13 research outputs found

    A Ranking Distance Based Diversity Measure for Multiple Classifier Systems

    Get PDF
    International audienceMultiple classifier fusion belongs to the decision-level information fusion, which has been widely used in many pattern classification applications, especially when the single classifier is not competent. However, multiple classifier fusion can not assure the improvement of the classification accuracy. The diversity among those classifiers in the multiple classifier system (MCS) is crucial for improving the fused classification accuracy. Various diversity measures for MCS have been proposed, which are mainly based on the average sample-wise classification consistency between different member classifiers. In this paper, we propose to define the diversity between member classifiers from a different standpoint. If different member classifiers in an MCS are good at classifying different classes, i.e., there exist expert-classifiers for each concerned class, the improvement of the accuracy of classifier fusion can be expected. Each classifier has a ranking of classes in term of the classification accuracies, based on which, a new diversity measure is implemented using the ranking distance. A larger average ranking distance represents a higher diversity. The new proposed diversity measure is used together with each single classifier's performance on training samples to design and optimize the MCS. Experiments, simulations , and related analyses are provided to illustrate and validate our new proposed diversity measure

    The impact of land use and land cover changes on wetland productivity and hydrological systems in the Limpopo transboundary river basin, South Africa

    Get PDF
    Philosophiae Doctor - PhDWetlands are highly productive systems that act as habitats for a variety of flora and fauna. Despite their ecohydrological significance, wetland ecosystems are under severe threat as a result of environmental changes (e.g. the changing temperature and rainfall), as well as pressure from anthropogenic land use activities (e.g. agriculture, rural-urban development and dam construction). Such changes result in severe disturbances in the hydrology, plant species composition, spatial distribution, productivity and diversity of wetlands, as well as their ability to offer critical ecosystem goods and services. However, wetland degradation varies considerably from place to place, with severe degradation occurring particularly in developing regions, such as sub-Saharan Africa, where Land Use and Land Cover changes impact on wetland ecosystems by affecting the diversity of plant species, productivity, as well as the wetland hydrology

    Development and evaluation of an automated land cover mapping approach in Greece

    Get PDF
    Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Γεωπληροφορική

    Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass

    Get PDF
    This Special Issue (SI), entitled "Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass”, resulted from 13 peer-reviewed papers dedicated to Forestry and Biomass mapping, characterization and accounting. The papers' authors presented improvements in Remote Sensing processing techniques on satellite images, drone-acquired images and LiDAR images, both aerial and terrestrial. Regarding the images’ classification models, all authors presented supervised methods, such as Random Forest, complemented by GIS routines and biophysical variables measured on the field, which were properly georeferenced. The achieved results enable the statement that remote imagery could be successfully used as a data source for regression analysis and formulation and, in this way, used in forestry actions such as canopy structure analysis and mapping, or to estimate biomass. This collection of papers, presented in the form of a book, brings together 13 articles covering various forest issues and issues in forest biomass calculation, constituting an important work manual for those who use mixed GIS and RS techniques

    HUMAN AND CLIMATE IMPACTS ON FLOODING VIA REMOTE SENSING, BIG DATA ANALYTICS, AND MODELING

    Get PDF
    Over the last 20 years, the amount of streamflow has greatly increased and spring snowmelt floods have occurred more frequently in the north-central U.S. In the Red River of the North Basin (RRB) overlying portions of North Dakota and Minnesota, six of the 13 major floods over the past 100 years have occurred since the late 1990s. Based on numerous previous studies as well as senior flood forecasters’ experiences, recent hydrological changes related to human modifications [e.g. artificial subsurface drainage (SSD) expansion] and climate change are potential causes of notable forecasting failures over the past decade. My dissertation focuses on the operational and scientific gaps in current forecasting models and observational data and provides insights and value to both the practitioner and the research community. First, the current flood forecasting model needs both the location and installation timing of SSD and SSD physics. SSD maps were developed using satellite “big” data and a machine learning technique. Next, using the maps with a land surface model, the impacts of SSD expansion on regional hydrological changes were quantified. In combination with model physics, the inherent uncertainty in the airborne gamma snow survey observations hinders the accurate flood forecasting model. The operational airborne gamma snow water equivalent (SWE) measurements were improved by updating antecedent surface moisture conditions using satellite observations on soil moisture. From a long-term perspective, flood forecasters and state governments need knowledge of historical changes in snowpack and snowmelt to help flood management and to develop strategies to adapt to climate changes. However, historical snowmelt trends have not been quantified in the north-central U.S. due to the limited historical snow data. To overcome this, the current available historical long-term SWE products were evaluated across diverse regions and conditions. Using the most reliable SWE product, a trend analysis quantified the magnitude of change extreme snowpack and melt events over the past 36 years. Collectively, this body of research demonstrates that human and climate impacts, as well as limited and noisy data, cause uncertainties in flood prediction in the great plains, but integrated approaches using remote sensing, big data analytics, and modeling can quantify the hydrological changes and reduce the uncertainties. This dissertation improves the practice of flood forecasting in Red River of the North Basin and advances research in hydrology and snow science

    Remote Sensing of Natural Hazards

    Get PDF
    Each year, natural hazards such as earthquakes, cyclones, flooding, landslides, wildfires, avalanches, volcanic eruption, extreme temperatures, storm surges, drought, etc., result in widespread loss of life, livelihood, and critical infrastructure globally. With the unprecedented growth of the human population, largescale development activities, and changes to the natural environment, the frequency and intensity of extreme natural events and consequent impacts are expected to increase in the future.Technological interventions provide essential provisions for the prevention and mitigation of natural hazards. The data obtained through remote sensing systems with varied spatial, spectral, and temporal resolutions particularly provide prospects for furthering knowledge on spatiotemporal patterns and forecasting of natural hazards. The collection of data using earth observation systems has been valuable for alleviating the adverse effects of natural hazards, especially with their near real-time capabilities for tracking extreme natural events. Remote sensing systems from different platforms also serve as an important decision-support tool for devising response strategies, coordinating rescue operations, and making damage and loss estimations.With these in mind, this book seeks original contributions to the advanced applications of remote sensing and geographic information systems (GIS) techniques in understanding various dimensions of natural hazards through new theory, data products, and robust approaches

    Remote sensing technology applications in forestry and REDD+

    Get PDF
    Advances in close-range and remote sensing technologies are driving innovations in forest resource assessments and monitoring on varying scales. Data acquired with airborne and spaceborne platforms provide high(er) spatial resolution, more frequent coverage, and more spectral information. Recent developments in ground-based sensors have advanced 3D measurements, low-cost permanent systems, and community-based monitoring of forests. The UNFCCC REDD+ mechanism has advanced the remote sensing community and the development of forest geospatial products that can be used by countries for the international reporting and national forest monitoring. However, an urgent need remains to better understand the options and limitations of remote and close-range sensing techniques in the field of forest degradation and forest change. Therefore, we invite scientists working on remote sensing technologies, close-range sensing, and field data to contribute to this Special Issue. Topics of interest include: (1) novel remote sensing applications that can meet the needs of forest resource information and REDD+ MRV, (2) case studies of applying remote sensing data for REDD+ MRV, (3) timeseries algorithms and methodologies for forest resource assessment on different spatial scales varying from the tree to the national level, and (4) novel close-range sensing applications that can support sustainable forestry and REDD+ MRV. We particularly welcome submissions on data fusion

    Integrated Applications of Geo-Information in Environmental Monitoring

    Get PDF
    This book focuses on fundamental and applied research on geo-information technology, notably optical and radar remote sensing and algorithm improvements, and their applications in environmental monitoring. This Special Issue presents ten high-quality research papers covering up-to-date research in land cover change and desertification analyses, geo-disaster risk and damage evaluation, mining area restoration assessments, the improvement and development of algorithms, and coastal environmental monitoring and object targeting. The purpose of this Special Issue is to promote exchanges, communications and share the research outcomes of scientists worldwide and to bridge the gap between scientific research and its applications for advancing and improving society

    Geo-Information Technology and Its Applications

    Get PDF
    Geo-information technology has been playing an ever more important role in environmental monitoring, land resource quantification and mapping, geo-disaster damage and risk assessment, urban planning and smart city development. This book focuses on the fundamental and applied research in these domains, aiming to promote exchanges and communications, share the research outcomes of scientists worldwide and to put these achievements better social use. This Special Issue collects fourteen high-quality research papers and is expected to provide a useful reference and technical support for graduate students, scientists, civil engineers and experts of governments to valorize scientific research

    Finer Resolution Land-Cover Mapping Using Multiple Classifiers and Multisource Remotely Sensed Data in the Heihe River Basin

    No full text
    corecore