti-symmetry of
the tanh neurons. The ReLU can also output value 0 easily, so it supports sparse
activation better.

The drawback of ReLU neurons is that they can experience a phenomenon called
"ReLU knockout" or "dying ReLU". This means that the ReLU neuron gets stuck

22

at outputting a certain value and essentially become inactive for all inputs. The
dying ReLU occurs if the network has been exposed to too high learning rates.
Other drawbacks of the ReLU include it not being zero-centered and it being non-
differentiable at zero. In addition, the ReLU is unbounded which may limit its
applicability in some situations (Glorot et al. 2011).

Softmax activation is often used in the last layer of the ANN, especially in
classification problems. In classification cases the desired output of the network
would be a vector of mutually exclusive labels. In this case, a softmax layer can
be used to produce an output vector with a probability distribution over the labels.
The softmax activation requires the sum of all outputs in the softmax layer to be 1.
Let xi be the logit of the ith neuron, then this normalization can be expressed as:
(Buduma 2017, p. 15):

yi = ezi∑
j e

zj
. (33)

2.2.4 Learning and loss functions

Learning is a fundamental part of what ANNs do. It is also notoriously difficult and
computationally intensive. The history of training ANNs can be traced back to 1954
when Farley & Clark used computers to simulate a Hebbian network based on the
learning hypothesis formulated by D.O. Hebb in 1940s. Today, there are numerous
learning rules and optimization methods available depending on the architectural
choices, the nature of the problem to be solved and data available.

The process of making the ANN learn is called training. Typically the training
data set is split into training and validation data sets, the latter of which is used
for testing the accuracy of the model during training. One iteration of the data
set is called an epoch. During training, a large number of training examples are
shown to the ANN, and the ANN is tasked to iteratively find suitable weights w, by
minimizing the error on the training examples. Learning of an ANN is a non-linear
optimization problem for finding a set of network parameters that minimize the cost
function for the training data set. After the learning process, the ANN represents
a complex relationship and may have an ability to generalize the task it has been
trained to do (Du & Swamy, 2013, p. 15; Buduma, 2017, p. 17).

Learning methods are divided into supervised, unsupervised and reinforcement
learning. Unsupervised learning learns the probability density function (PDF) of the
training data set, p(x), while unsupervised learning learns about the PDF of the
ground truth given the training data p(y|x). Reinforcement learning is usually used
in machine learning, where the ANN is trained to take actions in an environment
to maximize some notion of cumulative reward. It differs from supervised learning
by emphasizing on-line performance instead of correcting explicitly correcting sub-
optimal actions. Supervised learning is widely used in classification and approximation
tasks, and is ideal in MEG inverse problem modelling with simulated data because all
ground truth examples are labelled and known. From now on, all learning described
in this thesis will be considered a case of supervised learning.

23

Supervised learning adjusts network parameters by direct comparison between
the actual network output and desired output, i.e. by using error functions as the
feedback signal. How is it possible to know if the model has progressed closer or
further to the ground truth? The second part of the learning objective is data loss,
which is a supervised learning problem that measures the compatibility between a
prediction and the ground truth. The error measure is used to guide the learning
process to the right direction. A typical measure for error is the mean squared error
(MSE):

E = 1
N

∑
p=1

N‖tp − op‖2, (34)

where N is the number of pattern pairs in the sample set, tp is the target output of
the pth pattern pair, and op is the actual network output that corresponds to the
pattern pair p. In classification tasks cross-entropy loss is typically used instead of
MSE. In the case of using discrete labels, the cross-entropy can be written with the
above declared variables as:

E = −
N∑
p=1

tp log op. (35)

Categorical cross-entropy (Equation (35)) is a a suitable loss function if the number
of classes is low. If the number of classes if high, hierarchical softmax is typically
used. The error E is calculated after each epoch or batch depending on the gradient
descent methods used (see Section 2.2.5). The learning process can be terminated
when E is small enough or a specific failure criterion is met. The loss function can
also be additionally weighted to provide distinct penalization for false positives and
false negatives (Du & Swamy, 2013, p. 15–18; Golik et al., 2013).

2.2.5 Gradient descent

Gradient descent is an iterative optimization algorithm for finding the minimum of
a function. When training an ANN, a gradient descent method is used for finding
the global minimum of the error function given all the weights in the network. The
medium of finding the global minimum is the error surface computed with the
error function and the given weights in the network. In a simple case of a linear
neuron and two inputs with weights w1 and w2, the error surface can be mapped in
three-dimensional space as a quadratic bowl as seen in Figure 13.

24

w1

w2

Error

Figure 13: The quadratic error surface of a linear neuron.

Learning rate is one of the most important hyperparameters of the gradient
descent. Learning rate describes how big steps the gradient descent takes before
recalculating its direction. If the learning rate is too small, the training process
takes longer and if it is too large, the network may start diverging away from the
minimum. A large learning rate may also introduce a "knockout" effect with ReLU
neurons, making the neurons of the network stuck at outputting the same values.
With learning rate describing the size of the step in the weight update, each gradient
can now be calculated Gradients are partial derivatives of the error function with
respect to each of the weights in the network. The gradient descent rule is called the
delta rule, which describes how each weight should be updated. The delta rule can
be defined as:

∆wk = −η ∂E
∂wk

= η∇wE(w),
(36)

where η is the learning rate. The weights in the network are then updated with the
following rule:

wk := w + ∆wk. (37)

Gradient descent can also be visualized as a set of elliptical contours, where
the minimum error is at the center of the ellipses. The closer the contours are to
each other, the steeper the slope. The direction of the steepest descent is always
perpendicular to the contours. This direction is expressed as a vector known as
the gradient. Figure (14) demonstrates the impact of learning rate on the gradient
descent (Buduma 2017, p. 17–23).

25

Figure 14: Error surface as a set of contours with different learning rates. The red
line represent a high learning rate, the blue line represents a low learning rate and
the black line is an optimal learning rate.

The vanishing gradient problem is tightly linked with the gradient descent
and the activation functions. The vanishing (or exploding) gradient problem is
present with gradient-based learning methods. In the vanishing gradient problem,
the gradients of the network’s output with respect to the parameters in early network
layers become very small. In this case, any change in parameters causes very small
changes in the network’s output, in which case the network cannot learn parameters
efficiently.

Sigmoid and tanh neurons are prone to encountering the vanishing gradient
problem. As an example, the sigmoid neuron compresses the output to its range of
[0, 1]. As a result, large sections of the input space are mapped to a very small output
range causing the output to change very little even with large changes in the input.
This problem is further amplified with multiple network layers compressing their
outputs to a similar small range (Glorot et al., 2011; Buduma, 2017, p. 176–178).

2.2.6 Training protocols

The vanilla gradient descent method updates the parameters of the network after
each epoch. If the training data set is large, then intuitively updating after each
epoch seems too seldom. In practice, the parameters of the network are updated
more often using a training protocol. Training protocols describe how the network
weights are updated based on the error, E(w). There are three training protocols
that are typically used: batch, stochastic and mini-batch training protocols.

Batch gradient descent uses the entire data set (i.e. one full epoch) to compute
the error surface and then follow the gradient to the path of the steepest descent.
Batch gradient descent works well with a simple quadratic error surface as seen
in Figure 13 but it tends to be sensitive to saddle points and lead to premature

26

convergence. Batch gradient descent processes all input values and updates the
weights based on overall error E(w) = ∑N

p=1 Ep(w).

Stochastic gradient descent (SGD) estimates the whole error surface after
each iteration only with respect to a single example. In SGD the error surface is
dynamic instead of static. A dynamic error surface has the benefit of not getting
stuck at saddle points as the SGD error surface fluctuates with respect to the batch
error surface. SGD chooses an input value p at random and updates the network
weights based on the error E(w) = Ep(w).

Mini-batch gradient descent is used to compute the gradient during set
intervals when iterating over the entire data set at a defined batch size. After each
iteration of the defined batch size, the error surfaces are computed and the weights
are updated. Mini-batch gradient descent takes a random subsetM⊆ {1, . . . , N}
of the training data set and updates the weights based on the cumulative error
EM(w) := ∑

p∈MEp(w) (Buduma, 2017, p. 17–27; Duda et al., 2012, p. 293; Sourdy
et al., 2015).

2.2.7 Gradient optimization methods

Gradient descent optimization also includes other optimization methods in addition
to training protocols. These additional methods include a plethora of different
methods such as different gradient descent optimization algorithms (such as Momen-
tum), learning rate decay, batch normalization, backpropagation, early stopping and
gradient noise. For the sake of focus and relevance on the topic of this thesis, only
optimization methods relevant to the topic of the thesis will be described.

The Momentum optimizer introduces a well-known phenomenon of momen-
tum from physics to gradient descent. Momentum is a method that helps the gradient
descent to accelerate in the relevant direction and dampens oscillations caused by a
hilly error surface. The momentum term increases for dimensions whose gradients
point in the same direction and reduces updates for dimensions whose gradients
change directions. Momentum does this by adding a fraction γ, of the update vector
from the previous time step to the current update vector. This can be written with
Equation (37) as:

wt = γwt−1 + η∇wE(w),
w = w − wt.

(38)

The momentum γ, is typically set to 0.9 or a similar value on ill-conditioned error
surfaces. The weight parameters of the network at a given time point t are represented
with wt.

Learning rate decay is a common optimization method. It enables the gradient
descent to settle down in deeper and narrower parts of the loss function. Optimizing
learning rate decay is tricky because if the decay is too slow, it will waste the gradient
descent’s time bouncing around and if the decay is too high, it will make the system

27

cool down too quickly. Learning rate decay is usually done as step decay which means
that the learning rate is reduced by a certain factor after every set epoch. Exponential
decay is another common method where the new learning rate is η = η0e

−kt, where
η0 is the original learning rate, k is a decay constant and t is time, e.g. the number
of the epoch.

Batch normalization is a powerful novel method for accelerating training of
feedforward networks. The idea behind batch normalization is that the differences in
weight updates after each batch introduce instabilities to the error surface. Intuitively,
batch normalization can be illustrated as a tower of blocks (Figure 15): When the
blocks are aligned by their center of mass, the structure is stable, whereas random
shifts render the stack of blocks unstable. Batch normalization is used to remedy such
unstable conditions on the error surface. It makes the network less sensible to initial
conditions and hyperparameter selection, which greatly increases the probability
of finding a working set of hyperparameters. Batch normalization helps especially
with ill-conditioned problems where the error surface may be unstable to begin with
(Buduma, 2017; p. 103–105; Jin et al., 2017).

Figure 15: Batch normalization illustrated as shifting blocks (Buduma 2017, p. 104).

The differences in weights updates are called internal covariate shift. In order
to normalize this internal covariate shift, the transform introduced in the network
has to represent the identity transform, otherwise the inputs of a non-linear network
activation function would constrain the inputs to a linear regime of the non-linearity.
In order to carry out such a transform, for each activation x(k), a pair of parameters
γ(k) and β(k) are introduced:

y(k) = γ(k)x̂(k) + β(k), (39)

where y(k) represents the shifted values. In mini-batch training each mini-batch is
used to produce estimates of the mean and the variance of the activation. Consider
a mini-batch M of size m. Let the normalized values be x̂1,...,m, and their linear
transforms be y1,...,m. The following transform is referred as Batch Normalizing
Transform:

BNγ,β : x1,...,m → y1,...,m. (40)

28

The Batch Normalizing Transform is presented in Algorithm 1. This transform is
used to remedy the internal covariate shift.

Input: Values of x over a mini-batch: M⊆ {1, . . . , N};
Parameters to be learned: γ, β
Output: {yi = BNγ,β(xi)}

1 µM ←
1
N

∑N
i=1 xi // mini-batch mean

2 σ2
M ←

1
N

∑N
i=1 (xi − µM)2 // mini-batch variance

3 x̂i ←
xi − µM√
σ2
M + ε

// normalization

4 yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to activation xi over
a mini-batchM (Ioffe & Szegedy 2015).

However, the training procedure is an iteration over mini-batches, and has to
therefore use an unbiased estimate of the variance, i.e. to use sample statistics rather
than population statistics. Batch normalization as a part of the training procedure
is illustrated in Algorithm 2 (Ioffe & Szegedy 2015).

29

Input: Network N , with trainable parameters θ;
subset of activations {x(k)}Kk=1
Output: Batch-normalized network for inference, N inf

BN

1 N tr
BN ← N

2 for k = 1, . . . , K do
3 Add transformation y(k) = BNγ(k),β(k)(x(k)) to N tr

BN (Algorithm 1)
4 Modify each layer in N tr

BN with input x(k) to take y(k) instead
5 end
6 Train N tr

BN to optimize the parameters θ ∪ {γ(k), β(k)}Kk=1
7 N inf

BN ← N tr
BN

8 for k = 1, . . . , K do
9 Process multiple training mini-batchesM, each of size m, and average

over them:

E
[
x(k)

]
← EM [µM]

Var
[
x(k)

]
← m

m− 1EM
[
σ2
M

]

10 In N inf
BN, replace the transform y(k) = BNγ(k),β(k)(x(k)) with

y(k) = γ√
Var [x(k)] + ε

· x(k) + (β(k) −
γE

[
x(k)

]
√
Var [x(k)] + ε

)

11 end

Algorithm 2: Training a Batch-Normalized Network (Ioffe & Szegedy 2015).

Batch size defines the number of training samples presented to the ANN at a
time. It is typical to set the batch size to a power of 2 between the range of 32–512.
It has been observed that larger batch sizes introduce degradation in the quality of
the model, especially in its ability to generalize. In contrast, small-batch methods
consistently converge to flat minimizers (Keskar et al. 2017).

Backpropagation is a method that calculates the error contribution of each
neuron after a batch of data has been processed. Backpropagation consists of the
forward pass where the output loss is being calculated, and the backward pass where
the loss is propagated back to the hidden layers of the network. The error is first
calculated in the output layer and then propagated back to the rest of the network
in reverse order. The error derivatives for network layer k can be calculated from
the error derivatives of the layer j below it. A neuron in layer j affects the logits of
every neuron in layer k. Therefore the partial derivative of the logit with respect
to the incoming output data from the layer j beneath is actually the weight of the
connection wjk. The formulation of backpropagation is dependent on the selection
of loss and activation functions and the amount of hidden layers in the network.
Let σ(·) be the activation function and zl = wlal−1 + bl be the weighted input with

30

the activation of the previous layer al−1, bias bl and weights wl, then the activation
at layer l is defined as al = σ(zl). The backpropagation is shown in Algorithm 3.
Finally, the gradients of the loss function are used to update network weights and
biases (Rojas 1996).

Input: Network N , with layers L and input x with corresponding activation a1

for the input layer
Output: The gradient of the loss function is given by: ∂E

∂wl
jk

= al−1
k δlj, and

∂E
∂bl

j
= δlj

1 for l = 2, 3, . . . , L do
2 Compute the weighted input zl, and activation output al at each layer l:

zl = wlal−1 + bl

al = σ(zl)

3 end
4 δL = ∇aE � σ′(zL) // compute the output error
5 for l = L− 1, L− 2, . . . , 2 do
6 Compute the backpropagated error δl to layer l:

δl = ((wl+1)Tδl+1)� σ′(zl)

7 end

Algorithm 3: Backpropagation algorithm with stochastic gradient descent
in a three-layer network with one hidden layer (Rojas 1996).

2.2.8 Weight initialization

The selection of initial network weights has been shown to influence the speed of
convergence as well as the probability of the convergence and the capability of the
network to generalize. If all initial weights in the network would be the same, then
during backpropagation all the neurons would compute the same output and the
gradients would be the same. Therefore, a degree of asymmetry is needed in the
initial conditions.

Weights are typically initialized by using small values from some distribution. A
common method is to draw initial weights from a normal distribution with mean of
0 and variance 1√

n
, where n is the number of inputs (Equation (41)):

W ∼ N
(

0, 1√
n

)
. (41)

31

The Glorot-uniform is another popular weight initialization method introduced by
Glorot & Bengio in 2010. In Glorot-uniform, the weights are drawn from a uniform
distribution of small numbers (Equation (42)):

W ∼ U
(
−

√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

)
. (42)

2.2.9 Overfitting and regularization

Overfitting is one of the most prominent problems of training ANNs. In overfitting, a
model begins to describe random error or noise instead of the underlying relationships.
With potentially millions of parameters in a deep ANN, it is easy to overfit the model.
Regularization is a reliable method for improving generalization and preventing
overfitting. Regularization modifies the objective function by adding an additional
term that penalizes large weights. Regularization in its general form can be written
as:

E = E0 + λf(θ), (43)

where E0 is the loss calculated by the loss function of selection, e.g. cross-entropy
(Equation (35)), f(θ) is the chosen regularizer and λ is the hyperparameter that
controls the amount of regularization, i.e. the trade-off between error minimization
and smoothing. The selection of λ is an iterative process of trial and error.

L2 regularization is the most common type of regularization. L2 regularization
can be applied by augmenting the error function with the squared magnitude of
all weights in the network. For every weight w, a term of 1

2λw
2 is added to the

error function. As is the case with the L2 MNE based MEG inverse estimators, L2
regularization in neural networks also penalizes peaky activation and creates a diffuse
solution. An L2 regularized solution is also a quite stable solution. L2 regularization
is also known as weight decay, and it has the nice property of usually working quite
well in almost any situation. L2 regularization is also known as ridge regression. L2
regularization can be expressed as:

E = E0 + λ

2
∑
w

|w|2. (44)

L1 regularization is another common type of regularization used in ANNs. In
L1 regularization, a small term λ|w| is added for every weight w in the network. As
is the case with MEG inverse estimates, L1 regularization leads to sparse solutions
during optimization. Neurons with L1 regularization end up using small subsets of the
most important inputs and become resistant to noise. L1 regularization highlights
the features that contribute to the prediction of the network. When compared
to L2 regularization, L1 is less stable and may possibly have multiple solutions.
L1 regularization is also known as least absolute shrinkage and selection operator
(LASSO) regression. L1 regularization can be written as:

32

E = E0 + λ
∑
w

|w|. (45)

Elastic net regularization in neural networks is similar to mixed-norm esti-
mates (MxNEs) in MEG modelling. It combines both L1 and L2 regressions. Elastic
net regularization enables elements from both sparsity and diffuse solutions to co-
exist, as it produces a sparse model that encourages grouping effect. Elastic net
regularization is described in Equation (46) where λ1 is the regularization parameter
for the L1 part of the elastic net regularization and λ2 is the amount of regularization
for L2 regularization part respectively (Zou & Hastie 2005):

E = E0 + λ1
∑
w

|w|1 + λ2
∑
w

|w|2. (46)

Max norm constraints prevent the update of the weight vector from becoming
too large. Max norm constraints set an upper bound c, for the magnitude of the
incoming weight vector for every neuron and use projected gradient descent to enforce
the constraint. As an example, if a gradient descent step would move the incoming
weight vector so that ‖w‖2 > c, then the vector gets projected back onto an origin-
centered ball with radius c. Max norm constraints prevent the parameter vector from
growing out of control and the gradient from exploding.

Dropout is a modern and efficient regularization method. In dropout, a proba-
bility p for keeping a connection between neurons alive is set. Dropout then randomly
drops connections between neurons according to the probability p. Dropout pre-
vents the network from becoming too dependent on a small subset of neurons. It
prevents overfitting by providing a way of approximately combining exponentially
many different neural network architectures efficiently given the fact that random
dropouts change the network architecture (Du & Swamy, 2013, p. 23–24; Buduma,
2017, p.34–37).

Early stopping is a form of regularization used when training using an iterative
method, such as the gradient descent. Up to a point, the performance of the learning
function on data outside of the learning data set is increased. Past that point
improving the learning function’s fit on training data set comes at the expense of
increasing generalization error. Early stopping rules provide guidance on how many
iterations can be run before the learning function begins to overfit (Yao et al. 2007).

2.2.10 Imbalanced data

Imbalanced data is a typical real-life problem. Having an imbalanced data set means
that the data used for machine learning purposes has an imbalanced distribution
between the different classes. ANNs as generalizing machines do not cope well with
imbalanced classes and as a result ANNs trained with balanced data sets outperform
those that have been trained with imbalanced data sets. A typical indicator of
imbalanced data is a "spiky" loss function (Figure 17).

33

3 64 64 1

c1

c2

c3

... ...

l

50% dropout

Figure 16: A simple feedforward network with 50% dropout using three input channels
c1, c2 and c3 (RGB) and predicting a label l.

Figure 17: A spiky categorical cross-entropy loss function indicating imbalances
between classes to be learned.

Oversampling is a technique for gathering the data set in such a way that the
rare classes are more frequent than they would otherwise be in the population. In the
case of the MEG inverse problem, a case of oversampling would be to only contain
such moments in the data set when there is activation in the subject’s brain. Also
having multiple active sources at a given time increases the proportion of activation
in comparison to non-activation. Undersampling of the most frequent classes is also
used as a sampling method for imbalanced data sets.

One-class learning is used to encourage a tight boundary for the rare class.
One-class learning means that the amount of available classes is limited to one. This
allows the ANN to operate as an anomaly detector. Imagine an ANN labelling a set
of car pictures of cat breeds: Instead of using the ANN to predict the breed of a cat

34

in the picture, it would only output "cat" if there is a cat in the picture or "no cat"
if there is not a cat in the picture. One-class learning (or limiting the amount of
classes in general) can be used to significantly alleviate the learning problem.

Cost-sensitivity techniques can be used to address the learning process of
the network itself. Considering the loss function (Equation (35)) and the delta rule
(Equation (36)), there are four ways to implement cost-sensitivity: (1) cost-sensitivity
modifications can be applied to the probabilistic estimate; (2) the outputs of the
ANN can be made cost-sensitive (i.e. each op); (3) cost-sensitivity can be introduced
in the learning rate η; (4) the error minimization function can be adapted based on
desired cost-sensitivity. In this way, it is possible to add additional bias towards rare
classes (He & Garcia, 2009; Chen et al., 2004).

2.3 Deep convolutional neural networks
The human sense of vision is incredibly advanced: We are almost automatically able
to identify objects within our field of vision, perceive depth and separate object from
their backgrounds. Neurons in the visual cortex of the brain convert the raw color
data coming from the eyes and the optic nerves into features such as lines, curves and
shapes that enable us to specify what we are looking at. The visual cortex contains
cells that are responsible for detecting light in small, overlapping sub-regions of the
visual field called the receptive field. These cells acts as local filters over the input
space. Convolutional networks (CNNs) are inspired by the visual cortex of the brain
and perform similar operation as the receptive fields. A convolutional network also
becomes "deep" when it has multiple hidden layers, enabling it to learn complex and
non-linear features in the data. In this section we will go through the fundamental
building blocks of CNNs (Buduma 2017, p. 85).

Filters are the edge detectors of the CNN. Each layer of a CNN is responsible
for building on the features detected in the previous layers. The filter convolves
around the input image by shifting one stride at a time. Convolutional filter kernels
are learnt as a part of the training process. Figure 18 shows how two filters – one
detecting vertical lines, and the other detecting horizontal lines – scan an input
image.

Feature maps are the results of scanning the input with filters. Feature maps
are seen in Figure 18 on the right side of the image. A feature map is a result of an
operation called convolution made with the filter. In convolution a filter is taken an
it is multiplied over the entire area of the input image. By denoting the kth feature
map in layer m as mk, the values of the weights for the corresponding filter as W
and assuming neurons in the feature map to have bias bk, then the feature map can
be expressed as:

mk
ij = f

(
(W ∗ x)ij + bk

)
. (47)

35

Figure 18: An example of applying 2× 2 filters with stride 1 that detect vertical and
horizontal lines.

Equation (47) describes the filter operating on a single feature map. In reality filters
operate on the entire volume of feature maps that have been generated by a particular
layer. The CNN makes decisions regarding the existence of certain features over
multiple feature maps. Also if the CNN has multiple input channels, e.g. a picture
with red, green and blue (RGB) color channels, multiple slices have to be included in
the input volume. As a result, feature maps must be able to operate with volumes,
not just areas. This is illustrated in Figure 19.

Convolution layers extract different features of the input as feature maps with
convolution filter kernels. The first convolution layer extracts low-level features like
edges, lines and corners. High-level layers extract higher-level features such as faces,
cats, dogs and so on depending on the content of the data set. Starting from top-left
element of the input, the kernel is moved from left to right, one stride at a time.
This sliding-window process is repeated until the kernel reaches the bottom-right
corner. Convolutions are followed by the network activation function of choice.

36

Figure 19: A convolutional layer with width 3, height 3, depth 3, and zero padding
1. There are two 2× 2 filters per input channel with stride 1. This results an output
of width 4, height 4 and depth 2.

Zero padding is a beneficial method for keeping the image width and height
unchanged after each convolution. In zero padding each image is padded with zeros
as seen in Figure 19.

Max pooling is an efficient technique for reducing dimensionality of feature
maps and sharpening the located features. Reducing dimensionality also reduces the
amount of parameters and makes the computations less demanding. Max pooling is
often used after a convolutional layer. In max pooling the feature maps are broken up
into equally-sized tiles in order to create a condensed feature map. A cell is created
for each tile and the maximum value within a tile is calculated and then propagated
back into the corresponding cell of the condensed feature map (see Figure 20).

Stride is the distance between consecutive applications of the filter on the input
volume. As an example, a stride of one shifts the filter by one pixel at a time. Max
pooling is often used with a stride of two to reduce the width and height by a factor
of two.

37

Figure 20: A 2× 2 max pooling downsampling an image.

Fully connected layer is usually used at the end of the CNN. A fully connected
layer has connections to all activations in the previous layer. A fully connected
layer computes a matrix multiplication followed by a bias offset and produces a C
dimensional vector where C is the total number of classes. The U-Net does not
have a fully connected layer and uses instead a full context to predict the label for
each pixel in the input instead of reducing the entire input into one classification
(Buduma, 2017, p. 90–99; Ronneberger et al., 2015).

Multiple hidden layers characterize a deep CNN. A deep structure enables the
network to learn more complex problems by finding patterns of increasing levels of
abstraction. As seen in Section 2.2.2, a feedforward network approximates a function
f ∗. In case of a deep feedforward network with three layers: f (1) being the first
layer, f(2) being the second layer and so on, this chain of functions can be written
as (Goodfellow et al. 2016, p. 168):

f(x) = f (3)(f (2)(f (1)(x))). (48)

2.3.1 Data pre-processing

Data pre-processing helps the network become robust to different kinds of variations
that are present in real-life data. It also improves the predictive power of the network
and alleviates gradient descent. Data pre-processing is needed to filter out unwanted
noise, impossible data combinations and to scale different inputs within the same
range in order not to carry any prior emphasis on the value range of the data itself.
Data pre-processing is also used to improve the numerical condition of the data.
Typical data pre-processing steps of feedforward networks consist of mean subtraction,
normalization and whitening.

Mean subtraction is the most common form of pre-processing. In mean sub-
traction, the mean across every individual feature in the data is subtracted from
every observation in the data along a given axis. Mean subtraction zero-centers the
data along the desired axis.

38

Normalization is used as a processing method for getting the data across
desired dimensions onto the same scale. Normalization can be done by dividing
each dimension by its standard deviation after zero-centering the data with mean
subtraction. Another typical normalization method scales the data to a range of
[−1, 1]. The latter form of normalization is reasonable if the inputs have different
scales or units. When using convolutional networks with RGB-images with the
typical 24-bit color depth (224 = 256× 256× 256), a desirable range for scaling would
be [0, 255]. For the MEG inverse modelling it makes sense to scale the moments of
the inverse operators to a [0, 1] range.

Whitening is a linear transformation that converts a d-dimensional, random
vector with known covariance matrix into a set of new variables whose covariance
matrix is the identity matrix Id, which means that the data after whitening is
uncorrelated with a unit variance of 1. Whitening is used to decorrelate and fix
potential differences in the dynamic range of the input data (Buduma 2017, p. 107).

The most commonly used method of whitening is the PCA-whitening, which
will be described here. The whitening process starts by computing the covariance
matrix Xcov of the data matrix X. Then, a singular-value decomposition (SVD)
factorization is done for the covariance matrix, yielding the U, Σ and V matrices.
The data is then decorrelated by projecting the zero-centered original data into the
eigenbasis as a dot product with the unitary matrix, U:

Xdecorr = X ·U. (49)

The columns of U are a set of orthonormal vectors, so they are regarded as basis
vectors. Therefore the projection corresponds to a rotation of the data X, so that
the new axes are eigenvectors. Because the columns of U are eigenvectors sorted
by their eigenvalues, the dimensionality of the projection can be reduced by using
the desired number of top few eigenvectors, and discarding the dimensions along
which the data has no variance, i.e. by performing PCA. Other common whitening
procedures contain zero components analysis whitening (ZCA-whitening) or Cholesky
whitening. Finally, whitening is performed by dividing every dimension of Xdecorr by
the eigenvalue in order to normalize to scale (Kessy et al. 2017):

Xwhite = XdecorrΣ−1/2. (50)

2.3.2 Ill-conditioning

Numerical condition is one of the most important concepts in numerical analysis,
and it affects the speed and accuracy of most numerical algorithms. In ANNs it is
very common to have ill-conditioned first-order and second-order partial derivatives
of the error surface, i.e. the Jacobians Ji,j = ∂fi

∂xj
, and the Hessians Hi,j = ∂2f

∂xi∂xj

respectively. The condition number is the ratio of the largest and the smallest
eigenvalues of the Hessian matrix, H: the smaller the ratio, the better the condition.
The larger the ratio, the more the output changes when the input changes, and the
more ill-conditioned the problem is. The condition number of the Hessian can be

39

improved by data pre-processing. Also, selection of activation functions and gradient
descent optimization algorithms influence how well the ANN itself can cope with
ill-conditioned gradients on the error surface (Saarinen et al. 1993).

Data pre-processing methods are shown to alleviate the ill-conditioning. Nor-
malization is a well-known remedy for tackling ill-conditioning caused by low co-
efficient of variation and different variances among input variables. Some input
variables may have high correlations. This can be cured by orthonormalizing the
input variables with e.g. SVD or PCA and whitening.

The activation function can influence the numerical condition. If the activation
function has a narrow output range, its variation will be lower and thus changes in
the input values cause smaller changes in the output values lowering the numerical
condition of the error surface. The sigmoid fares the worst in this regard followed by
the tanh. It is advised to use ReLU activation function as it suffers the least under
poor numerical conditions.

Regularization helps to avoid saturation of the neurons. Regularization reduces
the accuracy but helps with discontinuities or steep areas in the gradient descent.
Batch normalization also helps with areas of discontinuities by reducing the internal
covariate shift.

The gradient descent optimization has to account for the "hilly" error surface.
Typically the Momentum algorithm with high momentum fares the best. The learning
rate also has to be low enough in order to avoid divergence in highly curved directions.
High learning rate can also cause the "dying ReLU" problem (see Section 2.2.3), so
starting with a lower learning rate is beneficial when using ReLU as the activation
function (Patrick & Gerd, 2012; Ioffe & Szegedy, 2015). Recently, a partially learned
approach for approximating ill-posed inverse problems was proposed by Öktem &
Adler (2017). This method can integrate prior knowledge about the inverse problem
directly to the gradient descent in the form of a partially learnt gradient descent.

2.3.3 The U-Net

In recent years, deep convolutional networks have outperformed the state of the
art in image segmentation tasks. In 2015 Ronneberger et al. presented the U-Net,
and it beat the prior best method (a sliding-window convolutional network) in ISBI
challenge for segmentation of neuronal structures in electron microscopic stacks. In
addition, the U-Net won the Grand Challenge for Computer-Automated Detection
of Caries in Bitewing Radiography at ISBI as well as the Cell Tracking Challenge at
ISBI 2015. The U-Net has also been successfully implemented in 2017 by Jin et al. in
approximating the inverse ill-posed computed tomography (CT) problem. As stated
by Jin et al., using a direct inversion followed by the convolutional neural network
(CNN) is recommended as the direct inversion encapsulates the physical model of
the system. This approach causes artifacts when the problem is ill-posed but the
multi-level decomposition and filtering of the U-Net alleviate this issue. The U-Net
is illustrated in Figure 21.

40

Figure 21: The U-Net.

The contracting path is on the left side of the U-Net, and it consists of a
sequence of 3×3 convolutions followed by 2×2 max pooling. After each max pooling,
the number of feature channels is doubled. The contracting path results into spatial
contraction where information on "what" is gradually increased and information on
"where" is reduced. The contracting path resembles a standard deep CNN, which
would end at the end of the contracting path and output all maps and features to a
single output vector predicting the class of the label of the object in question. In
addition to the standard deep CNN structure, the U-Net has an additional expansion
path to create a high-resolution segmentation map.

The expansion path on the right side consists of a sequence of up-convolutions
and concatenations with the corresponding high-resolution features from the con-
tracting path on the left side. The up-convolution uses a learnt kernel to map
each feature vector to a 2 × 2 output window followed by a non-linear activation.
Each up-convolution halves the number of feature channels. Information from the
corresponding step on the contracting path is propagated to the expansive path via
concatenation and cropping. The reasoning for cropping is the loss of border pixels
in each convolution.

Up-convolution is used in the expansion path to up-sample the image. In
the context of CNNs, up-convolution is also known as transpose convolution or
deconvolution, although it is not the mathematical operation of deconvolution. Up-
convolution is used with filter size 2× 2 and stride 1 on the input map, and with
stride 2 on the output map, effectively doubling the resolution along both axes.

41

Concatenation is used for joining feature maps on the expanding path with the
corresponding feature maps from the contracting path. Concatenation is coupled
with cropping, which is necessary due to the loss of border pixels in each convolution.

A segmentation map is produced as the output of the U-Net right after the
expansion path as a result of the final 1 × 1 convolution. The data is propagated
throughout the network along all possible paths before the final segmentation. The
output segmentation map has as many channels as there are classes: one class for
the background and the rest for distinct foreground classes.

Overlap-tile strategy is used for segmentation of arbitrarily large images by
dividing the input image into sectors that correspond to mini-batches. Additionally,
mirroring of the border regions can be used in order to ensure that all real border pixels
only use the valid part of the convolution throughout the network. An overlap-tile
strategy is illustrated in Figure 22 (Ronneberger et al. 2015).

Figure 22: The overlap-tile strategy for segmentation of arbitrarily large images.
The prediction of the segmentation in the yellow area requires image data within
the red area as an input. Missing data is extrapolated by mirroring the input image
(Ronneberger et al. 2015).

2.4 Improving the MEG inverse solution
With the basics of MEG, ANNs, CNNs covered, how is it possible to improve the
MEG inverse solution with an ANN? It depends on how the MEG inverse problem is
approached with an ANN: is it an encoding-decoding or a spatio-structural problem?
Also, should the problem be approached with regression or classification? It turns
out, that there is yet not an exhaustive answer to the problem of choosing a type
ANN and its parameters in solving or approximating a given problem, which makes
the research on ANNs highly empirical.

The type of MEG inverse problem can be seen both as an encoding-decoding
problem and as a spatio-structural problem. If the problem is viewed from the raw

42

sensor space, it resembles more of an encoding-decoding problem, but if it is viewed
from the source estimate space (i.e. the inverse solution space), then those estimates
already exist in the same source space as the ground truth thus making the problem
resemble more that of a spatio-structural problem.

An encoding-decoding approach would translate an input vector of arbitrary
length into a target vector of arbitrary length, e.g. an input vector of English into
French or an input vector of historical values of a market stock into a prediction of
the value in the next time steps. In such cases recurrent neural networks such as
a long-short term memory network (LSTM) or a gated recurrent unit (GRU) are
typically used (Goodfellow et al. 2016, p. 408–412).

A spatio-structural approach looks at the input and tries to identify patterns
within the spatial domain. Feedforward networks such as the convolutional network
are typically used for spatio-structural problems. Other medical imaging problems,
e.g. in the field of CT have been demonstrated to be spatio-structural problems
when it comes to approximating them with an ANN. Also the source space estimate
given by the inverse models in MEG has a structure, i.e. it is not only a sequence of
information. Therefore it is reasonable to suspect that the spatio-structural approach
is a viable way of addressing the MEG inverse problem especially if inverse solutions
or other source space estimates are used as the input.

It is possible to argue that a spatio-structural problem can be expressed as an
encoding-decoding problem, and approaching it with an RNN would be feasible. It
was already shown by Siegelmann & Sontag in 1995 that for any computable function,
there exists finite RNNs that are Turing complete, i.e. an RNN can implement any
algorithm. However, getting such a network to train itself and create a coherent
model of the problem may prove to be difficult: Training an ANN becomes easier
if the network can get "a warm start". This means, that the input data and the
assumptions built in the network are already "as close as possible" to the ground
truth. As demonstrated by prior research in CT, the FBP can be used as an input
that already encapsulates the physics of the inverse problem which greatly simplifies
the learning in comparison to using raw sinograms as an input (Jin et al. 2017).
In a similar fashion using the already existing inverse solutions of MEG provides a
"warmer start" for the ANN than raw sensor-level data.

Sparsity and ill-conditioning have to be taken into account when implement-
ing the ANN (see Section 2.3.2). As seen by other cases of approximating ill-posed
medical imaging problems, most of the current best practices have to be employed in
order to address ill-posed problems with an ANN. The gradient descent of the loss
function may contain unexpected saddle points, local minima and sudden changes
due to the poor numerical condition of the problem, so the gradient descent method
and the network have to be able to handle these situations.

While ANNs are great at generalizing, they struggle severely with imbalanced
data and rare classes. In addition to being severely-ill posed, the MEG inverse
problem can also be characterized as "finding a needle in a haystack". That is to say,
that most of the results consist of hay (non-activity) and very little of the actual
needle (activity). This problem can be tackled by using the ANN as an anomaly

43

detector by implementing one-class learning and penalizing the network more for
predicting a site of activation to be non-activation. Penalization of the loss function
can be done by introducing a cost-sensitivity method that penalizes false positives
and false negatives differently. Without additional penalization of loss, the network
would learn to predict the most common non-activation class and obtain almost
100% accuracy, which would yield a useless model. A weighted loss function needs to
be implemented for penalizing false negatives more heavily than false positives. One
such method is inverse class frequency balancing, where the loss function is weighted
by the inverse frequency of each class in the ground truth data set. In the case of ico3
subdivision and one active dipole at a time, the frequency of activation (represented
by 1) is f1 = 1

642 and the frequency of non-activation (represented by 0) is f0 = 641
642 .

The inverse frequencies for these are f−1
1 = 642 and f−1

0 = 642
641 respectively. With this

weight map, the cross-entropy function (Equation (35)) can be weighted to penalize
a false negative with the weight f−1

1 and a false positive with the weight f−1
0 .

The U-Net was chosen as the ANN model for improving the MEG inverse
solution. This selection was partially a result of an iterative process of trial and error
with educated guesses. During the course of development, multiple different ANNs
were tested: A multi-layer perceptron (MLP), a 1-dimensional CNN, a LSTM network
and a sequence-to-sequence model consisting of multiple LSTM neurons: some of
these networks approach the problem with regression and some with classification.
None of these networks managed to converge into a sufficient solution. This could be
either due to the networks themselves being unfit for the task or due to problems in
the training phase, i.e. the above methods cannot be rejected as non-suitable for
addressing the MEG inverse problem. It is known that the training an ANN itself
is a difficult problem and the process and ultimately the quality of the solution is
heavily dependent on the chosen hyperparameters (Jin et al. 2017). Given the highly
empirical nature of the problem, more emphasis was placed on prior research on
similar, ill-conditioned inverse medical imaging problems. Given this, the U-Net was
chosen to be the ANN model for addressing the problem. However, the bottom line
is: finding a suitable model is still highly empirical.

44

3 Materials and methods

3.1 Hardware
The U-Net was trained with a PC running on a 64-bit Ubuntu 16.04 LTS using
a Geforce 1080Ti graphics processing unit (GPU) by NVIDIA Corporation with
11 GB of Video Random Access Memory (VRAM). The PC has 32 GB of DDR4
error-correcting code (ECC) Random Access Memory (RAM) and an Intel Xeon
E5-2667V4 central processing unit (CPU) with 8 cores and 16 threads at 3.2 GHz.
The settings described in Section 3 reflect the available computational resources and
can be adjusted depending on the target system’s resources. The most limiting factor
is the amount of available VRAM, which runs out fast with deeper networks and
larger batch sizes. The MEG-inverse-UNet software package does not yet support
multi-threaded work queues building for the GPU, which means that another potential
bottleneck is the speed of a single thread of the CPU.

3.2 Software packages
3.2.1 MEG-inverse-UNet

MEG-inverse-UNet is a Python 2.7 and Python 3.5 cross-compliant repository
where the MEG inverse problem U-Net presented in this thesis is. This reposi-
tory is located in GitHub, and can be found in https://github.com/jjlatval/
MEG-inverse-UNet. MEG-inverse-UNet is heavily based on MNE-Python and Ten-
sorFlow software packages and contains initialization scripts for both Ubuntu 16.04
LTS and MacOS Sierra. It is advised to use Ubuntu with a CUDA-capable GPU,
because it can be 10–50 times faster to train the network with a GPU than with a
CPU.

MEG-inverse-UNet provides a configuration file that can be easily modified to
adapt to the amount of resources available and the precision of the target source
space. All configuration changes are validated as a subroutine when parameters
from configuration are being called. Hyperparameters can also be adjusted in
parameters folder. The default hyperparameters have been discovered as a result of
iteration and empirical research. In future, automatic procedures for discovering ideal
hyperparameter combinations can be implemented. MEG-inverse-UNet contains
internal routines for validating configuration and hyperparameter calls. Unittests
are not yet implemented.

MEG-inverse-UNet contains a SimulationModel object for generating training,
validation and testing data sets. It also contains a DataProvider and Generator-
DataProvider objects for pre-processing and feeding the data as memory-friendly
Python generator objects to the NetworkCaller object, that then calls a desired type
of network from the network directory. During the course of development different
ANN architectures were tested but as of now only the U-Net remains. The U-Net
model is a heavily modified version of the TensorfFlow U-Net package (Akeret et al.
2017).

https://github.com/jjlatval/MEG-inverse-UNet
https://github.com/jjlatval/MEG-inverse-UNet

45

MEG-inverse-UNet also includes tests for analyzing the accuracy and precision
of the U-Net predictions as described in Section 3.8. MEG-inverse-UNet stores the
results as a .csv file that can then be analyzed easily using the included R scripts.

3.2.2 MNE-Python

MNE-Python is a community-driven open source software package for processing
time-resolved neural signals in M/EEG. MNE-Python contains a complete pipeline
for M/EEG data processing, such as pre-processing and de-noising, source estimation,
time-frequency analysis, statistical testing, functional connectivity, machine learning
and visualization of sensor- and source-space data. MNE-Python also enables
simulation of both sparse dipoles and evoked responses.

The history of MNE-Python stems from the minimum-norm estimate (MNE)
method for estimating neural currents from MEG measurements as proposed by
Hämäläinen & Ilmoniemi in 1994. The MNE software is also available as a Matlab
toolbox, MNE with C++ and the original MNE-C written in C by Matti Hämäläinen
(Gramfort et al., 2013; Hämäläinen & Ilmoniemi, 1994).

3.2.3 FreeSurfer

FreeSurfer is an open source software for analyzing MRI images. The functionalities
of FreeSurfer include skull stripping, gray-white matter segmentation, reconstruction
of cortical surface models and statistical analysis of group morphometry differences
to name a few. In a typical MEG work flow FreeSurfer is used to reconstruct cortical
surface and creating BEM meshes from T1-weighted MRI images (Fischl 2012).

FreeSurfer was not used for creating the BEM model, as it had already been
calculated in the MNE-Python sample data using FreeSurfer. Instead, FreeSurfer
was used for creating some illustrations of morphed spherical meshes for describing
the future implementation of the U-Net using averaged spherical source spaces.

3.2.4 PySurfer

PySurfer is an open source Python library for visualizing cortical surface representa-
tion of neuroimaging data. It uses an explicit model of cortical geometry to generate
highly accurate images. PySurfer works well in conjunction with FreeSurfer: It can
read cortical models that have been processed using FreeSurfer to inflate the cortical
folds and reveal activations that are buried within sulci. PySurfer has a high-level
application programming interface (API) that enables the user to draw complex
pictures with simple Python commands (Ramachandran & Varoquaux 2011).

3.2.5 TensorFlow

TensorFlow is an open source software Python library released in 2015 by Google.
TensorFlow enables designing, building and training deep learning models. Tensor-
Flow enables expression of arbitrary computations as a graph of data flows. Nodes
represent mathematical operations and edges represent data that is communicated

46

between nodes. TensorFlow – as suggested by its name – handles data as tensors,
which are multi-dimensional arrays. TensorFlow can take advantage of the parallel
computational capabilities of modern GPUs, which speeds up neural network training
significantly. MEG-inverse-UNet also enables the user to install a CPU-accelerated
TensorFlow variant but does not at this moment contain instructions for building
NumPy and TensorFlow with OpenBLAS using any advanced CPU instruction sets
(such as SSE 4.2 and AVX). Unfortunately, TensorFlow does not yet have the support
for the Open Computing Language (OpenCL) which means that GPU-acceleration
is limited to NVIDIA GPUs only.

TensorFlow also contains a tool called TensorBoard for monitoring the develop-
ment of scalars and network activations between the layers of the network in real-time.
TensorBoard enables the user to do on-line decisions on early stopping by showing
the evolution of network loss and accuracy. An example snapshot of TensorBoard
information is shown in Figure 23 (Abadi et al. 2015).

Figure 23: TensorBoard statistics from the training session with one dipole MEG
channel data set at 192 epochs. The loss and accuracy are plateauing.

3.2.6 CUDA and cuDNN

CUDA is a proprietary parallel computing API created by NVIDIA. It enables
general-purpose computing on graphics processing units (GPGPU). Training neural
networks is a well-parallelizable problem and solving them with many slower cores
(such as the GPU) compared to a couple of fast cores is a faster process. NVIDIA
also has CUDA Deep Neural Network library (cuDNN), which provides highly tuned
implementations for standard routines such as forward and backward convolution,
max pooling, normalization and activation layers (Chetlur et al., 2014; Ghorpade
et al., 2012).

47

3.2.7 Scikit-Learn

Scikit-Learn is an open-source Python module for data mining and data analysis. It
also implements supervised and unsupervised machine-learning algorithms (Pedregosa
et al. 2011). Scikit-Learn contains suitable preprocessing and decomposition functions
such as PCA, NMF, scaling and one-hot encoding that are used in the MEG-inverse-
UNet package.

3.3 Data simulation procedure
Training, validation and testing data sets for the U-Net were generated using MNE-
Python’s sample data set for simulating the distinct sets of data sets used in Section
4. MNE-Python has a sample data set which includes the MRI reconstructions
created with FreeSurfer, a BEM model and raw data samples for simulating new data
and computing the empty room noise-covariance matrix. This data was originally
acquired with the Neuromag Vectorview system at MGH/HMS/MIT Athinoula A.
Martinos Center Biomedical Imaging. EEG data from a 60-channel electrode cap
was acquired simultaneously with the MEG. The original MRI data set was acquired
with a Siemens 1.5 T Sonata scanner using an MPRAGE sequence. Data simulation
takes place in MEG-inverse-UNet in SimulationModel and it can be called using
python simulate_data.py command in the root directory.

The source space was initialized with the most crude space using an icosahe-
dron with subdivision of 3 (ico3). This subdivision yields a total of 642 sources
per hemisphere. Using such a crude source space is beneficial in terms of test-
ing a computationally taxing neural network model. The pre-calculated source
space was loaded according to the used subdivision, e.g. in this case using the file
sample-ico3-src.fif from the sample data set. The SimulationModel can also
calculate the source space if it has not been pre-calculated already.

The forward solution was calculated using the source space and a BEM model.
The forward solution was calculated using the BEM model of the sample data set
(sample-5120-5120-5120-bem-sol.fif) with the source space by making a forward
solution using MNE-Python.

The noise-covariance matrix was computed in MNE-Python by using a seg-
ment of raw, empty room measurement data without the subject. The sample data set
in MNE-Python contains a segment of empty room measurement in ernoise_raw.fif
file.

Raw data simulation was done by placing individual dipoles in an empty source
space. All the data was simulated in a single hemisphere only: the right hemisphere
in this case. The simulated dipoles were placed on the right hemisphere whereas the
left hemisphere was left without simulated activation. In the single-dipole location
case, a data set was generated by simulating all available vertices of the hemisphere
in random order at a time. In the multi-dipole case, a uniformly random number of

48

dipoles between range [2, 5] were simulated at random at a time. After each dipole,
a small segment of non-activity was added.

Dipoles were simulated as time-staggered sinusoids at 10 Hz. The number of
samples per activation was set to 20 according to Nyquist sampling frequency to
avoid aliasing. MNE-Python was used for creating a simulated raw data from dipole
time series. A basic diagonal ad-hoc noise was added to the generated raw data.
Depending on the simulated data set, only MEG or MEG and EEG sensors were
included in the simulated raw data. The simulated raw data was saved separately
in fiff-format as training, validation and testing data sets. L2 MNE, dSPM and
sLORETA inverse solutions were saved separately for each data set.

Channel rejection was done by both visual inspection and by rejecting channels
based on peak-to-peak amplitude. In MNE-Python sample data set channels MEG
2443 and EEG 053 are bad channels and were rejected as such. The peak-to-peak
amplitude rejection thresholds were set to 4000e−13 for gradiometers and to 5e−12

for magnetometers.

Filtering was done by applying a band-pass filter between [5 Hz, 40 Hz]. The
finite impulse response (FIR) filter was set to mode "firwin". An additional zero-
phase notch filter was applied to remove power-line noise with parameter frequencies
of 60, 120, 180 and 240 Hz.

Independent component analysis (ICA) was used for artifact rejection using
the built-in ICA object of MNE-Python with the number of components set to 25
and using the "fastica" method. ECG epochs were generated and detected via
phase statistics. EOG was detected by correlation in MNE-Python.

Signal space projection was used with ICA to reject disturbances in data.
ECG projections and EOG projections were applied using MNE-Python.

Raw inverse solutions were calculated in MNE-Python built-in functions. As
described in Section 2.1.5, creating an inverse operator requires a forward solution
and covariance. Depth weighting was set to 0.8 for creating all inverse operators.
The regularization parameter λ2 was set to based on the SNR target. Typically a
smaller SNR is used for raw data (e.g. SNR = 1), whereas in some cases (such as
evoked responses) an SNR = 3 target can be met. The regularization parameter
λ2 was calculated using λ2 = 1

SNR2 in each case. The SNR target is controllable in
MEG-inverse-UNet configuration file.

3.4 Data providing and processing
Simulated data needs to be processed prior to training the U-Net. Data processing
steps are different between U-Net inputs and outputs: Inputs (inverse solutions)
are normalized between range [0, 1] and the ground truth (the actual locations of
the simulated dipoles) is binned into a desired number of classes and then one-hot
encoded.

49

In order to pre-process and feed simulated data efficiently to the GPU, a dedicated
DataProvider object was created. The DataProvider loads all input channels and
target data for a given data set (training, validation or testing). The DataProvider
then pre-processes each input channel and target data according to the settings, and
then feeds the data to the U-Net as an iterable Python generator object. During each
next method call on an iterator, the next chunk of input and target data is yielded
from the generator object. This makes the generator object an efficient solution in
terms of working memory usage because the raw data time courses with large source
spaces consume a lot of memory. Each data channel is represented as a 2D matrix of
nvertices × tsteps. In the default configuration nvertices is set to 642 for ico3 subdivision
and tsteps is set to 642 to match a 1:1 input shape (see Figure 24). The term tsteps is
actually set to be the mini-batch size of the U-Net, which can be adjusted depending
on the available GPU VRAM. Finally, 2D matrices per data channel are combined
into 4D arrays that can be streamed into the U-Net. In case of the input channels
this 4D array has the shape of (1, nvertices, tsteps, nchannels). The shape of the target
4D array is (1, nvertices, tsteps, nclasses).

Figure 24: An example of the binned ground truth source space matrix provided by
the DataProvider to the U-Net in order to calculate gradient descent metrics during
training. Source space vertices are flattened and stacked horizontally as time series.

Input data processing procedure supports mean subtraction, normalization,
zero-centering, non-negative matrix factorization (NMF), SVD truncation and PCA-
whitening. The best results were obtained by using only normalization between range
[0, 1] on all input channels separately. The inverse operators already are processed
with ICA and PCA, and therefore these methods are not present in the final input
data processing procedure.

Target data processing contains the same methods as input data processing
but it also supports data binning and one-hot encoding. Data binning enables
categorization of the target data into set number of classes, which in the one-class
learning case was set to two classes where non-activation is presented as class 0 and
activation is class 1. The threshold for binning activation as class 1 was set to 1e−20.

50

After categorization the target data was one-hot encoded in order to present the
categories in a binary format. One-hot encoding is done using built-in Scikit-Learn
functions.

3.5 Custom U-Net
The custom U-Net used is similar to the original U-Net as proposed by Ronneberger
et al. (2015). Unlike the original U-Net, the custom U-Net uses batch normalization
at each convolution layer. Convolution filters were set to 4×4, with max pooling and
up-convolutions set to 2× 2. The features root was set to 64 enabling the U-Net to
also learn patterns describing noise in the input data. All neurons besides the output
use a ReLU activation. The output of the custom U-Net uses softmax activation for
creating a categorical distribution between classes for each pixel of the final output
segmentation map. The entire set of hyperparameters used for training the U-Net is
found in Table 1. The custom U-Net consist of 5 layers as illustrated in Figure 25.

Table 1: Custom U-Net hyperparameters.

hyperparameter value
network layers 5
filter size 4
feature channels 64
batch size 642
epochs up to 300
initial learning rate 0.020
learning rate decay 0.95
λ1 0.0050
max norm 0.010

Zero padding was introduced instead of data mirroring in order to keep the
shape of the image unchanged throughout the network. In predictions and analytics,
a total of 2 border pixels surrounding the prediction were omitted due to the lack
of surrounding context. Unlike a typical segmentation problem, the MEG inverse
problem is dependent on the site of activation. For this reason the mini-batch was
locked to the number of vertices in vertical dimension in order to show the entire
source space to the U-Net at all times.

Weight balancing is an important step. If there is no weight balancing, the
network will predict the class label corresponding to "non-activity", and obtain almost
100% accuracy from the start. Weight contribution of each instance of loss value
was weighted with inverse class frequency. In this case, the loss of a more rare
class contributes more to the total loss of the network according to the inverse

51

Figure 25: The custom U-Net used in approximating the MEG inverse problem.

of its occurrence frequency. Weight balancing prevents the U-Net from becoming
overexposed to more frequent classes, i.e. the class representing non-activity.

L1 minimum-norm based regularization makes the network rely more on a
sparse set of neurons. This is similar with the existing MEG inverse solutions where
L1 minimum-norm based solutions are more sparse. The ground truth is more sparse
than the inputs, so therefore it makes sense to implement L1 regularization, and in
this way introduce convenient a priori information. It should be noted that Jin et al.
(2017) and Öktem & Adler (2017) also use L1 regularization when using the U-Net
in computed tomography.

Mini-batches have to be defined in such a way that the U-Net always scans
the same vertices with the same filters. The reasoning for this is the fact that the
relationship between the MEG inverse solution and the ground truth is different
in different parts of the source space. For this reason the mini-batch is defined as
nvertices × tsteps where tsteps is adjustable by the user. This will cause issues with
higher resolution source spaces which is further discussed in Section 5.

3.6 Training procedure
Training the U-Net to approximate the MEG inverse problem in a stable manner
requires several adjustments to the model. The training procedure consists of up to
300 epochs or to the point where the loss function starts to plateau or significantly

52

increase. In this case the training session is stopped early manually. Momentum
was chosen to be the gradient descent optimization method with backpropagation.
The Momentum optimizer was set to have an initial learning rate of 0.020 with a
high momentum of 0.90 to enable smooth gradient descent in severely ill-posed and
"hilly" conditions. The learning rate decay was set to 0.95 after each epoch. At the
end of each epoch, the verification error and loss were calculated using the next
mini-batch from the verification data set. The training procedure uses a dropout
value of 0.80, an L1 regularization λ1 of 0.0050, and the maximum norm clipping
threshold was set to 0.010. The U-Net can be trained by running the command
python train_network.py in the root directory. An example of the epoch validation
is illustrated as a training series with an interval of 50 epochs in Figure 26.

53

Figure 26: An example of training series from start to finish with 50 epoch intervals
with added brightness. The left picture is the normalized input with (L2 MNE,
sLORETA and dSPM) in RGB-channels. The middle picture is the simulated source
space (the ground truth) and the right picture is the prediciton of the source space
made by the U-Net. Source space vertices are stacked horizontally to form a time
series of length tsteps.

3.7 Predictions
The predictions on the fully trained network were performed with the entire testing
data set. In the predictions procedure additional resolution metrics are calculated
(see Section 3.8), and the results are stored as a separate .csv-file. The prediction
procedure also creates images of all the predicted mini-batches with unprocessed
inputs, ground truth and the prediction made by the U-Net (see Figure 27). The
prediction procedure can be run with the command python predict.py in the
root directory. The results can be run with R by calling r analyze_results.r.

54

MEG-inverse-UNet also contains procedures for visualizing resolution metrics as heat
maps by running python visualize_predictions.py in the root directory.

3.8 Resolution metrics
Spatial resolution of M/EEG should be addressed with multiple resolution metrics
including localization, spatial extent and amplitude. Such metric include dipole
localization error (DLE), spatial dispersion (SD) and overall amplitude (OA). Point-
spread and cross-talk functions (PSF and CTF) are alternatively used for computing
SDs and OAs. The above mentioned resolution metrics were compared between
inverse operations (L2 MNE, dSPM, sLORETA) and prediction made by the U-Net.
All distances were calculated as Euclidean distances using the x, y and z position
coordinates available for each vertex in the source space (Hauk et al. 2011).

Point-spread functions (PSFs) of an imaging system affect the spatial mapping
of the ideal representation of an object into the observed image. In linear and shift-
invariant systems a PSF can be used to predict the image of a known object using
convolution. For such a general, linear shift-invariant system the image distribution
at position r due to an ideal signal point δ(r0) defined the PSF, H(r; r0). For a
shift-invariant system this response can be written as H(r− r0). Let p(r) represent
the continuous signal to be measured, then for the region where linearity and shift-
invariance holds can be written with convolution as (Robson et al. 1997):

I(r) =
∫
p(r′)H(r− r′)dr′. (51)

Cross-talk functions (CTFs) describe the sensitivity of the linear estimator to
sources across cortical surface. CTFs describe how the activation from one location
"leaks" to other locations. CTFs provider more relevant information if multiple sources
or complex source patterns are expected. As stated by Hauk et al. (2011), PSFs and
CTFs were used and can be used as substitutes when computing SDs or OAs. All
SDs and OAs in this thesis were calculated using PSFs.

Dipole localization error (DLE) is defined as the distance of a solution’s peak
to the true location of a point source. DLE is the most widely used metric for
localization accuracy mainly because inferences about localization in real data sets
are usually made on the basis of peaks of activation. Dipole localization error can be
calculated as an Euclidean distance between the peak activation and the true source:

DLEi =
√

(xp − xi)2, (52)

where xp is the peak coordinate and xi is the true coordinate. MNE tends to fare
worse than dSPM and sLORETA in DLE metrics. MNE is also biased towards source
locations close to sensors and has worse DLE for sources originating from deeper

55

than 5 cm in the brain, such as the Sylvian Fissure or orbito-frontal cortex. This
bias can be somewhat alleviated with appropriate depth-weighting.

Spatial dispersion (SD) is a popular metric for addressing the spatial extent
of the inverse solution. When comparing inverse solutions, MNE typically has a less
extended SD when compared to sLORETA and dSPM. There are also differences in
SD between brain areas, e.g. MNE tends to be more spread out when estimating
sources originating from the central sulcus than from the occipital source. SD
demonstrates that even though MNE may be more mislocalized, it is still capable of
producing results less extended in space:

SDi =

√√√√∑j dijF
2
ij∑

j F
2
ij

, (53)

where Fij is the PSF or the CTF and dij is the distance between locations j and i.
All distances are calculated as Euclidean distances between the x, y and z coordinates
of each vertex.

Overall amplitude (OA) is used for addressing the PSFs and CTFs using the
sum of absolute values of amplitudes at vertices across the sources space. For OA
the relative differences between PSFs and CTFs are relevant, i.e. whether some
sources are largely overestimated with respect to other sources. OA distributions are
typically normalized to their maxima for each individual set before final averaging.
This procedure is used to remove inter-individual amplitude differences that arise
from differences sensor positioning and SNR. Such procedure was not performed
when analyzing the prediction of the U-Net because the sample subject is the same.
The OA is defined as (Hauk et al. 2011):

OAi =
∑
j

|Fij|, (54)

56

4 Results
The accuracy and precision of the U-Net predictions were evaluated with dipole
localization error (DLE), spatial dispersion (SD) and overall amplitude (OA) metrics
(Equations (52), (53), (54) respectively). These metrics were calculated using testing
data sets generated during the data simulation process. Estimates on amplitudes are
needed for computing the point-spread functions (PSFs) in order to compute SDs
and OAs. All inverse solutions and the U-Net predictions were scaled into a range of
[0, 1] in order to compute comparable PSFs. All one-tailed correlation metrics were
calculated with both Pearson’s and Spearman’s rank correlation coefficients.

Three distinct U-Nets were trained, using: (1) MEG sensor single-dipole data set
with regularization λ2 = 1

9 ; (2) MEG sensor single-dipole data set with regularization
λ2 = 1; and (3) M/EEG sensor single-dipole data set with regularization λ2 = 1.
These U-Nets are called MEG1, MEG2 and M/EEG1 respectively. Additionally,
the stability of the U-Net was tested by swapping the above mentioned data sets into a
U-Net trained under different conditions. Finally, the stability of the M/EEG1 U-Net
was tested with multi-dipole data set without the network ever having seen any multi-
dipole examples in the training data set. The final statistics of the training sessions
for each U-Net are presented in Tables 2, 3 and 4. In general, higher regularization
seems to improve the accuracy of the model. Also surprisingly, inclusion of EEG
channels made the model significantly more accurate. For the sake of clarity, all
the main results are presented for the first MEG1 U-Net, unless stated otherwise.
For the MEG2 and M/EEG1 U-Nets, only interesting differences will be shown.

Figure 27: A prediction of the MEG1 U-Net. The inputs are on the left picture in
RGB channels (L2 MNE, dSPM, sLORETA in this order), the middle picture is the
ground truth and the right picture is the prediction made by the U-Net. The color
space is tweaked with added brightness for illustration purposes.

57

Table 2: Final statistics of the MEG1 U-Net.

statistic value
epochs 200
final loss (with training data) 0.5224
verification error 8.513%
verification loss 2.518

Table 3: Final statistics of the MEG2 U-Net.

statistic value
epochs 215
final loss (with training data) 0.5179
verification error 10.320%
verification loss 1.6054

Table 4: Final statistics of the M/EEG1 U-Net.

statistic value
epochs 235
final loss (with training data) 0.4159
verification error 4.473%
verification loss 0.9325

4.1 MEG U-Net
Single-dipole resolution metrics using MEG channels was tested with MEG1 U-Net.
The resolution metrics results are shown in Table 5. When compared to L2 minimum-
norm based inverse solutions, the U-Net is better at DLE and SD metrics both in
terms of mean and standard deviation. However, the average OA of the U-Net is
higher despite its standard deviation being much lower. As stated by Hauk et al.
(2011), sLORETA and dSPM are more similar to each other with better DLE and
worse SD when compared to MNE.

58

Table 5: DLE, SD and OA statistics between single-dipole inverse solutions and the
MEG1 U-Net prediction. DLEs are presented in centimeters (cm), SDs are in square
root of centimeters (

√
cm) and OAs are relative values. Lower values are considered

better.

Statistic Mean St. Dev. Min Max
DLEMNE 4.901 3.172 0.000 16.226
DLEsLORETA 4.289 3.204 0.000 16.255
DLEdSPM 4.171 3.030 0.000 16.255
DLEU-Net 3.587 2.714 0.000 14.155
SDMNE 23.923 2.683 17.161 32.962
SDsLORETA 23.544 2.361 16.897 33.964
SDdSPM 23.458 2.270 17.231 32.341
SDU-Net 19.170 1.844 18.222 31.328
OAMNE 112.658 27.322 32.925 197.283
OAsLORETA 144.095 37.950 47.316 243.022
OAdSPM 153.743 38.578 55.241 253.973
OAU-Net 138.884 17.578 100.123 240.631

n = 19170

4.1.1 Dipole localization error

Dipole localization errors (DLEs) were compared between L2 minimum-norm inverse
solutions and the U-Net with kernel density distributions and correlation coefficients.
In DLE the MEG1 U-Net seems to be able to locate activation on certain vertices
more often right (Figure 28). This can be seen as a spike in the kernel density
function at zero. The same spike is roughly the same size when comparing sLORETA
and dSPM, and noticeable lower with MNE. The similarity between sLORETA and
dSPM is further highlighted by the high correlations between the DLEs of these
two methods (Tables 6 and 7) indicating that they share a linear and monotonic
statistical relationship. In terms of DLE correlations, MNE is closer to sLORETA
and dSPM than to the U-Net.

59

Figure 28: Dipole localization error kernel density function with single-dipole data
set.

Table 6: Pearson’s correlations of DLEs.

DLEMNE DLEsLORETA DLEdSPM DLEU-Net

DLEMNE 1.00 0.51 0.52 0.33
DLEsLORETA 1.00 0.73 0.40
DLEdSPM 1.00 0.39
DLEU-Net 1.00

n = 19170; p < 0.0001

Table 7: Spearman’s ranked correlations of DLEs.

DLEMNE DLEsLORETA DLEdSPM DLEU-Net

DLEMNE 1.00 0.59 0.63 0.23
DLEsLORETA 1.00 0.80 0.36
DLEdSPM 1.00 0.34
DLEU-Net 1.00

n = 19170; p < 0.0001

60

4.1.2 Spatial dispersion

Spatial dispersions (SDs) were evaluated with kernel density functions and correlation
coefficients. Interestingly, the MEG1 U-Net has a more tightly packed SD than other
methods indicating that the solution is more sparse (Figure 29). The correlations
show that all L2 minimum-norm inverse solutions are quite similar to each other
with the U-Net being the least similar (Tables 8 and 9).

Figure 29: Spatial dispersion kernel density function with single-dipole data set.

61

Table 8: Pearson’s correlations of SDs.

SDMNE SDsLORETA SDdSPM SDU-Net

SDMNE 1.00 0.55 0.60 0.21
SDsLORETA 1.00 0.78 0.36
SDdSPM 1.00 0.35
SDU-Net 1.00

n = 19170; p < 0.0001

Table 9: Spearman’s ranked correlations of SDs.

SDMNE SDsLORETA SDdSPM SDU-Net

SDMNE 1.00 0.59 0.63 0.23
SDsLORETA 1.00 0.80 0.36
SDdSPM 1.00 0.34
SDU-Net 1.00

n = 19170; p < 0.0001

4.1.3 Overall amplitude

Overall amplitudes (OAs) were compared using kernel distributions and correlations.
The kernel density distributions of dSPM and sLORETA are similar whereas MNE
and U-Net are different (Figure 30). This can also be seen in correlations with the
U-Net being more different to other methods than MNE (Tables 10 and 11).

62

Figure 30: Overall amplitude kernel density function with one dipole data set.

Table 10: Pearson’s correlations of OAs.

OAMNE OAsLORETA OAdSPM OAU-Net

OAMNE 1.00 0.61 0.66 0.30
OAsLORETA 1.00 0.93 0.61
OAdSPM 1.00 0.52
OAU-Net 1.00

n = 19036; p < 0.0001

Table 11: Spearman’s ranked correlations of OAs.

OAMNE OAsLORETA OAdSPM OAU-Net

OAMNE 1.00 0.57 0.63 0.31
OAsLORETA 1.00 0.91 0.63
OAdSPM 1.00 0.54
OAU-Net 1.00

n = 19036; p < 0.0001

63

4.1.4 Differences in source space

The differences between L2 minimum-norm solutions and the MEG1 U-Net were
mapped on a source space using heatmaps. Heatmaps were computed using the
DLEs, SDs and OAs of the inverse solutions and the MEG1 U-Net predictions
averaged per vertex. These averaged DLEs, SDs and OAs were then mapped into
the corresponding vertex on the right hemisphere of the source space using ico3
subdivision. The heatmaps are presented on an inflated source space of the right
hemisphere from the lateral view. The darker areas in the source space signify the
sulci whereas the lighter areas are the gyri. The heatmap visualizations were created
using PySurfer.

In the case of DLEs (Figure 31), dSPM, MNE and sLORETA heatmaps are very
similar. However, dSPM and sLORETA are a bit closer closer to each other than to
the MNE. The MEG1 U-Net DLE heatmap shows high values mainly in areas where
all the inverse solutions also had high DLE values. The MEG1 U-Net is capable of
minimizing the average DLE close to zero in more areas than the L2 minimum-norm
inverse solutions. The DLE seems to have high spots around orbito-frontal cortex.
One of the reasons for this is that the orbito-frontal cortex is far away from MEG
sensors. However, the Sylvian fissure does not seem to exhibit high DLE as reported
by Hauk et al. (2011). There also seems to some areas of high DLE in MNE on
parietal lobe and near angular gyrus.

64

Figure 31: A comparison between heatmaps of averaged DLE per vertex on the
ico3 source space on the right hemisphere between distinct inverse solutions and the
MEG1 U-Net prediction.

When it comes to SD, all L2 minimum-norm solutions seem similar (Figure 32).
In terms of the MEG1 U-Net predictions, the SD is smaller but interestingly there
are small areas where SD is close to zero. SDs seem to be a bit more packed on the
prefrontal cortex as found by Hauk et al. (2011).

65

Figure 32: A comparison between heatmaps of averaged SD per vertex on the ico3
source space on the right hemisphere between distinct inverse solutions and the
MEG1 U-Net prediction.

In terms of the OAs, sLORETA and dSPM are unsurprisingly similar (Figure
33). MNE has the lowest OA whereas the U-Net sits in-between sLORETA/dSPM
and MNE. OA in general seems to be packed around the gyri. The U-Net having a
worse OA than MNE may arise from the fact that OA is not be directly linked with
the learning objective of the U-Net.

66

Figure 33: A comparison between heatmaps of averaged OA per vertex on the ico3
source space on the right hemisphere between distinct inverse solutions and the
MEG1 U-Net prediction.

4.2 M/EEG U-Net
Including both MEG and EEG channels in the training of the M/EEG1 U-Net
changes the results in an interesting way. First of all, the final network parameters
including loss and accuracy are better with the EEG channels included (Table 4).
Second, the solutions provided by the M/EEG1 U-Net are indeed different when
the EEG channels are included: As seen in Table 12, the M/EEG1 U-Net is better
in every resolution metric when compared to L2 minimum-norm solutions. The
inclusion of the EEG channels changed the solution significantly in terms of OA:
The U-Net now gives the best estimate with significantly lower standard deviation
when it comes to OA. The kernel density function of the OA has completely changed
for all inverse solutions as well (Figure 34). On the other hand, the U-Net is not
as drastically better in SD when compared to inverse solutions as was the case
with the MEG1 U-Net (Table 5). This could be due to the M/EEG1 U-Net using
higher amounts of regularization in its inverse solutions. In addition, all heatmaps
were found to be different but this is to be expected with the inclusion of the EEG

67

channels.

Table 12: DLE, SD and OA statistics between single-dipole inverse solutions and
M/EEG1 U-Net prediction. DLEs are presented in centimeters (cm), SDs are in
square root of centimeters (

√
cm) and OAs are relative values.

Statistic Mean St. Dev. Min Max
DLEMNE 4.772 2.499 0.000 15.750
DLEsLORETA 4.536 2.735 0.000 15.924
DLEdSPM 4.449 2.640 0.000 15.406
DLEU-Net 3.382 2.696 0.000 15.672
SDMNE 22.491 2.290 17.076 33.518
SDsLORETA 23.060 2.444 17.304 33.831
SDdSPM 22.951 2.336 17.236 33.695
SDU-Net 22.094 1.904 17.552 33.252
OAMNE 106.161 26.443 34.072 193.889
OAsLORETA 132.223 42.624 40.738 247.392
OAdSPM 136.801 41.831 46.083 250.851
OAU-Net 104.916 14.575 78.820 337.122

n = 19036

Figure 34: Overall amplitude kernel density function with single-dipole data set.

68

Figure 35: A comparison between heatmaps of averaged OA per vertex on the ico3
source space on the right hemisphere between distinct inverse solutions and the
M/EEG1 U-Net prediction.

4.3 Stability of the method
A general question often asked with machine and deep learning models is whether
the method is able to generalize to other problems. That is to say, if a method has
been trained with a specific data set, can it be applied to another data sets and to
what extent can one change the data set without re-training the model (Öktem &
Adler 2017)? In this section, the stability of the model is tested by using data that
is different in terms of regularization, the channels in use or the amount of dipoles in
comparison to the examples used in the training data set.

4.3.1 Regularization

The MEG1 and MEG2 U-Nets were trained with input data using only MEG channels
but with different amounts of regularization. In this section the MEG1 U-Net was
tested MEG2 data and vice versa.

The MEG1 U-Net with the MEG2 data test results are show in Table 13. The

69

MEG1 U-Net was trained with lower regularization (λ2 = 1
9), and the MEG2 data

contains higher regularization (λ2 = 1). Despite this, the MEG1 U-Net still manages
to have a better DLE than L2 minimum-norm solutions but not by a large margin.
MNE is now the best solution in terms of SD with the MEG1 U-Net sticking close
to dSPM and sLORETA. When it comes to OA, the U-Net is still in-between MNE
and dSPM/sLORETA. The standard deviation of the DLE, SD and OA of MEG1
U-Net predictions has increased as well but they are still smaller than the standard
deviations of the inverse solutions. Overall, the performance of the U-Net suffers
with the input data containing higher amounts of regularization than the training
data set. Despite this, the U-Net is still comparable to inverse solutions.

Table 13: DLE, SD and OA statistics between single-dipole inverse solutions and
MEG1 U-Net prediction using MEG2 data. DLEs are presented in centimeters (cm),
SDs are in square root of centimeters (

√
cm) and OAs are relative values.

Statistic Mean St. Dev. Min Max
DLEMNE 5.282 2.838 0.000 15.710
DLEsLORETA 4.967 2.685 0.000 15.642
DLEdSPM 4.872 2.620 0.000 15.383
DLEU-Net 4.489 2.357 0.000 15.383
SDMNE 23.060 2.444 17.304 33.831
SDsLORETA 23.460 2.437 17.767 32.888
SDdSPM 23.373 2.437 17.767 32.888
SDU-Net 23.342 2.191 17.133 34.482
OAMNE 113.547 25.471 31.222 199.996
OAsLORETA 151.765 41.312 41.751 264.393
OAdSPM 157.972 39.771 46.538 267.472
OAU-Net 138.888 20.383 101.382 253.129

n = 19036

The MEG2 U-Net with MEG1 data test results are show in Table 14. Interest-
ingly, the U-Net in general seems to able of handling lower amounts of regularization
in new data better if the training data set contained high amounts of regularization.
The MEG2 U-Net has a much lower DLE than the inverse solutions, and a slightly
better SD as well. Strangely, OA seems to take a small hit when compared to the
case of using MEG1 U-Net with MEG data (Table 13. Otherwise, the U-Net seems
to be more robust with higher amounts of regularization in the training examples.
Higher amounts of regularization in the training examples may help the U-Net to
generalize better, as it also enabled the network to converge to a smaller final loss
(see Tables 2, 3).

70

Table 14: DLE, SD and OA statistics between single-dipole inverse solutions and
MEG2 U-Net prediction using MEG1 data. DLEs are presented in centimeters (cm),
SDs are in square root of centimeters (

√
cm) and OAs are relative values.

Statistic Mean St. Dev. Min Max
DLEMNE 5.267 2.829 0.000 16.081
DLEsLORETA 4.838 2.697 0.000 16.127
DLEdSPM 4.791 2.626 0.000 16.127
DLEU-Net 4.097 2.420 0.000 15.541
SDMNE 23.791 2.695 16.469 32.926
SDsLORETA 23.431 2.379 17.067 32.913
SDdSPM 23.344 2.255 17.362 32.867
SDU-Net 23.059 1.735 19.072 33.294
OAMNE 115.365 27.288 27.529 208.302
OAsLORETA 148.009 40.015 50.514 261.347
OAdSPM 155.476 39.463 57.872 253.283
OAU-Net 147.738 18.849 109.158 261.039

n = 19073

4.3.2 MEG and EEG channels

The MEG2 U-Net with M/EEG1 data test results are show in Table 15. In this
case, the MEG2 U-Net has never seen input data with EEG channels. The predictions
of the MEG2 U-Net are worse in terms of DLE than dSPM and sLORETA but better
than MNE. The MEG2 U-Net is the second best at SD right after MNE but it fares
the worst in terms of OA.

71

Table 15: DLE, SD and OA statistics between single-dipole inverse solutions and
MEG2 U-Net prediction using M/EEG1 data. DLEs are presented in centimeters
(cm), SDs are in square root of centimeters (

√
cm) and OAs are relative values.

Statistic Mean St. Dev. Min Max
DLEMNE 4.394 2.621 0.000 16.081
DLEsLORETA 3.719 3.171 0.000 15.021
DLEdSPM 3.596 3.106 0.000 15.097
DLEU-Net 4.106 2.258 0.000 15.316
SDMNE 22.360 2.294 16.490 34.545
SDsLORETA 23.101 2.388 16.981 33.861
SDdSPM 23.049 2.322 17.316 33.801
SDU-Net 22.873 1.599 18.947 33.358
OAMNE 106.263 27.165 36.296 203.525
OAsLORETA 133.156 41.791 43.607 246.995
OAdSPM 137.023 41.065 49.343 255.496
OAU-Net 147.694 17.312 111.922 279.504

n = 19130

The M/EEG1 U-Net with MEG2 data test results are show in Table 16.
After the results of MEG2 U-Net with M/EEG1 data, it is quite surprising, that the
M/EEG1 U-Net fares the best in all resolution metrics. The presence of EEG channels
in the training data has clearly helped the network to find features that explain the
path from inverse solutions to the ground truth better than MEG channels only. Also,
the M/EEG1 U-Net has the lowest verification loss and error of all trained U-Nets
(Table 4). The added benefit of training the network can also be seen illustrated
in heatmaps in Figure 36 where the M/EEG1 U-Net produces better results with
MEG2 data set than the MEG2 U-Net trained with the MEG2 data set.

72

Table 16: DLE, SD and OA statistics between single-dipole inverse solutions and
M/EEG1 U-Net prediction using MEG2 data. DLEs are presented in centimeters
(cm), SDs are in square root of centimeters (

√
cm) and OAs are relative values.

Statistic Mean St. Dev. Min Max
DLEMNE 5.260 2.808 0.000 16.081
DLEsLORETA 4.852 2.678 0.000 15.411
DLEdSPM 4.808 2.609 0.000 15.171
DLEU-Net 4.190 2.644 0.000 16.255
SDMNE 23.665 2.612 17.333 34.712
SDsLORETA 23.577 2.383 16.333 32.631
SDdSPM 23.456 2.248 16.849 32.430
SDU-Net 22.634 1.924 18.298 34.266
OAMNE 113.560 25.830 29.316 194.322
OAsLORETA 150.146 40.976 47.075 265.083
OAdSPM 157.497 40.006 52.361 263.304
OAU-Net 107.170 15.597 79.673 324.817

n = 19073

73

Figure 36: A comparison of DLE, SD and OA heatmaps using (1) M/EEG1 U-Net
with MEG2 data; (2) MEG2 U-Net with MEG2 data; and (3) M/EEG1 U-Net with
M/EEG1 data. There are clear improvements in OA metrics in M/EEG1 U-Net
even if EEG channels are not present in the input data.

4.3.3 Multi-dipole localization

The stability of the M/EEG1 U-Net model trained with single-dipole data only was
tested with multi-dipole data set where the amount of coincidental dipoles ranged
from 2 to 5 followed by a small segment of empty data. The multi-dipole data set was
simulated with identical simulation parameters and SNR target with regularization
parameter λ2 = 1. An example of a multi-dipole prediction made by the M/EEG1
U-Net can be seen in Figure 37.

The results of the multi-dipole resolution metrics are presented in Table 17. The
M/EEG1 U-Net is still better in all resolution metrics than L2 minimum-norm
solutions even without having any multi-dipole cases present in the training data
set. Despite the M/EEG1 U-Net providing better resolution metrics, the spike at
DLE = 0 is absent from the kernel density distribution (Figure 38). This means that
the M/EEG1 U-Net is not capable of systematically allocating all of the simulated
dipoles right but the inverse the inverse solutions are not capable of it either. A
proper training procedure for the U-Net should most likely contain some segments of

74

multi-dipole data.

Figure 37: An example of the prediction made from multi-dipole data unseen by
the M/EEG1 U-Net trained with single-dipole data. The color space was tweaked
brighter for improved visualization.

Figure 38: Dipole localization error kernel density function with multi-dipole dataset
using the M/EEG1 U-Net.

75

Table 17: DLE, SD and OA statistics between inverse
solutions and M/EEG1 U-Net prediction using the multi-
dipole data set unseen by the M/EEG1 U-Net.

Statistic Mean St. Dev. Min Max
DLEMNE 4.846 1.556 0.722 13.031
DLEsLORETA 4.771 1.570 0.559 13.368
DLEdSPM 4.760 1.545 0.551 12.628
DLEU-Net 4.324 1.462 0.000 12.722
SDMNE 23.162 2.212 17.852 32.862
SDsLORETA 23.533 2.172 17.285 33.417
SDdSPM 23.605 2.129 17.856 33.117
SDU-Net 22.619 1.964 18.519 34.460
OAMNE 108.505 23.151 47.786 202.896
OAsLORETA 127.918 34.604 44.594 243.560
OAdSPM 134.513 34.086 49.846 247.186
OAU-Net 103.458 13.793 78.944 292.930

n = 18353

76

5 Discussion

5.1 Summary
In this thesis a special case of a deep convolutional network – the U-Net – was tested
for post-processing inverse L2 MNE based estimates of the raw data in order to
provide a more accurate and precise estimate on the site of activity in the brain.
The U-Net was trained with L2 minimum-norm based MNE, dSPM and sLORETA
as the inputs. The resolution metrics and the stability of the model were compared
between the inverse solutions and the U-Net using different regularization, by adding
EEG channels and in a multi-dipole case. The comparison was done using dipole
localization error (DLE), spatial dispersion (SD) and overall amplitude (OA) as the
resolution metrics. The stability of the U-Net models were further tested under
circumstances with different amounts of regularization in the input data, with different
combinations of MEG and EEG channels and with multi-dipole location tasks.

In conclusion, the U-Net typically outperforms the L2 minimum-norm inverse
solutions in DLE in most of the cases. The U-Net is relatively robust against changes
in the regularization of the input data, especially if the amount of regularization is
lower than in the training data set (Section 4.3.1). Also, the U-Net does not cope
well with new data channels, such as adding an EEG channel if no such examples
are present in the training data set. However, the U-Net model trained with both
MEG and EEG channels managed to outperform a U-Net using only MEG channel
in MEG channel only prediction tasks (Section 4.3.2).

The inclusion of EEG channels significantly improved the U-Net in terms of OA.
This can also be seen in the final statistics of the network training session, where the
U-Net with EEG channels present managed to learn its way to a lower verification
loss and error (Table 4). The inclusion of EEG channels also made the OA metrics
of inverse solutions better, so it is reasonable to conclude, that the EEG channels
contain relevant information on how the current is packed on the cortex. All in all,
when training a U-Net for improving the MEG inverse problem, it pays of to use a
bit higher regularization with EEG channels enabled.

Surprisingly, the U-Net was quite robust with multi-dipole cases, and managed
to beat inverse solutions in all resolution metrics. It would most likely pay off to
include multi-dipole cases in the training data set with a limited scope by simulating
nearby sources, e.g. in the neighboring vertices seen by the same filter.

As stated by Jin et al. (2017), the U-Net is capable of post-processing the inverse
solution and efficiently remove artifacts, improving signal-to-noise ratio (SNR). The
results of this thesis are similar, especially when using inverse operators with amounts
of regularization, i.e. with assumptions of a noisy environment. The U-Net may be
an interesting method especially for research on on-going brain activity and research
on epilepsy where the experimental design does not support averaging by trials.

77

5.2 Model improvements
More research is needed when it comes to the feasibility of using the U-Net in actual
MEG research. The U-Net is demanding to compute (a high resolution source
space may take one week or even one month to train), and the resulting network is
unique to the source space, which means that the U-Net has to be trained separately
per subject. This issue could be solved by using an averaged, spherically morphed
surface in order to enable bringing all subject-specific source spaces into one common
anatomical frame.

Another issue lies within the assumptions about the structure of the input data
and more specifically in forcing the data to show all the source space vertices at a
time. This decision was made in order to alleviate the computational workload by
not introducing a third dimension or separate source space coordinate channels. The
MEG-inverse-UNet package already supports introduction of source space vertex x,
y and z coordinates thus making the total number of input channels to be six.

Dimensionality of the solution could also be re-evaluated. One could argue that
a one dimensional version of the U-Net would be sufficient for approximating the MEG
inverse where the input would be a vector of source space vertices. There are two
reasons why a 2D U-Net is used: First, 2D CNNs in general are better documented
and researched because most visual recognition tasks are 2D. Another reason for
using a 2D network is that noise in the data may have temporal components. As
shown by prior research on the U-Net, it is possible to remove and suppress noise
artifacts with the U-Net when compared to iterative inverse reconstruction algorithms
(Jin et al. 2017).

There is also a 3D version of the U-Net available, called the V-Net which has been
successfully implemented in volumetric medical image segmentation tasks (Milletari
et al. 2016). If the transition from subject-specific source space is made into a
common anatomical frame, then building a framework for volumetric convolutions
might make sense. However, some temporal components should still be passed to
the model as the time axis reveals patterns related to noise artifacts.

Quality of the code base can be significantly improved. MEG-inverse-UNet
would need to have proper unittests in place that test each object and function of the
code base that they actually do what they are supposed to do before finally publishing
the software package. Given the computationally heavy nature of the problem, MEG-
inverse-UNet would also need to have proper work queues in place where data is
placed in a queue for the GPU to process using the available CPU threads. At
this moment MEG-inverse-UNet is bottlenecked by single thread performance when
training the network with a powerful GPU.

Hyperparameter optimization is a big area of improvement. As stated by
Jin et al. (2017), the U-Net in ill-posed inverse problems is extremely sensitive to the
hyperparameter selection. At this moment the user can only train one network at a
time and has to empirically find working hyperparameter combinations. This is far
from optimal, and the set of hyperparameters used in this thesis are most likely also far

78

from optimal. Could be, that some other network structures tested during this thesis
may have worked but were victims of poor hyperparameter selection. A good practice
in training neural networks with many parameters is to run dedicated grid search
sessions that alter one hyperparameter at a time and compare the different models
using cross-validation on the training data. Orchestrating such an optimization task
needs a dedicated mode with enables high-performance, parallelized and maybe even
distributed computing.

Other data sources could also be introduced. The model could also be trained
with L1 prior based estimates or mixed-norm estimates. Using raw sensor-level data
would also be interesting but as stated by the prior research on the U-Net, the "path"
from raw sensor data to source space estimate is "too long", and the U-Net fails to
converge. Despite all the failed attempts at finding converge with raw data, I am
still optimistic that a deep neural network will find its way around the problem. It
could be that the net is not deep enough to form the levels of abstraction required
to approximate the problem from raw sensor data. Also a direct estimate of the
magnetic fields at given source space points based on the sensor model would make
it easier to directly test the U-Net with sensor level data. The link from other data
sources could additionally go the other way: the U-Net could give e.g. dipole models
an estimate of the number of dipoles to be fitted in the source space.

Residual learning could add new layers to the network dynamically if adding
new layers adds extra explanatory power to the model. It is possible that the amount
of layers used in the U-Net is not deep enough to find a sufficient solution on certain
areas of the source space where the problem has poor numerical condition. Residual
learning has also been shown to reduce the need for hyperparameter tweaking as
they gain accuracy from increased depth of the network (He et al. 2016).

Validation of the model is difficult. The model essentially is a black box that
seems to outperform L2 minimum-norm solutions with the simulated data sets but
what will happen with real-life data? The validation issue is related tightly to the
data generation procedure: how to simulate a data set that is representative of the
underlying real-life electrophysiological phenomena? One of the reasons why the
imaging approach in MEG inverse modelling is used is the fact that it represents
the electrical activity in the brain as distributed sources rather than as individual
dipoles.

5.3 What’s next?
The scope of this thesis is to study the feasibility of using neural networks for
approximating the MEG inverse problem. As it turns out, neural networks can
indeed be used for creating better approximations of the source field distribution
than any of the current L2 MNE based inverse solutions separately. However, there
is still work to be done if this MEG-inverse-UNet is to be made an open source
package that would be easily implemented with MNE-Python workflow. The next
step is to involve researches working with M/EEG and MNE-Python to test the code

79

base and the approach presented in this thesis by presenting the findings and the
code base of this thesis to the MNE-Python community.

80

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,

Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G.,
Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D.,
Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y. & Zheng, X. (2015),
‘TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems’. Available:
http://download.tensorflow.org/paper/whitepaper2015.pdf. 46

Akeret, J., Chang, C., Lucchi, A. & Refregier, A. (2017), ‘Radio frequency in-
terference mitigation using deep convolutional neural networks’, Astronomy and
Computing 18, 35–39. 44

Bai, X. & He, B. (2005), ‘On the Estimation of the Number of Dipole Sources in
EEG Source Localization’, Clinical Neurophysiology 116, 2037–2043. Available:
http://dx.doi.org/10.1016/j.clinph.2005.06.001. 13

Buduma, N. (2017), Fundamentals of Deep Learning, O’Reilly Media. 16, 20, 22, 24,
25, 26, 27, 32, 34, 37, 38

Chen, C., Liaw, A. & Breiman, L. (2004), ‘Using Random Forest to Learn Im-
balanced Data’. Available http://statistics.berkeley.edu/sites/default/
files/tech-reports/666.pdf. 34

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B. &
Shelhamer, E. (2014), ‘cuDNN: Efficient Primitives for Deep Learning’. Available:
https://arxiv.org/abs/1410.0759. 46

Dale, A. M., Fischl, B. & Sereno, M. I. (1999), ‘Cortical Surface-Based Analysis: I.
Segmentation and Surface Reconstruction’, NeuroImage 9(2), 179–194. 9

Du, K.-L. & Swamy, M. N. S. (2013), Neural Networks and Statistical Learning,
Springer, London. 22, 23, 32

Duda, R. O., Hart, P. E. & Stork, D. G. (2012), Pattern Classification, Wiley. 26

Farley, B. & Clark, W. (1954), ‘Simulation of self-organizing systems by digital
computer’, Transactions of the IRE Professional Group on Information Theory
4, 76–84. 22

Fischl, B. (2012), ‘FreeSurfer’, NeuroImage 62, 774–781. Available: https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC3685476/. 45

Ghorpade, J., Parande, J., Kulkarni, M. & Bawaskar, A. (2012), ‘GPGPU Processing
in CUDA Architecture’, Advanced Computing: An International Journal 3(1). 46

http://download.tensorflow.org/paper/whitepaper2015.pdf
http://dx.doi.org/10.1016/j.clinph.2005.06.001
http://statistics.berkeley.edu/sites/default/files/tech-reports/666.pdf
http://statistics.berkeley.edu/sites/default/files/tech-reports/666.pdf
https://arxiv.org/abs/1410.0759
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685476/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685476/

81

Glorot, X. & Bengio, Y. (2010), Understanding the difficulty of training deep
feedforward neural networks, in ‘Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics’, Vol. 9 of Proceedings of Machine
Learning Research, PMLR, pp. 249–256. Available: http://proceedings.mlr.
press/v9/glorot10a/glorot10a.pdf. 31

Glorot, X., Bordes, A. & Bengio, Y. (2011), Deep Sparse Rectifier Neural Net-
works, in G. Gordon, D. Dunson & M. Dudík, eds, ‘Proceedings of the Four-
teenth International Conference on Artificial Intelligence and Statistics’, Vol. 15
of Proceedings of Machine Learning Research, PMLR, pp. 315–323. Available:
http://proceedings.mlr.press/v15/glorot11a.html. 22, 25

Golik, P., Doetsch, P. & Ney, H. (2013), ‘Cross-Entropy vs. Squared Error Training:
a Theoretical and Experimental Comparison’, pp. 1756–1760. 23

Goodfellow, I., Bengio, Y. & Courville, A. (2016), Deep Learning, MIT Press.
http://www.deeplearningbook.org. 19, 37, 42

Gramfort, A., Kowalski, M. & Hämäläinen, M. (2012), ‘Mixed-norm estimates
for the M/EEG inverse problem using accelerated gradient methods’, Physics
in Medicine & Biology 57, 1937–1961. Available http://iopscience.iop.org/
article/10.1088/0031-9155/57/7/1937. 4, 14, 16

Gramfort, A., Luessi, M., Larson, E., Engemann, D., Strohmeier, D., Brodbeck, C.,
Goj, R., Jas, M., Brooks, T., Parkkonen, L. & Hämäläinen, M. (2013), ‘MEG and
EEG data analysis with MNE-Python’, Frontiers in Neuroscience 7, 267. 45

Gramfort, A., Luessi, M., Larson, E., Engemann, D., Strohmeier, D., Brodbeck, C.,
Parkkonen, L. & Hämäläinen, M. (2014), ‘MNE software for processing MEG and
EEG data’, NeuroImage 86, 446–460. Available: https://doi.org/10.1016/j.
neuroimage.2013.10.027. 8, 9, 10

Hahnloser, R., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J. & Seung, H. S.
(2000), ‘Digital selection and analogue amplification coexists in cortex-inspired
silicon circuit’, Nature 405, 947–951. 21

Hansen, P., Kringelbach, M. & Salmelin, R. (2010), MEG: An Introduction to
Methods, OUP USA. 5, 6, 10, 12, 13, 14, 15

Hauk, O., Wakeman, D. & Henson, R. (2011), ‘Comparison of noise-normalized
minimum norm estimates for MEG analysis using multiple resolution metrics’, Neu-
roImage 54, 1966–1974. Available: http://dx.doi.org/10.1016/j.neuroimage.
2010.09.053. 16, 54, 55, 57, 63, 64

He, H. & Garcia, E. A. (2009), ‘Learning from Imbalanced Data’, IEEE
Transactions on Knowledge and Data Engineering 21, 1263–1284. Available:
http://ieeexplore.ieee.org/document/5128907. 34

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://proceedings.mlr.press/v15/glorot11a.html
http://www.deeplearningbook.org
http://iopscience.iop.org/article/10.1088/0031-9155/57/7/1937
http://iopscience.iop.org/article/10.1088/0031-9155/57/7/1937
https://doi.org/10.1016/j.neuroimage.2013.10.027
https://doi.org/10.1016/j.neuroimage.2013.10.027
http://dx.doi.org/10.1016/j.neuroimage.2010.09.053
http://dx.doi.org/10.1016/j.neuroimage.2010.09.053
http://ieeexplore.ieee.org/document/5128907

82

He, K., Zhang, X., Ren, S. & Sun, J. (2016), ‘Deep Residual Learning for Image
Recognition’, 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) . Available: https://arxiv.org/abs/1512.03385. 78

Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J. & Lounasmaa, O. V.
(1993), ‘Magnetoencephalography—theory, instrumentation, and applications to
noninvasive studies of the working human brain’, Reviews of Modern Physics
65, 413–497. 4, 6, 85

Hämäläinen, M. & Ilmoniemi, R. (1994), ‘Interpreting magnetic fields of the
brain: minimum norm estimates’, Medical & Biological Engineering & Computing
32, 35–42. 45

Ioffe, S. & Szegedy, C. (2015), Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift, in D. Blei & F. Bach, eds,
‘Proceedings of the 32nd International Conference on Machine Learning (ICML-
15)’, JMLR Workshop and Conference Proceedings, pp. 448–456. Available:
http://jmlr.org/proceedings/papers/v37/ioffe15.pdf. 28, 29, 39

Jin, K. H., McCann, M. T., Froustey, E. & Unser, M. (2017), ‘Deep Convolutional
Neural Network for Inverse Problems in Imaging’, IEEE Transactions on Image
Processing 26, 4509–4522. Available: http://dx.doi.org/10.1109/TIP.2017.
2713099. 1, 27, 39, 42, 43, 51, 76, 77

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M. & Tang, P. T. P. (2017),
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
Minima. Available: https://arxiv.org/abs/1609.04836v2. 29

Kessy, A., Lewin, A. & Strimmer, K. (2017), ‘Optimal Whitening and Decorrelation’,
The American Statistician . 38

Knowlton, R. C. (2008), ‘Can Magnetoencephalography Aid Epilepsy Surgery?’,
Epilepsy Currents 8, 1–5. Available: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2238648/. 1

Kruse, R., Borgelt, C., Klawonn, F., Moewes, C., Steinbrecher, M. & Held, P. (2013),
Computational Intelligence, Springer-Verlag London. 16, 18

Liu, Z., Ding, L. & He, B. (2006), ‘Integration of EEG/MEG with MRI and fMRI in
Functional Neuroimaging’, IEEE Engineering in Medicine and Biology 25, 46–53.
Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1815485/. 1

Lystad, R. P. & Pollard, H. (2009), ‘Functional neuroimaging’, The Journal of the
Canadian Chiropractic Association 53, 59–72. 3, 6

Milletari, F., Navab, N. & Ahmadi, S.-A. (2016), V-Net: Fully Convolutional
Neural Networks for Volumetric Medical Image Segmentation. Available: https:
//arxiv.org/pdf/1606.04797.pdf. 77

https://arxiv.org/abs/1512.03385
http://jmlr.org/proceedings/papers/v37/ioffe15.pdf
http://dx.doi.org/10.1109/TIP.2017.2713099
http://dx.doi.org/10.1109/TIP.2017.2713099
https://arxiv.org/abs/1609.04836v2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2238648/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2238648/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1815485/
https://arxiv.org/pdf/1606.04797.pdf
https://arxiv.org/pdf/1606.04797.pdf

83

Patrick, v. d. S. & Gerd, H. (2012), Solving the Ill-Conditioning in Neural Network
Learning, Springer Berlin Heidelberg, pp. 191–203. 39

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M. & Duchesnay, E. (2011), ‘Scikit-
learn: Machine Learning in Python’, The Journal of Machine Learning Research
12, 2825–2830. 47

Ramachandran, P. & Varoquaux, G. (2011), ‘Mayavi: 3D Visualization of Scientific
Data’, IEEE Computing in Science & Engineering 13, 40–51. 45

Robson, M. D., Gore, J. G. & Constable, T. (1997), ‘Measurement of the Point
Spread Function in MRI Using Constant Time Imaging’, Magnetic Resonance in
Medicine 5, 733–740. 54

Rojas, R. (1996), Neural Networks, Springer-Verlag Berlin Heidelberg. 30

Ronneberger, O., Fischer, P. & Brox, T. (2015), ‘U-Net: Convolutional Networks
for Biomedical Image Segmentation’, Medical Image Computing and Computer-
Assisted Intervention (MICCAI) 9351, 234–241. Available: https://arxiv.org/
abs/1505.04597. 37, 39, 41, 50

Saarinen, S., Bramley, R. & Cybenko, G. (1993), ‘Ill-Conditioning in Neural Network
Training Problems’, SIAM Journal on Scientific Computing 14. 39

Sato, M., Yoshioka, T., Kajihara, S., Toyama, K., Goda, N., Doya, K. & Kawato, M.
(2004), ‘Hierarchical Bayesian estimation for MEG inverse problem’, NeuroImage
3, 806–826. 1

Siegelmann, H. T. & Sontag, E. D. (1995), ‘On the Computational Power of
Neural Nets’, Journal of Computer and System Sciences 50, 132–150. Available:
https://doi.org/10.1006/jcss.1995.1013. 42

Somersalo, E. (2007), ‘The Inverse Problem of Magnetoencephalography: Source
Localization and the Shape of Ball’, SIAM News 2. 4, 7, 13, 16

Sourdy, D., Di Castro, D., Gal, A., Kolodny, A. & Kvatinsky, S. (2015), ‘Memristor-
Based Multilayer Neural Networks With Online Gradient Descent Training’, IEEE
Transactions on Neural Networks and Learning Systems 26, 2408–2421. 26

Supek, S. & Aine, C. J. (2014), Magnetoencephalography, Springer-Verlag Berlin
Heidelberg. 8, 10

Taulu, S., Simola, J. & Kajola, M. (2005), ‘Applications of the signal space separation
method’, IEEE Transactions on Signal Processing 53, 3359 – 3372. 7, 8

Wen, H., Shi, J., Zhang, Y., Lu, K. H., Cao, J. & Liu, Z. (2017), ‘Neural Encoding
and Decoding with Deep Learning for Dynamic Natural Vision’, Cerebral Cortex
pp. 1–25. Available: http://dx.doi.org/10.1093/cercor/bhx268. 1

https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://doi.org/10.1006/jcss.1995.1013
http://dx.doi.org/10.1093/cercor/bhx268

84

Yao, Y., Rosasco, L. & Caponnetto, A. (2007), ‘On Early Stopping in Gradient
Descent Learning’, Constructive Approximation 26, 289–315. 32

Zou, H. & Hastie, T. (2005), ‘Regularization and variable selection via the elastic
net’, Journal of the Royal Statistical Society: Series B (Statistical Methodology)
67(2), 301–320. Available: http://dx.doi.org/10.1111/j.1467-9868.2005.
00503.x. 32

Öktem, O. & Adler, J. (2017), ‘Solving ill-posed inverse problems using iterative
deep neural networks’, Inverse Problems . 39, 51, 68

http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x

85

Appendix A Quasi-static approximation of Maxwell’s
equations

The Maxwell’s equations consist of the Gauss’s law, Gauss’s law for magnetism,
Maxwell-Faraday equation and Ampère’s circuital law:

∇ · E = ρ

ε0

∇ ·B = 0

∇× E = −∂B
∂t

∇×B = µ0J + µoε0
∂E
∂t

(A.1)

The quasi-static approximation means that in the calculation of E and B, ∂E/∂t
and ∂B/∂t can be ignored as source terms. In a passive, non-magnetic medium, J is
the sum of ohmic volume current and the polarization current:

J = σE + ∂P
∂t
. (A.2)

In Equation (A.2) P = (ε− ε0)E is the polarization with ε being the permitivity
of the material. In neuromagnetism the frequencies are below 100 Hz and the cellular
electrical phenomena contain frequencies below 1 kHz. Let σ and ε be uniform and
consider electromagnetic phenomena at frequency f(j =

√
−1):

E = E0(r)ej2πft. (A.3)

Using Equations (A.1) and (A.2) it’s possible to write:

∇×B = µ0 [σE + (ε− ε0)∂E/∂t] . (A.4)

In order for the quasi-static approximation to be valid, it is necessary that the
time-derivative term is small compared to the ohmic current, |ε∂E/∂t| � |σE|, i.e.
2πfε/σ � 1. With a conductivity of σ = 0.3 Ω−1 m−1 for the brain tissue, ε = 105ε0
and f = 100 Hz, we find that 2πfε/σ = 2× 10−3 � 1.

Also, ∂B/∂t must be small. Using Equation (A.1):

∇×∇× E = − ∂

∂t
(∇×B)

= −µ0
∂

∂t
(σE + ε

∂E
∂t

)

= −j2πfµ0(σ + j2πfε)E.

(A.5)

Solutions for Equation (A.5) have spatial changes on the characteristic length
scale:

λc = |2πfµ0σ(1 + j2πfε/σ)|−1/2. (A.6)
With the above parameters, λc = 65 m, which is much larger than the diameter of

the head. This implies that the contribution of ∂B/∂t to E is small and quasi-static
approximation is justified (Hämäläinen et al. 1993). �

	Abstract
	Preface
	Contents
	Symbols and abbreviations
	Introduction
	Motivation
	Contributions of the thesis

	Background
	Magnetoencephalography
	Instrumentation
	Noise suppression and data pre-processing
	The forward problem
	The inverse problem
	Inverse modelling strategies
	Regularization

	Artificial neural networks
	Neurons in the network
	Network structures
	Activation functions
	Learning and loss functions
	Gradient descent
	Training protocols
	Gradient optimization methods
	Weight initialization
	Overfitting and regularization
	Imbalanced data

	Deep convolutional neural networks
	Data pre-processing
	Ill-conditioning
	The U-Net

	Improving the MEG inverse solution

	Materials and methods
	Hardware
	Software packages
	MEG-inverse-UNet
	MNE-Python
	FreeSurfer
	PySurfer
	TensorFlow
	CUDA and cuDNN
	Scikit-Learn

	Data simulation procedure
	Data providing and processing
	Custom U-Net
	Training procedure
	Predictions
	Resolution metrics

	Results
	MEG U-Net
	Dipole localization error
	Spatial dispersion
	Overall amplitude
	Differences in source space

	M/EEG U-Net
	Stability of the method
	Regularization
	MEG and EEG channels
	Multi-dipole localization

	Discussion
	Summary
	Model improvements
	What's next?

	Appendices
	Appendix Quasi-static approximation of Maxwell's equations

