1,138 research outputs found

    Green strength optimization of injection molding proces for novel recycle binder system using Taguchi method

    Get PDF
    Metal injection molding is a worldwide technology that world use as a predominant method in manufacturing. Optimizing the injection molding process is critical in obtaining a good shape retention of green components and improving manufacturing processes itself. This research focuses on the injection molding optimization which correlated to a single response of green strength which implementing orthogonal array of Taguchi L9 (34). It involved the effect of four molding factors: injection temperature, mold temperature, injection pressure and injection speed, towards green strength. The significant levels and contribution to the variables of green strength are determined using the analysis of variance. Manual screening test is conducted in regards of identifying the appropriate level of each factors. The study demonstrated that injection temperature was the most influential factor contributes to the best green strength, followed by mold temperature, injection speed and injection pressure. The optimum condition for attaining optimal green strength was definitely by conducting injection molding at; 160 ºC of injection temperature, 40 ºC of mold temperature, 50 % of injection pressure and 50 % of injection speed. The confirmation experiment result is 15.5127 dB and it was exceeding minimum requirement of the optimum performance. This research reveals that the proposed approach can excellently solve the problem with minimal number of trials, without sacrificing the ability of evaluating the appropriate condition to achieve related response, which is green strength

    Bimodal Biometric Verification Mechanism using fingerprint and face images(BBVMFF)

    Get PDF
    An increased demand of biometric authentication coupled with automation of systems is observed in the recent times. Generally biometric recognition systems currently used consider only a single biometric characteristic for verification or authentication. Researchers have proved the inefficiencies in unimodal biometric systems and propagated the adoption of multimodal biometric systems for verification. This paper introduces Bi-modal Biometric Verification Mechanism using Fingerprint and Face (BBVMFF). The BBVMFF considers the frontal face and fingerprint biometric characteristics of users for verification. The BBVMFF Considers both the Gabor phase and magnitude features as biometric trait definitions and simple lightweight feature level fusion algorithm. The fusion algorithm proposed enables the applicability of the proposed BBVMFF in unimodal and Bi-modal modes proved by the experimental results presented

    Multi-modal palm-print and hand-vein biometric recognition at sensor level fusion

    Get PDF
    When it is important to authenticate a person based on his or her biometric qualities, most systems use a single modality (e.g. fingerprint or palm print) for further analysis at higher levels. Rather than using higher levels, this research recommends using two biometric features at the sensor level. The Log-Gabor filter is used to extract features and, as a result, recognize the pattern, because the data acquired from images is sampled at various spacing. Using the two fused modalities, the suggested system attained greater accuracy. Principal component analysis (PCA) was performed to reduce the dimensionality of the data. To get the optimum performance between the two classifiers, fusion was performed at the sensor level utilizing different classifiers, including K-nearest neighbors (K-NN) and support vector machines (SVMs). The technology collects palm prints and veins from sensors and combines them into consolidated images that take up less disk space. The amount of memory needed to store such photos has been lowered. The amount of memory is determined by the number of modalities fused

    Non-minutiae based fingerprint descriptor

    Get PDF

    Hubungan gaya pembelajaran dengan pencapaian akademik pelajar aliran vokasional

    Get PDF
    Analisis keputusan Sijil Pelajaran Malaysia (SPM) 2011 menunjukkan penurunan pencapaian bagi Sekolah Menengah Vokasional. Oleh itu, kajian ini dilaksanakan bertujuan untuk mengkaji hubungan di antara gaya pembelajaran dengan pencapaian akademik pelajar. Kajian ini juga ingin mengenalpasti gaya pembelajaran paling dominan yang diamalkan oleh pelajar serta melihat perbezaan gaya pembelajaran dengan jantina pelajar. Seramai 131 orang Pelajar Tingkatan Empat Kursus Vokasional Di Sekolah Menengah Vokasional Segamat di Johor telah terlibat dalam kajian ini. Soal selidik Index of Learning Style (ILS) yang dibangunkan oleh Felder dan Silverman (1991) yang mengandungi 44 soalan telah digunakan untukh menjalankan kajian ini. Gaya pembelajaran pelajar dapat dilihat melalui empat dimensi gaya pembelajaran yang terdiri dari dua sub-skala yang bertentangan iaitu dimensi pelajar Aktif dan Reflektif, dimensi pelajar Konkrit dan Intuitif, dimensi pelajar Verbal dan Visual, serta dimensi pelajar Tersusun dan Global. Data yang diperolehi dianalisis dengan menggunakan perisian Statistical Package for Social Science for WINDOW release 20.0 (SPSS.20.0). Ujian Korelasi Pearson digunakan untuk menganalisis data dalam mengkaji hubungan gaya pembelajaran dengan pencapaian akademik pelajar. Nilai pekali p yang diperolehi di antara gaya pembelajaran dengan pencapaian pelajar adalah (p=0.1 hingga 0.4). Ini menunjukkan tidak terdapat hubungan yang signifikan di antara dua pembolehubah tersebut. Kajian ini juga mendapati bahawa gaya pembelajaran yang menjadi amalan pelajar ialah gaya pembelajaran Tersusun. Hasil kajian juga mendapati bahawa tidak terdapat perbezaan yang signifikan di antara gaya pembelajaran dengan jantina pelajar

    Indexing techniques for fingerprint and iris databases

    Get PDF
    This thesis addresses the problem of biometric indexing in the context of fingerprint and iris databases. In large scale authentication system, the goal is to determine the identity of a subject from a large set of identities. Indexing is a technique to reduce the number of candidate identities to be considered by the identification algorithm. The fingerprint indexing technique (for closed set identification) proposed in this thesis is based on a combination of minutiae and ridge features. Experiments conducted on the FVC2002 and FVC2004 databases indicate that the inclusion of ridge features aids in enhancing indexing performance. The thesis also proposes three techniques for iris indexing (for closed set identification). The first technique is based on iriscodes. The second technique utilizes local binary patterns in the iris texture. The third technique analyzes the iris texture based on a pixel-level difference histogram. The ability to perform indexing at the texture level avoids the computational complexity involved in encoding and is, therefore, more attractive for iris indexing. Experiments on the CASIA 3.0 database suggest the potential of these schemes to index large-scale iris databases

    A Survey on Methods of Image Processing and Recognition for Personal Identification

    Get PDF
    The network of blood vessels possesses several properties that make a good biometric feature for personal identification: (1) they are difficult to damage and modify; (2) they are difficult to simulate using a fake template; and (3) vein information can represent the liveness of the person. In the process of recognition of the network of blood vessels, we encounter two main difficulties: the first difficulty concerns the enhancement of the image of blood vessels obtained from the camera working in visible and/or infrared light, and the second one concerns the process of extraction of features and methods of classification. In the first part, this chapter presents the basic methods of preprocessing biometric images. In the second part, we discuss the process of feature extraction with particular emphasis on the feature extraction from images depicting the network of blood vessels. This applies to texture analysis using the co-occurrence matrix, Gabor filtration, moments, and topological features using cross points. In the third part, we present the methods of processing images of the blood vessel network of dorsal part of the hand and wrist. We also discuss the process of reducing the dimensionality of a feature vector using the principal components analysis method
    • …
    corecore