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ABSTRACT 
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Over the last 20 years, the amount of streamflow has greatly increased and spring 

snowmelt floods have occurred more frequently in the north-central U.S. In the Red River of the 

North Basin (RRB) overlying portions of North Dakota and Minnesota, six of the 13 major 

floods over the past 100 years have occurred since the late 1990s. Based on numerous previous 

studies as well as senior flood forecasters’ experiences, recent hydrological changes related to 

human modifications [e.g. artificial subsurface drainage (SSD) expansion] and climate change 

are potential causes of notable forecasting failures over the past decade. My dissertation focuses 

on the operational and scientific gaps in current forecasting models and observational data and 

provides insights and value to both the practitioner and the research community. First, the current 

flood forecasting model needs both the location and installation timing of SSD and SSD physics. 

SSD maps were developed using satellite “big” data and a machine learning technique. Next, 

using the maps with a land surface model, the impacts of SSD expansion on regional 

hydrological changes were quantified. In combination with model physics, the inherent 

uncertainty in the airborne gamma snow survey observations hinders the accurate flood 

forecasting model. The operational airborne gamma snow water equivalent (SWE) 

measurements were improved by updating antecedent surface moisture conditions using satellite 

observations on soil moisture. From a long-term perspective, flood forecasters and state 

governments need knowledge of historical changes in snowpack and snowmelt to help flood 

management and to develop strategies to adapt to climate changes. However, historical snowmelt 

trends have not been quantified in the north-central U.S. due to the limited historical snow data. 

To overcome this, the current available historical long-term SWE products were evaluated across 
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diverse regions and conditions. Using the most reliable SWE product, a trend analysis quantified 

the magnitude of change extreme snowpack and melt events over the past 36 years. Collectively, 

this body of research demonstrates that human and climate impacts, as well as limited and noisy 

data, cause uncertainties in flood prediction in the great plains, but integrated approaches using 

remote sensing, big data analytics, and modeling can quantify the hydrological changes and 

reduce the uncertainties. This dissertation improves the practice of flood forecasting in Red 

River of the North Basin and advances research in hydrology and snow science.  
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CHAPTER 1 

1.1 Introduction 

During the last 20 years, the amount of streamflow has greatly increased, and floods have 

occurred more frequently in the north-central United States. In the Red River of the North Basin 

(RRB) bordering eastern North Dakota and western Minnesota, six of the 13 major spring 

snowmelt floods over the past 100 years have occurred since the late 1990s (Rannie, 2015; 

Rasmussen, 2016).  

The National Oceanic and Atmospheric Administration (NOAA) National Weather 

Service’s (NWS) network of River Forecast Centers (RFCs) are responsible for providing river 

flood forecasts and warnings to protect people and assets. The NWS flood forecasting model 

estimates the amount of runoff generated from a precipitation or snowmelt event, computes how 

the water will move downstream through soil storage, and then predicts the flow of water at a 

given location throughout the forecast period over the U.S. However, accurate flood forecasting 

has been challenged in the north-central U.S. For example, North Central River Forecasting 

Center (NCRFC) overestimated a peak flow by 70% of the observed 2013 flow at Fargo, North 

Dakota (Tuttle et al., 2017; Restrepo, 2014; personal communications with Mike DeWeese, 

NOAA NCRFC).  

There are several potential causes of forecasting failures according to regional flood 

experts and forecasters. There are limited physics in the NWS flood forecasting system. Even 

though the current NWS flood forecasting model was launched around the early 2000s, core sub-

models (e.g., SAC-SMA and SNOW-17) originally developed over 40 years ago are used with 
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simplistic physics (Burnash et al., 1973; Anderson, 1976). Additionally, while recent land 

characteristics have been drastically changed by the human modifications in the north-central 

U.S. (e.g. subsurface drainage expansion), the related physics is not included in the current NWS 

flood forecasting model. Furthermore, there were very limited reliable SSD records, resulting in 

a limited understanding of hydrological impacts of the SSD expansion in the north-central U.S. 

A lack of accurate observations of the water equivalent of the snowpack (snow water equivalent; 

SWE) is one of the major challenges that hampers accurate flood predictions. The region has 

relatively sparse observational data with SWE estimates being provided by a few station 

observations. Even though the operational airborne gamma snow survey collects areal mean 

SWE data and provides the information to the RFCs, the airborne gamma SWE products have 

uncertainties due to operational limitations (Carroll, 2001). Lastly, there is limited knowledge of 

historical snowpack trends for flood forecasters and stakeholders in the north-central U.S. It is 

known that the north-central U.S. has experienced the largest changes in precipitation and 

temperature in the U.S. (Peterson et al., 2013). However, historical changes in snowpack and 

snowmelt are still elusive due to the limited snow records in the north-central U.S. (Cooper et al., 

2016; Mote et al., 2018; Pierce et al., 2008). Thus, a better understanding of historical snowpack 

and snowmelt changes is needed to help flood management and to develop strategies to adapt to 

climate changes. 

My dissertation seeks to tackle a series of challenges needed to overcome operational and 

scientific gaps for enhanced flood predictions. The dissertation statement is that “Human and 

climate impacts, as well as limited and noisy data, cause uncertainties in flood prediction in the 

great plains, but integrated approaches using remote sensing, big data analytics, and modeling 

can quantify the hydrological changes and reduce the uncertainties”. In the next ‘background’ 
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section, the detailed information about current and future flood forecasting models and land 

characteristics in the north-central U.S. is provided. Subsection 2.1 describes the physics of the 

current NOAA flood forecasting model with snow and soil moisture sub-models. Section 2.2 

introduces the next generation flood forecasting model, National Water Model (NWM), with 

fundamental physics. Section 2.3 describes regional characteristics in the north-central U.S. with 

the recent expansion of artificial drainage systems. Section 2.3 provides observations to help 

flood prediction.  

1.2 Background 

1.2.1 Operational Flood Forecasting Model 

The NOAA NWS network of RFCs is responsible for providing river flood forecasts and 

warnings to protect people and assets. Among 13 RFCs over the entire U.S., the North Central 

RFC models river flow in three major basins, Great Lakes, Hudson Bay, and Mississippi river, 

and issues forecasts at 426 forecast points for 1173 subwatersheds in the north-central U.S.  

The NWS flood forecasting model, to be known as the Community Hydrologic 

Prediction System (CHPS), is a subwatershed-basis spatial scale model and includes the 

Sacramento soil moisture accounting (SAC-SMA; Burnash et al., 1973; Burnash, 1995) and the 

SNOW-17 model (Anderson, 1973). SNOW-17 is a conceptual Snow Accumulation and 

Depletion model that uses air temperature as a proxy for the energy exchange at the snow-air 

interface with precipitation as the only other input variable. Due to the scarcity of meteorological 

observations back in the 1970s when the model was developed, the model only uses those two 

inputs, precipitation and temperature. SNOW-17 is used operationally throughout the RFCs with 

generally good results but it has difficulties in regions with sparse ground-based observations. 

Even with accurate temperature and precipitation inputs, estimating snow accumulation is 
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challenging because the form of precipitation is not uniquely a function of air temperature. Local 

spatial variations in temperature can make distinguishing rainfall from snowfall difficult. Snow 

metamorphism and melt are also difficult to capture using only temperature and precipitation. 

For example, sublimation can significantly reduce SWE in regions with blowing snow.  

The SAC-SMA model is a spatially lumped continuous soil moisture accounting model 

that uses heuristic equations governing the transfer of soil moisture from the surface to the soils 

and the runoff. Using rainfall and snowfall variables calculated from SNOW-17, the model 

estimates key hydrologic states and processes including upper and lower zone soil moisture, 

interflow, evapotranspiration, and percolation from a basin. The model is likely suitable for large 

drainage basins, but not effective for small catchment/watersheds. Because the SAC-SMA runs 

on a subwatershed-basis, with one value for each model parameter in each subwatershed, the 

model does not have the ability to represent local variability within a subwatershed such as the 

recent land-use changes by human activities (e.g. subsurface drainage expansion).   

Given the limitation of the forecasting models, flood forecasters augment these models 

with observational data and their knowledge and experience of flood forecasting. Flood forecast 

modelers can make manual modifications of the model inputs, parameters, or outputs for the 

regions where the models are not performing well to improve model performance. Thus, the 

flood forecasts heavily rely on modeler experiences in regional RFCs. The observational 

hydrological variables data (e.g. soil moisture and SWE) are ground-based station measurements 

from the U.S. Army Corp Engineer (USACE) and Soil Climate Analysis Network (SCAN) and 

airborne gamma data from snow survey program operated by NOAA’s National Operational 

Hydrologic Remote Sensing Center (NOHRSC). Since there are very sparse ground observations 

in the north-central U.S. (Tuttle et al., 2017), the modelers primarily consider the airborne 
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gamma radiation data to check the model state variables. If model forecasts are different from 

observed river flows at major gages beyond typical error ranges, they compare and modify state 

variables using ground- and airborne measurements. Their modifications are based on +10 years 

of model experiences (in case of senior levels) with further information from local weather 

forecast offices (e.g. climatology and localized weather and/or land surface characteristics). The 

model simulations are typically updated with observation data using the direct insertion 

assimilation method and regional averaging. The updates had made good forecasts, but recently, 

the manual modifications did not work (e.g. huge overestimate in 2013 snowmelt flood). 

1.3.2 National Water Model: Next-generation Flood Forecasting Standard 

Given the limitations of the CHPS model with recent forecast failures, in August 2016, 

NOAA launched a new integrated hydrologic modeling framework ‘National Water Model 

(NWM)’ under the new NOAA Water Initiative effort. NOAA intends to replace the RFC CHPS 

flood forecast models with the National Water Model in the near future. The NWM provides 

streamflow forecasts over the continental U.S. and represents a major advance over the CHPS 

platform. The core of the NWM system is the National Center for Atmospheric Research 

(NCAR)-supported community Weather Research and Forecasting Hydrologic model (WRF-

Hydro). It ingests forcing data from a variety of sources including radar-gauge observed 

precipitation data, and Numerical Weather Prediction forecast data. WRF-Hydro is configured to 

use the Noah land surface model with multi-parameterization options (Noah-MP) to simulate 

land surface hydrological processes. Separate water routing modules perform diffusive wave 

surface routing and saturated subsurface flow routing on a 250 m grid. The NWM runs 

uncoupled analyses (simulations of current conditions) with look-back periods ranging from 28 
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hours to 3 hours. These analyses are used to provide initial conditions for the model’s forecast 

runs. Short-range forecasts are executed hourly over the CONUS. The model configurations 

provide streamflow for 2.7 million river reaches and other hydrologic variables on 1 km and 250 

m grids.  

Noah-MP is an updated version of the Noah LSM including enhanced hydrological and 

biophysical processes such as an interactive vegetation canopy (Dickinson et al., 1998), an 

unconfined aquifer for a dynamic water table and groundwater storage (Ek et al., 2003; Niu et al., 

2007), a simple TOPMODEL (TOPography based hydrological MODEL)-based runoff 

production (Niu et al., 2005), and a multilayer snowpack (Yang and Niu, 2003). However, the 

current Noah-MP LSM, as well as NWM, does not consider human activities (e.g. subsurface 

drainage system) (Cohen et al., 2018). In the north-central U.S., the absence of drainage systems 

in the Noah-MP may generate uncertainties in hydrological processes and flood forecasts 

(Maidment, 2017).   

1.3.3 North-Central U.S. 

The North-Central U.S. covers three major basins, Great Lakes, Hudson Bay, and 

Mississippi river. This work targets the 100,000+km2 RRB in the Hudson Bay drainage area. The 

RRB drains parts of western Minnesota, eastern North Dakota, and northeastern South Dakota 

(Figure 1). The Red River flows north from its headwaters in Wahpeton, North Dakota to 

Winnipeg, Manitoba, Canada. The Red River in the U.S. is approximately 635 km long and with 

a drainage area of 101,500 km2 (Rannie 2016). Current land use in areas is predominantly 

cropland. The RRB has extremely flat terrain (average slope of 8 cm/km) and poorly permeable 

clay soil (Tuttle et al., 2017). Thus, the RRB region is very vulnerable to flood events. 
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Approximately 85% of the annual peak river flows over the last century resulted from the spring 

snowmelt (Rasmussen 2016). Despite the lower average snowpack compared to snowpacks in 

the western U.S. (Brasnett 1999), most snowmelt floods in the RRB persist on from weeks to 

months. For example, the Red River at Grand Forks, ND exceeded the flood stage for 46 days 

during the 1997 snowmelt flood (Todhunter 2001). The inundatedarea could extend far from the 

mainstream (e.g., up to 100 km of the floodwater width; Schwert, 2003). The snowmelt floods 

have damaged private property and infrastructure in this region. The 1997 spring flood caused 

more than $5 billion of damage in Fargo and Grand Forks, North Dakota, and other communities 

(Todhunter, 2001).  

 

Figure 1. (a) Land cover and (b) Elevation maps of Red River of the North Basin with (c) the spring 

snowmelt flood, Fargo, North Dakota (April 2011; Courtesy of NOAA NWS) 
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The north-central U.S., including the RRB, is understudied for snow hydrology and 

snowmelt-runoff processes as compared to other snow-dominant regions (e.g., western U.S., 

Sierra Nevada mountains). Ground-based observations of hydrological variables are extremely 

sparse compared to other regions. In the entire RRB area, frequent, high-quality in-situ 

measurements of SWE and soil moisture are available from less than 10 and 20 locations, 

respectively. This scarcity of SWE and soil moisture makes flood forecasting difficult in this 

region.  

Since the 1990s, the north-central regions have experienced remarkable increases in river 

flow and spring floods. The RRB is one of only two watersheds in the U.S. that is experiencing a 

demonstrated increase in flood frequency (Hirsch and Ryberg, 2012). The regional hydrological 

changes are potentially related to the strong manifestation of climate change. The RRB has the 

largest increase in annual average precipitation and temperature (Peterson et al., 2013). In North 

Dakota, the annual average temperature for present-day (1986-2016) increased by 1.69°F, 

relative to the average for the first half of the last century (1901-1960). With a changing climate, 

artificial subsurface drainage (SSD; so-called ‘tile drainage’) systems have heavily expanded 

from 2000 until present (Finocchiaro, 2014; 2016). For example, the total of drainage permits in 

the Bois de Sioux Watershed, Minnesota were 4.7, 1254, and 2508 km in 1999, 2009, and 2010, 

respectively (Dollinger et al., 2013). The SSD expansion is considered as a potential issue 

regarding regional water balance change in the north-central U.S.  

1.2.4 Observations 

In the north-central U.S., observational hydrological state variables (e.g. soil moisture 

and SWE) are obtained from ground-based station measurements from the U.S. Army Corp 
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Engineer (USACE) and Soil Climate Analysis Network (SCAN) and airborne gamma data from 

snow survey program operated by NOAA’s National Operational Hydrologic Remote Sensing 

Center (NOHRSC). Additional snow observational data consists of snow survey data from local 

and federal agencies and cooperative network observations. However, because there are few 

ground station observations and additional snow survey data are not always available in the 

north-central U.S. (Tuttle et al., 2017), the flood modelers rely heavily on airborne gamma snow 

program to use reliable SWE observations. Since 1979, the National Oceanic and Atmospheric 

Administration’s (NOAA) Office of Water Prediction’s (OWP) airborne gamma radiation snow 

survey program has provided real-time reliable SWE observations to regional NWS RFCs. The 

snow survey collects areal mean SWE data over a network of 2,400 flight lines covering 25 

states and 7 Canadian provinces (Carroll, 2001). The airborne gamma technique uses the 

attenuation of the gamma-ray signal by water in the snowpack (any phase) to measure SWE for 

each flight line. The mean areal gamma SWE value is based on the difference between gamma 

radiation measurements over bare ground and snow-covered ground.  

The accuracy of airborne gamma SWE estimates has been evaluated using numerous 

ground-based snow observations from snow courses and field campaigns on designated flight 

lines (Carroll & Schaake, 1983; Carroll & Vose, 1984; Goodison et al., 1984; Glynn et al., 1988; 

Peck et al., 1971). These studies provided the impetus to develop an airborne gamma SWE 

program, which has been successfully used for operational flood forecasting over the last 40 

years (Carroll, 2001). Currently, the airborne gamma SWE observations support the near-real-

time, high spatial resolution (1 km2 gridded) national snow products (Barrett, 2003).  

One drawback of the current gamma snow survey program is an assumption of constant 

soil moisture conditions from the late fall to winter. Currently, this is a recognized challenge in 
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the program. Flight lines are typically flown once over bare soil in fall to obtain soil moisture 

and then flown over the snow-covered ground in the winter because the gamma radiation counts 

include the effect of both SWE and soil moisture. The difference between the fall and winter 

gamma radiation observations are used to calculate SWE. However, rainfall events or drying 

after the fall survey, as well as drainage from snow freeze/thaw cycles during the winter, can 

alter soil moisture. In that case, the program manager should decide to use either the fall survey 

soil moisture or the default soil moisture (35% of soil moisture) but both may generate 

uncertainties in gamma SWE. Thus the airborne gamma SWE measurements need to be modified 

by updating the gamma fall SM estimates immediately before winter onset for enhanced spring 

flood prediction. 

1.3 Objective 

The objective of this work is to improve the capability of flood forecasting by 

overcoming operational and scientific gaps in the current and future flood models for both the 

practitioners and the research community. A flow chart summarizing current challenges with 

relevant research tasks is provided in Figure 2. This research was conducted in five parts. First, 

the current flood forecasting model needs both the location and installation timing of SSD and 

SSD physics. In Chapter 2, SSD maps are developed using satellite “big” data and a machine 

learning technique. Next, using the maps with a LSM, the impacts of SSD expansion on regional 

hydrological changes are quantified, described in Chapter 3. With improved model physics, 

accurate snowpack observations can be directly related to the flood forecasting capacity because 

most flood events are driven by melting snow in the north-central U.S. However, the inherent 

uncertainty in the airborne gamma snow survey estimates of SWE hinders accurate flood 
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forecasting model. The third step, described in Chapter 4, is to improve the airborne gamma 

SWE measurements by updating antecedent soil moisture conditions using satellite observations 

on soil moisture. From a long-term perspective, flood forecasters and state governments need 

knowledge of historical changes in snowpack and snowmelt to help flood management and to 

develop strategies to adapt to climate changes. However, historical snowmelt trends have not 

been quantified in the north-central U.S. due to the limited historical snow data. To overcome 

this, the fourth step, described in Chapter 5, is to evaluate the current available historical long-

term SWE products across diverse regions and conditions. Using the most reliable SWE product 

found in Chapter 5, a trend analysis of extreme snowpack and melt events is presented in 

Chapter 6. Chapter 7 summarizes the main findings and contributions of this work and describes 

future direction.  
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Figure 2. Flow chart of this dissertation with current challenges, research tasks, and overarching goal   
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CHAPTER 2   

Identifying Subsurface Drainage using Satellite Big Data and Machine Learning via Google 

Earth Engine1 

2.1 Introduction 

In the north central U.S., the amount of streamflow has greatly increased and floods have 

occurred more frequently during the last 20 years. In the Red River of the North Basin (RRB), 

six of the 13 major floods over the past 100 years have occurred since the late 1990s (Rannie, 

2015; Todhunter, 2001; Tuttle et al., 2017). Numerous studies have been conducted to determine 

the major causes for the hydrologic changes in the north central U.S. (Foufoula‐Georgiou et al., 

2015; Frans et al., 2013; Raymond et al., 2008; Schilling et al., 2010). Potential factors include 

changes in climate, land use and land cover (LULC), including agricultural subsurface drainage 

installation. Subsurface drainage (SSD) expansion in agricultural landscapes resulting in an 

increase in cultivated areas is a key cause of regional water balance change (Rogger et al., 2017; 

Schottler et al., 2014). In the past two decades, SSD systems have exponentially expanded over 

the agricultural areas in the north central U.S. In the RRB, SSD areas have dramatically 

increased from 2000 to the present (e.g. in North Dakota, 1.26, 114, and 892 km2 for 2002, 2008, 

and 2016, respectively) (Finocchiaro, 2014; 2016; Dollinger et al., 2013).  

SD systems are used to remove excess surface water and to lower water tables through 

subsurface pipe networks installed below the ground surface. When the drainage pipes are 

 
1 Cho, E., J.M. Jacobs, X. Jia, S. Kraatz (2019) Identifying Subsurface Drainage using Satellite Big 

Data and Machine Learning via Google Earth Engine, Water Resources Research, 55(10), 8028-

8045, https://doi.org/10.1029/2019WR024892 
 



14 
 

installed at a certain depth and spacing, the pressure head at the pipes is approximately the 

atmospheric pressure and the pressure distributions in soil profile horizons change to an 

equilibrium profile. Thus, the original water tables in the undrained condition are lowered to the 

equivalent depth of the drainage systems, especially during spring and fall. The effective 

infiltration rates would be changed by drainage installations due to the altered hydraulic gradient 

of the upper soil layer above drained pipes (Rodgers et al., 2003; Shokri and Bardsley, 2015; 

Youngs, 1975).  

SSD impacts on runoff, soil moisture dynamics, and evapotranspiration have been 

studied at a range of spatiotemporal scales (Eastman et al., 2010; Frans et al., 2013; Kelly et al., 

2017; King et al., 2014; Kladivko et al., 2004; Lenhart et al., 2011; Rahman et al., 2014; Randall 

et al., 2003; Schottler et al., 2014; Williams et al., 2015). At a field scale, Kladivko et al. (2004) 

showed that SSD-induced water yields were 8 to 26% of annual rainfall in southeastern Indiana, 

depending on the year and the drain spacing. Eastman et al. (2010) found that the subsurface-

drained field discharged four times more water than the naturally drained field for their clay 

loam sites. At a watershed scale, King et al. (2014) reported that about 21% of annual 

precipitation and 47% of total watershed discharge was generated from SSD in central Ohio. 

Williams et al. (2015) concluded that SSD discharge contributed 56% of the annual watershed 

discharge in the same Ohio watershed. At a larger scale, Frans et al. (2013) showed that SSD 

increased annual streamflow up to 40% locally in the Upper Mississippi River basin. Schottler et 

al. (2014) compared a change in water yield between two historical periods (1940-1974 and 

1975-2009) in watershed scale. They found that SSD expansion is likely the major driver of 

increased streamflow in 21 Minnesota agricultural watersheds. Kelly et al. (2017) also concluded 
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that the extensive SSD systems in agricultural basins have contributed to the increase in river 

flow at the large basin scale.  

Despite the increased water yield, it is possible that SSD could mitigate downstream 

flooding by allowing surface runoff to infiltrate and be released at a slower rate. As recently as 

2013, the National Oceanic and Atmospheric Administration’s (NOAA) National Weather 

Service (NWS) North Central River Forecast Center (NCRFC) predicted a peak flow that 

exceeded the observed by 70% in the RRB (Tuttle et al., 2017). Because the current flood 

forecasting system does not consider SSD information, it is still an open question as to the 

dominant processes that are affected by SSD in the region. However, it has been observed that as 

SSD systems have expanded, operational flood forecasting has become more difficult due to 

limited information about spatial and temporal SSD expansion (personal communications with 

Mike DeWeese and Pedro Restrepo, NOAA NCRFC).  

Due to the paucity of SSD data, the results of the previous studies also had considerable 

uncertainties. Schottler et al. (2014) indicated that the unexplained portion of evapotranspiration 

change in the long-term water balance approach is due to SSD change, but did not have the 

supporting SSD data. While Kelly et al. (2017) had county-level drainage data for five census 

years to assess SSD impact on runoff patterns, they noted inconsistencies and errors of the 

census data with concerns about limited SSD records in the U.S.  

Most previous studies that have attempted to map SSD systems focused on delineating 

subsurface drained lines (or areas) at a field or catchment scales and used Geographical 

Information System (GIS)-based analyses and/or aerial image processing techniques (Naz et al., 

2009; Naz and Bowling, 2008; Sugg, 2007; Tetzlaff et al., 2009a & b; Zhang et al., 2014). The 

1992 National Resource Inventory (NRI) dataset provided potential extents of subsurface drains 
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in continental United States (Wieczorek, 2004). The NRI dataset was created with GIS and 

database management tools using collections at more than 800,000 sample sites over the U.S. 

Sugg (2007) estimated SSD percentage for each county based on the GIS-based soil drainage 

class. They compared their results with the NRI drainage map and developed a SSD map at the 

county scale. Sui (2007) also used a GIS-based analysis of land cover, soil, and slope datasets to 

classify the SSD areas for cropland in Indiana where the soils are poorly drained, and the slope is 

less than 2%. However, the SSD mapping studies could not validate their results due to the lack 

of SSD data (Naz et al., 2009; Sugg, 2007).  Infrared aerial photographs have been used to map 

subsurface drain lines and to delineate wet and drained areas in a field (Verma et al., 1996). Soils 

over subsurface drained areas have higher reflectance in the infrared spectrum because these 

areas tend to dry faster than the soil at other regions. Previous studies found that the best time to 

take imagery to be used for SSD delineation is within 3 days after a 25 mm or greater rainfall 

event (Varner et al., 2002; Northcott et al., 2000). A combination of high resolution (1-m) color 

(or black and white) infrared aerial images with land cover, soil, and topography data provided a 

map of individual drainage lines in west-central Indiana (Naz et al., 2009). Tlapakova et al. 

(2015) provided an example of manifestations of SSD systems in color aerial images and 

suggested best land conditions for the optimal SSD identification. Using an optical camera and 

unmanned aerial vehicle (UAV) system, Zhang et al. (2014) developed a mosaiced SSD map 

from infrared color composite imagery. While the aerial imagery approaches allow targeted 

study of watersheds, they are expensive and may be limited by weather and the availability of 

resources.  

Satellite remote sensing data offers the ability to observe temporal changes in surface 

conditions due to SSD at large spatial extents. Gökkaya et al. (2017) and Møller et al. (2018) 
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provide evidence of SSD induced surface changes using Landsat satellite images. However, they 

had few satellite observations due to limited cloud-free images and data processing requirements. 

Jacobs et al. (2017) showed that Moderate Resolution Image Spectroradiometer (MODIS) land 

surface temperature and Advanced Microwave Scanning Radiometer for Earth Observing 

System (AMSR-E) soil moisture products could detect physical effects of SSD systems on soil 

thermal-moisture dynamics. In addition to these products, there are many other satellite products 

that might show the SSD signature. However, traditional analysis techniques, such as image 

processing techniques and the GIS-based decision tree classification commonly used in previous 

studies (Gökkaya et al., 2017; Naz and Bowling, 2008; Sugg, 2007), are not well suited to 

manage and analyze terabyte-size satellite remote sensing datasets for SSD detection. In these 

cases, machine learning (ML) techniques have demonstrated value (Belgiu and Drăguţ, 2016; 

McCabe et al., 2017; Møller et al., 2018; Shen, 2018; Tao et al., 2016). 

Random Forest Machine Learning (RFML) is a supervised classification algorithm that 

constructs a multitude of decision trees and predicts class labels, using a random subset of 

training samples and variables (Breiman, 2001). The RFML has become popular within the 

remote sensing and hydrology communities due to its accuracy (Belgiu and Drăguţ, 2016; 

Gomez et al., 2016; Petty and Dhingra, 2018). For land surface and crop type monitoring, the 

RFML has been shown to produce higher accuracies than other ML techniques such as 

Maximum Likelihood Classifier, Neural Network, and Support Vector Machine (Gomez et al., 

2016; Ma et al., 2017; Ok et al., 2012). Also, it has been widely used in the field of hydrological 

predictions due to its capacity to determine variable importance, its robustness to data reduction, 

and that does not over-fit (Petty and Dhingra, 2018; Shortridge et al., 2016; Wang et al., 2015). 

Compared to other techniques, however, the RFML method has inherent limitations including 1) 
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complexity which makes less straightforward to understand the relationship in the input data and 

2) significant and timing-consuming of computational requirements to construct the algorithm. 

The Google Earth Engine’s (GEE) cloud computing platform (Gorelick et al., 2017) 

provides the ability to manage very large satellite and model datasets to analyze them using ML 

techniques. The GEE is designed to provide access to high-performance computing resources for 

processing massive geospatial datasets, without technical hurdles (e.g. data download and 

storage, handling obscure file formats, and managing databases). Because a variety of geospatial 

datasets including historical and current satellite and aerial imaging systems can be freely 

accessed and analyzed, the GEE has been widely used in computationally expensive 

hydrological, agricultural and socio-economic studies (Deines et al., 2017; Ge et al., 2019; Jin et 

al., 2019; Xie et al., 2019).  

Here, we focus on developing SSD maps to improve the capability of flood forecasting in 

agricultural landscapes across the RRB. The RFML algorithm is used to develop annual SSD 

maps in the GEE computing platform. We also seek to understand which of the related, globally 

available vegetation, thermal, moisture, and climate datasets from multi-scale satellites and 

models can be used to identify SSD areas and with what accuracy. The accuracy of these maps is 

assessed using SSD permit records in the Bois de Sioux Watershed (BdSW) in Minnesota and 

the North Dakota portion of the RRB region (ND-RRB).  
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Figure 1. Study area location and land cover map. (a) Red River of the North Basin; (b) Land 

cover classification from USGS National Land Cover Database 2011; and (c) Cropland Data 

Layers (CDL) with tile drained area in 2017 noted in Bois de Sioux Watershed (BdSW). 

2.2 Study Area 

The Red River of the North Basin overlies portions of North Dakota, South Dakota, and 

Minnesota (Figure 1). Its main stem marks the border between North Dakota and Minnesota. The 

river flows north from Wahpeton, ND to the U.S.–Canada border, and then through Winnipeg, 

Manitoba, Canada. The basin drainage area is about 112,200 km2, with 885 km long from U.S. 

Geological Survey (USGS) Watershed Boundary Dataset (HUC04). Along the distance of the 

main stem, it drops only 72 m, for an average gradient of 0.08 m/km. In the RRB, agricultural 

SSD systems have increasingly used to drain fields since the late 1990s due to the region’s flat 

https://www.sciencebase.gov/catalog/catalogParty/show?partyId=U.S.+Geological+Survey
https://www.sciencebase.gov/catalog/catalogParty/show?partyId=U.S.+Geological+Survey
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topography and low-permeability soils. The NOAA flood forecasters and water resource experts 

in RRB identified the rapid increase in the SSD systems as a likely culprit for the changed river 

flows and floods because SSD alters direct runoff, soil moisture, and evaporation seasonally 

(Rijal et al., 2012; Schottler et al., 2014). 

2.3 Method 

2.3.1 Datasets 

Working in the GEE cloud computing platform, the datasets from multi-source satellite 

and model assimilation products were used (total 1.4 terabytes). Table 1 lists the 36 seasonal and 

annual layers that were generated including 16 vegetation layers (top 16 lines at the table), 8 soil-

climate variable layers (next 8 lines), and 12 thermal-moisture layers (12 lines from the bottom) 

for 2009, 2011, 2014, and 2017. All 36 input layers were disaggregated to 30 m pixel resolution. 

The datasets generally fit into three categories: vegetation, thermal-moisture, and climate-land 

variables. The four years were selected based on land surface conditions (dry/wet) particularly in 

spring based on spring mean precipitation and soil moisture. 2009 and 2011 were selected 

because they have experienced spring snowmelt floods over the RRB. Even though years 2014 

and 2017 were not as wet as 2009 and 2011, they were included to examine whether the RFML 

method can capture continuous SSD expansion over the years that have occurred in RRB. The 

magnitude of year-over-year hydrologic variability for 2009 through 2017 is shown via a 

hydrograph at Fargo, North Dakota (USGS: 0505400), which a major streamflow gage in the 

RRB (Figure S1).  

Table 1. Summary of variables used in RFML including time period, resolution, and data source. 

All input variables were accessed through the GEE’s data archive, except for the three 30-m soil 

property datasets from POLARIS (available at www.polaris.earth; Chaney et al., 2016, 2019), 



21 
 

which were manually uploaded to the GEE for RFML classification. 16 vegetation layers appear 

in the top 16 rows (EVI, GI, NDVI, and NDWI), 12 thermal-moisture layers follow the 

vegetation layers (SM, LST, STR1 & 2), and 8 soil-climate variable layers are the remaining 8 

rows in the table (Preci, Aridity, Cropland, and three soil properties). 

Variable (Full Name) Short Name Time Period Res 

(m2) 

Source 

Spring mean EVI EVI_spr_mean 1 May – 30 Jun 30 Landsat 

Spring mean GI GI_spr_mean 1 May – 30 Jun 30 Landsat 

Spring mean NDVI NDVI_spr_mean 1 May – 30 Jun 30 Landsat 

Spring mean NDWI NDWI_spr_mean 1 May – 30 Jun 30 Landsat 

Spring range in EVI EVI_spr_range 1 May – 30 Jun 30 Landsat 

Spring range in GI GI_spr_range 1 May – 30 Jun 30 Landsat 

Spring range in NDVI NDVI_spr_range 1 May – 30 Jun 30 Landsat 

Spring range in NDWI NDWI_spr_range 1 May – 30 Jun 30 Landsat 

Summer mean EVI EVI_sum_mean 1 Jul – 30 Sep 30 Landsat 

Summer mean GI GI_sum_mean 1 Jul – 30 Sep 30 Landsat 

Summer mean NDVI NDVI_sum_mean 1 Jul – 30 Sep 30 Landsat 

Summer mean NDWI NDWI_sum_mean 1 Jul – 30 Sep 30 Landsat 

Summer range in EVI EVI_sum_range 1 Jul – 30 Sep 30 Landsat 

Summer range in GI GI_sum_range 1 Jul – 30 Sep 30 Landsat 

Summer range in NDVI NDVI_sum_range 1 Jul – 30 Sep 30 Landsat 

Summer range in NDWI NDWI_sum_range 1 Jul – 30 Sep 30 Landsat 

Spring mean soil 

moisture 

SM_spr_mean 1 May – 30 Jun 25,000 SMOS    

(NASA-

USDA) 

Spring range soil 

moisture 

SM_spr_range 1 May – 30 Jun 25,000 SMOS  

(NASA-

USDA) 

Spring mean LST LST_spr_mean 1 May – 30 Jun 1,000 Terra MODIS 

Spring range LST LST_spr_range 1 May – 30 Jun 1,000 Terra MODIS 

Spring mean STR 1 STR1_spr_mean 1 May – 30 Jun 30 Landsat 

Spring mean STR 2 STR2_spr_mean 1 May – 30 Jun 30 Landsat 

Spring range STR 1 STR1_spr_range 1 May – 30 Jun 30 Landsat 

Spring range STR 2 STR2_spr_range 1 May – 30 Jun 30 Landsat 

Summer mean STR 1 STR1_sum_mean 1 Jul – 30 Sep 30 Landsat 

Summer mean STR 2 STR2_sum_mean 1 Jul – 30 Sep 30 Landsat 

Summer range STR 1 STR1_sum_range 1 Jul – 30 Sep 30 Landsat 

Summer range STR 2 STR2_sum_range 1 Jul – 30 Sep 30 Landsat 

Growing season 

precipitation 

Preci_grow 1 May – 30 Sep 4,000 GRIDMET 

Early season 

precipitation 

Preci_early 1 Dec – 30 Apr 4,000 GRIDMET 

Annual precipitation Preci_ann 1 Dec – 30 Sep 4,000 GRIDMET 

Aridity Aridity 1 May – 30 Sep 4,000 GRIDMET 
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Cropland Data Layers Cropland NA 30 USDA NASS  

Clay percentage clay_perc NA 30 POLARIS 

Available soil water 

content 

awc NA 30 POLARIS 

Saturated hydraulic 

conductivity 

ksat NA 30 POLARIS 

 

Seasonal mean and range (max – min) composites of four vegetation indices were 

produced using spectral reflectance products from Landsat 7 Enhanced Thematic Mapper Plus 

(ETM+) and Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) (30 

m resolution): (1) the normalized difference vegetation index (NDVI); (2) the normalized 

difference Water index (NDWI) which is highly sensitive to vegetation water content (Jackson, 

2004); (3) the enhanced vegetation index (EVI) which is an improved vegetation index with de-

coupling of the background signal of canopy (Huete et al., 2002); and (4) the greenness index 

(GI) that is sensitive to the irrigation signal (Deines et al., 2017). The vegetation indices were 

divided seasonally for the spring (April – June) and summer (July – September) periods to 

include vegetation growth and their seasonal changes into the RFML model. The detailed 

variable equations are included in Appendix (Text S1). 

For thermal-moisture variables, two shortwave infrared transformed reflectances (STR) 

from Landsat 7 and 8 were used, which have a linear relationship with soil moisture content 

(Sadeghi et al., 2015). Land surface temperature (LST) from MODIS (1 km resolution) and 

surface soil moisture from Soil Moisture Ocean Salinity (SMOS) satellite (25 km resolution) 

were also used, but the soil moisture data were only available from 2010 (Kerr et al., 2010).  

Climate-land variables can improve classification accuracy by refining wet versus dry 

year patterns and including crop type and soil property effects. Total precipitation for the 

growing (May to Oct) and non-growing (Dec in the previous year to Apr) seasons, and aridity 
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(precipitation scaled by reference evapotranspiration, May to Aug) were assembled from the 

University of Idaho Gridded Surface Meteorological Dataset (4 km resolution) (Abatzoglou, 

2013). Annual crop types from Cropland Data Layers (CDL) were provided by the USDA 

National Agricultural Statistics Service (NASS). Three soil property maps, available water 

content, saturated hydraulic conductivity, and clay percent of the soils at 0-5 cm, from PLARIS 

database (30 m spatial resolution) (Chaney et al., 2016, 2019) were also used in the RFML 

classification. Land cover and slope information were used to make the non-SSD area (e.g. non-

agricultural and high slope area). We identified low gradient cultivated crop areas (slope < 2%) 

using the USGS National Land Cover Dataset (NLCD) and the USGS National Elevation 

Dataset (Naz et al., 2009). The input products with coarse resolutions (e.g. 1, 4, or 25 km grid) 

were disaggregated/resampled to the finer resolution (30-m grid) using a nearest neighbor 

resampling by default in the GEE (https://developers.google.com/earth-engine/resample). 

2.3.2 Subsurface drainage permit records for training and validation data 

Two separate SSD permit records were used to develop training points and to validate the 

RFML maps, assuming the permit records are ground “truth” SSD measurements: (1) a sub-basin 

SSD records obtained from the BdSW district in Minnesota (http://www.bdswd.com) and (2) the 

USGS records obtained from the North Dakota State Water Commission (Finocchiaro, 2016). 

The BdSW SSD permit records were collected from 1999 to the present over the BdSW region in 

Minnesota (Figure 1c). The annual SSD records contain locations of subsurface permit lines and 

the request and approved dates as GIS shape files as well as engineering design specifications. 

SSD installation is estimated to occur within three months of permit approval. Because the 

BdSW SSD record is a line shape file, the SSD lines were buffered to provide an effective extent. 

A 30 m buffer (15 m buffer on either side of the line) was used based on typical SSD separation 

https://developers.google.com/earth-engine/resample
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and guidance from the region’s agricultural engineers (Naz et al., 2009). The USGS SSD records 

(https://www.sciencebase.gov) were issued by the ND State Water Commission and collected by 

the USGS over the North Dakota from 1993 to 2016 (Finocchiaro, 2016). The USGS SSD 

records provide polygon outlines of the permit areas and approval dates.  

Previous studies used the US Census of Agriculture drainage data (USDA National 

Agricultural Statistics Service, 2014; Kelly et al., 2017; Krapu et al., 2018). The Census data are 

extremely limited because the five available census years only provide a single SSD value for 

each county and year in several US states, do not include areas less than 2 km2 (Kelly et al., 

2017). In contrast to previously used Census SSD data, the BdSW and USGS SSD permit 

records provide greatly improved information (e.g. exact SSD locations and approval dates) and 

are well-suited for developing training and validation data.  

That said, the BdSW and USGS SSD records are not perfect. Errors in the records may 

occur if farmers did not install the system or if they were installed them later than originally 

planned. The permit records also depend on an institution’s policy. The North Dakota SSD 

permit policy was changed in 2011, likely resulting in uncertainties about the SSD permit 

records (North Dakota Century Code; https://www.legis.nd.gov/cencode/t61.html). After 2011, 

farmers in SSD no longer needed to obtain a permit to install SSD systems if the SSD footprint is 

less than 0.32 km2 (80 acres). Thus, in small fields, SSD is underreported. 

The RFML uses the satellite products to identify changes in surface vegetation and soil 

water state that result from SSD. However, even within a single field, SSD effects depend on the 

soils, slope, and vegetation as well as the distance from the SSD. The satellite product’s spatial 

resolution (30 m) is relatively fine compared to a field scale and captures within field variations 

of SSD effects. Additionally, farmers install SSD systems over their fields with different SSD 

http://www.legis.nd.gov/general-information/north-dakota-century-code
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intensities (e.g. depth and spacing) depending on field-specific soils, crop type, and cost (Blann 

et al., 2009). Thus, matching satellite detected effects of SSD to permitted SSD locations is 

somewhat problematic. Neither the USGS polygon outlines of fields with SSD nor the static 30-

m buffered SSD lines provided for the BdSW SSD, areas can be expected to perfectly capture 

the portion of the field that is affected hydrologically by SSD as resolved by 30 m satellite 

observations.   

In this study, the annual accumulated SSD permit records were used to classify SSD and 

undrained (UD) areas. The low-slope cropland areas (slope < 2%) without the SSD permit areas 

were defined as the UD areas. Pixels were then randomly selected from the buffered SSD and 

UD areas using a random sample generator in the R package. For the BdSW, the total number of 

sample pixels is 2164, 2150, 4710, and 4746 for 2009, 2011, 2014, and 2017, respectively. For 

the ND-RRB, training sample pixels were directly selected from the accumulated SSD and UD 

areas for each year. There were total 9016, 8880, 8766, and 8754 sample pixels for 2009, 2011, 

2014, and 2017, respectively. For each region and year, half of the sample pixels were randomly 

selected as training pixels and the remaining 50% were used to validate the model outputs. 

2.3.3 Random Forest machine learning (RFML) classification  

RFML is an ensemble ML classification method comprised of a collection of tree-

structured classifiers (Breiman, 2001). The major principle behind ensemble learning methods is 

that a group of weak classifiers (or learner) can be joined to form a strong classifier. In ensemble 

learning, two well-known methods are boosting (Shapire et al., 1998) and bootstrap aggregation 

(or “bagging”; Breiman, 1996) of classification trees. Compared to a single classification tree, 

the bagging method is used to reduce the variance of the tree. The method creates several subsets 
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of bootstrapped samples from original training dataset chosen randomly with replacement. Each 

collection of subset samples is used to independently train a classification tree. In the end, an 

ensemble of all different trees (models) is constructed. A simple majority vote is taken for 

prediction which is more robust than a single classification tree. However, bagging method as an 

ensemble learning often do not work because classification trees in bagging are developed 

independently by using all variables. The bagging method is allowed to look through all 

variables to choose the best split-point (specific variable and its value) at each node in each tree. 

If there exists one very strong variable for prediction, most or all of the bagged trees use the 

strong predictor in the top split. In this case, most bagged trees look very similar and their 

predictions also highly correlated. This means that the results from the highly correlated trees 

does not accomplish a substantial reduction in variance over a single tree.  

To overcome the limitation, the RFML is an improved extension over the bagging which 

applies randomness to the procedure when taking a subset of variables rather than using all 

variables to grow trees. In other word, while in decision tree each node is split using the best 

among all variables, in a random forest each node is split by the best among the subset of 

variables (Liaw and Wiener, 2002). For example, the first tree in a random forest is constructed 

using a few variables, not all 36 variables, and the other trees can be developed by using different 

numbers of variables until each node is ‘pure’. The development procedure in RFML model and 

classification processes are illustrated in Figure 2. 
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Figure 2. Scheme of construction of the Random Forest Machine Learning (RFML) model using 

training data and classification processes using the RFML model for classifying subsurface 

drainage (SSD) / undrained (UD) areas 

 

With the growth of satellite ‘big’ data in hydrology, the RFML was widely used for tasks 

such as streamflow prediction and flood risk assessment, which have been notoriously difficult 

with traditional approaches (Belgiu and Drăguţ, 2016; Ma et al., 2017; Petty and Dhingra, 2018; 

Wang et al., 2015). In this study, to determine if the RFML SSD outputs are affected by spatial 

scale (basin versus watershed), we developed and ran the RFML model using the same input 

variables for two regions with different scales, separately.  

For each of the training pixels, values were extracted from the 36 input layers to train the 

RFML algorithm. The full training dataset was used to train RF classifiers for each year in the 
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GEE. An RF classifier was performed with 300 trees. We applied the annual classifier to the 

corresponding year, 2009, 2011, 2014, or 2017. After the initial classification, a 3 x 3 majority 

filter was applied to remove isolated SSD pixels which were sparsely scattered on maps, because 

SSD systems are usually installed in fields (e.g. a few hundred meters). In RFML, the outcome 

of implicit feature relevance for each variable is visualized by the Gini index (Breiman, 2001). A 

Gini index analysis was conducted using R (Liaw and Wiener, 2002) because the GEE does not 

provide relative importance metrics. The mean decrease in Gini index is a measure of how each 

variable contributes to the RFML classification. 

The Gini index, 𝑖(𝜏), at each node (𝜏) within a tree (T) of the RFML is defined as: 

𝑖(𝜏) = 1 − ∑ 𝑃𝑗
2𝑛

𝑗=1      within the tree T                                                                           (1) 

where 𝑃𝑗 is the fraction of the 𝑁𝑗 samples from class j out of the total of N samples at 

node 𝜏 in T. For a binary class j = {SSD, UD} like the current study, the Gini index is calculated 

by  

𝑖(𝜏) = 1 − 𝑃𝑆𝐷
2 − 𝑃𝑈𝐷

2                                                                                                    (2) 

The decrease in Gini index, ∆𝑖(𝜏), that results from splitting the samples to two sub-

nodes 𝜏𝑆𝐷 and 𝜏𝑈𝐷 (with respective sample fractions 𝑃𝑆𝐷 =
𝑁𝜏𝑆𝐷

𝑁𝜏
 and 𝑃𝑈𝐷 =

𝑁𝜏𝑈𝐷

𝑁𝜏
) by threshold 𝑡𝜃 

on variable 𝜃 is defined as 

𝛥𝑖𝜃(𝜏) = 𝑖(𝜏) − 𝑃𝑆𝐷 ⋅ 𝑖(𝜏𝑆𝐷) − 𝑃𝑈𝐷 ⋅ 𝑖(𝜏𝑈𝐷)                                                                  (3)  

https://endic.naver.com/enkrEntry.nhn?entryId=cfdc7c3ea3644774ba1f9b8a0d4b18fa&query=산발적인
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Mean decrease in Gini index for a variable 𝜃 is the average of a variable’s total decrease 

in node impurity over all trees 𝑁𝑇 in the forest, weighted by the proportion of samples for all 

nodes 𝜏 where variable 𝜃 is used.  

𝑀𝑒𝑎𝑛 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝐺𝑖𝑛𝑖 𝑖𝑛𝑑𝑒𝑥(𝜃) =
1

𝑁𝑇
∑ ∑ 𝑝𝑟𝜏𝑇 (𝜏) ⋅ 𝛥𝑖𝜃(𝜏, 𝑇)                                  (4) 

where 𝑝𝑟(𝜏) is the proportion 𝑁𝜏/𝑁 of samples reaching 𝜏. 

2.3.4 Accuracy assessment (Validation)  

The BdSW and USGS SSD permit records were used separately to perform an accuracy 

assessment based on a pixel-level confusion matrix and subwatershed- and subbasin-level 

statistics. For the BdSW, a pixel-by-pixel comparison was conducted. The number of correct and 

incorrect predictions was summarized as a confusion matrix using the validation pixels, 1082, 

1075, 2355, and 2373 pixels for years 2009, 2011, 2014 and 2017, respectively. For the 

subwatershed-level accuracy assessment within BdSW, the RFML SSD area and the SSD permit 

area were aggregated for each of the 34 subwatersheds after masking all training pixels.  For the 

larger scale analysis, a pixel-level comparison was conducted in the same way with the BdSW 

analysis, but using a larger numbers of validation pixels, 4508, 4440, 4383, and 4377 pixels for 

years 2009, 2011, 2014 and 2017, respectively. For the subbasin-level accuracy assessment, 

RFML SSD areas and the USGS SSD permit data were aggregated and compared using the 48 

NOAA river forecasting subbasins.  
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2.4 Results and Discussion 

2.4.1 Classification Performance 

The RFML classifier, using a combination of satellite-based vegetation, thermal, and soil 

moisture products, along with soil property and climate variables, prodSuced annual SSD maps 

for BdSW and ND-RRB in 2009, 2011, 2014 and 2017. Using 2,240 SD and 4,630 UD 

validation pixels, the pixel-level evaluation at BdSW had an overall accuracy of 77% (True 

positive: 1,018 SSD pixels and True negative: 4,262 UD pixels) for the four years with 

accuracies ranging 72% to 84% for individual years (Table 2). For undrained pixels, the RFML 

model was 92% accurate with a range of 88% to 98%. SSD pixels had relatively lower 

accuracies with 45% total accuracy. In the BdSW, there is good qualitative agreement between 

the SSD expansion maps, SSD permit areas and RFML maps (Figure 3a). The RFML model 

results indicate that SSD extent is 2.5, 3.4, 11.2, and 16.1% of total BdSW area for 2009, 2011, 

2014, and 2017, respectively. These values are quantitatively similar to the extent found using 

the SSD permit records, 1.9, 3.2, 10.3, and 14.3%, from 2009, 2011, 2014 and 2017, respectively. 

The RFML SSD extents are slightly greater than those determined from permit data, by 0.2 – 

1.8%. 

Table 2. Point-based accuracy assessment for the four wet years (2009, 2011, 2014, and 2017) 

between RFML predicted values and SSD-permit based data in the BdSW and the ND-RRB. 

Year Class 
BdSW RRB 

RFML SSD RFML UD Overall Accuracy RFML SSD RFML UD Overall Accuracy 

2009 
SSD 19.8% 4.3% 

79.0% (850/1,076) 
59.4% 1.0% 90.7% 

(4,170/4,596) UD 80.2% 95.7% 40.6% 99.0% 

2011 
SSD 35.9% 2.4% 

83.9% (894/1,066) 
40.3% 1.3% 86.6% 

(3,909/4,512) UD 64.1% 97.6% 59.7% 98.7% 

2014 
SSD 51.9% 8.7% 77.3% 

(1,820/2,355) 

26.5% 2.1% 82.8% 

(3,693/4,461) UD 48.1% 91.3% 73.5% 97.9% 
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2017 
SSD 48.7% 12.4% 72.3% 

(1,716/2,373) 

19.8% 2.0% 81.6% 

(3,632/4,453) UD 51.3% 87.6% 80.2% 98.0% 

Overall 

Accuracy 

45.4% 

(1,018/ 

2,240) 

92.1% 

(4,262/ 

4,630) 

76.9% 

(5,280/ 6,870) 

39.9% 

(1,380/ 

3,460) 

98.4% 

(14,024/ 

14,247) 

87.0% 

(15,204/ 17,708) 

 

 

Figure 3. (a) Subsurface drainage expansion in Bois de Sioux watershed, Minnesota in 2009, 

2011, 2014, and 2017 from SSD permit records (red color) and predicted SSD areas (blue color) 

derived by Random Forest machine learning (RFML) classification in the GEE. Black color 

indicates overlapped SSD areas of the two sources. (b) Subwatershed (HUC12)-level accuracy 

assessment over BdSW, Minnesota (N=34). Subsurface drained permit area from the BdSW 

district permit records compared with subsurface drained area from RFML classified maps 

against a 1:1 line (light dashed). Agreement between the two datasets was assessed with 

correlation coefficient (r) metrics from simple linear regression (trend line = thick dashed line, a 

= slope). 

 

Aggregated to the subwatershed-level (HUC12), the RFML SSD estimates showed strong 

correlation (r = 0.88 – 0.96) with SD permit areas (Figure 3b). However, RFML consistently 

overestimated subsurface drained areas in each subwatershed in BdSW. The overestimated SSD 

was also found in other dry years (see Figure S2). A review of individual fields suggests that the 
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RFML model may be capable of identifying SSD effects even in small areas within a field where 

SSD systems can exist, but for which there is no permit record (Fields 1 and 2 in Figure 4). The 

RFML identified numerous small fields as having SSD that were likely not included in the 

permit record because permits are not required when a field is smaller than 0.32 km2. 

Additionally, the RFML detected the extent of the installed SSD effect appears to frequently 

extend well beyond the 30 m buffer recommended in earlier literature and expert guidance (All 

fields in Figure 4). 

 

Figure 4. Examples of fields showing areal difference between subsurface drainage (SSD) permit 

area using buffer function and actual SSD effective area in Bois de Sioux watershed, Minnesota. 

These examples indicate that SSD permit buffered areas in this study were underestimated in 

these fields compared to actual SSD effective areas. 

         For the ND-RRB region, the RFML model achieved an overall accuracy of 87%. Class 

specific SSD and UD accuracies ranged from 20 to 59% and 98 to 99% with overall accuracies 

of 40% and 98%, respectively. In both regions, overall accuracies in the early years (2009 and 

2011) are higher than those in recent years (2014 and 2017). SSD systems were originally 

installed at those sites that needed them most. Therefore, training points developed in early years 

may retain stronger SSD/UD character in this region. A subbasin-level comparison between the 



33 
 

RFML maps and the USGS SSD permit areas conducted for the NOAA river forecasting 

subbasins found r-values ranged from 0.77 to 0.84 for the four years (Figure 5). 

Figure 5. NOAA subbasin-level accuracy assessment over ND-RRB (N=48). NOAA subbasin is 

hydrological unit to operate the river forecasting system, NOAA RFCs. Subsurface drained 

permit area from the BdSW district permit records compared with subsurface drained area from 

RFML classified maps against a 1:1 line (light dashed). Agreement between the two datasets was 

assessed with correlation coefficient (r) metrics from simple linear regression (trend line = thick 

dashed line, a = slope). Note that the ranges of y-axis are different.  

Again, the RFML overestimated the subsurface drained area, especially in the few 

subbasins which have dense SSD areas. There are very few SSD areas in the northern part of the 

RRB. SSD areas are concentrated in the southern part of the RRB (Figure 6a). In North Dakota, 

the 2017 predicted SSD map near Sheyenne National Grassland showed good spatial agreement 

with the SSD permit map (Figure 6b and c). However, the RFML maps appear to underestimate 

SSD areas in Minnesota areas compared to previous findings (Kelly et al., 2017; Nakagaki & 

Wieczorek, 2016). This indicates that additional training points in Minnesota are required to 

develop more accurate RFML models. 
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Figure 6. (a) Subsurface drainage map from RFML over the RRB in 2017. (b) A close-up map 

near Sheyenne National Grassland in North Dakota. Blue colors indicate predicted SSD areas. 

Yellow colors indicate undrained area. (c) USGS SSD permit records overlaying the NLCD 2011 

with same legends in Figure 1 (Finocchiaro, 2016) 

2.4.2 Variable Importance 

The mean decrease in Gini index was used to determine the relative contribution of each 

of the 36 input variables for the SSD classification. Larger mean decreases in Gini index indicate 

variables that play a greater role in partitioning the data into the SSD/UD classification. Soil 
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properties (available water content, awc, clay percentage, clay_perc, and saturated hydraulic 

conductivity, ksat, in this study) ranked the highest for both regions (Figure 7). Climate variables, 

precipitation, and aridity also were important, especially for the larger scales. For both regions, 

LST contributed strongly to the classification. Soil moisture showed minimal importance even 

though subsurface drains are intended to enhance drainage. This may be due to the coarse 

resolution (25 km) from the SMOS satellite observations. The importance of spring thermal and 

wetness variables (e.g. LST and STR2) is noted. These indices warrant further study for use in 

SSD/UD classification in other agricultural regions. Interestingly, no vegetation-related variables 

were in the top ten. NDWI scored relatively high among the four vegetation indices, indicating 

only water-related vegetation variables may enhance accuracy in this region.  
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Figure 7. Variable importance in the RFML classification for two regions with different spatial 

scale (a) BdSW and (b) ND-RRB. For BdSW, variables with their short names were arranged 

from largest (top) to smallest (bottom) of the accumulated mean decrease in Gini index. 

Variables in RRB was arranged in same order to those of BdSW. The numbers at the edge of the 

bar indicate the ranks of each variable. Due to the absence of SMOS soil moisture in 2009, we 

calculated mean decreases in Gini index of the spring soil moisture mean and range by averaging 

the other three years’ values. Their full names were given in Table 1. 

 

It is possible that the accuracies in the RFML SSD map are improved with new relevant 

data as an input variable. To test this, Sentinel-1 Synthetic Aperture Radar (SAR) Ground Range 

Detected C-band backscatter data (VV polarization, ImageCollection ID: 

COPERNICUS/S1_GRD in GEE) was included in current RFML model as additional input 

variables (two spring mean and range layers) in 2017. In BdSW, the RFML SSD map with the 

Sentinel-1 SAR information shows slightly better accuracies than the original SSD without 

Sentinel-1 SAR (Table 3). The point-based accuracies in RFML SSD and UD predictions were 

improved by 0.3% (from 48.7% to 49%) and 0.9% (from 87.6% to 88.5%), respectively (the 

overall accuracy from 72.3% to 73.0%). In the subwatershed-level assessment, the two SSD 

maps with/without Sentinel-1 SAR have the same correlations (r = 0.96) with similar slopes 

(Figure 8). However, in the ND-RRB, there is no clear improvement in SSD map accuracies 

based on the both point-based and subbasin-level assessments. Given that the Sentinel-1 SAR 

backscattering signal is directly related to surface soil moisture, we expect any improvements of 

the SSD prediction map by Sentinel-1 data would be much clearer in a wet year. This also 

suggests that the current RFML SSD model can be steadily improved by including (or replacing) 

new SSD-related variable information. The Sentinel-1 SAR and RFML SSD maps were provided 

in Appendix (Figure S3). (Note: subwatershed-level accuracy assessments over the BdSW using 

the 10 most important variables only are provided in Figure S4). 
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Table 3. Comparison of RFML SSD maps between with and without Sentinel-1 Synthetic 

Aperture Radar (SAR) C-band backscatter data based on point-based accuracy assessments in 

2017 

Year Class 

without Sentinel-1 with Sentinel-1 

RFML 

SSD 

RFML 

UD 

Overall 

Accuracy 

RFML 

SSD 

RFML 

UD 

Overall 

Accuracy 

BdSW 
SSD 48.7% 12.4% 72.3% 

(1716/2373) 

49.0% 11.5% 73.0% 

(1732/2373) UD 51.3% 87.6% 51.0% 88.5% 

ND-

RRB 

SSD 19.8% 2.0% 81.6% 

(3,632/4,453) 

19.6% 1.8% 81.7% 

(3,639/4,453) UD 80.2% 98.0% 80.4% 98.2% 

 

 
 

Figure 8. Comparison of RFML SSD maps between with and without Sentinel-1 Synthetic 

Aperture Radar (SAR) C-band backscatter data based on (a) Subwatershed (HUC12)-level 

accuracy assessment over BdSW, Minnesota (N=34) and (b) NOAA subbasin-level accuracy 

assessment over ND-RRB (N=48). 
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2.4.3 Comparison with Recent Studies 

In the RRB, Kelly et al. (2017) reported that the 2012 SSD area was 1,340 km2, 2.0% of 

the entire basin area, using the county-level agricultural census drainage data (USDA National 

Agricultural Statistics Service, 2014). This is larger than our predicted SSD areas (916 km2) for 

2011. There are two potential reasons for the difference. They defined the “RRB region” as 

being upstream of Grand Forks, North Dakota in United State (67,005 km2), which is the 

southern part of our RRB. We used the entire RRB region except for the area in Canada (101,500 

km2) where the northern part of the RRB is almost entirely undrained. There is also a year gap 

between our results in 2011 and SSD estimates in 2012 from Kelly et al (2017). The USGS SSD 

permit records for the RRB region in North Dakota indicated an increase of 114 km2 between the 

two years. There is likely a similar increase in Minnesota (Dollinger et al., 2013).  

Most previous studies were conducted at a smaller scale (e.g. field or catchment scale) 

than the current study and used stepwise GIS-based analyses and aerial image processing 

techniques (Naz and Bowling, 2008; Naz et al., 2009; Tetzlaff et al., 2009a; Zhang et al., 2014). 

They showed spatial agreement with overall accuracies of 78% (Tetzlaff et al., 2009a) and 85% 

(Naz and Bowling, 2008), which are similar to the performance of the current study (76 – 86%). 

Zhang et al. (2014) and Naz and Bowling (2008) partially explained the causes of discrepancies 

in SSD estimates within fields in the current study (e.g. Figure 4). In Canadian subsurface 

drained fields, Zhang et al. (2014) used unmanned aerial vehicle (UAV)-based NDVI and found 

within field NDVI differences due to SSD line locations. Naz and Bowling (2008) also found 

that within-field soil variability can lead to SSD misclassification. Satellite data were also used 

by Møller et al. (2018) to identify subsurface drained areas in a 43,000 km2 region in Denmark 

using an ensemble of ML models with similar input variables to the current study. Møller et al. 
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(2018) is the sole previous study applying ML methods to SSD detection. However, they only 

used one month (March 2014) of Landsat 8 imagery. Their final ensemble contained 36 unique 

models that predicted SSD areas with an accuracy of 76.5%. The results from our current study 

have better accuracies of 76.9 to 87.0%. This suggests that using an ensemble of multi-source 

satellite data including seasonal thermal, reflectance, and vegetation input variables could 

improve results. They also found soil property (e.g. clay content) to be the most important 

variable, followed by precipitation. This corresponds with our finding that available water 

content of the soil is the most important variable. Clay percentage ranked in the top five in the 

RRB region. Climate variables are important at larger scales (Møller et al., 2018; Tetzlaff et al., 

2009b). Additionally, we found that LST is the most important variable at a relatively small scale. 

This seems reasonable considering that drainage systems have significant impacts on surface 

heat flux and land surface water dynamics. Jacobs et al. (2017) found that spring LST, obtained 

by subtracting past mean values (2002-2006) from recent values (2013-2017), has significant 

relationships (r2 = 0.85 and 0.83, respectively) with the SSD density based on a subwatershed-

level analysis.  

Previous studies also identified uncertainties. Tetzlaff et al. (2009b) noted the difficulty 

of acquiring aerial images at the right time associated with rainfall events and vegetation growth 

for a large area. Sugg’s (2007) GIS analysis based on soil drainage class and land cover in the 

Midwest U.S. overestimated total SSD in Minnesota by 3,643 km2 compared to the 1992 

National Resource Inventory (NRI) including inflated estimates of SSD for the RRB region. 

Their GIS method identified large areas in northwest Minnesota as SSD areas because they are 

poorly drained soils and cultivated lands. However, the actual SSD installations result from not 

only geophysical characteristics, but also from socio-economic demand for drainage (Blann et al., 
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2009). Care must be taken to differentiate between models that predict potential areas requiring 

SSD systems based on drainage properties versus those that are able to discern areas where SSD 

has been installed.  

Belgiu and Drăguţ (2016) found that the RFML method can handle multi-source satellite 

data dimensionality and multicollinearity with fast processing and insensitivity to overfitting. 

However, it tends to be sensitive to training samples (Colditz, 2015), which correspond with our 

finding in the process of this analysis. We found that the outputs from the RFML method of the 

current study were sensitive to the proportion of SSD/UD training samples in several trials (not 

shown). The proportional allocation of SSD/UD training samples to each class based on SSD 

permit records achieved the best results because the UD class has much larger areas and requires 

more training samples than the SSD class that occupies limited areas. Further investigations are 

needed to better understand sample proportioning for RFML. Furthermore, studies are needed 

that compare the performance among multiple ML methods. 

2.5 Conclusion and Future Perspectives 

Subsurface drainage systems were mapped at 30 m resolution by leveraging a ML 

technique and multi-source “big” data sets from operational satellites, Landsat-based vegetation 

indices (NDVI, EVI, NDWI, and GI) and STR, MODIS LST, and SMOS soil moisture, along 

with USGS National Land Cover and Slope Datasets, USDA Cropland Data Layer, soil 

properties from POLARIS, and climate variables from GRIDMET over the RRB region. RFML 

was conducted in the GEE cloud computing platform, and used SSD permit records from the 

USGS and the BdSW district for training and validation. The RFML maps showed spatial 

agreement with SSD permit records and correlated well with HUC12 subwatershed statistics. 
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The RFML maps appear to be capable of identifying within field variations in SSD effects and 

capturing the overall SSD expansion over time including for those fields whose acreage was less 

than that required to be permitted. Soil properties, climate variables, and LST are the strongest 

predictors of SSD. Predictor variables differed between the two scales, suggesting that SSD 

models are sensitive to the spatial scale. Using the Sentinel-1 SAR data, we demonstrated the 

RFML SSD model could be further improved with new relevant data. This ML technique can be 

readily applied to other regions and future years to provide updated information about SSD 

expansion to regional water managers and flood forecasters. However, this technique relies on 

the availability of baseline datasets (e.g., permit records) and more of these datasets may be 

needed for other regions. 

There are future opportunities to further improve the SSD classification (or similar work 

with demanding LULC detection/classification) using ML algorithms. As a limitation of the 

current RFML method like other non-deep learning algorithms, the input layers must be 

developed from raw data with formulas or retrieval algorithms provided by experts for each input 

data and can be labor-intensive. In this context, deep learning (DL) has substantial potential to 

overcome this weakness. The DL method, a layered structure of advanced artificial neural 

network algorithm, allows the automatic extraction of features from raw data by capturing 

abstract spatial or temporal structures hidden in data (Bengio et al., 2013; Shen, 2018). Also, the 

use of new remote sensing platforms such as CubeSat and Unmanned Aerial Vehicles can add 

value for enhanced SSD identification (McCabe et al., 2017; NASA, 2017; NASA CubeSat 

Launch Initiative, 2018; Planet Team, 2018). For example, more than 130 CubeSats launched by 

Planet (http://www.planet.com) currently provide daily visible (Red-Green-Blue) and near-

infrared imagery with ultra-high resolutions (e.g. 3 meter and 72 centimeter), capturing daily 

http://www.planet.com/
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near-global coverage (Planet Team, 2018). This imagery could potentially greatly improve SSD 

identification with ML or DL methods.  
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CHAPTER 3 

Quantifying Impacts of Subsurface Drainage Expansion on Hydrologic Response in the Red 

River of the North Basin2 

3.1 Introduction 

During the last 20 years, the amount of streamflow has greatly increased and floods have 

occurred more frequently in the north-central U.S. In the Red River of the North Basin (RRB), 

six of the 13 major floods over the past 100 years have occurred since the late 1990s (Rannie, 

2015; Rasmussen, 2016). Previous studies have been conducted to determine the major causes 

for the hydrologic changes (Foufoula‐Georgiou et al., 2015; Raymond et al., 2008; Schottler et 

al., 2014). Potential factors include climate change and agricultural practices including 

agricultural subsurface drainage (SSD) installation. Artificial SSD system in agricultural 

landscapes alters surface water dynamics (Blöschl et al., 2007; Schottler et al., 2014). In the past 

two decades, SSD systems have greatly expanded over the agricultural areas in the north-central 

U.S. (International Joint Commission, 2000; Sands, 2012). In the Eastern part of the North 

Dakota and South Dakota, SSD permits have dramatically increased from 2000 until present 

(Figure 1) (Finocchiaro, 2014; 2016). For example, SSD permit growth in the Bois de Sioux 

Watershed, Minnesota has exponentially increased from 1999 to 2011 (e.g. 1999, 2009, 2010: 

2.9, 779.3, 1,558.3 miles of tile drainage, respectively) (Bois de Sioux Watershed district; 

http://www.bdswd.com/). 

 
2 Cho, E., J.M. Jacobs, S.V. Kumar (2020) Quantifying Impacts of Subsurface Drainage Expansion 

on Hydrologic Response in the Red River of the North Basin (in preparation) 
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The impacts of artificial SSD system on hydrologic responses have been studied at a 

range of spatiotemporal scales (Eastman et al., 2010; King et al., 2014; Lenhart et al., 2011; 

Rahman et al., 2014; Randall et al., 2003; Sands et al., 2008; Williams et al., 2015). At a field 

scale, Kladivko et al. (2004) showed that SSD -induced water yields were 8 to 26% of annual 

rainfall in southeastern Indiana, depending on the year and the drain spacing. Eastman et al. 

(2010) found that the SSD field discharged four times more water than the naturally drained field 

for their clay loam sites. At a watershed scale (3.89 km2), King et al. (2014) reported that about 

21% of annual precipitation and 47% of total watershed discharge was generated from SSD in 

central Ohio. Williams et al. (2015) concluded that SSD contributed 56% of the annual 

watershed discharge in the same Ohio watershed. From a long-term perspective, Schottler et al. 

(2014)’s watershed scale comparisons between two historical periods (1940-1974 and 1975-

2009) found that artificial drainage is the major driver of increased streamflow in 21 Minnesota 

agricultural watersheds. They found that climate change and crop conversion explained less than 

half of the streamflow increases that occurred during the later period. The remainder was highly 

correlated with the recent SSD expansions in Minnesota. Frans et al. (2013) showed that SSD 

amplified annual streamflow by up to 40% 

locally in the Upper Mississippi River basin. 

However, at the basin scale, there are some 

disagreements among previous studies about 

SSD effects on soil water storage. For 

example, Schottler et al. (2014) argued soil 

storage change was indistinguishable and 

reported evaporative losses due to SSD 
Figure 1. Time series of the number of 

annual SSD permits and SSD locations by 

permits in South Dakota and North Dakota 

[Finocchiaro, 2014] 
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expansion resulted in increased streamflow during the last 70 years in 21 Minnesota watersheds. 

Kelly et al. (2017) found that soil water storage decreased due to artificial drainage by 30 – 

200% and the loss of the storage appeared to have amplified river flow over the last 79 years in 

Midwest U.S.  

To quantify the impact of the SSD expansion on hydrological responses, land surface 

models (LSMs) can be an effective tool at a large scale. LSMs have evolved in the last few 

decades with advancing high-performance computing, multiple ground-based networks, remote 

sensing techniques, and hyper resolution (Baldocchi et al., 2001; McCabe et al., 2017; Wood et 

al., 2011). Recent studies have investigated the effects of human modifications (e.g. irrigation, 

deforestation, and urbanization) on hydrological and atmospheric responses using LSMs 

(Mahmood et al., 2014; Pei et al., 2016; Zhang et al., 2017). One such LSM is the community 

Noah LSM with multi-parameterization options (Noah-MP) (Yang et al., 2011). Based on the 

Noah LSM, Noah-MP has added hydrological and biophysical processes such as an interactive 

vegetation canopy (Dickinson et al., 1998), an unconfined aquifer for a dynamic water table and 

groundwater storage (Ek et al., 2003; Niu et al., 2007), a simple TOPMODEL (TOPography 

based hydrological MODEL)-based runoff production (Niu et al., 2005), and a multilayer 

snowpack (Yang and Niu, 2003). In the recent national hydrologic modeling framework, the 

National Water Model (NWM), launched by National Oceanic and Atmospheric Administration 

(NOAA) Office of Water Prediction (https://water.noaa.gov/about/nwm), the Noah-MP LSM is 

used to simulate land surface processes. The NWM simulates observed and forecasts streamflow 

over the continental U.S. and is intended to replace the thirteen individual river forecasting 

center (RFC) flood forecasting models. However, the current Noah-MP LSM, as well as NWM, 

do not have SSD scheme (Cohen et al., 2018). The absence of SSD information in the Noah-MP 
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Figure 2. Tile drainage effect to improve root growth 

of crop in soils (Blann et al., 2009) 

can generate uncertainties in hydrological processes and operational flood forecasting in the 

north-central and Midwest U.S. (Maidment, 2017)  

This study focuses on adding an SSD scheme to the Noah-MP LSM within the NASA 

Land Information System and quantifying SSD impacts on basin-level hydrology. We 

hypothesize that the SSD will decrease surface and root zone soil moisture above tiles (A lateral 

effective width of a tile [30 m] is enough to drain a whole field) and amplify surface runoff due 

to a decreasing soil water storage. This paper is organized as follows. Section 2 details the 

concept of the SSD system and its impact on water balance from previous studies. Section 3 

describes the SSD data and the Noah-MP model with the proposed SSD scheme. Section 4 

describes the study area with land characteristics and datasets. Section 5 details the results and 

compares hydrological variables with and without SSD conditions. Conclusions are drawn in 

Section 6. 

3.2 Background: Principles of subsurface drainage 

In poorly drained agricultural 

areas, SSD system is indispensable to 

manage crop water availability to 

maximize plant growth (Figure 2) 

(Blann et al., 2009; Skaggs et al., 

1994). SSD, also known as tile 

drainage, is used to remove excess surface water and to lower water tables through subsurface 

pipe networks installed below the ground surface. SSD system plays an essential role in 

agricultural water management to improve crop productivity worldwide (Blann et al., 2009). The 
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water table changes due to SSD systems can be explained by Darcy’s law (Shokri and Bardsley, 

2015). When tiles are installed at a certain depth and spacing, the pressure head at the tiles is 

approximately the atmospheric pressure and the existing pressure distributions in soil profile 

horizons change to a new equilibrium. The original water tables in the undrained condition are 

lowered to the depth of the SSD systems, especially during spring and fall (Figure 3). The 

effective infiltration rates would be changed by SSD installations due to the altered hydraulic 

gradient of the upper soil layer above tiles (Rodgers et al., 2003; Shokri and Bardsley, 2015; 

Youngs, 1975). SSD systems have the greatest impact when intense precipitation exceeds the 

infiltration rates. In general, SSD is most active from April to June after snow melts and before 

crops mature. The contribution of SSD to streamflow can be significant, especially in smaller 

watersheds. During mid to late summer, the SSD effects gradually decrease due to increased root 

water uptake by mature crops. In the fall, the effects increase again after crops are harvested and 

before soils freeze which is driven by seasonal changes in crop water use. In agricultural regions, 

groundwater tables generally show strong seasonal variations, higher in spring and late fall and 

deeper in the middle of summer due to the higher temperature and crop transpiration. SSD plays 

a role in maintaining relatively constant water tables, even though there are still seasonal changes 

(Rijal et al., 2012).  

SSD also alters evapotranspiration 

(ET) rates due to a modified water table 

and soil moisture conditions. Rijal et al. 

(2012) experimentally evaluated the effect 

of SSD installation (Note: They used a 

“controlled” SSD system which differs 
Figure 3. Difference in total soil moisture between 

subsurface tile drained (SSD) and undrained (UD) 

fields [Bowman et al., 2015; Rijal et al., 2012] 
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with “conventional” SSD system - farmers can open/close tile outlets and do subirrigation using 

a pumping water system through the tile network depending on the soil conditions) for corn and 

soybean ET in North Dakota. They found that, during the early and very late growth stage, the 

ET rates in SSD fields were 6% lower than in undrained (UD) fields. The difference was 

probably due to the removal of the excess soil water and subsequent decreases in evaporation in 

the surface soils. However, in the summer, the ET rates in SSD fields were 31% and 14% greater 

than non-tiled areas for corn and soybean, respectively. The higher transpiration rates are thought 

to be due to a more constant root zone soil moisture resulting from the controlled SSD and 

deeper roots. For the entire growing season, total ET rates were 16 and 7% higher in the SSD 

fields than the UD fields for corn and soybean, respectively. Schottler et al. (2014)  emphasized 

the decrease in evaporation in the spring as a major cause of the recent increase in annual stream 

flows in the Upper Mississippi River. They suggested that, in May and June, the SSD reduces 

water residence time primarily on the surface storage and drains rapidly to a river. In other 

words, the increased water yield, which exceeded 50%, resulted from a shorter residence time of 

the water on the surface and in the root zone soils and subsequent decreases in ET (mainly 

evaporation) due to SSD expansions.  

3.3  Noah-MP 

3.3.1 Model Description 

Noah-MP was enhanced from the original Noah land surface model through the addition 

of improved physics and multi-parameterization options (Niu et al., 2011; Yang et al., 2011). 

The improved physics includes an interactive vegetation canopy, a dynamic groundwater 

component, and a multilayer snowpack. The multi-parameterization options provide users with 
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multiple choices of parameterizations in leaf dynamics, canopy stomatal resistance, soil moisture 

factor for stomatal resistance, and runoff and groundwater. Noah-MP delivers better performance 

compared to earlier versions of Noah LSM in the simulation of runoff, soil moisture, snow 

processes, and skin temperature across the globe (Cai et al., 2015; Yang et al., 2011). In this 

study, the Noah-MP version 3.6, running at 0.125° spatial resolution, is used to evaluate the SSD 

impacts on regional water balance via the framework of NASA’s Land Information System (LIS; 

Kumar et al., 2006). The atmospheric forcing data for runs are from the National Land Data 

Assimilation System-Phase 2 (NLDAS-2) at hourly temporal resolution and 0.125° spatial 

resolution (Xia et al., 2012). NLDAS-2 meteorological forcing datasets are downscaled from the 

North American Regional Reanalysis data, supplemented with ground observational data sets. 

The forcing inputs include near-surface air temperature, relative humidity, surface pressure, 

wind, and downward longwave radiation. Parameters and initial condition settings are provided 

in Table 1. Other parameters and modes used as “default mode” in the NASA LIS system  

(https://lis.gsfc.nasa.gov/software/lis). Ancillary datasets are used as follows: Moderate 

Resolution Imaging Spectroradiometer (MODIS)-based International Geosphere-Biosphere 

Programme (IGBP) land cover map, the National Cooperative Soil Survey and the State Soil 

Geographic (STATSGO)- Food and Agriculture Organization (FAO) blended soil texture map, 

Shuttle Radar Topography Mission (SRTM; Native) elevation map, National Centers for 

Environmental Prediction (NCEP) monthly greenness fraction climatology, and NCEP monthly 

albedo climatology. Details of the soil water dynamics such as soil infiltration can be found in 

Niu et al. (2007). The SSD scheme of this study is assumed as a conventional (uncontrolled) 

SSD system. 

Table 1. Summary of parameters, options, and initial conditions used to run the Noah-MP LSM 

Parameters & options  Initial conditions Values 

https://lis.gsfc.nasa.gov/software/lis
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Distance between drains 30 m Soil temperatures 273 K 

Drainage depth from the surface 1 m Soil moistures 0.2 m3/m3 

Radius of drain 10 cm Canopy air temperature 273 K 

Depth of bedrock 25 m Intercepted liquid water 0.0 

Dimensionless factor in Kirkham’s 

equation 
30 Intercepted ice mass 0.0 

Specific yield 0.2 Snow height 25 cm 

Vegetation model option dynamic Snow water equivalent 5 cm 

Canopy stomatal resistance option Ball-Berry Depth to water table 2.5 m 

Soil moisture factor for stomatal resistance 

option 
Noah Water storage in aquifer 4900 m3 

Runoff and groundwater option SIMGM Stem mass 3.33 g/m2 

Frozen soil permeability option NY06 Leaf mass 9.0 g/m2 

Snow surface albedo option CLASS Mass of fine roots 500.0 g/m2 

Lower boundary of soil temperature Noah 
Snow and soil temperature time 

scheme 
semi-implicit 

 

3.3.2 Subsurface drainage schemes  

In this study, the physically-based Hooghoudt and Kirkham SSD equations were adapted 

from the Modified SWAT model to be incorporated into the Noah-MP LSM (Moriasi et al., 

2012; Du et al., 2005). A conventional (“uncontrolled”) SSD system was intended to model in 

the Noah-MP LSM (Figure 4). The SSD scheme used in the Modified SWAT model is operated 

by water table conditions. If water tables are below the surface but above tile location, the 

drainage flux (q, mm/h) is calculated as 

𝑞 =  
8𝐾𝑒𝑑𝑒𝑚+4𝐾𝑒𝑚2

𝐶𝐿2                                                                  (1) 

where Ke is unsaturated vertical hydraulic conductivity (mm/h), L is the distance between drains 

(mm) and C is the ratio of the average flux between the drains to the flux midway between the 

drains (typically assumed to be 1; Moriasi et al., 2012). m is a midpoint of the water tables from 
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tiles (Hooghoudt, 1940; Moody, 1966). de is the height of the drain from the impervious layer. If 

the water table rises to fill the surface (e.g. ponded water), Kirkham’s (1957) equation is applied 

as 

𝑞 =  
4𝜋𝐾𝑒(𝑡+𝑏−𝑟)

𝑔𝐿
                                                                    (2) 

where t = depth of surface ponding water (m), b = depth of drains (m), r = radius of drainpipe 

(m), and g = dimensionless factor. Lastly, if the drainage flux is greater than the 20 mm/day, the 

drainage flux is set equal to the maximum drainage coefficient (DC; 20 mm/day) (Moriasi et al., 

2012; Skaggs 1980).  

 

If water tables are lower than the tile location, the Hooghoudt’s equation (Eq. 1) is 

applied with adjustment of a parameter (0 ≤ m ≤ 1) is used as a proportion of available water to 

soil porosity in soils above tiles as, 

𝑚 =  
𝛳𝑡−𝛳𝑤𝑖𝑡

𝛳𝑚𝑎𝑥
                                                                   (3) 

Figure 4. The proposed SSD scheme in the Noah-MP land surface model  
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where 𝛳𝑡 is the current volumetric soil moisture content (m3/m3) at time t in soil columns above 

tile location. 𝛳𝑤𝑖𝑡 is a permanent wilting point (m3/m3) and 𝛳𝑚𝑎𝑥 is saturated soil moisture 

(m3/m3) which is soil porosity of the soils.  

A diagram explaining the SSD scheme’s process within a pixel is provided in Figure 5. 

The SSD experiment begins by checking if the current pixel has a higher water table than the tile 

location. If yes, the scheme separates if the water table is higher than the surface (e.g. ponding). 

For a ponded condition, drainage flux is calculated by Eq. (2). If the water table is between the 

surface and tile location, drainage flux is calculated by Eq. (1). If the water table is lower than 

the tile but soil moisture above the tile (3rd layer) is larger than wilting point soil moisture at a 

pixel, the drainage flux is obtained by Eq. (2) with a new parameter from Eq. (3). Then the 

calculated drainage flux for each pixel is multiplied by a corresponding SSD fraction as a 

weighting factor (0-1) from the spatial SSD fraction input. 

Figure 5. A diagram explaining the SSD scheme’s process in the Noah-MP 
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3.4 Study Area and Data 

3.4.1 Red River of the North Basin  

The SSD modifications to Noah-MP are demonstrated in the North-Central U.S. For this, the 

RRB region is an ideal basin to test the SSD impact on regional water balance because the 

amount of streamflow in the Red River has greatly increased for the last 20 years with the SSD 

expansion (Rannie, 2015). The RRB drains parts of western Minnesota, eastern North Dakota, 

and northeastern South Dakota (Figure 6). The Red River flows north from its headwaters in 

Wahpeton, North Dakota to Winnipeg, Manitoba, Canada. The Red River in the U.S. is 

approximately 635 km long and with a drainage area of 101,500 km2 (Rannie 2016; Tuttle et al., 

2017). Current land use in areas is predominantly cropland (Homer et al., 2015). The RRB has 

extremely flat terrain (average slope of 8 cm/km) and poorly permeable clay soil (Stoner et al., 

1993). Thus, the RRB region is very vulnerable to flood events. Approximately 85 % of the 

annual peak river flows over the last century resulted from the spring snowmelt (Rasmussen 

2016). Despite the lower average snowpack compared to snowpacks in the western U.S. 

(Brasnett 1999), most snowmelt floods in the RRB persist on from weeks to months. For 

example, the Red River at Grand Forks, ND exceeded the flood stage for 46 days during the 

1997 snowmelt flood (Todhunter 2001). Inundation area could extend for long distances from the 

mainstream (e.g., up to 100 km of the floodwater width; Schwert 2003). The snowmelt floods 

have damaged private property and infrastructure in this region. The 1997 spring flood caused 

more than $5 billion of damage in Fargo and Grand Forks, North Dakota, and other communities 

(Todhunter, 2001).  
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3.4.2 Subsurface drainage map  

Recent hydrologic changes with increasing flood events in RRB could be due to the 

extensive SSD installation [Blöschl et al., 2007; Miller and Frink 1984]. Even though the farmers 

have expansively installed SSD over the RRB, the spatial distribution of SSD is little 

documented. To overcome this, Cho et al. (2019) developed the 30‐m high-resolution SSD maps 

over the RRB region by leveraging a Random Forest machine learning (RFML) classification 

method and multisource “big” data sets from operational satellites, soil properties, and climate 

variables using the GEE cloud computing platform. The maps were validated with SSD permit 

records with both point-level (accuracies of 76.9–87.0%) and subwatershed‐level statistics 

(correlation = 0.77–0.96). In this study, the RFML SSD map is used to apply realistic SSD 

distribution into the Noah-MP. To match the Noah-MP spatial resolution (12.5 km), we upscale 

Figure 6. (a) Land cover and (b) elevation maps of Red River of the North Basin  
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the 30-m binary (drained vs. undrained) map into a 12.5 km SSD fraction map (Figure 7). The 

pixel value in the upscaled map indicates a portion of the SSD area within a pixel. The portion is 

used as a weighting factor (e.g. a fraction of 10% will be 0.1 of a weighting factor) when the 

SSD flux is calculated. The RFML SSD maps are freely available on Hydroshare at 

http://www.hydroshare. 

org/resource/f2f7a9cfbae1451f85b5c0dc3938b9a1. 

 

3.4.3 Soil Moisture Active Passive (SMAP) soil moisture 

In this study, the observation-based assimilated Soil Moisture Active Passive (SMAP) 

product is used to validate and evaluate the modeled soil moisture’s performance from Noah-MP 

with/without the SSD scheme and the RFML SSD map. The SMAP satellite’s L-band radiometer 

has provided global soil moisture measurements at 2–3 days revisit time (6:00 A.M./P.M. local 

Figure 7. Upscaled Random Forest Machine Learning-based subsurface drainage (RFML SSD) map of 

Red River of the North Basin [This map was modified from 30-m high resolution SSD map from Cho et 

al. (2019)]. Pitcairn Creek-Wild Rice River watershed, ND has the largest SSD-installed HUC10 

(USGS Hydrologic Unit) watershed in the RRB which is used for vaildation. 
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time) since March 31, 2015 (Chan et al., 2016; Entekhabi et al., 2010). The SMAP soil moisture 

has been widely used to better understand soil moisture dynamics, land-atmospheric interactions, 

and hydrological extremes at local and global scales (Cho et al., 2020; Colliander et al., 2017; 

Ma et al., 2019; Zwieback et al., 2018). To effectively monitor surface and root zone soil 

moisture conditions for agricultural purposes, the NASA’s Goddard Space Flight Center in 

cooperation with USDA Foreign Agricultural Services and USDA Hydrology and Remote 

Sensing Laboratory recently developed the NASA-USDA SMAP global soil moisture product at 

0.25° x 0.25° spatial resolution. The product is generated by integrating SMAP Level 3 soil 

moisture observations into the modified two-layer Palmer model using a 1-D Ensemble Kalman 

Filter data assimilation approach (Bolten et al., 2010; Sazib et al., 2018). The NASA-USDA 

SMAP soil moisture data is freely available via the Google Earth Engine computing platform 

(https://explorer.earthengine.google.com/#detail/NASA_USDA%2FHSL%2FSMAP_soil_moist

ure).  

3.4.4 Experimental design 

Three scenarios are performed to assess the effect of the agricultural SSD system on 

hydrological responses (e.g. soil moisture, evapotranspiration (ET), and surface runoff): 1) no 

SSD (or undrained; UD), 2) SSD over the entire area (hereafter fSSD), and 3) realistic SSD 

based on the RFML SSD map (hereafter SSD+RFML). The effect of SSD is demonstrated 

through comparisons between the three scenarios. The domain is the RRB region, gridded at 

0.125 resolution, and the experimental run period is a 2017 entire calendar year, and evaluation 

was conducted from April 1 to October 30, 2017.   

https://explorer.earthengine.google.com/#detail/NASA_USDA%2FHSL%2FSMAP_soil_moisture
https://explorer.earthengine.google.com/#detail/NASA_USDA%2FHSL%2FSMAP_soil_moisture
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3.5 Results and Discussion 

3.5.1 Average Basin Impacts between UD and fSSD conditions 

Noah-MP simulations with and without the SSD scheme show a difference in surface and 

deep soil moisture, total ET, and surface runoff for the RRB. The time series of the basin-

average soil moisture from April to October in 2017 is shown in Figure 8a. For all four soil 

layers in Noah-MP (0-10 cm, 10-40 cm, 40-100 cm, and 100-200 cm), the SSD soil moisture is 

drier than the UD soil moisture. In the spring (April to May), there are larger differences in soil 

moisture between SSD and UD as compared to the summer (June to August) and the early fall 

(September to October). The differences in soil moisture gradually decrease from spring to 

summer season, and then increase again in October.  

The SSD surface and root zone soil moisture (0 – 10 cm and 10 – 40 cm) decreases faster 

after rainfall events compared to that of UD. There is little difference in the near-surface soil 

moisture (0 – 10 cm and 10 – 40 cm) from August to September. Soil moisture at 40 – 100 cm 

has the greatest difference between SSD and UD conditions. This soil layer is immediately above 

the SSD system. In the summer, the SSD soil moisture decreases up to 0.13 m3/m3. In the deep 

soil layer below the SSD system (100 – 200 cm), SSD soil moisture is constant around 0.19 

m3/m3 while UD soil moisture increases slightly after large rainfall events. In total soil columns 

(0 – 200 cm), the total soil water for the UD run is 441 mm while the SSD run has 363 mm. 
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Spatial mean ET rates over the RRB have large differences between fSSD and UD from 

July to August and small differences in the spring and fall seasons (Figure 8b). For fSSD, 

Figure 8. Comparison of basin-average (a) volumetric soil moisture (0-10 cm, 10-40 cm, 

40-100 cm, and 100-200 cm), (b) total evapotranspiration, and (c) surface runoff between 

UD and full SSD condition (The light blue and red colors in the evapotranspiration 

indicate spatial variations (the average plus or minus one standard deviation) over the RRB 
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surface runoff continually appears around 1 mm/day, but only intermittently for UD conditions 

(Figure 8c). During the middle of the summer, the amount of the surface runoff with UD is 

slightly larger than that of SSD. The total surface runoff to precipitation ratios is 0.57 [surface 

runoff + SSD (208 mm) / precipitation (365 mm)] which is much larger than the ratio for UD 

(0.073) (Table 2).  

Table 2. The amount of water balance components in the study period from April-1 to October-

31, 2017 (dSM = change in soil moisture; dGW = change in groundwater storage; Total: ET + 

surface runoff + subsurface runoff + dSM + dGW)  

Experiment 
Precipitation 

(mm) 

ET 

(mm) 

Surface 

runoff (mm) 

Subsurface 

runoff (mm) 

dSM 

(mm) 

dGW 

(mm) 

Total 

(mm) 

UD 365 326 27 49 -8 -24 369 

fSSD 365 195 208 32 -33 -32 369 

SSD+RFML 365 311 46 47 -11 -25 368 

3.5.2 Comparison between UD and SSD+RFML conditions  

Hydrological changes in actual SSD expansion with the RFML SSD map (SSD+RFML) 

were evaluated as compared to UD and fSSD conditions (Figure 7) from Cho et al. (2019). 

Compared to the fSSD condition, changes in basin-average soil moisture, ET, and surface runoff 

in the SSD+RFML condition are relatively minor (Table 2 and Figure 9). SSD soil moisture has 

similar magnitudes as well as temporal variations to the UD soil moisture. Soil moisture at depth 

of 40 – 100 cm only decrease by 0.01 m3/m3. However, there are notably drier soils for areas 

with SSD (Figure 10). For the entire period, monthly average SSD soil moisture is lower than 

UD over areas near the border of North Dakota and Minnesota except for soil moisture at the 2nd 

layer for August and September. As mentioned above, the soil moisture at the third layer from 

the surface (40 – 100 cm) has the largest differences particularly in the southern part of the RRB 

region.  
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At the basin scale, there is little difference in the ET rate in the spring and fall periods 

(Figure 9). In the summer, the ET rates with SSD+RFML condition are slightly lower than the 

ET with UD condition with basin-average differences of 3.6, 5.7, and 2.5 mm/month in July, 

August, and September, respectively. The monthly ET difference map (Figure 11) shows a 

localized reduced ET in SSD regions of up to -40 mm/month in the summer season (and up to -

13 mm/month in both spring and fall seasons). In the time series of surface runoff, there are 

increases in basin-mean surface runoff even though the SSD system is in partial areas in the 

RRB. The surface runoff with SSD+RFML occurs continually around 0.1 mm/day. When there 

are intense rainfall events (e.g. 17-April and 20-September), the peak runoff with SSD+RFML is 

higher than UD up to 0.35 mm/day. In April, the basin-average surface runoff increases 3.3 

mm/month due to the SSD system which is a relatively large amount compared to summer (e.g. 

2.1 and 1.0 mm/month for July and August, respectively). In the monthly surface runoff 

difference map, there is localized increased surface runoff near the main stem of RRB in most 

periods (Figure 11). 
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Figure 9. Comparison of basin-average volumetric soil moisture (0-10 cm, 10-40 

cm, 40-100 cm, and 100-200 cm), total evapotranspiration, and surface runoff 

between UD and partial SSD condition based on the RFML SSD map 
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Figure 11. Changes in monthly evapotranspiration and surface runoff maps due to SSD expansion 

(SSD+RFML minus UD) 

Figure 10. Changes in monthly volumetric soil moisture maps due to SSD expansion (SSD+RFML 

minus UD) 
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3.5.3 Validation with SMAP observations 

To validate soil moisture estimates from the Noah-MP with the SSD scheme using the 

RFML map, SMAP satellite-based surface and root zone soil moisture products were used. The 

monthly total soil water in the soil column (0 – 200 mm) is compared in Figure 12. Temporal 

changes in SMAP soil moisture are much larger than Noah-MP soil moisture. There are minimal 

differences between UD and SSD+RFML conditions but soil water near the areas existing SSD 

expansion slightly decreases. The decreases in soil water near Fargo, ND are captured by SMAP 

soil moisture. There is relatively lower soil water compared to other areas for the entire period.   

 

To evaluate the soil moisture in a region where the SSD system has expansively installed 

in the RRB, the watershed-mean Noah-MP soil moisture for Pitcairn Creek-Wild Rice River 

watershed (624 km2; Figure 7) was evaluated compared to SMAP soil moisture. Figure 13 

shows that the SMAP soil moisture has better agreement with the Noah-MP SSD+RFML soil 

Figure 12. Monthly normalized soil moisture changes for UD, SSD+RFML, and SMAP  
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moisture than the Noah-MP soil moisture without the SSD scheme. For the surface soil moisture, 

there is a slight improvement in agreement (Pearson linear correlation coefficient (r) = 0.57, 

unbiased Root Mean Square Difference [ubRMSD] = 0.030, and bias = 0.12 for the 

SSD+RFML) compared to without SSD scheme (r = 0.56, ubRMSD = 0.032, and bias = 0.13). 

The Noah-MP soil moisture with the SSD scheme provides better agreement with the SMAP for 

root zone soil moisture (40-100 cm) near SSD tiles. The Noah-MP soil moisture with 

SSD+RFML has a higher correlation (r = 0.36) and lower errors (ubRMSD = 0.034 and bias = 

0.12) with SMAP than the Noah-MP with UD (r = 0.32, ubRMSD = 0.041, and bias = 0.02).  

Figure 13. Comparison of surface and root zone soil moisture between UD (without 

SSD scheme) and SSD+RFML conditions with SMAP satellite-based soil moisture. 
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 3.6 Discussion 

3.6.1 Comparison with Recent Studies 

In this study, the total soil moisture (0 – 200 cm) and ET from UD to fSSD condition 

decrease by 78 mm and 131 mm, respectively. This result provides insights to address some 

disagreements among previous studies about SSD effects in regional water balance in light of the 

change in soil water storage. Kelly et al. [2017] stated that soil water storage has decreased due 

to SSD and that the loss of the storage may lead to the amplified river flow. Schottler et al. 

[2014] argued that soil storage change was indistinguishable and that the evaporative losses due 

to SSD expansion resulted in increased streamflow. The result from this study indicates that 

increases in streamflow with SSD are generated by both soil water storage and ET changes. 

Considering the linkage of soil moisture to ET, a decrease in the soil water storage by the SSD 

system consequently leads to a decrease in ET (negative feedback; Seneviratne et al., 2010). 

Overall, the soil moisture decreases and, consequently, decreases in ET cause an amplification of 

surface runoff, particularly in the spring season.  

The surface runoff to precipitation ratios (0.57) in the fSSD condition from this study is 

similar to previous findings by Eastman et al. (2010). Through field experiments between the 

naturally drained and SSD fields in southern Quebec, Canada, they found that the total outflow 

to precipitation ratio at clay loam site was 0.63 [ratio of surface runoff (157 mm) + SSD (358 

mm) to precipitation (793 mm)] and 0.88 [ratio of surface runoff (247 mm) + SSD (737 mm) to 

precipitation (1123 mm)] for 2005 and 2006 water years, respectively. Our results show a 

relatively lower difference in the surface runoff between UD and fSSD condition. While the total 

outflow (surface runoff + SSD) from SSD fields was four times higher than the outflow (surface 
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runoff only) from naturally drained fields, the SSD run generates 208 mm of total runoff (surface 

runoff + SSD) which is about 7.7 times than the UD run (surface runoff only).  

3.6.2 Limitations 

The SSD scheme developed in this study is based on a conventional SSD system. Further 

parameterization of other types of the SSD scheme (e.g. controlled SSD system) in the model 

will be necessary. Under the conventional (or uncontrolled) SSD system, drained water flows 

directly from the SSD outlet into the surface runoff. However, the conventional SSD system can 

reduce soil moisture excessively in dry years leading to loss of water and nutrients from fields 

(Iowa State University, 2017). The conventional SSD systems in the north-central and the 

Midwest U.S. have been updated to a “controlled” SSD system to overcome the limitations (Ng 

et al., 2002; Tan et al., 1998). Like conventional SSD, control structures are opened in spring, 

permitting free drainage to remove excess water and improve aeration in the soils. However, in 

the summer, control structures are used to store water for crops and some of the control 

structures supply water “sub-irrigation” through the SSD using a pumping system to achieve the 

desired soil moisture condition (Drury et al., 2009; Tan et al., 1998). Thus, The SSD scheme 

introduced here is simplified from a management perspective and does not account for other 

types of the SSD system that could modify hydrologic responses.  

There are inherent limitations in the Noah-MP LSM related to the SSD scheme. As 

mentioned above, the Noah-MP uses a constant bedrock depth (25 m) over the continental U.S. 

which is extremely different from the observed depths to bedrock in the RRB. For example, the 

depths to bedrock in Fargo, North Dakota were found within a depth range of 92 m ranging from 

40 m to 133 m (North Dakota Geological Survey, 2011). This may generate uncertainties in 
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quantifying surface-groundwater interaction. Thus, multi-model comparison studies or field data 

comparison will be required to constrain uncertainties and identify gaps in model physics.  

3.7 Conclusion and Future Perspective 

For the last two decades, the streamflow in the upper Midwest has markedly increased, 

and major spring floods have frequently occurred at the same time that climate and agricultural 

management practices have changed. However, existing operational flood forecasting models do 

not include SSD. This study investigates the impacts of the recent SSD expansion on regional 

hydrological changes (soil moisture, ET, and surface runoff) using Noah-MP LSM. The SSD 

scheme is applied to the Noah-MP using a high-resolution SSD map. We found that the SSD 

system generates losses of soil water storage. The drying rates of surface soil moisture with SSD 

are faster compared to that of UD. There are considerable differences in total ET between SSD 

and UD over the summer season. We found that decreasing soil moisture directly due to SSD 

installation results in decreasing ET and SSD generates large amounts of surface runoff, 

particularly in the spring season, indicating that the recent increases in streamflow and spring 

floods may be partly due to the SSD expansion. In validation, the Noah-MP soil moisture with 

SSD+RFML has better agreement with SMAP soil moisture as compared to the Noah-MP soil 

moisture without the SSD scheme. A next step is to run the Noah-MP with a routing model (e.g. 

HyMAP) to generate streamflow rates in the Red River and to compare them to historical USGS 

stream gauge observations.  

The development of a “controlled” SSD scheme in the Noah-MP should be required with 

the advanced SSD maps having controlled and uncontrolled SSD spatial information, separately. 

The physics of the controlled SSD system with sub-irrigation are likely opposite to the 

conventional SSD in soil moisture-limited regime (e.g. drought). Furthermore, there are no 
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currently available SSD records with controlled vs. conventional types, separately, and the 

operation of the controlled system is subjective based on field-by-field decisions made by the 

farm owners. Further investigation is necessary to properly address these challenges.   

Lastly, our findings from this study can help to improve the capability of the National 

Water Model (NWM). The NOAA recently launched the NWM that simulates advanced 

observed and forecast streamflow over the continental U.S. The NWM uses the Noah-MP LSM 

to simulate land surface processes without considering the SSD system 

(https://water.noaa.gov/about/nwm). As the NWM becomes the flood forecasting standard, 

applying the SSD scheme may be able to lead to better flood forecasts in the drainage-dominant 

regions. 
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CHAPTER 4  

Improvement of Operational Airborne Gamma Radiation Snow Water Equivalent Estimates 

using SMAP Soil Moisture3 

4.1 Introduction 

In snowmelt-dominated regions, water resources management and flood predictions rely 

on accurate snowpack measurements (De Roo et al., 2003; Liu et al., 2012). The most important 

snowpack measure for streamflow prediction is snow water equivalent (SWE), which is the 

depth of liquid water that would result if the entire snowpack melted (Bergeron et al., 2016). In 

the north-central U.S. and southern Canada, accurate flood predictions are needed to help 

communities prepare for flood events and allocate flood management resources. However, flood 

prediction is hampered by insufficient information about the magnitude and spatial distribution 

of SWE and snowmelt across the landscape (Tuttle et al., 2017; Schroeder et al., 2019). In the 

flood-prone Red River of the North in Minnesota and North Dakota in U.S and Manitoba in 

Canada (Rannie, 2015; Stadnyk et al., 2016; Todhunter, 2001; Wazney and Clark, 2015), the 

National Weather Service (NWS) North Central River Forecasting Center (NCRFC) 

overestimated a peak flow by 70% of the observed 2013 flow in the region. The flood forecasters 

indicate that uncertainties in SWE spatial distribution as well as antecedent soil moisture 

estimates were potential causes of the forecasting’s failure (personnel communication, Mike 

DeWeese NOAA NCRFC). 

 
3 Cho, E., J.M. Jacobs, R. Schroeder, S.E. Tuttle, C. Olheiser (2020) Improvement of airborne 

gamma radiation snow water equivalent measurements using SMAP soil moisture, Remote Sensing 

of Environment, https://doi.org/10.1016/j.rse.2020.111668 
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Since the late 1970s, satellite passive microwave sensors such as the Scanning 

Multichannel Microwave Radiometer (SMMR) aboard the NASA Nimbus-7 satellite (temporal 

coverage: 1978 – 1987), and the Special Sensor Microwave/Imager (SSM/I) and SSMIS aboard 

the Defense Meteorological Satellite Program (DMSP) series of satellites (F8, F11, F13, and 

F17: 1987 – current) have provided useful snowpack information globally (Armstrong et al., 

1994; Derksen et al., 2005; Foster et al., 2005; Pulliainen and Hallikainen, 2001; Tait, 1998). The 

Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) aboard the 

NASA Aqua satellite and AMSR2, a follow-on instrument of AMSR-E onboard the Japan 

Aerospace Exploration Agency (JAXA) Global Change Observation Mission 1-Water (GCOM-

W1) satellite, have successfully provided snow depth and SWE for the past two decades (Dai et 

al., 2012; Kelly et al., 2003; Kelly, 2009; Cho et al., 2017). SWE from current satellite-based 

microwave sensors has proven to be a valuable asset for improving snowmelt streamflow 

predictions at a watershed scale (approximately 47,000 km2; Vuyovich and Jacobs, 2011). 

Accurate SWE information at smaller scales remains challenging due to the coarse spatial 

resolution (e.g. 25 km by 25 km; 625 km2) of passive microwave satellite observations. In 

addition, wet snow and variations in snow grain size make the microwave satellite retrieval of 

SWE difficult (Armstrong et al., 1993; Tuttle et al., 2017; Vuyovich et al., 2017).  

Snow observations from airborne platforms can fill the knowledge gap between ground 

and satellite microwave remote sensing observations of snow (Painter et al., 2016). Airborne 

gamma-ray spectrometry supports operational snowpack monitoring efforts (Bland et al., 1997; 

Carroll, 2001; Grasty, 1982; Ishizaki et al., 2016). Since the 1980s, airborne gamma radiation 

snow surveys conducted by the NOAA’s Office of Water Prediction (OWP; and formerly by the 

National Operational Hydrologic Remote Sensing Center [NOHRSC]) have provided SWE 



71 
 

observations to regional NWS RFCs across the U.S. (Carroll, 2001; Mote et al., 2003). The 

historical 40 years gamma SWE record was proven as reliable long-term reference SWE 

observations across the U.S. and southern Canada (Cho et al., 2019). The SWE data are also 

assimilated into NOAA NWS's NOHRSC SNOw Data Assimilation System (SNODAS) (Barrett, 

2003; Clow et al., 2012; Hedrick et al., 2015). 

Terrestrial gamma-ray emission from radioisotopes in surface soils (~ top 20 cm) is 

attenuated by water in the liquid or solid form (Carroll, 2001; Peck et al., 1980). The difference 

between gamma radiation measurements taken in the fall (without snow) and in the winter (with 

snow) forms the basis of gamma-ray based airborne SWE measurements. Each flight line’s 

footprint is approximately 4.5 – 6 km2 (15 – 20 km long and about 300 m wide). Flight lines are 

measured once in the fall (in October or November) and then revisited several times throughout 

the winter (January to April) to estimate SWE (Carroll, 2001). The operational gamma SWE 

measurements are considered to be accurate assuming that SM conditions measured during the 

fall survey remain unchanged prior to winter surveys. However, SM conditions can change due 

to late-season rainfall events and early-winter snowmelt, which can result in large gamma SWE 

errors (e.g. NASA SnowEx Science Plan; Durand et al., 2019). Tuttle et al. (2018), for example, 

found a root mean square difference of 42.7 mm between AMSR‐E SWE and airborne gamma 

SWE in the Northern Great Plains, including parts of the North Dakota, South Dakota, 

Minnesota, and Iowa, the United States and southern Canadian prairies. They mentioned that a 

large portion of the error was likely due to the assumption that SM remains constant from fall 

into winter.  

Beginning with the SMMR from 1978 to 1987, satellite active and passive microwave 

sensors such as AMSR-E (2002 – 2011), ASCAT (Advanced Scatterometer; 2007, 2012, and 
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2018 – present, from Metop-A, B, and C, respectively) and SMOS (Soil Moisture and Ocean 

Salinity; 2010 – present) have provided surface SM. Two recent instruments are the AMSR2 

(2012 – present) and SMAP (Soil Moisture Active Passive; 2015 - present). The L-band 

radiometer aboard the National Aeronautics and Space Administration’s (NASA) SMAP satellite 

is well suited for measuring surface SM (Entekhabi et al., 2010). SMAP was launched in January 

2015 and provides SM measurements globally every 2-3 days. SMAP SM observations have 

been used to study soil moisture dynamics (Akbar et al., 2018; Kim et al., 2019; McColl et al., 

2017), which are important for hydrological and agricultural applications, such as flood detection 

(Fournier et al., 2016), irrigation signals (Lawston et al., 2017), and drought monitoring (Mishra 

et al., 2017), at both global and regional scales. However, satellite microwave-based SM 

products have well-known limitations for representative depths (~ upper few centimeters) and 

high uncertainties over dense-vegetated areas (Jackson & Schmugge, 1991; Entekhabi et al. 

2014; Chan et al., 2018).  

The physics used to estimate SM differ between gamma radiation and satellite microwave 

sensing. The gamma radiation method uses the difference between the naturally occurring 

terrestrial gamma radiation flux from wet and dry soils (Carroll, 1981; Jones & Carroll, 1983). 

The gamma flux from the ground is a function of the water mass and constant radioisotope 

concentration near the surface. The mass of the moisture regardless of any phase of water affects 

the attenuation. Increasing SM increases the gamma radiation flux attenuation and decreases the 

gamma flux at the ground surface. Passive microwave sensors estimate the soil dielectric 

constant using the observed brightness temperature (Tb) of the land surface (Jackson et al., 

1993). Using the estimated dielectric constant, a dielectric mixing model leverages the large 

difference between the dielectric constants of the soil particles (~4) and water (~80) to obtain the 
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amount of SM with soil texture information. In the single channel algorithm (SCA) in the NASA 

SMAP standard products, the vertically polarized Tb observations by SMAP L-band are 

converted to emissivity using ancillary physical temperature (Chan et al., 2018; Dong et al., 

2018; O’Neill et al., 2015; updated 2019). The derived emissivity is corrected for surface 

roughness and vegetation to obtain soil emissivity. The soil emissivity is related to the dielectric 

properties of the soil and the incidence angle. The Fresnel reflection equation (Ulaby et al., 1986) 

is then used to determine the dielectric constant.  

Land surface model (LSM) provides an alternative source of simulated SM products and 

have been vetted in weather and climate models as well as hydrological extreme monitoring (e.g. 

drought and floods) (Koster et al., 2009). The North American Land Data Assimilation System 

Phase 2 (NLDAS-2) provides simulated SM products for central North America using four land 

surface models, Noah (Ek et al., 2003; Wood et al., 1997), Mosaic (Koster and Suarez, 1996), 

Sacramento soil moisture accounting (SAC, Burnash, 1995), and the Variable Infiltration 

Capacity (VIC, Liang et al., 1994), which have high spatial (12.5 km by 12.5 km) and temporal 

(hourly) resolution (Xia et al., 2014).  

This study seeks to identify which of the aforementioned SM products can improve 

airborne gamma SWE estimates by updating the (“baseline”) fall operational gamma SM 

estimates to account for changes in SM conditions after baseline gamma flights. This study aims 

to answer the following four research questions:  

1. Are temporal changes in SM from satellite and LSM model products similar to each other 

after baseline gamma flights? 

2. Which satellite and LSM SM products have strong agreement with operational airborne 

gamma SM? 

http://qb3vf9cp4a.search.serialssolutions.com/?&url_ver=Z39.88-2004&url_ctx_fmt=info:ofi/fmt:kev:mtx:ctx&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=THE%20COMPONENTS%20OF%20A%20SVAT%20SCHEME%20AND%20THEIR%20EFFECTS%20ON%20A%20GCMS%20HYDROLOGICAL%20CYCLE&rft.auinit=R&rft.aulast=KOSTER&rft.date=1994&rft.epage=78&rft.genre=proceeding&rft.issn=0309-1708&rft.issue=1-2&rft.place=OXFORD&rft.pub=ELSEVIER%20SCI%20LTD&rft.spage=61&rft.stitle=ADV%20WATER%20RESOUR&rft.title=ADVANCES%20IN%20WATER%20RESOURCES&rft.volume=17&rfr_id=info:sid/www.isinet.com:WoK:WOS&rft.au=SUAREZ%2C%20M
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JD016048#jgrd17297-bib-0007
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JD016048#jgrd17297-bib-0029
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3. How much does updating the baseline operational gamma SM change gamma SWE 

estimates? 

4. Does the updated gamma SWE improve agreement with independent SWE observations? 

4.2 Study Concept 

Operational airborne gamma radiation snow surveys rely on the assumption that the SM 

measured during the fall survey remains constant prior to winter SWE surveys. When SM 

conditions evolve due to drying, rainfall events, and/or early-winter snowmelt, gamma SWE 

estimates biases result. Figure 1 shows an example of a SMAP soil moisture time series from the 

“ND440” flight line footprint, the gamma SM estimate for the flight line, and the daily rainfall 

and soil temperature data in Mooreton, North Dakota from North Dakota Agricultural Weather 

Network (NDAWN, https://ndawn.ndsu.nodak.edu) are also shown. The figure illustrates the soil 

moisture changes after the fall baseline gamma SM survey and their potential influence on the 

winter gamma SWE estimates. From the 9 November 2016 baseline gamma SM survey, SMAP 

SM evolves until 1 December 2017 with a net 0.12 m3/m3 increase. The gamma SWE estimated 

on 18 January 2017 using the baseline gamma SM value attributes all the additional gamma 

radiation attenuation in the winter measurement to SWE rather than accounting for the increase 

in soil moisture post-baseline survey. If the baseline gamma SM were updated to reflect the fall 

SM changes, then the operational gamma SWE should be reduced to reflect that portion of the 

attenuation of gamma radiation due to an increase in SM. Thus, gamma SWE estimates may be 

improved using an updated gamma SM estimate.  
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Figure 1. An example time series of satellite/model soil moisture (SMAP enhanced products in 

this figure) within the given flight line footprint and NOAA operational gamma soil moisture 

along with daily rainfall and air temperature in 2016 to 2017 from a North Dakota Agricultural 

Weather Network (NDAWN) station at Mooreton, ND. The ND440 flight line was flown over 

the Mooreton station. The increase in SMAP soil moisture in December was due to early 

snowmelt from 26 to 30, November. The errors of the SMAP product (ubRMSE < 0.04 m3/m3) 

meet the mission performance criteria from previous studies (Chen et al., 2018; Colliander et al., 

2018). 

4.3 Study Area 

The study area comprises parts of the north-central and northeast United States and 

southern Canada (Figure 2), including parts of four RFCs (Missouri Basin RFC (MBRFC), 

North-Central RFC (NCRFC), North-East RFC (NERFC), and Mid-Atlantic RFC (MARFC)) 

and two Canadian Provinces including Saskatchewan (SK) and Manitoba (Winnipeg). The RFC 

boundaries (black lines) were designated by the NOAA NWS Integrated Hydrologic Automated 

Basin Boundary System to support river flow and flood forecasting throughout the United States. 

Gamma surveys occur in each regional RFC. The gamma flight lines in Figure 2 were flown 
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from September 2015 to April 2018 (black lines). The flight times range from 9 AM to 6 PM 

according to weather conditions and operations schedule 

(https://www.nohrsc.noaa.gov/snowsurvey/photos/). The region is dominated by three land cover 

types, forest (19%, Deciduous broadleaf forest and Mixed forest), croplands (77%, Croplands 

and Cropland/Natural vegetation mosaic), and grasslands (4%) from Global Mosaics of the 

Moderate Resolution Image Spectroradiometer (MODIS) land cover type data (MCD12Q1) 

using the International Geosphere-Biosphere Programme (IGBP) Land Cover Type 

Classification (Channan et al., 2014). Airborne gamma surveys in the western U.S. were 

excluded because most of there SM estimates from 2015 to 2018 used a subjective estimate 

(‘SE’) or unknown type (‘0’) (https://www.nohrsc.noaa.gov/snowsurvey).   

Figure 2. Land cover map of the study area of the north-central and eastern United States and 

southern Canada with the NOAA airborne gamma flight lines surveyed from 2015 to 2018 (N = 

574, blue lines with cyan borders) with River Forecasting Center (RFC) boundaries (black lines) 

along with U.S. states and Canadian province boundaries (gray lines). The land cover map is 

https://www.nohrsc.noaa.gov/snowsurvey/photos/
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from Global Mosaics of the Moderate Resolution Image Spectroradiometer (MODIS) land cover 

type product (MCD12Q1). 

4.4 Data and Methodology 

This study uses a number of SM and SWE products (Table 1). The details of each data 

product appear in the following sections.  

Table 1 Summary of soil moisture and snow water equivalent products including data type, 

period, footprint/grid size, and source used in this study 

Data Product Type Period 

Footprint

/Grid 

size 

Source 

SM & 

SWE 
NOAA gamma Airborne gamma radiation 2015-2018 5-7 km2 NOAA 

SM SMAP enhanced Satellite passive microwave 2015-2017 9 km NASA 

SM 
NLDAS-2 

Mosaic 
Land surface model 2015-2017 12.5 km NOAA 

SM AMSR2 LPRM Satellite passive microwave 2015-2017 25 km NASA 

SWE SSMIS Satellite passive microwave 2016-2018 25 km NASA 

SWE GlobSnow Assimilation 2016-2018 25 km ESA 

SWE SCAN In-situ station 2017-2018 point USDA 

SWE USACE In-situ field survey 2017-2018 point USACE 

 

4.4.1 NOAA Airborne gamma survey 

The NWS gamma flight line network includes over 2,400 flight lines covering 29 U.S. 

states and seven Canadian provinces (Carroll, 2001; Peck et al., 1980). Since 1979, the NWS 

gamma radiation snow survey program has made about 27,000 gamma SWE measurements over 

North America via the NOHRSC website (http://www.nohrsc.noaa.gov/snowsurvey/). This study 

uses the 770 airborne SWE observations made from 2015 to 2018 with 413 flight lines in the 
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study area including 648 observations in non-forested areas. A typical flight line is 

approximately 300 m wide and 16 km long (5 km2 footprint). The gamma survey SM and SWE 

observations are areal-average values for each flight line footprint, while satellite and model 

products used in this study are provided as pixel values.  

The airborne gamma radiation technique measures the attenuation of the terrestrial 

gamma radiation signal due to the intervening water mass (Carroll, 2001; Peck et al.,1971). The 

gamma flux near the ground surface originates primarily from the 40K, 
208Tl, and 238U 

radioisotopes in the soil. In a typical soil, 91% of the gamma radiation signal is emitted from the 

top 10 cm of the soil and 96% and 99% from the top 20 cm and 30 cm, respectively (Zotimov, 

1968). Airborne gamma fall SM measurements can be made for a given flight line if background 

terrestrial gamma count rates (40K0, 
208Tl0, and gross count, GC0) and coincident background SM 

(SM0), and gamma count rates are available. Ground-sampled SM data collected over calibration 

flight lines are used to determine background SM (Jones and Carroll, 1983). Three independent 

SM values are calculated using the attenuation of the gamma radiation counts. SM values are 

calculated using gamma count rates from the 40K window (1.36 - 1.56 MeV), 208Tl (2.41 – 2.81 

MeV) window, and GC spectrum (0.41 to 3.0 MeV) by the following equations (Carroll, 1981; 

2001) 

𝑆𝑀( 𝐾40
𝑐) =

𝐾40
0

𝐾40
𝑐

(100+1.11𝑆𝑀0)−100

1.11
                                                             Eq. (1) 

    𝑆𝑀( 𝑇𝑙208
𝑐) =

𝑇𝑙208
0

𝑇𝑙208
𝑐

(100+1.11𝑆𝑀0)−100

1.11
                                                          Eq. (2) 

𝑆𝑀(𝐺𝐶𝑐) =

𝐺𝐶0
𝐺𝐶𝑐

(100+1.11𝑆𝑀0)−100

1.11
                                                           Eq. (3) 
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𝑆𝑀𝑐 =  0.346 ∙ 𝑆𝑀( 𝐾40
𝑐) + 0.518 ∙ 𝑆𝑀( 𝑇𝑙208

𝑐) + 0.136 ∙ 𝑆𝑀(𝐺𝐶𝑐)                           Eq. (4) 

where 40Kc, 
208Tlc, and GCc are current uncollided gamma count rates in windows 40K, 

208Tl, and 

GC, respectively, and 40K0, 
208Tl0, and GC0 are background uncollided gamma count rates. A 

single current SM estimate (SMc, in units of percent by weight) is calculated by multiplying the 

three current SM estimates by weighting factors, 0.346, 0.518, and 0.136 for 40K, 
208Tl, and GC, 

respectively (Jones & Carroll, 1983). Only the single, weighted SM (SMc) is reported as 

antecedent fall SM which is used in this study. The fall SM survey data are available as Standard 

Hydrometeorological Exchange Format (SHEF) product through the NWS NOHRSC website 

(https://www.nohrsc.noaa.gov/snowsurvey/).  

The operational gamma SWE measurements are made using the following equations: 

𝑆𝑊𝐸( 𝐾40 ) =
1

𝐴
⋅ [𝑙𝑛 (

𝐾40
𝑏

𝐾40
𝑠
) − 𝑙𝑛 (

100+1.11⋅𝑆𝑀( 𝐾40
𝑠)

100+1.11⋅𝑆𝑀( 𝐾40
𝑏)

)]                            Eq. (5) 

𝑆𝑊𝐸( 𝑇𝑙208 ) =
1

𝐴
⋅ [𝑙𝑛 (

𝑇𝑙208
𝑏

𝑇𝑙208
𝑠
) − 𝑙𝑛 (

100+1.11⋅𝑆𝑀( 𝑇𝑙208
𝑠)

100+1.11⋅𝑆𝑀( 𝑇𝑙208
𝑏)

)]                            Eq. (6) 

𝑆𝑊𝐸(𝐺𝐶) =
1

𝐴
⋅ [𝑙𝑛 (

𝐺𝐶𝑏

𝐺𝐶𝑠
) − 𝑙𝑛 (

100+1.11⋅𝑆𝑀(𝐺𝐶𝑠)

100+1.11⋅𝑆𝑀(𝐺𝐶𝑏)
)]                            Eq. (7) 

𝑆𝑊𝐸𝑔𝑎𝑚𝑜𝑝𝑒𝑟
=  0.346 ∙ 𝑆𝑊𝐸( 𝐾40 ) + 0.518 ∙ 𝑆𝑊𝐸( 𝑇𝑙208 ) + 0.136 ∙ 𝑆𝑊𝐸(𝐺𝐶)             Eq. (8) 

where 𝑆𝑀( 𝐾40
𝑏), 𝑆𝑀( 𝑇𝑙208

𝑏), and 𝑆𝑀(𝐺𝐶𝑏) are SM values by weight (%) over bare ground 

and 𝑆𝑀( 𝐾40
𝑠), 𝑆𝑀( 𝑇𝑙208

𝑠), and 𝑆𝑀(𝐺𝐶𝑠) are SM values over snow-cover ground. 40Kb, 
208Tlb, 

and GCb are uncollided gamma count rates over bare ground and 40Ks, 
208Tls, and GCs for snow-

covered ground. 𝑆𝑊𝐸𝑔𝑎𝑚𝑜𝑝𝑒𝑟
 is the operational gamma radiation SWE estimate (g/cm2) reported 

in the SHEF product (Carroll and Schaake Jr, 1983; Carroll, 2001). Based on previous studies, 

errors of the airborne gamma SM measurement range from - 9.9 to 2.9% of percent bias (Carroll, 
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1981). Errors of the gamma SWE were about 12.1% over agricultural areas in the Upper 

Midwest U.S. and 1.3 – 24% over forested areas of the Lake Superior basin, U.S. and Saint John 

River basin, Canada. (Carroll and Carroll, 1989a; Carroll, 2001; Glynn et al., 1988). Glynn et al. 

(1988) indicate that the potential sources of errors in gamma SWE estimates include gamma 

count statistics, navigation, and biomass.  

The airborne gamma SM estimate is provided as “percent SM by weight” which is the 

weight of SM divided by the weight of dry soil multiplied by 100 from approximately the top 20 

cm of soil. To compare the gamma SM (by weight, %) to the gridded SM products (volumetric 

content, m3/m3), the units of SM were matched. The percent airborne gamma SM by weight was 

converted to volumetric SM contents (m3/m3) using the constant bulk density (1.295 g/cm3) 

based on a dominant soil bulk density in this study area (Dobson et al., 1985). Our results show 

that using a constant bulk density as compared to individual bulk density for each gamma 

footprint using the 1-km POLARIS soil datasets (available at www.polaris.earth; Chaney et al., 

2016) does not generate additional residual errors in the comparison between gamma SM and 

other SM products (Figure S1 & S2). 

4.4.2 Soil moisture (SM) 

4.4.2.1 SMAP enhanced SM 

The NASA’s SMAP satellite’s L-band radiometer has provided global SM measurements 

at 6:00 A.M./P.M. local time at 2–3 days revisit time since March 31, 2015 (Chan et al., 2016; 

Entekhabi et al., 2010). The SMAP SM product has been validated using ground-based 

observations and various assimilation products at a global scale (Kim et al., 2018; Colliander et 

al., 2017; Ma et al., 2019; Zhang et al., 2019; Zwieback et al., 2018).  
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The SMAP enhanced L3 SM, released in December 2016, is derived from SMAP Level-

1C (L1C) interpolated brightness temperatures using Backus-Gilbert optimal interpolation 

techniques (O'Neill et al., 2018). The SMAP enhanced SM product (9 x 9 km2) retrieved by the 

SCA (V-pol) has a finer grid posting relative to the SMAP native products (36 x 36 km2) 

although the enhanced footprint’s contributing domain is ~ 33km is similar to the native 36 km 

resolution (Chan et al., 2018). In this study, the SMAP level 3 radiometer global daily EASE-

Grid 2.0 (Equal-Area Scalable Earth Grid 2.0) enhanced soil moisture (V002) for the 

descending overpass (6 A.M.) is used from September 2015 to March 2018. This product (V002) 

has an improved depth correction for effective soil temperature, which reduced the dry bias in 

the initial version product (V001) (O'Neill et al., 2018). 

4.4.2.2 AMSR2 SM 

The AMSR2 passive microwave sensor, a follow-on of the AMSR-E sensor aboard the 

Aqua satellite, was launched on the GCOM-W1 satellite in May 2012 (Imaoka et al., 2010). The 

AMSR2 provides daily scans at 1:30 A.M. (descending) / P.M. (ascending) local time with 1–2 

days revisit time. There are three widely used AMSR2 surface SM products generated from 

different algorithms, the LPRM (Land Parameter Retrieval Model) (Owe et al., 2008), the JAXA 

algorithm (Koike, 2013; Cho et al., 2015) and the SCA (Single Channel Algorithm; Bindlish et 

al., 2018). The LPRM uses the dual-polarization Tb observations at individual (C or X) bands to 

retrieve surface SM and vegetation optical depth via a forward radiative transfer model (Owe et 

al., 2008). This study uses the LPRM AMSR2, Level 3 gridded X-band (10.7 GHz) SM from the 

ascending overpass, expressed on a regular 1/4° spatial grid (25 km).  
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4.4.2.3 NLDAS-2 Mosaic SM 

The NLDAS-2 is an offline modeling system, running four land surface models [Noah, 

Mosaic, Sacramento soil moisture accounting (SAC), and the Variable Infiltration Capacity 

(VIC) model] on a 1/8° spatial grid (12.5 km) over the continental United States (CONUS). 

NLDAS-2 uses meteorological forcing data (e.g. downward short/longwave radiation, 

precipitation, 2-m air temperature, 2-m specific humidity, and 10-m wind speed) to run the land 

surface models to produce water and energy fluxes and state variables (Xia et al., 2012). The 

NLDAS-2 has SM products from four land surface models (Mosaic, Noah, SAC, and VIC) (Xia 

et al., 2014). The Mosaic model has three soil layers: 0–10 cm, 10–60 cm, and 60–200 cm 

(Koster & Suarez, 1996). In this study, the Mosaic 12:00 PM SM at a depth of 0-10 cm is used to 

represent modeled SM values, because the Mosaic SM had a stronger agreement with the 

airborne gamma SM than the Noah and VIC SM products from the surface soil layer [0-10 cm] 

(Figure S3). The SAC SM was not compared because it uses a single soil layer with no surface 

soil moisture.   

In summary, this study uses SMAP and AMSR2 SM products as well as the NLDAS-2 

Mosaic SM product. Active microwave satellite (e.g. ASCAT) SM is not included because recent 

studies found that passive microwave SM (e.g. SMAP/SMOS) products generally have a 

stronger agreement with in-situ observations or reanalysis SM products than ASCAT SM over 

our study region (Al-Yaari et al., 2014; Kim et al., 2018). 
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4.4.3 Snow water equivalent (SWE) 

4.4.3.1 SSMIS SWE  

The SSMIS sensor onboard the Defense Meteorological Satellite Program (DMSP) F17 

platform has provided daily brightness temperature (Tb) measurements with near-complete 

global coverage from December 2006 to the present. In this study, F17 SSMIS SWE ( SSMISSWE ) 

was estimated using the Chang-type algorithm (Armstrong and Brodzik, 2001; Chang et al., 

1987) with modified coefficients developed by Brodzik (2014) as follows: 

𝑆𝑊𝐸𝑆𝑆𝑀𝐼𝑆 = 𝑎 ⋅ 𝑇𝑏𝐻,19𝐺𝐻𝑧 − 𝑏 ⋅ 𝑇𝑏𝐻,37𝐺𝐻𝑧 − 𝑐                                    Eq. (9) 

where a, b, and c are given as 4.807 mm/K, 4.792 mm/K, and 6.036 mm, respectively. 𝑇𝑏𝐻,19𝐺𝐻𝑧 

and 𝑇𝑏𝐻,37𝐺𝐻𝑧 are the brightness temperature at 19 and 37 GHz horizontal polarization, 

respectively. The DMSP SSM/I-SSMIS Pathfinder Daily EASE-Grid Brightness Temperatures 

(Version 2) are provided on a 25-km grid on the National Snow & Ice Data Center website 

(https://nsidc.org/data/nsidc-0032; Armstrong et al., 1994). SSMIS Tb data from the descending 

overpass (6 A.M.) were used to minimize the potential error by wet snow (Derksen et al., 2000).   

4.4.3.2 GlobSnow SWE  

The European Space Agency GlobSnow project provides long-term gridded daily SWE 

maps with 25 km x 25 km spatial resolution from 1979 to current for the Northern Hemisphere, 

except for glaciers and mountainous regions (Takala et al., 2011). The GlobSnow SWE utilizes 

an assimilation approach, which combines ground-based synoptic snow depth station data (using 

constant snow density, 0.24 kg/m2) with passive microwave satellite measurements via the 

Helsinki University of Technology (HUT) snow emission model (Takala et al., 2011; Pulliainen, 
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2006). Ground-based point snow depth measurements are from the World Meteorological 

Organization weather stations. The GlobSnow SWE has two versions, GlobSnow-2 from 1979 to 

2016 (archive_v2.0; http://www.globsnow.info/swe/archive_v2.0/) and GlobSnow-1 from 2011 

to current (near-real-time; http://www.globsnow.info/swe/nrt/). The retrieval accuracy is the 

same between the GlobSnow-1 and 2, but the GlobSnow-2 SWE was improved for northern 

boreal forest and tundra regions (Luojus et al., 2014). Due to the current study period from 2015 

to 2018, the daily GlobSnow-1 SWE was used to evaluate the updated gamma SWE. 

4.4.3.3 Ground-based SWE  

Compared to the western U.S., there are few SWE stations in the north-central and 

northeastern U.S. Daily SWE measurements at the Glacial Ridge, Minnesota (ID: 2050; 

Latitude/Longitude: 47.72°/96.26°; Elevation: 343 m) operated by the 

United States Department of Agriculture (USDA) Soil Climate Analysis Network (SCAN) were 

compared to the updated gamma SWE measurements. The SCAN site land cover is “croplands” 

with a “prairie” snow classification. Two gamma flight lines, MN119 and MN120, are located 

near the SCAN site with the flight lines’ midpoints approximately 9.8 km (northwards) and 29.7 

km (southwards), respectively, from the SCAN site. The two flight lines’ land cover is also 

“cropland” and their elevations are about the same (Figure S4). Further details can be found on 

the SCAN website (https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=2050).  

The United States Army Corps of Engineer (USACE) ground-based snow survey data 

were collected by the USACE St. Paul District to determine snowpack SWE for spring flood risk 

assessment and water resources management. Their survey measurements sampled the snowpack 

at representative locations. At each site and date, at least four SWE samples were taken, each 
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approximately 3–4 m apart, using a snow tube (3.81 cm diameter), then averaged to a single 

mean SWE value. This study uses the weekly USACE SWE observations from 2017 to 2018 at 

Baldhill, ND (Latitude/Longitude: 47.03°/-98.08°), Orwell, MN (46.22°/-96.18°), and Traverse, 

MN (45.86°/-96.57°). The gamma flight lines closest to each site with a distance between the 

midpoint of flight line and the site are ND432 and ND433 (10.6 km and 26.3 km from Baldhill), 

MN126 and MN129 (24.8 km and 19.2 km from Orwell), and ND441 and MN124 (13.8 km and 

22.6 km from Orwell). The detailed gamma flight line locations are provided in Supplementary 

material (Figure S4).   

4.4.4 Methodology 

For comparison to the airborne gamma SWE data, the satellite or model pixels 

overlapped by the given flight line footprint were weighted according to a portion of the 

footprint within each pixel. Only flight lines having more than 50% of the footprint covered by 

satellite observations were used in this analysis. For a detailed process with a schematic diagram, 

please refer to Tuttle et al. (2018).  

After one SM product (in this case, the SMAP enhanced SM) was selected based on the 

statistical agreement (e.g. correlation coefficient and unbiased root mean square difference) with 

operational baseline gamma SM, a linear regression model that minimizes the sum of squared 

residuals (𝜀𝑖) was developed to relate coincident gamma SM (𝑆𝑀𝑔𝑎𝑚,𝑖) and the satellite (or 

model) SM (𝑆𝑀𝑠𝑎𝑡,𝑖) measurements.  

𝑆𝑀𝑔𝑎𝑚,𝑖 = 𝑎 ⋅ 𝑆𝑀𝑠𝑎𝑡,𝑖 + 𝑏 ± 𝜀𝑖                                        Eq. (10) 

where i is flight line number, a is the slope and b is the y-intercept of the linear regression 

equation. 𝜀𝑖 is a residual error (m3/m3) between operational gamma SM and satellite (or model) 
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SM for each flight line. Based on the model, new, updated gamma SM estimates were calculated 

by applying the latest antecedent SM of the chosen product into the linear regression model. It is 

assumed that the residual, 𝜀𝑖, is largely generated from differences between the two products’ 

representative areas and land surface characteristics for each flight line. Thus, the residuals are 

included in the updated gamma SM.  

The change in airborne gamma SWE, ∆𝑆𝑊𝐸𝑔𝑎𝑚,𝑖, resulting from a change in antecedent 

SM in the unit of percentage (%) in soil was calculated using Carroll (2001) as follows: 

∆𝑆𝑊𝐸𝑔𝑎𝑚,𝑖 =
25.4

𝐴
⋅ [ln (

100+1.11⋅𝑆𝑀𝑔𝑎𝑚𝑜𝑝𝑒𝑟,𝑖

100+1.11⋅𝑆𝑀𝑔𝑎𝑚𝑢𝑝𝑑,𝑖
)]                               Eq. (11) 

where ∆𝑆𝑊𝐸𝑔𝑎𝑚,𝑖 is the change in snow water equivalent (mm), A is a radiation attenuation 

coefficient of water which is equal to 0.1482 (Carroll, 2001). 25.4 is used to convert “inches” to 

“mm” from Equation 3 in Carroll (2001). 1.11 represents the ratio of gamma radiation 

attenuation in water to air (Carroll, 1981).  𝑆𝑀𝑔𝑎𝑚𝑜𝑝𝑒𝑟,𝑖 is operational gamma SM by weight (%) 

measured in the fall survey and 𝑆𝑀𝑔𝑎𝑚𝑢𝑝𝑑,𝑖 is the updated gamma SM by weight (%). A 

schematic diagram of the methodology is provided in the Supplementary materials (Figure S5). 

The agreement between airborne gamma survey and satellite/model SM (or SWE) products was 

quantified by the Pearson’s linear correlation coefficient, R, the mean bias, Bias, the root mean 

square difference, RMSD, and the unbiased RMSD, ubRMSD. The equations are available in the 

Supplementary material (Text S1).  



87 
 

4.5 Results 

4.5.1 Change in the soil moisture after baseline gamma flights from satellite and model 

products 

Figure 3 compares the change in NLDAS-2, SMAP, and AMSR2 regional SM maps from 

the dates of the baseline fall gamma flights until the last observation before freeze onset. As an 

example, in 2016 most gamma SM flights occurred about 25 October and the latest observation 

available prior to freezing onset was on 29 November. After the fall gamma flights, SM changes 

vary by year and location. These changes are typically caused by later rainfall, early-winter 

snowmelt, and/or freeze/thaw events, suggesting that an adjustment of the baseline gamma SM is 

necessary for accurate gamma SWE survey. 

In 2015, the change in NLDAS-2 and SMAP SM from November 25 to December 12 

show similar spatial patterns. Surface soils became wetter in the north-central U.S. and drier in 

the northeastern U.S. The increases in SMAP SM are greater than NLDAS in Minnesota, North 

Dakota, and South Dakota where many of the gamma flights occurred. The AMSR2 SM change 

is remarkably different from NLDAS-2 and SMAP SM. AMSR2 shows drying in Minnesota and 

most Canadian provinces. In 2016, SM changes clearly differ by data source between 25 October 

and 29 November. SMAP has a strong drying signal of up to -0.17 m3/m3 in north-central and 

eastern U.S. as well as Saskatchewan and Manitoba, Canada. However, NLDAS-2 and AMSR2 

SM in the same regions get wetter by up to 0.12 and 0.25 m3/m3, respectively. In the Midwest, 

AMSR2 shows that SM increases exceed 0.25 m3/m3. In 2017, there are clear decreases in 

NLDAS-2 and SMAP SM from 25 October to 13 December in the Midwest. The drying of 

SMAP (~0.20 m3/m3) is stronger than that of NLDAS-2 (~0.10 m3/m3). NLDAS-2 captures 

modest wetting in Canada, which is not seen by SMAP and AMSR2 SM because these datasets 
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are provided for only limited areas in Canada, due to data masking from soil freeze or snow 

cover. 

In general, SMAP SM changes are spatially similar to NLDAS-2 SM changes but have 

amplified drying (and wetting). AMSR2 has extreme SM changes considering the normal range 

of volumetric SM and differs spatially from SMAP and NLDAS-2, which may reflect the much 

thinner and closer-to-the-surface sensing depth of AMSR2 as compared to SMAP and NLDAS-

2’s deeper sensing depths. 

  

Figure 3. SM difference maps for NLDAS-2, SMAP, and AMSR2 for the years 2015 to 

2017.  SM differences are calculated between the date of the fall baseline gamma flights and the 

date of the last SM observation prior to freezing onset. A past 5-day composite SM map was 

used to eliminate spatial gaps. 
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4.5.2 Airborne gamma SM versus satellite and model SM products  

To identify which satellite or model SM product agrees best with gamma SM, the gamma 

SM data were compared to NLDAS-2, SMAP, and AMSR2 SM products. Because the 

performance of the microwave SM products typically weakens with increasing vegetation 

density (Jackson & Schmugge, 1991; Wang et al., 1982; Mladenova et al., 2014), the comparison 

is conducted with and without forest areas. When forested areas are included, NLDAS-2 SM has 

better agreement with operational gamma SM than the two satellite SM products (Table 1). 

There is little difference in agreement between NLDAS-2 mosaic SM and operational gamma 

SM with/without forest classes (Figure 4a & b). However, the agreement between SMAP and 

gamma SM clearly differs by a land cover (Figure 4c & d). A majority of the SMAP SM values 

with a wet bias occur for flights over forests. For the Deciduous broadleaf forest and Mixed 

forest classes, there are large errors with SMAP SM compared to gamma SM (Bias: 0.11 and 

0.19 m3/m3 and RMSD: 0.17 and 0.21 m3/m3, respectively). For the AMSR2 comparison, most 

SM values over forested areas were excluded due to poor data quality before the analysis, but the 

remaining SM values show a wet bias, similar to SMAP SM, in forested regions (Figure 4e). 

AMSR2 SM has an extreme wet bias (0.13 m3/m3) even in non-forested areas. In non-forested 

regions, SMAP SM shows very strong agreement with gamma SM as compared to AMSR2 and 

NLDAS-2 SM (Table 2). The results indicate that SMAP SM values from forested areas (e.g. 

Deciduous broadleaf forest and Mixed forest) do not agree with the gamma observations and 

these land uses should be excluded if updating gamma SWE with SMAP SM. A linear regression 

model between SMAP and operational gamma SM [Eq. (10)] was developed using only the 

values from non-forested regions for the next step. Comparison between operational gamma SM 
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and SMAP, AMSR2, and NLDAS-2 SM products for forested regions only, are provided in 

Figure S6. 

Table 2 Agreement between NOAA airborne gamma SM and NLDAS-2 Mosaic SM, SMAP 

enhanced SM, and AMSR2 SM with/without the SM values from forested areas 

Data 

with forested areas  without forested areas 

N R 
ubRMSD 

(m3/m3) 

RMSD 

(m3/m3

) 

Bias 

(m3/m3) 

 

N R 
ubRMSD 

(m3/m3) 

RMSD 

(m3/m3) 

Bias 

(m3/m3) 

NLDAS-2 342 0.53 0.07 0.08 -0.03  277 0.53 0.07 0.08 -0.03 

SMAP 342 0.52 0.10 0.10 0.02  277 0.69 0.06 0.06 -0.02 

AMSR2 287 0.43 0.08 0.15 0.13  278 0.45 0.07 0.15 0.13 
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Figure 4. Comparison of NOAA airborne gamma soil moisture with (a, b) Phase 2 of the North 

American Land Data Assimilation System (NLDAS-2) Mosaic SM, (c, d) Soil Moisture Active 

Passive (SMAP) Level 3 enhanced soil moisture, and (e, f) Advanced Microwave Scanning 

Radiometer 2 (AMSR2) SM within the given flight line footprints with/without the SM values 

from forested areas. 
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4.5.3 Enhancement of gamma SWE by updating baseline SM  

When the operational, baseline gamma SM in non-forested regions from 2015 to 2017 are 

updated using SMAP SM, the gamma SWE values change. Figure 5a displays SMAP SM 

changes measured between the date of the fall baseline gamma flights and the date of the last SM 

observation before freeze-up as well as the corresponding operational and SMAP-updated 

airborne gamma SM estimates. The SMAP-updated gamma SM were calculated using the linear 

regression model between airborne gamma and SMAP SM, slope (a) = 0.69 and y-intercept (b) = 

0.083 [Eq. (10)]. The slope indicates that SMAP SM is more sensitive than gamma SM. 

Considering the two methods’ different representative soil depths, it is reasonable that SMAP’s 

surface SM would tend to have higher variability than the deeper gamma SM.  

 

Figure 5. (a) Boxplots of SMAP SM at original (operational) and latest available dates and 

original and updated gamma SM for entire flight lines in the non-forested region from 2015 to 

2017, along with (b) the corresponding original and updated gamma SWE. (a) The small circles 

are individual SM data (no meaning for a spread in the horizontal direction) and the larger circles 

are outliers. The bold line within each colored box is median, and the upper and bottom sides of 
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the box are the upper (75%) and lower (25%) quantiles of the data. (b) The width of the leaf-

shape boxplot shows the relative amount of the SWE data at that magnitude. 

 

The SMAP SM immediately before freeze-up (mean: 0.16 m3/m3, median: 0.12 m3/m3) is 

typically lower than the SM on the date of the fall baseline gamma flights (mean: 0.21 m3/m3, 

median: 0.20 m3/m3), indicating that for this study period most of the region dried in late fall to 

early winter. Note: a large portion of the gamma SM flights (193 of total 277 flight lines) 

occurred in fall 2016 when there was an average of 0.05 m3/m3 (median: 0.09 m3/m3) decrease in 

SMAP SM. As the SMAP SM differences between the baseline and latest available SM decrease, 

the gamma SM differences should also decrease following the linear regression model [Eq. (10)]. 

The SMAP-updated gamma SM is drier by an average of 0.03 m3/m3 than the operational 

baseline gamma SM. The SMAP-updated gamma SM also appears to have a greater interquartile 

range (IQR; total: 0.12 m3/m3) than the operational baseline gamma SM (0.08 m3/m3). This 

indicates that the residual values ( i ) in the linear regression model comprise a considerable 

proportion of the variation in SMAP-updated gamma SM.  

Using the SMAP-updated SM for each flight footprint, a new, SMAP-updated gamma 

SWE was calculated using Eq. (10). The original, operational gamma SWE values (mean: 72 

mm, median: 69 mm) were adjusted upward by 15% (mean: 82 mm, median: 79 mm) when 

accounting for the changes in baseline SM (Figure 5b). In summary, decreases in the baseline 

SM by an average of 0.03 m3/m3 (gamma) and 0.05 m3/m3 (SMAP) generate average increases in 

gamma SWE of about 10 mm. Individual gamma SWE estimates have different SM changes due 

to the variations by year and flight line as presented in Figure 6. 75% of the SM values became 

drier and the remaining 25% became wetter, but with SM differences ranging from 0.22 to -0.25 

m3/m3 and gamma SWE changes ranging from -30 to 41 mm.  
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Figure 6. Histogram of (a) changes in SMAP SM and (b) NOAA airborne gamma SWE from the 

date of the baseline fall gamma flights to the date immediately before winter freeze-up 
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4.5.4 Evaluation of the updated gamma SWE  

To evaluate the SMAP-updated gamma SWE, satellite-based SWE measurements from 

SSMIS passive microwave sensors were used. Flight lines in forest-dominant regions were 

excluded because SSMIS underestimates SWE compared to airborne gamma SWE over the 

forested areas (Figure S7). Figure 7 shows that the SSMIS SWE has better agreement with 

SMAP-updated gamma SWE than with the operational gamma SWE. When the SSMIS SWE 

exceeds 125 mm, the SMAP-updated gamma SWE values with high DOY converge toward the 

1:1 line. The agreement between the two SWE estimates was improved for each land cover type 

when gamma SWE was updated with SMAP SM (Figure S8). In grassland, the SSMIS SWE had 

a higher correlation and lower ubRMSD with SMAP-updated gamma SWE as compared to the 

agreement with the operational SWE. There were also modest improvements in the agreement 

statistics in croplands, except for Bias, which increases from -1.8 to -11 mm.  
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Figure 7. Comparison between operational and SMAP-updated NOAA airborne gamma 

snow water equivalent with (a, b) satellite-based snow water equivalent from Special Sensor 

Microwave Imager Sounder (SSMIS) and (c, d) ESA GlobSnow assimilation SWE within the 

given flight line footprint. The points are colored by day of year (DOY). 

 

To further validate the SMAP-updated gamma SWE, ground-based SWE measurements 

were obtained from the Glacial Ridge SCAN site snow pillow. Even though there are only five 
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coincident gamma SWE observations, the gamma SWE captures the SWE evolution of the in-

situ data for the two years (Figure 8). In 2017, gamma SWE updates were only 3 mm because of 

the limited changes in the baseline SM. In 2018, the operational gamma SWE values are updated 

by about 20 mm due to the large decrease in the antecedent SM. The updated gamma SWE 

shows a higher correlation (R = 0.95 with p < 0.01) with in-situ SWE than the operational 

gamma SWE (R = 0.75 with p = 0.15; Figure 8b). The slope and y-intercept of the updated SWE 

are also much closer to the 1:1 line. While the operational gamma SWE overestimated SWE by 8 

mm in 2017, it underestimated SWE by 12 mm in 2018. The updated gamma SWE biases are 

consistent for both years.  

A final comparison was conducted using the weekly SWE samples from the United 

States Army Corps of Engineer (USACE) at three sites (Baldhill, ND, Orwell, MN, and Traverse, 

MN) in the north-central U.S. (see Figure S4). The USACE SWE shows better agreement with 

the SMAP-updated SWE (R = 0.71 with p = 0.075) than the operational gamma SWE (R = 0.65 

with p = 0.12; Figure 9). 

 

Figure 8. (a) Time series of in-situ SM and SWE measurements with the operational and SMAP-

updated gamma SWE at the Glacial Ridge Station, Minnesota (ID: 2050) from the Soil Climate 

Analysis Network (SCAN) and (b) agreement between the in-situ SWE and the operational and 
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SMAP-updated gamma SWE. The red points in both plots indicate the operational gamma SWE, 

while the green points indicate SMAP-updated gamma SWE.    

 

 

Figure 9. (a) Time series of in-situ SWE measurements with the operational and SMAP-updated 

gamma SWE at three sites (Baldhill, ND, Orwell, MN, and Traverse, MN) from the United 

States Army Corps of Engineers (USACE) and (b) agreement between the in-situ USACE SWE 

and the operational and SMAP-updated gamma SWE.  The red points in both plots indicate the 

operational gamma SWE, while the green points indicate SMAP-updated gamma SWE.       

 

According to antecedent soil moisture conditions and melting processes, a response of 

peak flood flow to SWE can be varied by annually. A sensitivity analysis of streamflow to the 

amount of SWE was conducted for recent flood years (2009, 2011, and 2013) in the Buffalo 

basin, RRB. In 2013, the peak flow can increase by 130% with a 25% (43 mm) increase in 



99 
 

annual maximum SWE. Based on the SMAP-based corrected SWE increased up to 41 mm from 

original SWE (Figure 6), the improved SWE in flood years can result in remarkable 

improvement in flood prediction. 

 

Figure 10. Sensitivity analysis of streamflow to SWE increases in the Buffalo basin, Minnesota 

in the RRN region for recent flood years (2009, 2011, and 2013) via the NOAA flood forecasting 

model (Schroeder et al., 2017).  

4.6 Discussion 

4.6.1 Evaluation of soil moisture  

The superior agreement of SMAP products with gamma SM in non-forested areas could 

be caused by its finer spatial resolution (9 km x 9 km) as compared to AMSR2 (25 km x 25 km) 

and NLDAS-2 (12.5 km x 12.5 km). Considering that the typical gamma flight line has a 5–7 
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km2 footprint, the finer resolution of the SMAP enhanced SM may lead to less spatial 

heterogeneity error within the pixels (Loew, 2008; Chan et al., 2018). However, Cho et al. 

(2018) found that the gamma SM also had better agreement with SMAP standard SM (36 km x 

36 km; SPL3SMP) than with either the AMSR2 or the NLDAS-2 mosaic SM products. This 

result is similar to Kim et al.’s (2018) finding that in-situ SM showed better agreement with the 

SMAP standard SM than with either AMSR2 or Global Land Data Assimilation System 

(GLDAS) SM products (25 km x 25 km). This suggests that the L-band frequency (1.4 GHz) of 

the SMAP radiometer might lead to better performance regardless of spatial resolution (Chan et 

al., 2018). The greater penetration depth of the L-band could be also more representative of the 

~20 cm depth of the gamma SM. In dense-forested areas with high vegetation canopy, it is 

extremely difficult to obtain accurate SM retrievals using the SMAP L-band and AMSR2 X-

band frequencies. The AMSR2 X-band SM product over the Deciduous broadleaf forest and 

Mixed forest regions are typically masked with the data quality flag. In non-forested regions with 

bare ground or low vegetation canopy, the L-band SM performs better than X-band because the 

L-band frequency can partly penetrate low vegetation canopy while the higher-frequency X-band 

experiences greater attenuation (Kim et al., 2018; Jackson & Schmugge, 1991). 

In the Deciduous broadleaf forest and Mixed forest classes, the operational gamma SM 

had a poorer agreement with SMAP SM than with NLDAS-2 SM, which agrees with previous 

validation studies of passive microwave SM products, including the SMAP radiometer. A known 

limitation of passive microwave soil moisture retrievals is that dense vegetation canopy over the 

soil surface reduces the sensitivity of the relationship between emissivity and SM (Jackson & 

Schmugge, 1991; Wigneron et al., 2003), even though the L-band microwave frequency yields 

relatively good results under vegetation covers relative to other, higher frequencies because of its 
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higher penetration depth (Vittucci et al., 2016; Entekhabi et al., 2010). Due to the extremely high 

optical depth of forests, there is little chance of reliably estimating SM conditions. For forest 

types, Chan et al. (2016) found larger biases and ubRMSD between SMAP and in-situ SM 

measurements at core validation sites (CVS), relative to other land cover types.  

While SMAP SM has a wet bias in forest areas, there is no bias between operational 

gamma SM and NLDAS-2 SM due to land cover. Considering that NLDAS-2 Mosaic SM is 

estimated based on a physical land surface model (Koster & Suarez, 1996), it is likely that 

gamma SM is less affected by vegetation effects than passive microwave (SMAP and AMSR2) 

SM. The airborne gamma radiation technique depends on historical data to establish the 

relationship between gamma count rates and SM and determine a standardized gamma count rate 

at 35% gravimetric SM values for each calibration flight line (Carroll, 1980; 2001; Jones and 

Carroll, 1983). This suggests that the vegetation effect on airborne gamma radiation observations 

is minimal. Change in vegetation conditions by season are also minor because most gamma SM 

observations – to estimate antecedent SM prior to soil freezing – are measured in late fall (e.g. 

October or November) (Carroll, 2001). For these reasons, the gamma SM appears to be reliable 

in forested regions and has the potential to be used beyond its operational estimates of SWE. 

However, further investigation is still required to determine how gamma fluxes from the soil are 

attenuated by vegetation characteristics (e.g. type, height, and density) and how much the 

attenuation impacts SM estimates (Woods 1965; Schetselaar & Rencz, 1997; Ahl and Bieber, 

2010).  

Previous studies typically evaluated airborne gamma radiation SM with ground-based 

SM observations. With an average of 25 samples gravimetric SM measurements per flight line, 

Carroll (1981) and Jones and Carroll (1983) found airborne gamma SM had strong agreement 
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(R2 = 0.87 and 0.84, RMSD = 3.2 and 3.9%, respectively). The airborne gamma radiation 

technique is considered to be a reliable method to estimate areal mean SM measurements.  

No previous studies have compared gamma SM observations to satellite-based active and 

passive microwave or LSM SM, even though there are a series of satellite-based microwave 

sensors (e.g. SSM/I, AMSR-E/2, ASCAT, SMOS, and SMAP) and numerous evaluation studies 

since the early 1980s (e.g., Al-Yaari et al., 2014; Babaeian et al., 2019; Mladenova et al., 2014; 

Kim et al., 2018; Xia et al., 2014). This may be due to the operational mission of the airborne 

gamma program. As mentioned earlier, the airborne gamma radiation SM data collected by the 

NOAA NWS’s Airborne Gamma Radiation Snow Survey Program is intended primarily to 

estimate SWE, not SM itself, and to provide the SWE data to the RFCs for use in the snowmelt 

flood forecasts. In light of the gamma radiation SM performance forests, gamma SM may help 

estimate SM in forested-dominated regions; one of the current challenges in the SM remote 

sensing community. As an independent asset, the airborne gamma radiation SM dataset can be 

utilized to evaluate current and future SM products from various satellites and land surface 

models to improve hydrological models.  

4.6.2 Evaluation of SWE  

   The SMAP-updated gamma SWE agreement with satellite SWE is better than the 

previous findings by Tuttle et al. (2018). Tuttle et al. (2018) compared the operational gamma 

SWE to AMSR-E SWE estimates over the Northern Great Plains from 2002 to 2011. Their 

correlation coefficient (0.36) and RMSD (43 mm) is relatively poor compared to the SMAP-

updated gamma SWE results and even the operational SWE. This may be due to different study 

periods between the two studies (2002-2011 versus 2015-2018). Their statistics could include a 
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few erroneous SWE values during 2009 and 2011 when there were snowmelt floods. The 

improved agreement of the SMAP-updated SWE with in-situ SWE, satellite microwave SWE, 

and GlobSnow SWE suggest that a portion of the error in operational gamma SWE caused by 

antecedent SM can be reduced using this proposed method. 

Compared to the operational gamma SWE, the SMAP-updated SWE has better 

agreement with the limited available datasets including in-situ, satellite-based SSMIS, and 

GlobSnow assimilated SWE, but positive biases with in-situ and SSMIS SWE (10.4% and 11.8% 

respectively). Carroll and Schaake Jr (1983) also found that the airborne gamma SWE data tend 

to overestimate the ground-based data by approximately 10%. This may be due to the airborne 

gamma radiation method detecting water in all phases, including ground ice, standing water, and 

superimposed SM in the soil surface (Carroll, 2001), which might not be included in SWE 

observations from ground samples and snow stations. A snow pillow measures only the mass of 

the overlaying snowpack (Goodison et al., 1981) and has inherent limitations because the heat 

exchange between the snow and soil is disrupted, likely causing SWE underestimation (Bland et 

al., 1997). The current study suggests the method improves gamma SWE estimates but further 

validation with purposefully designed in-situ SWE measurements is needed.  

4.6.3 Limitations  

When the linear regression model between operational airborne gamma SM and SMAP 

SM was developed, the residual errors ( i ) for each flight line were included in the model, 

assuming that the errors reflect the physical properties of the land surface within each line 

footprint (e.g. soil properties, elevation, slope, and inner spatial heterogeneity) (Clark et al., 

2011). A residual analysis conducted with land surface characteristics (clay percentage, saturated 
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hydraulic conductivity, and mean elevation and slope) to identify physical properties related to 

the errors and to assess the appropriateness of the model did not find any statistically significant 

relationships. Carroll and Carroll (1989b) found that gamma SWE is systematically 

underestimated when large SWE variability occurs within a flight footprint. Because the gamma 

technique principles, measuring water mass by attenuation, are the same for SM and SWE, it 

possible that SM variability could cause gamma SM to be underestimated. High-resolution soil 

properties and SM-related variables (e.g. land surface temperature / Sentinel-1 SAR backscatter) 

could be used to understand spatial heterogeneity impacts and to improve the operational gamma 

SM methodology (Das et al., 2019). 

A well-known issue when validating gridded satellite products with in-situ (or different 

platform) measurements is the difference in spatial scales between the observations and the 

ability of the sub-grid scale measurements to capture the variability within the satellite footprint 

(Gruber et al., 2013; Colliander et al., 2017). Tuttle et al. (2018) noted that SWE spatial 

variability affects the gamma versus satellite SWE comparison because of the different spatial 

scales for the gamma footprint and the satellite pixel. The different observation scales may 

contribute to the residual errors in the linear regression model between the gamma and SMAP 

SM. The gamma SM lines often comprise parts of multiple SMAP pixels. The weighted mean 

SMAP SM was found for the given flight footprint. However, the weighted mean SM is derived 

from Tb observations that are partly from outside of the flight line footprint, thus introducing 

representativeness errors into the linear model. Further studies are required to identify physical 

characteristics that might be related to the residual errors in the model. 

There may be temporal differences between airborne gamma radiation observations and 

the satellite and model products in this study for SM and SWE comparisons. The gamma flight 
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overpass times range from 9 AM to 6 PM while the sun-synchronous SMAP, AMSR2, and 

SSMIS sensors have constant local overpass times. Recognizing that SM has diurnal changes 

(Jackson, 1973), the linear regression model between the operational airborne gamma and SMAP 

SM could be improved if the measurement time of the gamma flight data were known and the 

comparison included only those observations where measurement times were similar. It is also 

possible that this approach would improve if NLDAS-2 SM were used instead of SMAP SM 

because hourly NLDAS-2 SM values are available (Xia et al., 2015). 

The different representative depths among the SM data sources also add error. The 

passive microwave sensors measure surface SM from the top few centimeters, with a depth that 

varies with the amount of soil moisture and its distribution (Njoku and Kong, 1977; Escorihuela 

et al., 2010). The L-band SMAP SM captures approximately the top 5 cm of the soil (O'Neill et 

al., 2018; McColl et al., 2017) whereas the X-band AMSR2 penetration depth is close to 1 cm 

(Bindlish et al., 2017) because lower-frequency microwave radiation generally penetrates soil 

and vegetation canopy more effectively than higher-frequency bands (Jackson & Schmugge, 

1991). However, airborne gamma SM is derived from a larger depth range than the penetration 

depth of any current passive microwave satellite instrument (Carroll, 2001) with 91% of the 

gamma flux emitted from the upper 10 cm of the soil, and 96% from the upper 20 cm (Zotimov, 

1968; Jones and Carroll, 1983). While the different sensors’ representative depths are not 

dissimilar, the modest difference in representative depths could still cause errors, especially 

during dynamic wetting or drying (e.g., right after rainfall events).   
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4.7 Conclusion 

In this study, a linear regression method was developed to improve operational airborne 

gamma SWE estimates in non-forested regions by updating the fall baseline SM using the SMAP 

enhanced SM product. Based on limited comparisons, the SMAP-updated SWE improves 

agreement with satellite and in-situ SWE observations. This preliminary study identified the 

need to further test the approach as well as opportunities to improve the approach using higher-

resolution/evolving independent products. For example, the Copernicus Sentinel-1 Synthetic 

Aperture Radar (SAR) provides 1-km C-band backscatter data. Because the SAR backscatter is 

directly related to surface SM condition, the Sentinel-1 SAR-based information could improve 

antecedent SM estimates over the gamma flight lines. However, current satellite SM 

observations offer little value for improving the gamma estimates in forested areas. In densely 

vegetated regions SM from LSMs, applied using this study’s approach, could improve the 

operational gamma SWE regardless of land cover type. In the United States, snowmelt flood 

predictions are challenged by limited ground observations and rely heavily on the airborne 

gamma SWE product which is also used to support the operational SNODAS product. This study 

shows that the typical SWE corrections are on the order of 10 mm. Thus, the soil moisture 

corrections would be most important for regions having shallow snowpacks and snowmelt-

driven flooding that is highly sensitive to modest SWE differences. Finally, gamma SWE 

estimates also serve as independent SWE measurements that are useful for evaluating satellite 

and modeled SWE products. An updated airborne gamma SWE with reduced errors will better 

support the evaluation of SWE products from current and future satellite missions and 

regional/global land surface or climate models. 
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CHAPTER 5 

The value of long-term (40 years) airborne gamma radiation SWE record for evaluating three 

observation-based gridded SWE datasets by seasonal snow and land cover classifications4 

5.1 Introduction 

Snow impacts human activity across the U.S. as a source of water, hydropower and 

potentially flooding. In the western U.S., snow supplies 70% of the annual water supply valued 

at more than $348 billion per year (Adams et al., 2004). In the north-central and northeastern 

U.S., snow meltwater is a dominant driver of severe spring flooding (Wazney et al., 2015; 

Stadnyk et al., 2016; https://www.weather.gov/dvn/summary_SpringFlooding_2019). Accurate, 

timely estimates of the snowpack are required over the U.S. to help monitor and manage 

seasonal snow and melt. The most hydrologically relevant measure of the snowpack is snow 

water equivalent (SWE), which describes the amount of water stored in the snow.  

In addition to real-time snow observations, a long-term record of SWE is important for 

identifying climate variability and trends and for developing a climatology of the snowpack. As 

changes in seasonal snow have recently accelerated across the U.S. in the last few decades 

(Ashfaq et al., 2013; Georgakakos et al., 2014), reliable long-term SWE measurements are 

further needed for effective water management and flood risk assessments (Zeng et al., 2018). 

 
4 Cho, E., J.M. Jacobs, C. Vuyovich (2020) The value of long-term (40 years) airborne gamma 

radiation SWE record for evaluating three observation-based gridded SWE datasets by seasonal 
snow and land cover classifications, Water Resources Research, 56(1), 

https://doi.org/10.1029/2019WR025813 
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Point-based long term SWE records from snow station networks (e.g. NRCS Snowpack 

Telemetry (SNOTEL)) have provided high-quality measurements. The time series of SWE 

observations have been used to evaluate and validate trends and seasonal variabilities in 

snowpack in numerous previous studies in the western U.S. (Cooper et al., 2016; Mote et al., 

2018; Pierce et al., 2008). However, point measurements do not necessarily represent the 

snowpack distribution especially in areas with spatially heterogeneous terrain (Molotch & Bales, 

2005). In order to overcome the limitations, observation-based gridded SWE products have been 

developed using satellite remote sensing and/or in-situ snow station networks with assimilation 

techniques.  

A series of passive microwave satellite sensors have provided a potential source of 

spatially distributed SWE information. For more than 30 years, the Special Sensor Microwave 

Imager (SSM/I) and SSM Imager/Sounder (SSMIS) aboard the Defense Meteorological Satellite 

Program (DMSP) series of satellites (1987 – current) have provided long term SWE information 

at a global scale (Derksen et al., 2005; Foster et al., 2005; Tait, 1998). Passive microwave SWE 

retrieval algorithms typically use empirical relationships between SWE or snow depth and the 

difference between the brightness temperatures at two different passive microwave frequencies: 

a low frequency, 18–19 GHz, and a higher frequency, typically around 37 GHz. However, 

known sources of error hamper the operational use in many regions over the U.S. Carroll et al. 

(1989) mentioned major difficulties that tend to be inherent in the satellite-based passive 

microwave SWE products. First, the passive microwave algorithms tend not to work under a 

deep snowpack (greater than approximately 200 mm SWE), which is called “saturation effect” 

because the higher frequency microwave signal is no longer detectable (Dong et al., 2005; 

Vuyovich et al. 2014). Second, the general tendency is for algorithms to not estimate SWE 
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sufficiently well in forested or heavily vegetated regions (Foster et al., 2005; Vander Jagt et al., 

2013). Third, even in flat areas with sparse vegetation, the passive microwave signal is highly 

sensitive to even small amounts of liquid water in the snowpack (Kang et al., 2014; Walker and 

Goodison, 1993). Consequently, the SWE values are unreliable under wet snow conditions.  

To directly assimilate satellite-based passive microwave emission, Pulliainen (2006) 

developed a Bayesian-based assimilation technique that weighs the passive microwave satellite 

data and the interpolated ground-based snow depth observations using a semi-empirical radiative 

transfer model. This assimilation technique was integrated into the GlobSnow project supported 

by the European Space Agency (ESA) to produce a long-term SWE dataset for the Northern 

Hemisphere (Takala et al., 2011). Because ground-based snow depth was used to generate 

interpolated effective grain size data, and simulate Tb and SWE, the accuracy of the SWE is 

expected to be better than those of typical stand-alone channel differencing algorithms from 

passive microwave satellite sensors (e.g. Chang et al., 1987; Kelly, 2009). In fact, previous 

studies found that the GlobSnow SWE has better performance with point ground SWE 

measurements as compared to the empirical SWE algorithms (Hancock et al., 2013; Mudryk et 

al., 2015; Larue et al., 2017). However, the GlobSnow-2 SWE still has large uncertainties with 

RMSE of 94 mm (36%) in wet and deep snow conditions and forested regions, probably due to 

the inherent sources of error in passive microwave signal (Larue et al., 2017). Hancock et al. 

(2013) using GlobSnow v1.0 also reported that occasional abrupt changes were found in the 

product. 

The University of Arizona (UA) recently developed a 4-km gridded long-term SWE 

dataset from 1982 to 2017 (hereafter UA SWE) over the conterminous U.S. (Broxton et al. 

2016a) by combining high-quality point SWE measurements with finer spatial resolution gridded 
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precipitation and temperature datasets. The observation-based UA SWE product is produced by 

interpolating thousands of ground-based measurements of SWE and snow depth from SNOTEL 

(Serreze et al., 1999) and the NWS Cooperative Observer Program (COOP) network sites and 4-

km gridded PRISM precipitation and temperature data (Daly et al., 2008). The quality and 

reliability of the UA SWE data have been demonstrated compared to reanalysis and land 

assimilation products (Broxton et al., 2016b) and independent observation-based products 

(Dawson et al., 2018). Dawson et al. (2018) reported that the passive microwave AMSR-E SWE 

product and two satellite-merged SWE products (GlobSnow-2 and Canadian Sea Ice and Snow 

Evolution Network, CanSISE) have large differences from the UA SWE data (Mean Absolute 

Difference, MAD: 46% to 59%), especially in forested regions. They also found that there was a 

good agreement in basin-averaged SWE between UA and Airborne Snow Observatory (ASO) 

products (32 flight measurements) (Painter et al., 2016) in the upper Tuolumne basin, 

California’s Sierra Nevada (correlation: 0.98 and MAD: 51.5 mm [30%]). However, since the 

test with ASO SWE had a limited number of flights over a sparsely forested region (< 30% of 

tree cover fraction; Dawson et al., 2018), there is still a need to further evaluate the accuracy of 

the UA SWE over more heavily vegetated regions. 

Due to the lack of reliable independent SWE records, an evaluation of the currently 

available long-term SWE products at a continental scale has been limited. The airborne gamma 

snow survey operated by the National Oceanic and Atmospheric Administration’s (NOAA) 

National Operational Hydrologic Remote Sensing Center (NOHRSC) has substantial potential to 

evaluate the gridded SWE products over the conterminous U.S. The NOAA airborne gamma 

snow survey was designed to help hydrologists and flood forecasters in the National Weather 

Service offices, regional river forecasting centers, and other U.S. and Canadian federal agencies 
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improve operational spring flood predictions and water supply outlooks (Peck et al., 1980). Since 

1979, the snow survey has collected areal mean SWE data over a network of 2,400 flight lines 

covering 25 states and 7 Canadian provinces (Carroll, 2001). The airborne gamma technique 

uses the attenuation of the gamma-ray signal by water in the snowpack (any phase) to measure 

SWE for each flight line. The mean areal gamma SWE value is based on the difference between 

gamma radiation measurements over bare ground and snow-covered ground.  

The accuracy of airborne gamma SWE estimates has been evaluated using numerous 

ground-based snow observations from snow courses and field campaigns on designated flight 

lines (Carroll & Schaake, 1983; Carroll & Vose, 1984; Goodison et al., 1984; Glynn et al., 1988; 

Peck et al., 1971). In prairie regions, with mean ground-based SWE between 20 – 150 mm, the 

root mean square error (RMSE) of airborne gamma SWE is less than 10 mm (4 – 10%) based on 

a few hundred samples within the flight lines (Carroll & Schaake, 1983; Carroll., 1983). In 

densely forested regions, Carroll & Vose (1984) found that the airborne gamma SWE had a low 

bias and an RMSE of 23 mm as compared to the mean ground-based SWE. In that study of the 

Lake Superior and Saint John basins in the U.S, SWE measurements ranged from 20 to 480 mm 

based on approximately 200 snow depth and 20 snow density measurements distributed along 

the length of each flight line (total 72 lines). These studies provided the impetus to develop an 

airborne gamma SWE program, which has been successfully used for operational flood 

forecasting during the last 40 years (Carroll, 2001). Currently, the airborne gamma SWE 

observations, as well as ground-based and satellite snow covered area observations over the U.S., 

support the NOHRSC near-real-time, high spatial resolution (1 km2 gridded) Snow Data 

Assimilation System (SNODAS) products (Barrett, 2003).  
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An evaluation of the currently available long-term SWE products is important to 

differentiate among environments having a strong agreement or large differences among 

products. The 40-year airborne gamma SWE record is ideal to evaluate the gridded observation-

based SWE products according to seasonal snow and land cover characteristics. Even though the 

gamma SWE record has limited spatial and temporal coverages compared to the coarser satellite 

and assimilation products, the record provides accurate and reliable SWE in a wide range of 

snow and land characteristics, especially in forested regions where SWE estimation 

remains challenging (Cho et al., 2018). The wide range encompasses a broader sample of snow 

conditions over a longer time period than is collected using any other aerial observations (e.g. 

airborne lidar) and provides spatially-integrated observations over a footprint closer to satellite 

resolution than point observations. 

This study focuses on providing a comprehensive examination of three currently 

available observation-based gridded SWE datasets, spaceborne passive microwave SSM/I-

SSMIS (hereafter SSMI/S) SWE, GlobSnow-2 SWE, and UA SWE, using the airborne gamma 

SWE record from 1982 to 2017 over the conterminous U.S. We hypothesize that SSMI/S, using 

a standard Chang-type microwave retrieval algorithm, and GlobSnow-2 products will show 

similar patterns as compared to the airborne gamma SWE estimates, i.e. good agreement in 

regions with little vegetation and relatively homogeneous terrain (e.g. cropland and grassland 

land cover types and “prairie” of seasonal snow class) and lower agreement in regions with 

dense vegetation and heterogeneous terrain (e.g. forested-type land cover types and “warm forest” 

and “maritime” of seasonal snow classes). We also hypothesize that UA SWE will compare 

favorably to the gamma SWE even in forested or heavily vegetated regions due to the lower 

impact of forest fraction on both products (Cho et al., 2018; Dawson et al., 2018). Finally, we 



113 
 

hypothesize that known gamma weaknesses under heterogeneous conditions will be revealed as 

larger differences between gamma SWE and the gridded products. We evaluate the three long-

term daily SWE estimates against the historical airborne gamma SWE record by land cover type, 

seasonal snow cover classification, and the degree of the tree fraction and land heterogeneity 

across the U.S.  

This paper is organized as follows. Section 2 describes the study area with land cover 

types, seasonal snow classes, and tree fractions for a categorized evaluation and sensitivity test of 

the SWE products. Section 3 describes the three gridded SWE datasets and airborne gamma 

SWE. The methodologies, which include a resampling method and the calculation of agreement 

statistics, are described in section 4. Section 5 details the results of spatial comparison of three 

products (Section 5.1), their differences by seasonal snow and land cover classes (Section 5.2), 

and the effect of tree fraction and topographical characteristics (Section 5.3). Section 6 offers 

discussions about the similarities, differences, and new findings in our results with respect to 

previous studies, and potential limitations of gamma SWE estimates. Conclusion and future 

perspectives are drawn in section 7.   

5.2 Study Area 

The study area comprises the conterminous U.S. where all SWE data used in this study 

are available (Figure 1), including parts of eight NOAA river forecasting centers (RFCs), North-

Central (NC), Missouri Basin (MB), Ohio (OH), North-East (NE), Mid-Atlantic (MA), Colorado 

Basin RFC (CB), Northwest (NW), and California Nevada (CN). The RFC boundaries were 

designated by the NOAA NWS Advanced Hydrological Prediction Service to manage regional 

river flow and support flood forecasting over the U.S. The airborne gamma radiation survey 
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provides fall soil moisture and winter SWE measurements to each regional RFC. The NOAA 

NOHRSC gamma radiation survey network is comprised of over 2,400 flight lines over the U.S. 

including Alaska and southern Canada. Among them, 1,812 gamma flight lines over the 

conterminous U.S. were used in this study. The study region is dominated by seven types of the 

International Geosphere-Biosphere Programme (IGBP) land cover type, evergreen needleleaf 

forest, deciduous broadleaf forest, mixed forest, croplands, cropland/natural vegetation mosaic, 

grasslands, and woody savannas (Channan et al., 2014; Figure 1a). The study area is also 

classified by six seasonal snow classes, tundra, taiga, maritime, ephemeral, prairie, and warm 

forest by the Sturm’s seasonal snow cover classification (Sturm et al., 2010; Figure 1b). Due to a 

very limited number of gamma SWE observations, the woody savannas land cover type and the 

ephemeral snow classes were excluded in this study. The annual VCF from the NASA Making 

Earth System Data Records for Use in Research Environments (MEaSUREs) was used to 

estimate fractional tree cover at each gamma line (Hansen & Song, 2018; Figure 1c).  
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Figure 1. (a) IGBP land cover type, (b) Sturm’s seasonal snow classification, and (c) Vegetation 

Continuous Field maps of the study area over the conterminous United States with NOAA 

gamma flight lines (N =1,812) 
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5.3 Data 

5.3.1 Airborne gamma radiation SWE 

The airborne SWE estimates are obtained using a gamma radiation detector onboard a 

low-flying aircraft (at an altitude of 150 m above the ground). This instrument measures the 

natural terrestrial gamma radiation emitted from trace elements of 40K, 238U, and 232Th 

radioisotopes in the upper 20 cm of soil. In the airborne gamma technique, the attenuation of the 

gamma-ray signal by water mass in the snowpack (any phase) over a flight line is used to 

estimate SWE directly. The airborne gamma SWE value is estimated using the difference 

between the rates of gamma radiation particles over bare ground (attenuation by soil moisture 

only) and snow-covered ground (attenuation by soil moisture and snowpack).  

The operational gamma SWE data are calculated using the following equations: 

𝑆𝑊𝐸( 𝐾40 ) =
1

𝐴
⋅ [ln (

𝐾40
𝑏

𝐾40
𝑠
) − ln (

100+1.11⋅𝑆M( 𝐾40
𝑠)

100+1.11⋅𝑆M( 𝐾40
𝑏)

)]                            Eq. (1) 

𝑆𝑊𝐸( 𝑇𝑙208 ) =
1

𝐴
⋅ [ln (

𝑇𝑙208
𝑏

𝑇𝑙208
𝑠
) − ln (

100+1.11⋅𝑆𝑀( 𝑇𝑙208
𝑠)

100+1.11⋅𝑆𝑀( 𝑇𝑙208
𝑏)

)]                            Eq. (2) 

𝑆𝑊𝐸(𝐺𝐶) =
1

𝐴
⋅ [ln (

𝐺𝐶𝑏

𝐺𝐶𝑠
) − ln (

100+1.11⋅𝑆𝑀(𝐺𝐶𝑠)

100+1.11⋅𝑆𝑀(𝐺𝐶𝑏)
)]                            Eq. (3) 

𝐺𝑎𝑚𝑚𝑎 𝑆𝑊𝐸 =  0.346 ∙ 𝑆𝑊𝐸( 𝐾40 ) + 0.518 ∙ 𝑆𝑊𝐸( 𝑇𝑙208 ) + 0.136 ∙ 𝑆𝑊𝐸(𝐺𝐶)             Eq. 

(4) 

where 40K, 208Tl, and the total count windows (GC) are uncollided gamma count rates 

over bare ground (40Kb, 
208Tlb, and GCb) and snow-covered ground (40Ks, 

208Tls, and 

GCs). SM( 𝐾40
𝑏), SM( 𝑇𝑙208

𝑏), and SM(𝐺𝐶0) are gravimetric soil moisture contents over bare 

ground and SM( 𝐾40
𝑠), SM( 𝑇𝑙208

𝑠), and SM(𝐺𝐶𝑠) are gravimetric soil moisture contents over 



117 
 

snow-cover ground detected by 40K, 208Tl, and the total count windows (GC), respectively. A is a 

radiation attenuation coefficient in water, 0.1482. 𝐺𝑎𝑚𝑚𝑎 𝑆𝑊𝐸 is a single average gamma 

radiation SWE (g/cm2) value for the entire flight line reported via the NOHRSC website 

(http://www.nohrsc.noaa.gov/snowsurvey/). 

Since 1979, the operational NWS gamma radiation snow survey has provided about 

27,000 gamma SWE measurements over the entire U.S. and southern Canadian provinces via the 

NOHRSC website (http://www.nohrsc.noaa.gov/snowsurvey/). A typical flight line covers 

approximately 5 km2 with a swath 300 m wide and 16 km long. The gamma SWE observations 

are areal-average values for each flight line footprint. In this study, 20,738 airborne gamma SWE 

observations covering 1,812 flight lines flown from January 1982 to May 2017 within the 

conterminous U.S. are used (Table 1). Flight lines in which the majority type/class does not 

exceed 50% of the gamma footprint were considered “unclassified” and were excluded from 

each analysis by the land cover type and snow classification.  

Table 1. Overview of the number of the NOAA airborne gamma radiation flight lines and SWE 

observations by land cover types and snow classes (Note: The gamma SWE values in the woody 

savannas, ephemeral, and unclassified are excluded in this study). 

Land cover 

types 

Flight 

lines 
Total 

1982-

1989 

1990-

1999 

2000-

2009 

2010-

2017 

Snow cover 

type 

Flight 

lines 
Total 

1982-

1989 

1990-

1999 

2000-

2009 

2010-

2017 

Evergreen 

Needleleaf 

forest 

192 1,735 283 716 549 187 Tundra 99 1,346 94 631 523 98 

Deciduous 

Broadleaf 

forest 

165 2,609 143 516 1,290 660 Taiga 72 925 62 392 391 80 

Mixed forest 220 3,961 470 894 1,342 1,255 Maritime 391 5,487 485 1,299 2,365 1,338 

Grasslands 368 2,640 267 1,002 1,122 249 Prairie 1,079 
10,70

4 
2,486 3,302 2,222 2,694 

Croplands 610 7,140 1,931 2,174 1,038 1,997 Warm forest 69 644 159 156 157 172 

Cropland/ 

Natural veg. 
245 2,582 407 873 823 479 Ephemeral 3 5 1 4 0 0 
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Woody 

savannas 
12 71 48 21 0 2 unclassified 99 

1,62

7 
262 412 506 447 

Total 1,812 
20,73

8 
3,549 6,169 6,164 4,829 Total 1,812 

20,7

38 

3,54

9 

6,16

9 

6,16

4 

4,82

9 

 

5.3.2 Spaceborne Passive Microwave SSM/I and SSMIS SWE 

The series of SSM/I and SSMIS sensors aboard the DMSP series of satellites operated by 

the U.S. Department of Defense provides daily brightness temperatures at approximately 6 A.M. 

(descending) / P.M. (ascending) local time with global coverage from July 1987 to the present. 

The microwave frequencies at 19, 22, 37 (SSM/I and SSMIS), 85 (SSM/I only), and 91 GHz 

(SSMIS only) are sampled in both horizontal and vertical polarizations, except the 22 GHz 

(vertical only). In this study, SSMI/S SWE was estimated using a Chang-type algorithm (Chang 

et al., 1987) with original coefficients for F8-F13 (Armstrong and Brodzik, 2001) and modified 

coefficients for F17 developed by Brodzik (2014) as follows: 

𝑆𝑊𝐸𝑆𝑆𝑀/𝐼 = 4.77 ⋅ (𝑇𝑏𝐻,19𝐺𝐻𝑧 − 𝑇𝑏𝐻,37𝐺𝐻𝑧 −  5)       for F8, 11, & 13 SSM/I      Eq. (5) 

𝑆𝑊𝐸𝑆𝑆𝑀𝐼𝑆 = 𝑎 ⋅ 𝑇𝑏𝐻,19𝐺𝐻𝑧 − 𝑏 ⋅ 𝑇𝑏𝐻,37𝐺𝐻𝑧 − 𝑐           for F17 SSMIS                   Eq. (6) 

where a, b, and c are given as 4.807 mm/K, 4.792 mm/K, and 6.036 mm, respectively. 𝑇𝑏𝐻,19𝐺𝐻𝑧 

and 𝑇𝑏𝐻,37𝐺𝐻𝑧 are brightness temperatures at 19 and 37 GHz horizontal polarization, respectively. 

F8, 11, 13, and 17 are the DMSP platform ID. The Tb at the descending overpass (6 A.M.) was 

used to minimize error by wet snow (Derksen et al., 2000). The DMSP SSM/I-SSMIS Pathfinder 

Daily EASE-Grid Brightness Temperatures (Version 2) from July 1987 to May 2017 were used 

in this study, and freely available at the National Snow & Ice Data Center website 

(https://nsidc.org/data/NSIDC-0032; Armstrong et al., 1994). 

https://en.wikipedia.org/wiki/Polarization_(waves)
https://nsidc.org/data/NSIDC-0032
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5.3.3 GlobSnow-2 SWE 

The GlobSnow project, funded by the European Space Agency (ESA), provides gridded 

daily SWE maps with 25 km spatial resolution from 1979 to 2016 (GlobSnow-2, archive_v2.0) 

for the Northern Hemisphere, except for glaciers and mountainous regions. The GlobSnow SWE 

utilizes an observation-based data assimilation approach combining ground-based synoptic snow 

depth station data with passive microwave satellite measurements (Takala et al., 2011). Ground-

based point measurements of snow depth are taken from the European Centre for Medium-Range 

Weather Forecasts (ECWMF) WMO weather stations. The final product uses daily Tb at 19 and 

37 GHz in vertical polarization from the series of passive microwave radiometers (SMMR 1979–

1987, SSM/I 1987–2009, and SSMIS 2010–2014) (GlobSnow-2 Final Report; Luojus et al., 

2014).  

The basis of the GlobSnow SWE processing system is presented by Pulliainen (2006) and 

Takala et al. (2011), though a brief description of the processes for SWE retrievals is given here. 

Snow depth (SD) maps are produced using ordinary kriging interpolation technique for synoptic 

weather station SD observations. The gridded SD is used as input to simulated Tb using the HUT 

snow emission model. The model describes Tb as a function of a single-layer snowpack (depth, 

snow density, and effective grain size) and forest canopy. The model is fit to satellite observed 

Tb values by optimizing effective snow grain sizes with constant snow density (0.24 kg/m2) at 

the locations where the weather station snow depth values are available. A map of spatially 

continuous effective snow grain size is developed by the weather station-based snow grain size 

estimates using a kriging interpolation technique. The SD and effective snow grain size maps are 

used to initiate the HUT model as inputs and generate gridded Tb simulations. The Tb 

simulations are then assimilated with satellite Tb observations by using adaptive weights on the 
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satellite-observed Tb according to their variances. A final SWE is estimated using the 

assimilated Tb with the maps of the effective grain size and land cover information (Takala et al., 

2011). 

Compared to the previous v1.0 and v1.3 SWE products, there are enhancements to the 

GlobSnow-2 SWE (archive_v2.0) product including the improved quantification of data 

uncertainty characteristics, homogenization of the multiple-year snow depth measurements from 

synoptic weather stations, and re-processing of the long-term SWE datasets. While the retrieval 

accuracy of the GlobSnow-2 SWE has remained the same for most regions, it showed slight 

improvements for northern boreal forest and tundra regions in Canadian reference data 

(Pulliainen et al., 2014). It should be noted that the inter-sensor systematic bias is not corrected 

in this product (Takala et al., 2011) whereas previous studies have shown inter-sensor biases in 

the Tb between the SMMR, SSM/I, and SSMI/S sensors (Derksen et al., 2003; Royer & Poirier, 

2010; André et al., 2015; Cho et al., 2017). In this study, the daily GlobSnow-2 SWE was used 

from January 1982 to December 2016 which was obtained from 

http://www.globsnow.info/swe/archive_v2.0/.  

5.3.4 UA SWE 

The UA SWE is an observation-based 4-km gridded SWE dataset recently developed by 

combining the SNOTEL SWE and NWS COOP snow depth measurements with the gridded 

PRISM precipitation and temperature data over the conterminous U.S. (Zeng et al., 2018). A new 

interpolation technique was used to produce the gridded SWE dataset based on the ratio of 

observed SWE over net accumulated snowfall (accumulated snowfall minus cumulative snow 

ablation), rather than SWE itself (Broxton et al., 2016a). For this, daily precipitation data was 

http://www.globsnow.info/swe/archive_v2.0/
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divided into daily snowfall vs. rainfall using a daily air temperature (2-m) threshold and then 

accumulated snow was calculated as the sum of the daily snowfalls. Daily cumulative snow 

ablation at each station (or grid cell) is taken from a relationship between the SNOTEL-based 

cumulative snow ablation and cumulative degree days above 0°C established by the entire 

SNOTEL network (Figure 2b in Broxton et al., 2016a). The UA SWE product also uses a newly 

developed snow density parameterization, which was called “SNODEN” (Dawson et al., 2017). 

This parameterization attempts to include physical processes (e.g. temperature-based aging, 

overburden snowpack, liquid water from snowmelt) based on the SNOTEL SWE and air 

temperature at 2 m by seasonal snow cover classes. The parameterization was used to convert 

COOP snow depth data into SWE estimates and compute gridded snow depth from the gridded 

SWE data. In this study, the daily UA SWE is used from January 1982 to December 2017. The 

product is available from the NASA National Snow and Ice Data Center (NSIDC) website 

(https://nsidc.org/data/nsidc-0719). 

5.3.5 Land cover type, snow classification, tree cover fraction, and topographic 

heterogeneity  

In this study, the IGBP land cover type, the Sturm et al. snow classification, and VCF 

data were used to evaluate the long-term SWE estimates with the airborne gamma SWE 

considering land cover and snow characteristics as well as the tree cover fraction across the U.S. 

The Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) land 

cover data (MCD12Q1; Version 6) provides global land cover types at yearly intervals. Among 

the six different classification schemes in the MCD12Q1 data, the IGBP land cover classification 

(Type 1) provides 17 classes to meet the needs of the IGBP core science projects (Loveland & 

Belward, 1997; Channan et al., 2014). The criteria were used for dividing the classes (e.g. leaf 



122 
 

longevity [evergreen vs. deciduous] and leaf type [broad vs. needle]). The Sturm et al. seasonal 

snow cover classification is defined by a unique ensemble of stratigraphic and textural 

characteristics of snow covers (Sturm et al., 1995; 2010). The snow classification is primarily 

grouped by the effects of climate (temperature, precipitation, and wind) on the snow cover 

properties (e.g. snow textures, layers, and lateral variability).  

The annual NASA MEaSUREs VCF product (VCF5KYR; Version 1) provides global 

fractional vegetation cover including three layers, percent tree cover, percent non-tree vegetation, 

and percent bare ground, at 0.05 degree spatial grid from 1982 to 2016 (Hansen and Song, 

2018). In this study, the percent tree cover is used to conduct a sensitivity analysis of tree cover 

on the gridded SWE products. Because the fractional tree cover could have changed during the 

last 40 years, the annual VCF value was obtained for each gamma SWE year. The elevation data 

(0.0083-degree grid) used in this analysis were aggregated from the Shuttle Radar Topography 

Mission (SRTM) 90 m resolution elevation data. The slope and elevation range maps (0.0083-

degree grid; approximately 1 x 1 km grid) were obtained using the “terrain” function in the 

“raster” R-package, which is computed using the elevation data according to Wilson et al. 

(2007). The elevation range value is defined as the difference between the maximum and the 

minimum aggregated elevation value of a cell and its eight surrounding cells. Three topographic 

values (slope, elevation range, and elevation) are computed for each gamma footprint by areal-

weighted average.  

5.4 Methodology 

The gamma SWE observations were compared to the three gridded 4 km or 25 km SWE 

products. The original 4 km UA SWE product was used without upscaling to 25 km grid. The 

https://earthdata.nasa.gov/community/community-data-system-programs/measures-projects
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gamma flight lines frequently overlapped more than one SWE pixel. The area‐weighted average 

SWE within the effective footprint of each gamma flight line was calculated. For each flight line, 

an effective polygonal measurement footprint was determined using a buffer function “gBuffer” 

in the “rgeos” R package around the given flight line, with a fixed diameter of 330 m (Carroll, 

2001; Tuttle et al., 2018). On any day when gamma SWE measurements were collected, the 

gridded SWE data on the same day within the given gamma line footprint were averaged by 

weighing according to the portion of the footprint contained within each SWE pixel. If the 

gridded SWE data were not available for a portion of the flight line footprint, the weighted SWE 

value was calculated using the area of the footprint with available data. However, gamma flight 

lines with gridded SWE data covering less than 50% of the area of flight footprint were excluded 

from the analysis. For further details, refer to Figure 2 in Tuttle et al. (2018). The same method 

was applied to the tree cover fraction and three topographic characteristic data sets (slope, 

elevation range, and elevation). The seasonal snow cover and land cover classes for each line 

were selected using the “majority” function, instead of areal-weighted mean values. The classes 

covering more than 50% of the footprint area were used to classify the footprints in this analysis.  

For evaluation, the agreements of the three gridded SWE products with airborne gamma 

radiation SWE were quantified by the Pearson’s linear correlation coefficient, R, mean absolute 

difference, MAD, the proportion of MAD to the mean gamma SWE (𝑆𝑊𝐸𝑔𝑎𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅), MAD%, and the 

root mean square difference, RMSD, as follows: 

𝑅 =
cov(𝑆𝑊𝐸𝑔𝑟𝑖𝑑,𝑆𝑊𝐸𝑔𝑎𝑚)

𝑠𝑡𝑑(𝑆𝑊𝐸𝑔𝑟𝑖𝑑)⋅𝑠𝑡𝑑(𝑆𝑊𝐸𝑔𝑎𝑚)
                                                                                    Eq. (7) 

𝑀𝐴𝐷 =
1

𝑛
∑ |𝑆𝑊𝐸𝑔𝑟𝑖𝑑,𝑖 − 𝑆𝑊𝐸𝑔𝑎𝑚,𝑖|

𝑛

𝑡=1
                                                               Eq. (8) 
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𝑀𝐴𝐷% =
(

1

𝑛
∑ |𝑆𝑊𝐸𝑔𝑟𝑖𝑑,𝑖−𝑆𝑊𝐸𝑔𝑎𝑚,𝑖|

𝑛

𝑡=1
)

𝑆𝑊𝐸𝑔𝑎𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
× 100                                                           Eq. (9) 

𝑅𝑀𝑆𝐷 = √
1

𝑛
∑ (𝑆𝑊𝐸𝑔𝑟𝑖𝑑,𝑖 − 𝑆𝑊𝐸𝑔𝑎𝑚,𝑖)2

𝑛

𝑡=1
                                                        Eq. (10) 

SWEgrid and SWEgam refer to one of the three gridded SWE and the airborne gamma SWE values. 

cov(•) and std(•) refer to the covariance and standard deviation values of the given product, 

respectively. 

5.5 Results 

5.5.1 Comparison of three SWE products with airborne gamma SWE   

Agreement statistics (R-value and MAD, %) were calculated for each gamma flight line 

having 6 or more pairs of  SWE values (Figures 2 & 3). For an example flight line, WY122, in 

Wyoming, the 32 pairs of historical gamma SWE and corresponding UA SWE have an R-value 

= 0.88 (see Figure S3). SSMI/S and gamma SWE generally have a poor correlation with some 

regional differences (Figure 2a). In the north-central U.S., the agreement is better than other 

regions (for example, mean correlation and MAD of North Dakota are 0.52 and 38%, 

respectively). However, there are poorer agreements over northern Michigan and northeastern 

U.S. In the western U.S., the correlation is also extremely low, particularly in Colorado. The 

MAD spatial patterns are more readily seen (Figure 3a). MAD values exceed 75% near Lake 

Michigan and from Pennsylvania to Maine and are extremely high in the western U.S.  

The GlobSnow-2 generally agrees better with the gamma SWE than the SSMI/S result in 

western Minnesota, Iowa, Wisconsin, Michigan, and the northeastern U.S. where there are 

densely forested areas (Figures 2b and 3b). However, in some regions, the agreement between 
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GlobSnow-2 SWE and gamma SWE is weaker than that of SSMI/S SWE. For example, the 

GlobSnow-2 SWE has lower R-values (Mean: 0.36) and higher MADs (Mean: 43%) than 

SSMI/S SWE in North Dakota. While there are a limited number of comparisons in the western 

U.S.,  because GlobSnow-2 SWE is masked in mountainous areas (Takala et al., 2011), there is 

no marked difference between GlobSnow-2 and SSMI/S. 

UA SWE strongly agrees with gamma SWE across all regions (Figures 2c & 3c). In the 

north-central U.S., there are very high correlation coefficients (mean: 0.78) with small MADs 

(24 mm, 31%). In the northeastern U.S., UA SWE (mean R-value: 0.71 and MAD: 35mm, 44%) 

also has better agreement with gamma SWE than the SSMI/S and GlobSnow-2 SWE (mean R-

value: 0.23 and 0.65, and MAD: 93 mm, 83% and 54 mm, 65%, respectively). While the two 

satellite-based SWE products had very poor agreement with gamma SWE in the western U.S., 

the UA SWE agrees better, particularly in the Rocky Mountain regions including Wyoming, 

Arizona, Colorado, and Utah (mean R-value: 0.07, 0.29, and 0.70 and MAD: 127, 121, and 71 

mm (80, 78, and 59%) for SSMI/S, GlobSnow-2, and UA SWE, respectively).  
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Figure 2. Correlation (R-value) maps of between daily SSMI/S, GlobSnow-2, and UA snow 

water equivalent with daily NOAA airborne gamma radiation snow water equivalent for each 

gamma flight line from 1982 to 2017 (Black color represents that the R-value is a negative 

value). 
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Figure 3. Mean absolute difference (MAD) maps of between daily SSMI/S, GlobSnow-2, and 

UA snow water equivalent with daily NOAA airborne gamma radiation snow water equivalent 

for each gamma flight line from 1982 to 2017 (Black color represents that the MAD (%) values 

are larger than 100%). 

5.5.2 Differences in SWE agreements by seasonal snow classification and land cover types 

The historical gamma SWE was compared to the three SWE products by Sturm’s 

seasonal snow cover classification (Figure 4). The SSMI/S SWE extensively underestimates 
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gamma SWE for all values of SWE. Because the SSMI/S SWE upper bound is about 172, 131, 

84, 184, and 102 mm in tundra, taiga, maritime, prairie, and warm forest, respectively, none of 

the larger gamma values are captured. The best agreement between SSMI/S and gamma SWE is 

for the prairie region.   

 Figure 4. Comparison between daily SSMI/S (top), GlobSnow-2 (middle), and UA (bottom) 

snow water equivalent with daily NOAA airborne gamma radiation snow water equivalent 

observations from 1982 to 2017 by the Sturm’s seasonal snow classification 
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Table 2 Agreement between daily SSMI/S, GlobSnow-2 (Glob-2), and UA SWE and airborne 

gamma SWE by the Sturm et al. snow cover classification (N is a total number of valid SWE 

values by the snow class; R-values with bold indicate significant, p < 0.05) 

 

Compared to the SSMI/S SWE, GlobSnow-2 SWE has relatively better agreement with 

gamma SWE, especially in the maritime, prairie, and warm forest (Table 2). Correlations of the 

GlobSnow-2 SWE for the three classes are 0.55, 0.35, and 0.19 which are better than those of 

SSMI/S SWE (0.12, 0.19, and 0.15, respectively). However, GlobSnow-2 SWE is also unable to 

capture high SWE values (> 250 mm) in the three classes. In tundra and taiga, there are even 

larger errors (MAD: 211 and 167 mm) with gamma SWE similar to those of SSMI/S SWE (MAD: 

193 and 153 mm).  

UA SWE has notably stronger agreement with gamma SWE with small biases for all 

snow classes. The slopes are closer to 1:1 line (0.70 to 0.93), R-values are high (0.60 to 0.75), 

and MAD values are moderate (119 and 73 mm) in tundra and taiga classes. The UA product 

tends to overestimate SWE in some cases, even though the overestimations are generally small 

compared to the underestimations for the other products. There are high biases in most regions 

with a notable number of outliers above the 1:1 line. In tundra, UA SWE has heteroscedastic 

errors where the differences between UA and gamma SWE gradually increase with increasing 

gamma SWE.  

https://endic.naver.com/enkrEntry.nhn?entryId=cb98a83053b94a378a78cf7b06c00ea3&query=heteroscedastic
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Figure 5. Boxplots of correlation coefficient (R-value) and mean absolute difference (MAD) 

between daily SSMI/S, GlobSnow-2, and UA snow water equivalent and daily NOAA airborne 

gamma radiation snow water equivalent for each gamma flight line by five snow classes 

(Tundra, Taiga, Maritime, Prairie, and Warm forest). The number below each boxplot is a total 

valid number of the statistic for each class. 

 

Figure 5 summarizes the spatial statistics from Figures 2 & 3 by the five seasonal snow 

cover classes. For SSMI/S SWE, there is a moderate overall agreement in prairie only (median R: 

0.44 and MAD: 45%) with maritime and warm forest classes having moderate correlations, but 

very high MAD values (85%).  Tundra and taiga classes have no correlations and very high 
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MADs. GlobSnow-2 has much better correlations and smaller MADs in the maritime and warm 

forest as compared to SSMI/S. However, in tundra and taiga, the GlobSnow-2 MADs are still 

extremely high (median: 78 and 82% for the two classes), while their correlations (median: 0.24 

and 0.19) are slightly better than that of SSMI/S SWE. The UA SWE has strong correlations for 

all snow classes, ranging from 0.68 (median value) in tundra regions to 0.82 at the warm forest, 

and small MADs from 31% in tundra regions to 43% at the warm forest. As compared to 

SSMI/S and GlobSnow-2 products, the UA SWE and gamma SWE agreement is quite strong in 

tundra and taiga even though there are greater ranges of MAD values. 

Figure 6. Comparison between daily SSMI/S (top), GlobSnow-2 (middle), and UA (bottom) 

snow water equivalent with daily NOAA airborne gamma radiation snow water equivalent using 

all available data from 1982 to 2017 by six land cover types 
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Table 3 Same as Table 2, but by the IGBP land cover types (N is a total number of valid SWE 

values by the land cover type; R-values with bold indicate significant, p < 0.05) 

 

Because SWE products performance can be affected by land surface characteristics (e.g. 

vegetation types and homo/heterogeneity), the above comparison was repeated based on land 

cover types, evergreen needleleaf forest, deciduous broadleaf forest, mixed forest, grasslands, 

croplands, and cropland/natural vegetations (Figure 6; Table 3). Overall, there is similarly poor 

performance for the SSMI/S and GlobSnow-2 SWE products and UA SWE has very strong 

agreement with gamma SWE for all land cover types. As compared to the SSMI/S SWE, the 

GlobSnow-2 SWE has a better agreement with the gamma SWE in the deciduous broadleaf 

forest and mixed forest. However, deeper SWE values (> 250 mm) were not measured by both 

SSMI/S and GlobSnow-2 SWE regardless of land cover types even though they are observed by 

the gamma SWE. In forested regions, the UA SWE has a much stronger agreement with gamma 

SWE as compared to SSMI/S and GlobSnow-2 SWE. To provide insights for watershed 

management based on the land cover within the watershed, these comparisons were repeated for 

the eight NOAA RFCs and are provided in the Appendix (Figures S1 & S2). The results indicate 

that the UA product provides reliable SWE values for all RFCs with the exception of the 

California Nevada RFC.  
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Figure 7 summarizes the spatial statistics from Figures 2 & 3 by land cover types. 

SSMI/S SWE agrees best with gamma SWE in croplands with moderate correlation (median: 

0.47) and MAD values (33 mm, 42%) as compared to the other classes. Negative or very weak 

correlations are found in the forest classes. The GlobSnow-2 SWE has much better correlations 

(median: 0.70, 0.65, and 0.69) and smaller MADs (median: 47, 57, and 33 mm; 48, 41, and 38%, 

respectively) with gamma SWE for deciduous broadleaf forest, mixed forest, and 

cropland/natural vegetation. The differences between GlobSnow-2 and SSMI/S SWE in 

evergreen needleleaf forest, grasslands, and croplands are minimal. The evergreen needleleaf 

forest, typically located in the northern Rocky Mountain and the Sierra Nevada regions, had the 

weakest agreement among the six classes. The UA SWE shows very high correlations with 

gamma SWE for all land covers. While there are fairly large MADs in the evergreen needleleaf 

forest and grasslands and large interquartile ranges (median: 87 mm, 55% and 35 mm, 49%, 

respectively), the UA SWE MAD values are much smaller than those of the other SWE products.  

In summary, SSMI/S SWE has a modest agreement only for the prairie snow class and 

the cropland land cover. GlobSnow-2 SWE agrees well in the maritime and warm forest snow 

classes and deciduous broadleaf forest, mixed forest, and cropland/natural vegetation land cover. 

UA SWE has strong correlations regardless of class or land cover with larger MADs in tundra 

and taiga snow classes and the evergreen needleleaf forest and grasslands land cover. For 

further details about the agreements by subgroup, a series of box plots for the correlations where 

each of the snow (or land cover) classifications is subdivided into the six land cover types (or 

five snow classes) appears in the Appendix (Figure S4). 
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Figure 7. Boxplots of correlation coefficient (R-value) and mean absolute difference (MAD, %) 

between daily SSMI/S, GlobSnow-2, and UA snow water equivalent and daily NOAA airborne 

gamma radiation snow water equivalent for each gamma flight line by six land cover types 

(Evergreen Needleleaf forest, ENF, Deciduous Broadleaf forest, DBF, Mixed forest, MF, 

Croplands, Cr, Cropland/Natural veg., Cr/N, and Grasslands, Gr). The number below each 

boxplot is a total valid number of the statistic for each class. 

 

5.5.3 Effect of tree cover fraction and topographic heterogeneity  

 The three historical SWE data were analyzed by tree cover fraction to determine its 

effect on the differences between the SWE products (Figure 8). The difference between SSMI/S 
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and gamma SWE increases with increasing tree 

fraction up to 100%. The difference between 

GlobSnow-2 SWE and gamma SWE increased to 

about 70 mm (median) with increasing tree fraction 

up to 50%. Above 50%, the differences remain 

approximately constant. The differences between 

UA SWE and gamma SWE with forest fraction are 

minimal as compared to those of the other SWE 

products. The UA SWE slightly underestimates the 

gamma SWE from 0 to 80% tree fraction and then 

overestimates above 80%. In tree fractions below 

30%, UA SWE has positive outliers (overestimation) 

while the SSMI/S and GlobSnow-2 SWE have 

negative outliers. 

The impacts of three topographic 

characteristics (slope, elevation range, and elevation) 

on SWE differences were examined using the same 

method as the preceding tree cover analysis. Figure 

9 shows that slope and elevation range (surface 

heterogeneity) are clearly related to the SWE 

difference between the three gridded products and 

gamma SWE. For SSMI/S SWE, slope increases 

from 0.7 to 1.1° show increasing differences from about 48 mm to 85 mm (median) then remain 

Figure 8. SWE differences between 

SSMI/S, GlobSnow-2, and UA products 

and airborne gamma radiation data by 

fractional tree cover (%). The white 

circles indicate every points in the bin. 
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constant for slopes steeper than 1.1°. The differences between GlobSnow-2 and gamma SWE are 

also relatively constant up to a slope of 0.7 °, then increase linearly with slope. In contrast, UA 

SWE differences increase monotonically from -20 mm (at 0.1 ° slope) to 24 mm (at 4.0 ° slope) 

with increasing slope. The elevation range has a similar impact on the SWE differences to that of 

the slope. However, elevation itself does not have a coherent impact on the SWE differences. At 

the highest elevation (2500 m), all SWE products have the widest interquartile range and the UA 

SWE exceeds the gamma SWE. 

 
Figure 9. SWE differences between SSMI/S, GlobSnow-2, and UA products and airborne 

gamma radiation data by slope (degree), elevation range (m), and elevation (m). The gray circles 

indicate every points in the bin.  
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Over 90% of the SWE values in the grasslands are found in the western U.S. and all of 

the SWE values in evergreen needleleaf forest is in the western U.S. (Table S1). The SWE 

differences were analyzed by the topographic characteristics for these two western land cover 

types. In grasslands, the slope and elevation range (surface heterogeneity) are clearly related to 

the SWE difference between UA and gamma products. The SWE difference slightly increases 

with an increasing slope up to 3.2°, then much greater increases at higher slopes. For elevation 

range, there is a similar pattern where the SWE difference remains approximately constant up to 

80 m of elevation range and exponentially increases by 78 mm with increasing the elevation 

range up to 280 m. Compared to the slope and elevation range, elevation has little effect on the 

SWE difference even though the interquartile range at 3000 m elevation is very wide. There is no 

consistent change in the SWE differences evident with either increasing slope or elevation range 

in evergreen needleleaf forest. The UA SWE consistently overestimates the gamma SWE for all 

ranges of the three topographic features.  

Gamma SWE exceeds the UA SWE for tree cover fraction up to 80% but is lower than 

UA SWE for denser canopies (Figure 8). Over 80% of these gamma flight lines with dense 

canopies are in the north-central U.S. and northeastern U.S. (e.g. deciduous broadleaf forest and 

mixed forest; Table S2). The heavily forested areas (> 80% tree cover) were further stratified by 

topographic characteristics for the UA and gamma SWE differences. Figure 11 shows that slope 

and elevation range impact the SWE difference in the heavily forested areas. The SWE 

difference increases by 40 mm and 45 mm (median) with increasing slope and elevation range up 

to 2.5 °and 120 m, respectively. Based on the result, heterogeneous terrains, represented as slope 

and roughness, may partially explain the difference between UA and gamma SWE in addition to 

the dense tree cover.   
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Figure 10. Same as Figure 9, but for the SWE difference between UA and gamma SWE in 

grassland and evergreen needleleaf forest types only 

 

 

Figure 11. Same as Figure 10, but for the SWE difference between UA and gamma SWE in 

areas with more than 80% of tree cover fraction only 
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5.6 Discussion 

5.6.1 Comparison of three SWE products 

Deep SWE was not captured by SSMI/S retrievals regardless of snow class and land 

cover type. This is due to a known limitation of passive microwave signal “saturation effect” for 

deep snowpack (approximately 1 m snow depth) (Dong et al., 2005; Vuyovich et al., 2014). In 

the deep snowpack, soil emissions are no longer detectable at the higher microwave frequency 

(e.g. 37 GHz). Since the GlobSnow-2 SWE product is a fusion of ground measurements of snow 

depth and remotely sensed data from passive microwave SSMI/S instruments, the product also 

appears to inherit the saturation effect (Dawson et al., 2018; Takala et al., 2011).  

Both SSMI/S and GlobSnow-2 largely underestimate SWE in forested land cover types 

and the tundra and taiga snow classes. This may be due to the known impact of forest cover on 

passive microwave SWE retrievals (Foster et al., 2005; Vuyovich et al., 2014). However, similar 

patterns were found in grasslands, even though the average percent tree cover in grassland flight 

lines is typically small (mean: 9.2%). Vuyovich et al. (2014) found a disagreement between 

microwave and modeled SWE products in the Upper Powder Basin, Wyoming (grasslands), even 

though the areas have little vegetation and modest elevation ranges. This could be due to the 

limited availability of ground observations to inform modeled products, or it may be due to other 

physical effects on the microwave signal such as spatial variability and elevation gradients 

(Mätzler & Standley, 2000). Cai et al. (2017) mentioned that the elevation-dependent factors, 

besides forest fraction, affect the relationship between SWE and Tb. Another possibility is that 

the redistribution of SWE by wind drifting of the snowpack frequently occur in tundra and taiga 

snow classes, likely resulting in larger discrepancies between the SWE products (Clow et al., 

2012; Winstral et al., 2002). 
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The UA SWE had better performance with fewer errors in all snow and land cover 

classes. This may be partly because the UA SWE product (4 km × 4 km) has higher spatial 

resolution than the SSMI/S and GlobSnow-2 SWE (25 km × 25 km), However, there were fewer 

random errors (e.g. the degree of dispersion in Figures 4 & 5) as well as lower systematic biases 

(e.g. sustained over/underestimation) between UA and gamma SWE. The superiority of the UA 

SWE data may be primarily due to the unique methodologies such as a new interpolation 

approach and snow density parameterization as well as the use of the reliable ground-based 

observations from SNOTEL SWE, COOP snow depth network, and PRISM precipitation and 

temperature data as inputs (Zeng et al., 2018). The UA SWE is produced by interpolating 

“normalized SWE” (SWE divided by accumulated snowfall), rather than SWE itself. The 

normalized quantities of SWE were more spatially consistent and scale-independent than original 

SWE quantities (Broxton et al., 2016a). A new snow density parameterization with seasonal 

evolutions may have contributed to the better performance compared to the other SWE products 

(Dawson et al., 2017). Broxton et al. (2016b) mentioned that the features of snow density 

parameters helped overcome a common deficiency in land surface models and reanalysis 

products of too much ablation at near-freezing temperatures. 

The gamma SWE surveys have the highest accuracy in the north central U.S. (e.g. 

NCRFC; croplands/prairie snow class) and are extremely critical for that region because of its 

paucity of in situ observations (Schroeder et al., 2019; Tuttle et al., 2017). Because the spatial 

extent of the gamma survey is larger than most in situ observations, it also adds economic and 

social values in most regions that are vulnerable to spring snowmelt floods including those with 

established observation networks (Simonovic, 1999). 
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5.6.2 Effect of tree fraction  

The underestimation of SSMI/S SWE is similar to the previous findings of Foster et al. 

(2005). In order to overcome the uncertainty, they developed a bias-corrected SWE algorithm 

with the forest information defined as “Forest factor”. For each 10th percentile of the fractional 

forest cover, different forest factors ranging from 1 (no forest) to 2 (100% fractional forest cover) 

were multiplied by the original SWE algorithm to correct the underestimation error. To test how 

much the uncertainty could be reduced, the corrected SSMI/S SWE was computed by 

considering the fractional tree cover and compared to the original SWE (Figure S5). Based on 

the result, the forest factor can partially reduce errors in the SSMI/S SWE. But there are still 

large underestimates as compared to gamma SWE, probably due to the saturation effect of 

passive microwave signal on the deep snowpack. GlobSnow-2 SWE performs relatively better 

than SSMI/S SWE in areas with dense tree cover but not in areas with sparser tree cover. SSMI/S 

SWE is impacted by the attenuation of microwave signal by tree canopy cover. In contrast, the 

GlobSnow-2 algorithm includes ground-based snow depth measurements (Luojus et al., 2017) 

and forest canopy information in the HUT Snow Emission Model (Pulliainen & Hallikainen, 

2001) which likely reduces errors below those expected when only the microwave emissions are 

considered. Regardless, GlobSnow-2 still underestimates SWE for all tree cover fractions. This 

could be partly related to the use of a constant low snow density (0.24 kg/m2) to estimate 

GlobSnow-2 SWE without considering the seasonal evolution of snow density. The constant 

snow density generally represents early winter conditions (0.22, 0.26, 0.23, and 0.24 kg/m2 on 

October 1 for alpine, maritime, prairie, and tundra, respectively; Sturm et al., 2010). However, 

approximately 85% of the gamma SWE and GlobSnow-2 SWE values are obtained in mid- and 

late-winter from February 1 and April 30. There appears to be larger snow density due to 
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compaction and snowpack metamorphism (Anderson et al., 2006; Sturm et al., 2010; Dawson et 

al., 2017; Hill et al., 2019). In this period, the typical snow densities in most snow classes from 

in-situ measurements are larger than 0.24 kg/m2 (e.g. Maritime: 0.30 – 0.38 kg/m2 and Prairie: 

0.24 – 0.32 kg/m2; Dawson et al., 2017). Also, the underestimation of GlobSnow-2 SWE could 

be due to the saturation effect of deep snow on the microwave signal as mentioned in the 

preceding section. For example, while the mean value of the deep gamma SWE (> 250 mm of 

gamma SWE; N = 1,077) is 355 mm, and UA SWE is 388 mm, the corresponding GlobSnow-2 

and SSMI/S SWE was 41 mm and 25 mm, respectively. This indicates that the GlobSnow-2 

SWE still has a similar limitation due to the saturation effect of the passive microwave signal for 

the deep snow (Dawson et al., 2018).  

Results show that UA SWE performs well for a variety of forest covers. While the 

passive microwave measurements are adversely affected by forest cover, forest cover does not 

affect UA SWE. The superiority of the UA SWE product can be explained by the new snow 

density parameterization and reliable input data from SNOTEL and PRISM data in forested-type 

regions. Unlike the other two products, the new snow density parameters used in the UA product 

likely reflect physical processes with an SWE evolution for all snow classes (Dawson et al., 

2017). Also, the PRISM precipitation and temperature data assimilates nearly 13,000 

precipitation and 10,000 temperature point stations over the conterminous U.S. including a few 

thousand stations over the northeastern U.S. (deciduous broadleaf forest and mixed forest types) 

and western U.S. (evergreen needleleaf forest) (Daly et al., 2008). This suggests that UA SWE 

may include the accuracy of PRISM precipitation data over the heavily forested regions if the 

partitioning of snowfall and rainfall was fairly accurate. A recent study from Dawson et al. (2018) 

presented that UA SWE had strong agreement with ASO SWE in California’s Sierra Nevada. 
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However, they evaluated the UA SWE using 32 ASO SWE measurements only and the forest 

cover fractions in the study area were less than 35%. In addition to their results, our finding 

strongly supports the reliable accuracy of the UA SWE data in forested regions. 

5.6.3 Potential sources of error in gamma SWE 

While the operational NOAA airborne snow survey using a gamma radiation technique 

has successfully provided SWE observations over the last 40 years, this method can generate 

errors when estimating SWE. The potential sources of error have been identified and well-

documented in previous studies (Carroll &Carroll., 1989a, b; Glynn et al., 1989; Offenbacher & 

Colbeck, 1991). An uncertainty in baseline fall SM measurement can potentially introduce biases 

into gamma SWE estimates. The operational standard approach assumes that soil moisture 

conditions remains constant following the baseline fall survey. However, early-winter snowmelt 

and rainfall events can change the soil moisture after the fall survey, resulting in 

under/overestimation of the gamma SWE estimates. Our recent finding in Cho et al. (2018) 

showed that standard gamma SWE values were improved by capturing the changes in soil 

moisture using daily Soil Moisture Active Passive (SMAP) satellite data. An effect of forest 

biomass on the accuracy of airborne SWE measurements has been explored over forested 

watersheds (Vogel et al., 1985; Carroll &Vose, 1984; Carroll & Carroll, 1989a). Carroll &Vose 

(1984) showed there was 23 mm of RMSE between airborne gamma SWE and ground-based 

SWE with the moderate snowpack that ranged from 20 mm to 470 mm in forest environments 

over Lake Superior and Saint John Basins. Glynn et al. (1988) found that underestimates of 

airborne gamma SWE (RMSE: 63 mm) could occur when gamma flight flew on forested areas 

with the very deep snowpack (in-situ SWE: 460 mm) in the Saint John basin over the provinces 

of Quebec and New Brunswick and the state of Maine.  
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The physical basis for a difference between UA SWE and gamma SWE in the regions 

with very high tree cover fractions (Figure 8) could be either an overestimation of UA SWE or 

an underestimation of gamma SWE or possibly both. High forest biomass may cause an 

underestimation of gamma SWE. Glynn et al. (1988) and Carroll & Carroll (1989) mentioned 

gamma radiation emitted by the forest biomass above the snowpack as a source of error. There is 

a considerable amount of potassium, 40K, and a minor amount of thorium in the forested-type 

land cover. This impact increases in a very deep snowpack because when gamma radiation 

coming from the ground is attenuated by the snow, the radiation emitted by the forest biomass 

above the deep snow can become a large portion of the radiation detected in the gamma aircraft. 

Among the underestimated SWE values with the dense tree fraction, the larger 

underestimations occurred over flight lines with high slopes and a range of elevations within the 

flight footprint (Figure 9). Previous studies found that heterogeneous characteristics within a 

flight line, so-called “uneven effect”, can cause underestimates of gamma SWE (Cork and 

Loijens, 1980; Carroll & Carroll, 1989b). This heterogeneity is commonly caused by snow 

drifting or mountainous environment. A mean areal gamma SWE is calculated by integrating 

measures of gamma attenuation rate by an optimal counting interval during a flying (Carroll, 

2001). If a large spatial variability in the snowpack exists along a flight line, the measurements 

of the attenuation of the gamma count rate are systematically underestimated (Cork and Loijens, 

1980). For example, consider an alternating shallow and deep snowpack over a flight path. 

During a first counting interval, the gamma detector would measure gamma radiation from a 

uniform deep snowpack. Then the flight would measure gamma radiations from snow-covered 

areas with different proportions of deep and shallow snowpack until the gamma detector is 

centered above a uniform shallow snowpack. In the transition area between deep and shallow 
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snowpack, the larger gamma count rates tend to be measured and the gamma rates may generate 

underestimates of SWE. Carroll & Carroll (1989b) found that the degree of the underestimation 

is related to a variance of the distribution of ground-based SWE measurements within a flight 

footprint. If the variance in the gamma SWE is known, SWE underestimates can be corrected. 

Because our results use the standard gamma radiation SWE product without manual corrections, 

results could be improved by updating gamma SWE products in regions with heterogeneous 

characteristics. The previous studies primarily focused on the spatial variation of snowpack itself 

and did not consider terrain. The results in this study were not able to determine if an “uneven 

snow effect” was present but terrain heterogeneity may have value as a proxy or may serve to 

add additional heterogeneous characteristics that also impact the gamma retrievals. 

5.7 Conclusion and Future Perspectives 

In the snow science community, observation-based long-term gridded SWE products 

have been developed for hydrological and climate research. However, an evaluation of the 

currently available SWE products has been limited due to the lack of independent SWE datasets 

at a continental scale. Furthermore, as land surface models and regional climate models continue 

to evolve at a rapid pace, independent and reliable SWE data is required to evaluate SWE 

outputs from the models to identify potential limitations of snow physical processes involved in 

each model. The historical 40-year and ongoing NOAA airborne gamma SWE record can be 

used as reference long-term reliable SWE across the U.S. and southern Canada. Even though the 

record has limited spatial and temporal coverages compared to the gridded satellite and 

reanalysis products, the record may be useful for snow hydrologists and modelers in providing 

accurate SWE values in various environments.  
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In this study, three long-term daily SWE products (more than 30 years), SSMI/S, 

GlobSnow-2, and UA, were evaluated using an airborne gamma radiation SWE record collected 

by NOAA NOHRSC. Comparisons were made by seasonal snow cover classes and land cover 

types from 1982 to 2017 in the conterminous U.S., and this provided several interesting insights. 

We found that SSMI/S and GlobSnow-2 SWE products showed similar patterns against the 

airborne gamma SWE: modest performances in croplands and grasslands land cover types and 

prairie of snow class over the north-central U.S. and poor performances (extremely 

underestimated SWE) in evergreen needleleaf forest and grasslands, and tundra and taiga in 

mountainous regions over the western U.S. These may correspond with weaknesses of inherent 

microwave satellite-driven signals. However, compared to SSMI/S SWE, GlobSnow-2 SWE had 

better agreement with gamma SWE in some forested land cover types, mixed forest, deciduous 

broadleaf forest, and warm forest and maritime of seasonal snow classes in the northeastern U.S. 

UA SWE has better agreement with gamma SWE as compared to SSMI/S and GlobSnow-2 

SWE in all land cover types and snow classes, while there are relatively weak agreements in the 

evergreen needleleaf forest and grasslands land cover, and tundra snow class, which are likely 

due to potential limitations of UA products as well as gamma SWE in the mountainous regions 

(e.g. spatial heterogeneity). Through the sensitivity analysis to forest fraction, we found UA 

SWE is much less affected by forest fraction, while the SSMI/S and GlobSnow-2 SWE have 

increasing negative biases with increasing tree fraction within the gamma flight footprint. The 

effect of tree cover fraction to GlobSnow-2 SWE is less than in larger fractions (> 60%). With a 

known challenge of measuring SWE in evergreen needleleaf forest and tundra classes, 

unexpected weak agreement of UA SWE with gamma SWE in grasslands will be the focus of 

our future research to better understand the physical factors impacting on the results.  
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Additional use of gamma SWE products for validation of remote sensing observations and 

modeled SWE will likely necessitate additional inquiry into the gamma observation capabilities. 

Studies have shown that the improvements to the operational gamma SWE products are possible 

by minimizing the errors, even though potential sources of errors were identified before the 

1990s (e.g. changes in fall soil moisture, the spatial variance within the footprint, and dense 

forest effect). Future studies can utilize state-of-the-art high-resolution earth observation 

products (e.g. lidar, synthetic aperture radar, and multi-spectrometer, etc.) to quantify snow or 

land characteristics within a gamma flight footprint to improve this valuable resource. 
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CHAPTER 6 

Trend Analysis and Extreme Value Snow Water Equivalent and Snowmelt for Infrastructure 

Design over the Contiguous United States5 

6.1 Introduction 

Snow and snowmelt driven extreme events can have large societal and economic 

consequences. Extreme snow can damage infrastructure and buildings (American National 

Standard Institute, 1972; American Society of Civil Engineers, 2017; Sack, 2015). Heavy snow 

loads on roofs can cause structural failures (Geis et al., 2011; Bean et al., 2019). From 1989 to 

2009, 1,029 snow-induced building collapse incidents in the U.S. caused 19 fatalities and 146 

injuries with each incident costing up to $200 million (Geis et al., 2011).  In many parts of the 

U.S., snow meltwater is a dominant driver of severe spring flooding (Berghuijs et al., 2016). 

Snowmelt floods routinely impact the north-central and -eastern U.S. (Wazney and Clark, 2015; 

Stadnyk et al., 2016; https://www.weather.gov/dvn/summary_SpringFlooding_2019). The Red 

River of the North Basin’s (RRB) 1997 snowmelt flood caused more than $5 billion of damage 

in Fargo and Grand Forks, North Dakota and other communities (Todhunter, 2001). 

Civil engineers and water resources managers rely on historical precipitation data when 

making hydrologic estimates of design floods to size infrastructures (e.g., water management 

facilities, bridges, and other hydraulic control structures). The ability of infrastructure to 

withstand environmental stressors depends on the quality of input data. The National Oceanic 

and Atmospheric Administration’s National Weather Service Precipitation-Frequency Atlas 14 

 
5 Cho, E., J.M. Jacobs (2020) Trend Analysis and Extreme Value Snow Water Equivalent and 

Snowmelt for Infrastructure Design over the Continental United States (In preparation)  
 

https://www.nws.noaa.gov/oh/hdsc/PF_documents/Atlas14_Volume10.pdf
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(NOAA Atlas 14) series are the U.S. government standard to use in designing infrastructure with 

adequate capacity for flood events.  

In the western U.S., the magnitude of snowmelt exceeded 24-hr precipitation design 

values at 79 of the 379 mountain locations (22%) (Harpold and Kohler, 2017). Across the 

southern Rocky Mountains, the 24-hr snowmelt intensity exceeded the 24-hr rainfall intensity by 

53 and 38% for 10- and 100-year events, respectively (Fassnacht and Records, 2015). Even 

though spring snowmelt is a dominant driver for snowmelt-driven floods in the north central and 

northeastern U.S. and western mountainous regions of the U.S., NOAA Atlas 14 does not 

typically consider snow accumulation and melt events (Bonnin et al., 2006; Berghuijs et al., 

2016). In a recent NOAA Atlas 14 document (Volume 10 Version 3.0), the authors attempted to 

exclude snowfall from the precipitation in order to calculate frequency estimates based on 

rainfall (i.e., liquid-only precipitation) only. From their limited analysis of three sites in the 

northeastern U.S., Perica et al. (2015, revised 2019) they concluded that differences between 

design estimates using rainfall only versus all precipitation estimates were inconsequential and 

thus no liquid-only precipitation frequency analysis was conducted. 

To accurately estimate the magnitude of snowmelt events over the U.S., a reliable, 

spatially distributed SWE record is required. Spatially distributed SWE products have been 

developed using assimilation techniques by ingesting in-situ snow station networks and remotely 

sensed snow products (Barrett, 2003; Carroll et al., 2006; Broxton et al. 2016a; Takala et al., 

2011). The SNOw Data Assimilation System (SNODAS) operated by the National Weather 

Service (NWS) National Operational Hydrologic Remote Sensing Center (NOHRSC) provides a 

near real-time 30 arc-second grid (about 1 km2) of spatially distributed SWE throughout the 

continental U.S. [CONUS] (Barrett 2003). The SNODAS data provide the only real-time 
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spatially distributed estimate of snowpack conditions across the CONUS and are used 

operationally by hydrologists and flood forecasters in regional NOAA river forecast centers. 

Unfortunately, the SNODAS SWE data record, September 2003 to current (16 winters), is too 

short to be used to estimate extreme snowmelt events.  

Recently, the University of Arizona (UA) released a long-term gridded (4-km) daily 

SWE dataset (hereafter UA SWE) over the CONUS for the period October 1981 to May 2017 

through the NASA National Snow and Ice Data Center (Broxton et al. 2019). UA SWE was 

produced by assimilating the Parameter-elevation Regressions on Independent Slopes Model 

(PRISM) daily precipitation and temperature data developed by the PRISM Climate Group at 

Oregon State University (Daly et al., 2008), SWE and snow depth data from the Snowpack 

Telemetry (SNOTEL) network (Serreze et al., 1999), and SWE and snow depth data from the 

NWS Cooperative Observer Program (COOP) network. Broxton et al. (2016b) found that UA 

SWE has similar spatial and temporal variability as SNODAS SWE, while the reanalysis and 

Global Land Data Assimilation System (GLDAS) products substantially underestimate SWE 

compared to the two SWE products. Dawson et al. (2018) showed that UA SWE had strong 

agreement with Airborne Snow Observatory (ASO) SWE products over the Toulumne basin in 

California. Cho et al. (2019) demonstrated that the UA SWE had the best agreement with 

historical airborne gamma radiation SWE observations (N= 20,738 observations from 1982 to 

2017) as compared to GlobSnow-2 and microwave satellite SWE, regardless of snow 

classification and land cover type.  

The availability of the complementary and well-vetted SNODAS and UA SWE products 

provides a unique opportunity to inform engineering design of structures and facilities that must 

withstand snow loads or snowmelt runoff.  Here we seek to draw from the strengths of these two 
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SWE products, UA SWE and SNODAS SWE, to develop design values for SWE and snowmelt 

over the CONUS that are needed to support a range of engineering design needs. This is 

achieved by, first, analyzing the systematic differences (i.e., bias) in extreme SWE and snowmelt 

between UA and SNODAS datasets; second, bias correcting and detrending UA SWE using the 

SNODAS data via empirical cumulative distribution function (ECDF) method (McGinnis et al., 

2015) and traditional detrending techniques (Sen, 1968); and finally, conducting an extreme 

value frequency analysis in which historical annual maximum are used to fit the generalized 

extreme value (GEV) probability distribution (Bonnin et al., 2006; Perica et al., 2013, 2015; 

Cheng and AghaKouchak, 2014) and the fitted distribution is used to map annual maximum 

SWE and snowmelt for various return periods.  

The subsequent sections are organized as follows. Section 2 explains the SNODAS and 

UA SWE data sets. Section 3 describes the methodologies including identification of the annual 

maximum 7-day snowmelt event, bias correcting and detrending, and application of the extreme 

value methods. Section 4 compares the annual maximum SWE and snowmelt from UA and 

SNODAS products, identifies annual maximum SWE and snowmelt trends, presents the 25- and 

100-year design SWE and snowmelt maps, and compares these maps to the current NOAA Atlas 

14 maps. Section 5 discusses results in light of previous work and presents potential limitations 

in the approach. Conclusion and future perspectives appear in Section 6.   

6.2 Data  

6.2.1 SNODAS SWE 

In this study, SNODAS products are used as the benchmark. SNODAS products are well 

vetted by previous research throughout the US (Vuyovich et al., 2014; Broxton et al., 2016b; 
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Schroeder et al., 2019) and have been used operationally by hydrologists and flood forecasters in 

the regional river forecast centers for the entire U.S. (Carroll et al., 2006; personal 

communications with Mike DeWeese and Pedro Restrepo, NOAA North Central River Forecast 

Center). NOAA’s SNODAS integrates model results with ground observations, airborne gamma 

SWE, and satellite snow cover estimates, to generate the best 1 km gridded estimate of the snow 

characteristics that minimizes errors associated with any individual method (Carroll et al., 2006). 

The three main procedures in the SNODAS ingest and downscale numerical weather prediction 

(NWP) output, simulate the snowpack using a physically based energy and mass balance model, 

and assimilate independent satellite, airborne, and ground-based observations of snow cover area 

(SCA) and SWE to adjust model results. Forcing data come from the Rapid Update Cycle 2 

(RUC2) NWP output generated by the National Centers for Environmental Prediction (NCEP) 

and are downscaled using a digital elevation model. The snow model is an energy and mass-

balance, multilayer model and consists of three snow layers and two soil layers (Barrett, 2003). 

For the assimilation procedure, snow observations include ground station-based SWE and 

airborne gamma radiation SWE as well as satellite-based SCA information.  

SNODAS V1 data are freely available from the NASA National Snow and Ice Data 

Center from 1 October 2003 to the present (https://nsidc.org/data/g02158). In this study, the 

original, daily SNODAS SWE data (1 km x 1 km spatial grid) were used from October 1, 2003 

to May 31, 2017 (14 water years). The original SNODAS data were aggregated/resampled to 

spatially match the UA SWE data (4 km x 4 km spatial grid) using the nearest neighbor method, 

then annual maximum SWE values were obtained for each available water year. 

https://nsidc.org/data/G02158
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6.2.2 UA SWE 

The observation-based 4 km UA SWE combines station-based SWE and snow depth 

observations with a background modeled SWE using an empirical temperature-index snow 

model over the CONUS (Broxton et al., 2016a; 2019). The station-based SWE and snow depth 

observations are from Snowpack Telemetry (SNOTEL) network and the National Weather 

Service Cooperative Observer Program (COOP) network, respectively. The background modeled 

SWE was generated using the PRISM precipitation and temperature data as forcing data into an 

empirical temperature-index snow model (Broxton et al., 2016a). The quality of the UA SWE 

data was evaluated with the current reanalysis and the Global Land Data Assimilation System 

(GLDAS)-based land surface model products (Broxton et al., 2016b). A summary of recent 

updates in the UA product with trend/driver analysis of the data was provided in Zeng et al. 

(2018). The UA SWE data (Version 1) were recently released and freely available at NASA 

National Snow and Ice Data Center from 1 October 1981 to 30 September 2017 

(https://nsidc.org/data/nsidc-0719). In this study, daily 4 km gridded UA SWE values were used 

from October 1981 to May 2017 (36 water years).  

6.2.3 NOAA Atlas 14 Precipitation Frequency Estimates  

The NOAA Atlas 14 includes design precipitation estimates for selected durations and 

frequencies as well as the lower and upper bounds of the 90% confidence interval for the U.S. 

Atlas 14 also contains supplementary information on methodologies and results of trend and 

seasonal analyses. The Atlas 14 precipitation frequency estimates are determined from long-term 

precipitation records from a regional network of rainfall gauges (Bonnin et al., 2006; Perica et 

al., 2013, 2015). In this study, the recent Atlas 14 precipitation frequency CONUS maps are 

compared to this study’s design snowmelt maps, except for northwestern U.S. and Ohio River 
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Basin. The NOAA Atlas 14 maps are not available over the northwestern U.S. region. While 

Atlas14 Volume 2 provides design precipitation values for the Ohio River Basin and surrounding 

states, the annual maximum series for that region are not available. The Atlas 14 precipitation 

spatial maps at a 1 km spatial grid are available from the Hydrometeorological Design Studies 

Center (HDSC) within the Office of Water Prediction (OWP) of the NOAA’s National Weather 

Service (NWS) (https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_gis.html). The 1 km Atlas 14 maps 

were aggregated/resampled to spatially match the UA SWE data (4 km x 4 km spatial grid) using 

nearest neighbor method.  

6.3 Methodology 

6.3.1 Annual maximum SWE and 7-day snowmelt 

All available gridded, daily time series of UA and SNODAS SWE data were used to 

obtain the annual maximum SWE and 7-day snowmelt values for 36 and 14 water years, 

respectively. Annual maximum SWE values are the one-day maximum value determined for 

each pixel using the October 1 to May 30 SWE daily time series. annual maximum 7-day 

snowmelt event (𝑀𝑒𝑙𝑡𝑚𝑎𝑥,7𝑑) for each pixel is defined as  

𝑀𝑒𝑙𝑡𝑚𝑎𝑥,7𝑑 = max (𝑆𝑊𝐸𝑖 − 𝑆𝑊𝐸𝑖+7)                                                                   (1) 

where i is a date from 1 October to 31 May for each year and 𝑆𝑊𝐸𝑖 and 𝑆𝑊𝐸𝑖+7 is daily SWE at 

dates, i and i+7, respectively. 

The study period is divided into two periods: the period where both UA and SNODAS 

data are available (14 years; WY2004 – WY2017) and the period during which only UA SWE is 

available (22 years; WY1982 – WY2003). The annual maximum snowmelt data for the 14 years 
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period with concurrent data were used to determine a statistical relationship between UA and 

SNODAS.  

6.3.2 Empirical cumulative distribution function (ECDF) 

The SNODAS SWE is widely considered to be the most reliable gridded SWE product 

over the CONUS (Barrett, 2003; Broxton et al., 2016). The empirical cumulative distribution 

function (ECDF) method was applied to bias correct the UA annual maximum SWE and 

snowmelt data using SNODAS annual maximum SWE and snowmelt. The ECDF is widely used 

in climate modeling to correct systematic model bias based on observation data (McGinnis et al., 

2015). In this study, CDFs of the UA annual maximum SWE and snowmelt values, 𝐶𝐷𝐹𝑈𝐴14
, for 

the period where both UA and SNODAS data are available (14 years; WY2004 – WY2017) are 

used to determine probabilities associated with the UA annual maximum SWE or snowmelt 

values. The bias correction technique transforms these probabilities back into snowmelt values 

using the inverse CDF of the SNODAS distribution developed for the 14 years, 𝐶𝐷𝐹𝑆𝑁𝑂𝐷𝐴𝑆14

−1 , as 

follows 

𝐸𝐶𝐷𝐹_𝑀𝑒𝑙𝑡𝑈𝐴,𝑖 = 𝐶𝐷𝐹𝑆𝑁𝑂𝐷𝐴𝑆14

−1 (𝐶𝐷𝐹𝑈𝐴14
(𝑀𝑒𝑙𝑡𝑈𝐴𝑖

)), 𝑖𝑓 𝑀𝑒𝑙𝑡𝑈𝐴,𝑖  ≤ 𝑚𝑎𝑥(𝑀𝑒𝑙𝑡𝑈𝐴14
)                                             

(2) where 𝐸𝐶𝐷𝐹_𝑀𝑒𝑙𝑡𝑈𝐴,𝑖 and 𝑀𝑒𝑙𝑡𝑈𝐴𝑖
 are given as the ECDF transformed annual maximum 

snowmelt event and the original annual maximum snowmelt at year i, respectively, and 

𝑚𝑎𝑥(𝑀𝑒𝑙𝑡𝑈𝐴14
) is the maximum snowmelt in the overlapping 14 years. 

If a UA value at year i, 𝑀𝑒𝑙𝑡𝑈𝐴𝑖
, exceeded the maximum UA of the 14 years, 

𝑚𝑎𝑥(𝑀𝑒𝑙𝑡𝑈𝐴14
), a difference between the UA value the maximum UA multiplied by a ratio of 

standard deviation of the UA snowmelt, std(𝑀𝑒𝑙𝑡𝑈𝐴14
), to that of SNODAS snowmelt, 
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std(𝑀𝑒𝑙𝑡𝑆𝑁𝑂𝐷𝐴𝑆14
), was added in the maximum SNODAS values of the 14 year periods, 

max(𝑀𝑒𝑙𝑡𝑆𝑁𝑂𝐷𝐴𝑆14
), as follows 

𝐸𝐶𝐷𝐹_𝑀𝑒𝑙𝑡𝑈𝐴,𝑖 = max(𝑀𝑒𝑙𝑡𝑆𝑁𝑂𝐷𝐴𝑆14
) + [𝑀𝑒𝑙𝑡𝑈𝐴,𝑖 − 𝑚𝑎𝑥(𝑀𝑒𝑙𝑡𝑈𝐴14

)]
std(𝑀𝑒𝑙𝑡𝑆𝑁𝑂𝐷𝐴𝑆14)

std(𝑀𝑒𝑙𝑡𝑈𝐴14)
,

𝑖𝑓 𝑀𝑒𝑙𝑡𝑈𝐴𝑖
>  𝑚𝑎𝑥(𝑀𝑒𝑙𝑡𝑈𝐴14

)    (3) 

6.3.3 Trend identification and Detrend method 

Because stationarity is an underlying assumption of most frequency analyses that develop 

estimates of extreme values (Khaliq et al., 2006), a trend analysis was conducted for each pixel’s 

time series and time series having significant trends were detrended. The nonparametric Mann-

Kendall test was used to identify statistically significant trends (5% confidence level) in the 

historical annual maximum SWE and snowmelt values (Kendall, 1938; Mann 1945). The Mann-

Kendall test is resilient to outliers and can accommodate missing values, which occur frequently 

in an annual maximum time series of SWE in the more southern portion of the U.S. (Helsel & 

Hirsch, 1992) The Mann-Kendall statistic, S, is calculated as:  

𝑆 = ∑ ∑ 𝑠𝑔𝑛 (𝑥𝑖 − 𝑥𝑘)𝑛
𝑖=𝑘+1

𝑛−1
𝑘=1                                                      (4) 

𝑠𝑔𝑛 (𝑥𝑖 − 𝑥𝑘) =  {

+1   𝑖𝑓  𝑥𝑖 − 𝑥𝑘 > 0 
0      𝑖𝑓  𝑥𝑖 − 𝑥𝑘 = 0 
−1   𝑖𝑓  𝑥𝑖 − 𝑥𝑘 < 0 

                                (5) 

where 𝑥𝑖 and 𝑥𝑘  are the annual maximum SWE or snowmelt values that correspond to year i and 

k, i > k, respectively. The standard test statistic Z is computed using a standardization and 

normal approximation of the statistic S. If a significant trend in an annual maximum time series 

was found for a given pixel, each value in the time series was detrended using Sen’s slope of the 
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trend maintaining the time series’ average (Sen, 1968; Fassnacht and Record, 2015) prior to 

fitting the extreme value distribution.  

6.3.4 Generalized Extreme Value (GEV) Distribution  

In this study, SWE and snowmelt magnitude-frequency estimates at individual grid cells 

are computed using the GEV-based frequency analysis approach based on L-moment statistics 

(Hosking et al., 1985). The GEV distribution is fitted using the annual maximum series of SWE 

and 7-day snowmelt and then used to estimate the 25- and 100-year return period SWE and 7-

day snowmelt design values. The GEV distribution incorporates three types of extreme value 

distributions, Gumbel, Fréchet, and Weibull distribution. The cumulative distribution function of 

the GEV can be written as 

𝐹(𝑥) = exp {− [1 −
𝜅(𝑥−𝜉)

𝛼
]

1

𝜅
}  𝑓𝑜𝑟  𝜅 ≠ 0                                      (6) 

where the location parameter (𝜉) represents the center of the GEV distribution, the scale 

parameter (𝛼) specifies the deviation around 𝛼, and the shape parameter (𝜅) determines the tail 

behavior of the distribution. The Gumbel distribution is obtained when 𝜅 = 0. For 𝜅 > 0, the 

GEV corresponds to the Fréchet distribution. For 𝜅 < 0, the GEV leads to the Weibull 

distribution which has a thicker right-hand tail. The parameters of the GEV distribution are  

𝜅 = 7.8590𝑐 + 2.9554𝑐2, c =  
2𝜆2

𝜆3+ 3𝜆2
−

ln(2)

ln(3)
                                             (7) 

𝛼 =
𝜅𝜆2

Γ(1+𝜅)(1−2−𝜅)
                                                         (8) 

𝜉 = 𝜆1 +
𝛼

𝜅
 [Γ(1 + 𝜅) − 1]                                                   (9) 
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where 𝜆1, 𝜆2, and 𝜆3 are the first, second, and third L-moments, respectively, and Γ() is the 

gamma function (Hosking et al., 1985; Stedinger et al., 1993). L-moments provide an alternative 

approach of describing the shape of probability distributions to conventional moments or 

maximum likelihood approach (Hosking, 1990). Because sample estimators of L-moments are 

linear combinations of ranked data, the L-moments are less susceptible to outliers than 

conventional moments (Vogel and Fennessey, 1993). They are also well suited for analyzing the 

data with significant skewness.  

For pixels having some years with zero values, the zero values were considered to be NA 

values (so called “censored data”) and a conditional probability model was employed. In this 

case, only the positive, nonzero values were included in the L-moments calculations used to fit 

the GEV distribution G(x).  An additional parameter (Po) was included to describe the 

probability that the SWE is zero. For pixels with the censored data, the non-exceedance 

probability of the GEV distribution was adjusted by a portion of the censored data (Stedinger et 

al., 1993) such that the unconditional cumulative distribution function F(x) for any value of SWE 

greater than zero is give an 

F(x) = 𝑃0 + (1 − 𝑃0) ∙ G(x)                                                   (10) 

             For example, if there were zero values in nine years out of 36 years, the non-exceedance 

probability, G(x), was multiplied by a portion of the censored data (1-P0, 9/36 = 0.75 in this case) 

and then added P0. If non-exceedance probabilities for 25- and 100-year return levels are 0.96 

and 0.99, and the unconditional non-exceedance probabilities, F(x), are 0.97 and 0.9925.  If 50% 

of more of a pixel’s dataset was zero values, then the pixel was excluded from this study.  

The goodness–of–fit of the GEV model was examined by the probability plot correlation 

coefficient (PPCC) test using R package. The PPCC test, developed by Filliben (1975) and 
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Looney and Gulledge (1985), is based on the moment correlation coefficient between the ordered 

data and the order statistic medians. If the data are drawn from the hypothesized GEV 

distribution, the correlation coefficient will be near to one and the plot is expected to be nearly 

linear (Chowdhury et al., 1991). In this study, the annual maximum SWE and 7-day snowmelt 

time series data excluding the censored data were tested for each pixel. When a pixel’s time 

series was not rejected as being from the GEV distribution based on the PPCC test with 0.05 

significant level, the pixel was used for developing GEV distribution and extreme values with 

25- and 100-year return levels. If the GEV distribution was rejected, the extreme SWE and 7-day 

snowmelt values were excluded in this analysis. 

6.4 Results 

6.4.1 Comparison of annual maximum SWE and snowmelt between UA and SNODAS 

Before developing the design extreme values, the UA-based annual maximum SWE and 

snowmelt were compared to that of SNODAS for the overlapping period of record (October 

2003 to May 2017). Figure 1 shows maps of the mean annual maximum SWE and snowmelt 

produced from the UA and SNODAS products. To support this figure, Table 1 provides statistics 

of the mean annual maximum SWE and snowmelt by state (spatial mean, standard deviation, 

99% quantiles). The two annual maximum SWE products show similar spatial patterns over the 

CONUS with the SNODAS product. The difference maps reveal that SNODAS annual 

maximum SWE is generally somewhat higher than the UA annual maximum SWE values in the 

north central U.S. and non-mountain western U.S. However, in the Great Lakes and northeastern 

regions, UA annual maximum SWE occasionally exceed SNODAS annual maximum SWE.  
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In the western U.S., both annual maximum SWE datasets have high mean values and 

large standard deviations due to the spatially heterogeneous regions. Based on the difference 

map, the western U.S. differences are mixed especially in the mountainous areas. For example, 

state-mean values of UA are 189, 206, and 111 mm, and SNODAS, 202, 213, and 121 mm 

[Standard deviations: 321, 211, and 176 mm for UA and 322, 220, and 179 mm for SNODAS] in 

Figure 1. Mean annual maximum SWE and 7-day snowmelt maps from (a, b) UA and (c, 

d) SNODAS products, and (e, f) mean difference (SNODAS minus UA) maps in the SWE 

and 7-day snowmelt for the overlapping 14 years from October 2003 to May 2017 
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Washington, Idaho, and Wyoming, respectively (Table 1). The 99% quantile values, 

characterizing SWE in those states’ high mountain areas, are 1439, 886, and 797 mm from UA 

product and 1363, 943, and 753 mm from SNODAS. While the state-mean values from UA are 

slightly lower than the values from SNODAS, the 99% quantile UA values are higher than the 

SNODAS values in most western U.S. states (e.g. Washington, Wyoming, Montana, Colorado, 

and Utah). 

Table 1. Summary of the mean annual maximum SWE and 7-day snowmelt from UA and 

SNODAS products from 2003 to 2017 by U.S. states. The states were arranged from largest (top) 

to smallest (bottom) mean UA Annual Maximum SWE. 

State 

UA Annual  

Maximum SWE 

(mm) 

 

SNODAS 

Annual 

Maximum SWE 

(mm) 

 

UA Annual  

Maximum 7-day 

Snowmelt 

(mm/7 day) 

 

SNODAS Annual 

Maximum 7-day  

Snowmelt (mm/7 

day) 

Mea

n 
Std 99%  

Mea

n 
Std 

99

% 
 

Mea

n 
Std 

99

% 
 

Mea

n 
Std 99% 

Idaho 206 211 886  213 220 943  88 69 263  82 50 211 

Maine 203 46 337  177 57 289  94 21 167  103 26 148 

Washingto

n 
189 321 1439  202 322 

136

3 
 60 70 260  58 47 202 

New 

Hampshire 
167 61 345  132 49 268  83 32 171  80 24 142 

Vermont 166 53 312  131 44 235  87 30 173  81 23 131 

New York 115 53 280  93 39 216  63 25 141  65 21 129 

Wyoming 111 176 797  121 179 753  51 53 216  56 44 192 

Colorado 111 160 722  107 137 592  52 51 207  50 37 159 

Montana 106 184 929  118 175 855  48 59 253  54 40 192 

Oregon 99 175 918  93 141 722  43 50 238  44 34 154 

Michigan 99 43 219  89 48 228  56 20 108  62 27 132 

Massachus

etts 
97 31 178  78 23 153  52 18 105  54 11 90 
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Utah 83 111 532  89 119 559  45 44 194  46 39 171 

Wisconsin 80 20 137  74 22 140  49 13 85  57 16 101 

Minnesota 73 21 162  83 26 176  46 12 89  61 13 100 

Connecticu

t 
71 20 139  68 9 99  40 9 69  51 6 70 

California 67 175 894  67 172 861  28 58 262  24 44 186 

Rhode 

Island 
64 13 84  61 10 75  38 6 49  48 5 55 

Pennsylvan

ia 
63 21 114  55 13 88  38 12 72  42 9 68 

North 

Dakota 
52 12 74  70 12 94  36 9 52  56 9 75 

New Jersey 47 17 96  43 13 69  31 8 57  36 9 50 

Iowa 46 11 70  45 11 71  27 5 38  38 9 58 

Nevada 43 55 277  43 52 250  28 27 134  30 21 109 

West 

Virginia 
41 27 142  40 18 99  29 14 88  33 12 73 

South 

Dakota 
37 12 71  49 14 84  26 6 46  43 9 67 

Maryland 36 20 118  40 15 96  25 10 65  33 10 71 

Ohio 34 11 75  38 7 68  24 5 42  32 5 53 

Indiana 32 10 60  35 5 49  23 5 37  30 4 40 

Illinois 31 13 61  32 6 51  21 6 36  28 4 41 

Nebraska 26 5 39  33 5 44  20 3 27  30 4 39 

Delaware 25 6 43  30 5 41  20 4 29  25 3 34 

Virginia 24 9 57  29 8 48  19 6 40  26 6 40 

New 

Mexico 
22 4 34  28 3 34  15 19 106  19 16 88 

Missouri 22 41 212  25 38 209  19 2 23  25 3 31 

Kansas 20 3 28  28 3 34  16 2 21  26 2 32 
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Kentucky 20 4 30  26 4 34  18 3 25  24 4 31 

Arizona 15 31 159  15 28 149  10 18 92  11 15 75 

Tennessee 12 5 25  17 6 30  11 4 22  14 4 28 

Arkansas 12 4 26  15 5 29  12 5 23  17 6 28 

Oklahoma 11 4 21  21 5 29  10 3 18  21 4 29 

North 

Carolina 
11 7 42  16 7 33  10 6 32  16 6 29 

Texas 4 3 13  8 5 19  4 4 15  7 7 24 

South 

Carolina 
4 4 17  7 7 25  4 3 12  8 5 19 

Mississippi 3 2 12  5 3 11  3 2 11  5 3 11 

Alabama 3 2 9  4 3 10  3 2 8  4 3 10 

Georgia 2 3 13  4 5 21  2 3 12  4 5 20 

Louisiana 1 1 4  3 2 7  1 1 4  3 2 7 

Florida 0 0 1  0 0 1  0 0 1  0 0 1 

 

In the northeastern regions, UA annual maximum SWE is much higher than that from 

SNODAS with UA’s state-mean SWE values of 203, 167, and 166 mm as compared to 

SNODAS values of 177, 132, and 131 mm, for Maine, New Hampshire, and Vermont, 

respectively. Not surprisingly, the standard deviations in the northeast are much lower than the 

western regions with UA and SNODAS having similar variability (UA: 46, 61, and 53 mm and 

SNODAS: 57, 49, and 44 mm). The SNODAS 99% quantile values, 289, 268, and 235 mm, are 

similar to the state-mean values indicating that there is relatively little spatial variation in the 

eastern U.S.  

In the north central U.S., the annual maximum SWE from both products are relatively 

low compared to the other regions. The state-mean values of SNODAS range from 49 to 89 mm 
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with the 99% quantile values from 84 to 228 mm, while UA state-mean values ranges from 37 to 

99 mm and 99% quantile values range from 71 to 219 mm. The SNODAS annual maximum 

SWE is generally higher than UA product in these regions (e.g. Northern Great Plains). 

The annual maximum 7 day-snowmelt spatial patterns are similar to the annual maximum 

SWE patterns where the largest snowmelt events occur in the western mountainous regions, 

followed by northeastern, then the north central U.S.  SNODAS annual maximum snowmelt 

values are generally higher than UA values in the non-mountainous areas over the CONUS. UA 

snowmelt is much higher than SNODAS in the western mountainous areas where the differences 

between UA and SNODAS snowmelt values reach up to 300 mm.   

At a state level, the northeastern states have the largest state-mean snowmelt (e.g. UA: 

94, 87, and 83 mm; SNODAS: 103, 81, and 80 mm for Maine, Vermont, and New Hampshire, 

respectively). In the north central U.S., the state-mean SNODAS snowmelt values, 61, 56, and 

43 mm, are consistently larger than the UA snowmelt values, 46, 36, and 26 mm for Minnesota, 

North Dakota, and South Dakota, respectively. The 99% quantile values have similar differences 

between two products to the state-mean snowmelt values in the regions (11, 23, and 21 mm for 

the states, respectively). In the western U.S., the average values by state are similar but the 

extremes differ. While the state-mean values of UA snowmelt, 88, 60, and 51 mm, are slightly 

larger than SNODAS, 82, 58, and 56 mm, for Idaho, Washington, and Wyoming, the 99% 

quantile values are UA snowmelt values are consistently much larger than SNODAS values 

(UA: 263, 260, and 216 mm; SNODAS: 211, 202, and 192 mm, respectively). 

Figure 2’s agreement statistics (R-value) of annual maximum SWE and snowmelt 

between the two data products reflect the consistency between the products’ low and high snow 

and snowmelt years from 2004 to 2017. For the annual maximum SWE, the spatial R-value map 
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typically shows strong agreement. In the north-central and northeastern U.S., the correlation is 

relatively high (> 0.8) compared to the other regions. There is less agreement over parts of 

Montana, Wyoming, Nebraska, and Kansas, as well as the western Mountainous regions. The 

annual maximum snowmelt correlation patterns are similar, but the agreement is not as strong as 

that for the annual maximum SWE comparison. The Great Lakes and Northeast are notable for 

their poor agreement between annual maximum snowmelt values that were not evident in the 

annual maximum SWE agreement. 

  

6.4.2 The annual maximum SWE and 7-day snowmelt trends 

To demonstrate how the ECDF-transformations update the original UA data, an annual 

time series of the annual maximum 7-day snowmelt from the original UA and the ECDF-

transformed UA data are shown for eight states (Figure 3; four western states, two north central 

states, and two northeastern states in the U.S.). In North Dakota the original UA snowmelt is 

much lower than the SNODAS snowmelt in 2009, 2010, and 2011, but the ECDF-transformed 

UA snowmelt maintains the interannual variations that are consistent with the SNODAS 

Figure 2. Pearson correlation (R-value) maps of the annual maximum SWE and 7-day 

snowmelt between SNODAS and UA products for the overlapping 14 years from October 

2003 to May 2017 
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snowmelt. In New York, the SNODAS snowmelt is higher than the original UA snowmelt. The 

ECDF-transformed UA snowmelt has greater interannual variation compared to the original UA 

snowmelt.  

The total amount of annual maximum snowmelt is calculated by multiplying the spatial 

mean annual maximum snowmelt of significant pixels (mm/7-day) by the total area of the pixels. 

In some cases, the ECDF-transformed UA resulted in large differences in the water yield over 

the 7-day annual maximum as compared to the original UA. For example, the water yield from 

snowmelt in North Dakota over the 36-year period from the ECDF-transformed UA melt is 

nearly double (2,746 x 106 m3) that of the original UA yield of 1,494 x 106 m3. Similarly, in 

Maine, the water yield from the original and ECDF-transformed UA snowmelt are 283 x 106 m3 

and 538 x 106 m3, respectively. There are a few states that the ECDF-transformed UA resulted in 

smaller differences in the water yield. In Montana, the water yield from the transformed UA 

snowmelt decreases by 586 x 106 m3 over the 36-year period while decrease in the water yield 

from the original UA-based snowmelt was 943 x 106 m3.  
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A trend analysis of the UA annual maximum SWE and 7-day snowmelt values was 

conducted for each pixel using the Mann-Kendall test to identify significant trends (p-value < 

0.05) from 1982 to 2017. Figure 4 shows the results for both the original and ECDF-transformed 

UA data, which is merged with SNODAS annual maximum data using ECDF method, to identify 

similarities/differences of the spatial trend maps. There are negative trends in most mountainous 

regions of western states (Figures 4a & b). For several states, nearly 10% of the state had 

significant annual maximum SWE decreases including New Mexico (16.1%), Colorado (12.9%), 

Figure 3. Examples of annual maximum 7-day snowmelt time series for eight U.S. states 

based on the original UA and the ECDF-transformed UA data using SNODAS from water 

years 1982 to 2017. Each point is the spatial mean of the annual maximum 7-day snowmelt 

for pixels with significant trend only (p-value < 0.05) multiplied by a total area of the pixels 

in a state, and the light-colored range shows the mean plus (upper boundary) or minus 

(lower boundary) one spatial standard deviation multiplied by a total area of the significant 

pixels. The solid line is the linear trend line for the 36-year period. 
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and Nevada (9.8%). The greatest state-average annual maximum SWE decrease rates were -3.3 

mm/year in Colorado followed by Utah (-2.8 mm/year), Idaho (-2.5 mm/year), and Oregon (-2.4 

mm/year). Positive trends in annual maximum SWE were rare, but present in 5.1% of North 

Dakota and 1% of Minnesota. In North Dakota and Minnesota, 29% and 9.7% of the states had 

statistically significant snowmelt increases (0.66 and 0.68 mm/7-day/year), respectively. Maine 

snowmelt also increased at an even higher rate 0.94 mm/7-day/year.   

Trend maps using the ECDF-transformed UA differ slightly from the maps using the 

original UA product (Figures 4c & d). In the mountainous western U.S., the area with 

significant decreases in both annual maximum SWE and snowmelt was generally reduced. 

However, the annual maximum SWE and snowmelt trends strengthened in the north central and 

northeastern regions. Considering that SNODAS SWE and snowmelt values were generally 

larger than UA products for those regions, the transformed UA values may be larger than 

original UA values leading to increases in the trends’ magnitude. 

https://endic.naver.com/enkrEntry.nhn?entryId=bc010732599247edb08b869fcb5ad8a7&query=%EA%B0%95%ED%99%94%EB%90%98%EB%8B%A4


169 
 

 

6.4.3 Design SWE and snowmelt maps over the CONUS 

The spatial patterns of the 25- and 100-year annual maximum SWE values are similar but 

differ in magnitude (Figures 5). The largest design SWE values, defined here as top 1% (99% 

quantile) values for each state, were found in western mountainous regions. For example, in 

Washington the top 1% 25- and 100-year return level SWE values are 2,713 mm and 3,542 mm, 

respectively. In the northeastern U.S., the top 1% SWE values, 25-year values range from 443 to 

639 mm, and, for 100-year value from 627 to 905 mm, are much lower than those in the 

mountainous western U.S. However, the state-median values in the northeastern U.S. are higher 

Figure 4. Trend maps of the annual maximum SWE and 7-day snowmelt from the original UA 

and ECDF-transformed UA data using nonparametric Mann-Kendall test with Sen’s slope from 

1982 to 2017. Only pixels where there is a significant positive/negative trend (p < 0.05) are 

shown. 
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than the western U.S. states. In the north-central U.S., the greatest design SWE values occur in 

the areas near Lake Michigan and the Red River of the North Basin in Minnesota. The top 1% 

values are 452 and 346 mm for the 25-year return level (654 and 512 mm for 100-year return 

level) in Michigan and Minnesota, respectively.  

The 25- and 100-year snowmelt maps generally have similar spatial patterns to those of 

the annual maximum SWE maps (Figure 6). Regions with high SWE are likely to also have 

large snowmelt events. The largest 7-day snowmelt values (top 1% for state) for 25 and 100-year 

return levels were also found in the western U.S. The top 1% snowmelt values for 25-year return 

level range from 396 to 541 mm, and, from 611 to 843 mm for 100-year return level over the 

western mountainous regions including Washington, California, Idaho, and Oregon. In the 

northeastern U.S., the magnitudes of the 25- and 100-year snowmelt are lower than that of the 

western U.S. The northeastern’s top 1% values for 25-year range from 236 to 382 mm and, for 

100-year, from 347 to 563 mm over the northeastern U.S. states. The design snowmelt values in 

the north-central U.S. are typically lower than that of the northeastern region. For 25- and 100-

year, the top 1% snowmelt values are from 176 to 262 mm and from 311 to 397 mm, 

respectively, over the north-central U.S. states including Michigan, Minnesota, South Dakota, 

and North Dakota. 
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Figure 5. 25- and 100-year return level design SWE maps using the detrended, ECDF-

transformed annual maximum SWE. 
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6.4.4 Design snowmelt versus NOAA Atlas 14 precipitation 

Figure 6. 25- and 100-year return level design 7-day snowmelt maps using the detrended, 

ECDF-transformed annual maximum snowmelt.  
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To understand the contribution of snowmelt to runoff, the current snowmelt results were 

considered in light of the NOAA Atlas 14 7-day duration precipitation maps for 25- and 100-

year recurrence levels in the northeastern U.S. region (Figure 7). With notable exceptions, the 

design precipitation values are typically considerably larger than the snowmelt values. In the 

mountain western U.S. and north central U.S., snowmelt can exceed precipitation. In the 

mountain western U.S., this typically occurs in regions where the 7-day precipitation values are 

relatively low, while the snowmelt is extremely high. The 25- and 100-year difference maps 

consistently identify those parts of the western U.S. where design snowmelt values are higher 

than design precipitation values. In the northern Great Plains and upper Midwest, design 

Figure 7. (a, c) The NOAA Atlas 14 25- and 100-year 7-day precipitation maps, (b, d) 
the difference maps (Atlas 14 minus corresponding snowmelt maps) over the CONUS. 
Cool colors indicate regions where the snowmelt values exceed the Atlas 14 
precipitation values. The gray regions indicate U.S. states where annual maximum 
Atlas 14 data are not available.  The white areas are out of range. 
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snowmelt and design precipitation values are typically similar for 25-year return periods, but the 

100-year snowmelt design values can exceed the precipitation values in many parts of those 

regions. The inland portion of the Northeastern states also has some regions where snowmelt 

values are modestly higher than precipitation values. 

A more detailed comparison of design snowmelt and design precipitation values was 

conducted for two regions that are historically vulnerable to snowmelt-driven floods (Berghuijs 

et al., 2016; Stadnyk et al., 2016; Slater and Villarini, 2016), the Northeastern states (Atlas 14 

Volume 10; Figure 8) and Midwestern states (Atlas 14 Volume 8; Figure 9). In the Northeast, 

the Atlas 14 design precipitation values gradually decrease from the southeast to the northwest 

with the highest values in western Massachusetts and Connecticut as well as around Mount 

Washington in New Hampshire (Figures 8a & d). For the 25-year and 100-year return periods, 

the precipitation depths in the southeastern areas range from about 200 to 280 mm and 250 to 

370 mm, respectively, while in the northwestern areas precipitation values range from 120 to 200 

mm and 250 to 370 mm for the 25-year and the 100-year values, respectively. Although the 

snowmelt maps have larger spatial variability than the Atlas 14 precipitation maps (Figures 8b 

& e), design snowmelt values, as well as maximum SWE values, gradually increase from the 

southeast to the northwest. These design snowmelt gradients are perpendicular to the design 

precipitation gradients. The combination of higher SWE and more moderate design rainfall 

amplifies the importance of snowmelt driven runoff in northern Vermont and Maine near the 

Canadian border, where design snowmelt can exceed design rainfall by up to 140 and 200 mm 

for the 25- and 100-year return periods, respectively.  
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Figure 8. (a, d) The NOAA Atlas 14 25- and 100-year 7-day precipitation maps, (b, e) the 

corresponding snowmelt maps, and these differences (Atlas 14 minus snowmelt) over the 

northeastern U.S. including 7 states (Massachusetts, New York, Vermont, New Hampshire, 

Maine, Rhode Island, and Connecticut). 

Figure 9. Same as Figure 8, but in the Midwest U.S. including 7 states (North Dakota, Minnesota, 

South Dakota, Nebraska, Colorado, Iowa, Missouri, Michigan, Kansas, and Oklahoma) 
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In the Midwest U.S., the NOAA Atlas 14 precipitation values are typically higher than 

the snowmelt values (Figure 9). In this region, the precipitation intensities decrease considerably 

to northwest with ranges from 60 to 140 mm (25-year) and 80 to 230 mm (100-year). Western 

Colorado has the lowest design precipitation values. The snowmelt maps in this region largely 

increase from south to north. In locations with localized extremes at North and South Dakotas’ 

eastern borders, the border between Iowa and Minnesota, and Michigan’s Upper Peninsula, the 

snowmelt magnitudes are higher than precipitation depth by up to 160 and 240 mm for the 25- 

and 100-year recurrent intervals, respectively (Figures 9e & f). In the Rocky Mountain region of 

the western Colorado, the snowmelt magnitudes can be markedly higher than the precipitation 

with difference up to 190 and 310 mm for the 25- and 100-year return periods, respectively. 

6.5 Discussion 

6.5.1 Comparison between UA and SNODAS data 

To date, no studies have directly compared the UA and SNODAS products, because the 

UA SWE dataset was only recently publicly released (March 2019) via National Snow and Ice 

Data Center (Broxton et al., 2019). Broxton et al. (2016b) showed that the reanalysis and 

GLDAS SWE products have considerably lower SWE than both UA and SNODAS SWE data. 

Their finding that SNODAS generally has higher SWE (and annual maximum SWE for 2008) 

than the UA product in Washington and Idaho as well as northern Great Plains, primarily for 

regions where the SWE is low, is consistent with our results. Dawson et al.’s (2017) study of 

snow density parameterization for developing UA SWE product found that SNODAS snow 

densities have low biases compared to SNOTEL observations, particularly in ephemeral and 

maritime classes (11.1% and 16.2% of relative mean absolute error, respectively). They assert 

that these biases could be due to the assimilation of snow depth and SWE observations across 
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different platforms and spatial scales (i.e., airborne gamma SWE, point-based snow depth and 

SWE observations, and satellite-based snow covered area) without ingesting snow density 

observations.  

Our findings that SNODAS snowmelt exceeded UA snowmelt over the north central and 

the western non-mountain U.S. may stem from the larger SNODAS annual maximum SWE 

compared to UA annual maximum SWE. The increased availability of SWE for melt may 

generate large snowmelt during the spring. However in most western mountain regions, the UA 

annual maximum snowmelt exceeded the SNODAS despite the larger SNODAS SWE (Figure 

10). Differences in the UA and SNODAS products’ snow ablation procedures are likely 

responsible. The UA product calculates accumulated snow ablation using a simple cumulative 

degree day above 0 °C method during the snow-covered period and generates SWE by 

subtracting accumulated snow ablation from accumulated snowfall (Broxton et al., 2016a). In 

contrast, SNODAS estimates snow ablation using the snow thermal model (SNTHERM.89) 

which tracks two variables, liquid water in the snowpack (state variable) and melt runoff rate at 

the base of the snowpack (diagnostic variable) (Barrett, 2003; Carroll, 2001). SNODAS 

considers both solid water and the liquid water in the snowpack as SWE. Thus, it is possible that 

UA snowmelt may be underestimated, in part, due to the lack of liquid water storage in the 

snowpack.  

In the mountainous western U.S., the negative trends in annual maximum SWE 

correspond with numerous previous findings showing declines in SWE since 1980 (Mote et al., 

2018; Pederson et al., 2013; Pierce et al., 2008). In the north central U.S., there were limited 

previous findings probably due to the lack of the ground-based long-term SWE measurements 

over the regions (Cho et al., 2019). Our finding of considerable increases in the annual maximum 
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snowmelt in North Dakota and Minnesota may be related to dramatic increases in spring 

streamflow and a frequency of flood events found by Hirsch and Ryberg (2012) and Peterson et 

al. (2013). Hirsch and Ryberg (2012) suggested that the increases in streamflow might be due to 

a large increase in precipitation since 1980 as a result of changing climate. This indicates that the 

increase in the amount of snowmelt in a short period is likely due to the increases in precipitation 

as snowfall and springtime warming (Kunkel et al., 2013), resulting in the amplified streamflow 

and frequent spring floods. Projected winter precipitation (2070 – 2099) is expected to increase 

by over 20 % relative to the current precipitation (1976 – 2005) in this region (Easterling et al., 

2017). The positive trend in snowmelt could last and intensify the frequency and severity 

of snowmelt floods for future decades.  

 

Figure 10. Same as Figure 1e & f (Mean difference maps of the annual maximum SWE and 

7-day snowmelt), but changed the color bars ranging from -300 to 300 mm. Blue (Red) color 

areas indicate that SNODAS is larger (smaller) than UA product. 
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6.5.2 Comparison to the NOAA Atlas 14 and the National Engineering Handbook 

The current NOAA Atlas 14 Volumes provides very limited guidance about snowmelt 

events (Perica et al., 2015, revised 2019). They focus on liquid precipitation (rainfall). Snowmelt 

events were not considered in the frequency estimates because this is a different runoff 

production mechanism. Unlike liquid precipitation, snowfall goes into storage (i.e., snowpack) 

and delays runoff until it melts. Our snowmelt estimates from this study complement the rainfall-

based frequency estimates from the NOAA Atlas 14 series. From an engineering design 

perspective, the Atlas 14 design precipitation values are reasonable in regions where the Atlas 14 

precipitation estimates equal or exceed our snowmelt estimates. However, in the areas where our 

snowmelt estimates are larger than the Atlas 14 precipitation values, infrastructure designed 

without consideration of snowmelt floods may underestimate design runoff and undersize 

structures. The maps presented in this study can provide guidance when developing flood 

defense structures in areas where major snowmelt floods have occurred over the past few 

decades (Todhunter, 2001; Changnon et al., 2001). 

The National Engineering Handbook from United States Department of Agriculture 

Natural Resources Conservation Service (USDA NRCS) mapped snowmelt runoff volumes in 

the eastern Montana region (USDA, 2004). Their 25-year, 7-day snowmelt runoff volumes 

ranged from 10 to 45 mm, which are much lower than the range of our snowmelt maps (40 to 

140 mm) for the same region. The handbook also provided an example of a 25-year maximum 

March 16–31 SWE map in the north central U.S., which was taken from a technical paper from 

U.S. Department of Commerce Weather Bureau (U.S. Department of Commerce, 1964). Their 

SWE values, ranging from 38 mm in the eastern Nebraska and South Dakota) to 305 mm near 

Lake Michigan, are somewhat lower than our SWE values for the same region (40 – 450 mm). 



180 
 

The differences between these earlier maps are probably due, at least in part, to different time 

periods and datasets. Those maps used SWE or snow depth data obtained from several snow 

station networks with 15 to 55 year records (U.S. Department of Commerce, 1964) with a typical 

measurement period of 35 years from 1930 to 1964 as compared to UA’s 1981 to 2017 record. 

There are not only differences in the SWE magnitude, but also the SWE spatial patterns. While 

the earlier maps showed that SWE gradually increased from southwestern (Nebraska and South 

Dakota) to northeastern parts of the region (e.g. Wisconsin and Michigan), our map shows very 

high SWE values in the headwaters of the Red River of the North Basin (near western Minnesota 

and southeastern North Dakota). This could be due to data limitations during the earlier time 

periods or to regional changes in snowfall under the changing climate (Hirsch and Ryberg, 2012; 

Byun et al., 2018). While there is little documentation about long-term SWE increases in that 

region, there is consensus that the Red River of the North Basin has experienced more frequent 

snowmelt flooding since the late 1990s (e.g. 1997, 2006, 2009, 2011 and 2019; Tuttle et al., 

2017).   

6.5.3 Limitations 

Despite our efforts to combine the UA and SNODAS SWE products, regions where the 

annual maximum values from the two products have clear differences suggest inherent 

uncertainties. In this study, SNODAS SWE is assumed to be the most reliable data source over 

the CONUS based on previous studies considering (Broxton et al., 2016a, 2016b; Vuyovich et 

al., 2014). Furthermore, the SNODAS data have been widely vetted by the NWS regional river 

forecast centers for their use in operational flood forecasting (Barrett, 2003). However, recent 

studies have found that SNODAS SWE or snow depth has reduced performance in some regions 

as compared to independent data. Clow et al. (2012) showed that SNODAS SWE had relatively 



181 
 

poorer agreement (R2 = 0.30) with in-situ snow surveys in alpine areas, while SNODAS SWE 

performed well in forested areas (R2 = 0.77) in Colorado Rocky Mountains, U.S. They indicated 

that wind redistribution of snow in alpine terrain may not be fully considered in a snow model in 

SNODAS, even though the SNODAS model is run with surface zonal wind as a driving variable 

(Barrett, 2003). While not yet studied, because the interpolation and assimilation processes for 

UA SWE do not account for wind effects, it is reasonable that wind redistribution would also 

impact the UA SWE estimates. Anderson (2011) also found that SNODAS underestimated snow 

depths in forested alpine terrain. Hedrick et al.’s (2015) evaluation of SNODAS snow depth 

using lidar-based snow depth measurements during the 2007 Colorado Cold Lands Processes 

Experiment (CLPX-2) also found regional differences between the two snow depth products, 

especially in the areas with dense low sagebrush where high winds scour the snow throughout 

the winter. Boniface et al. (2015), conducting a comparison study of SNODAS snow depth with 

the Global Positioning System Interferometric Reflectometry (GPS-IR)-based snow depth 

observations over the western U.S., found that there were clear differences between the two 

snow depth products in areas with complex terrain or strong vegetation heterogeneities.  

In the upper Tuolumne River Basin in the California’s Sierra Nevada, comparison results 

of the ASO SWE with SNODAS SWE showed that SNODAS overestimated SWE during the 

melt phase (Bair et al. 2016). However, they could not determine the mechanism that caused the 

errors because there are few publications that address the details of the snow model structure and 

assimilation scheme in SNODAS. Dozier et al. (2016) suggested a potential cause for the 

overestimates is that the snow pillows, whose measurements are assimilated in SNODAS, could 

hold more SWE than the average of the surrounding terrain because they hinder drainage of 

melted water to the underlying soil. Given that UA SWE mainly ingests snow pillow 
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measurements from the SNOTEL network over the western U.S. (Zeng et al., 2018), snow 

pillows may also be a source of uncertainties in UA SWE product.  

6.6 Conclusion  

The current engineering practice (e.g. NOAA Atlas 14) provides very limited guidance 

on designing infrastructure to accommodate snowmelt driven floods in the CONUS. In this 

study, we leverage two vetted, long-term CONUS snow products from the University of Arizona 

and NOAA to develop 25- and 100-year return level design SWE and snowmelt maps. Extreme 

value statistical methods are used to fit the GEV distribution to annual maximum UA SWE and 

snowmelt values from a 36-year record (water years 1982 to 2017).  Somewhat surprisingly, 

trend analyses, showed few trends in annual maximum UA SWE or snowmelt with localized 

increases in the north central U.S. and modest decreases in isolated regions in the Southwestern 

U.S.  

Despite their use of different methods to estimate SWE, the UA and SNODAS annual 

maximum SWE products are strongly correlated indicating that year-to-year variations in annual 

maximum SWE values are readily distinguished. There is notably less agreement between the 

two products’ year-to-year snowmelt patterns. This suggests a need for additional study 

regarding reliable approaches for estimating snowmelt at time and space scales that are 

appropriate for design. Much of the study region had reasonable agreement for the magnitude of 

the annual maximums. SNODAS has somewhat higher annual maximum SWE and snowmelt in 

regions where annual SWE is typically low and may benefit from its ability to assimilate snow 

observations from a network of ground observers.  For regions with deeper snowpack, including 

the western U.S. more differences were evident.  
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The snowmelt frequency estimates from this study complement the NOAA Atlas 14 

design precipitation and may provide additional guidance on infrastructure design for snowmelt- 

flooding over snow-dominant regions in the continental U.S. The SWE and 7-day snowmelt 

design maps show similar patterns and, as anticipated, regions having larger annual maximums 

values typically also have greater snowmelt. In most regions the NOAA Atlas 14 design 

precipitation values exceed design snowmelt. However, in the northeastern U.S. near the 

Canadian border, the north central U.S. where just 10 cm of SWE can cause flooding, and the 

western mountainous U.S., design snowmelt substantially exceeds the NOAA Atlas 14 design 

precipitation.  
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CHAPTER 7 

7.1 Summary and Major Findings 

The objective of this dissertation was to improve current and future flood forecasting 

models by understanding SSD impacts on hydrologic responses, updating operational gamma 

SWE estimates, and identifying extreme SWE and snowmelt trends in the north-central U.S.  

To improve the flood forecasting model with the SSD spatial information, in Chapter 2, 

the SSD maps were developed using multiple satellite “big” data and a Random Forest Machine 

Learning (RFML) technique. The maps agreed well with SSD permit records (overall accuracies 

of 76.9–87.0%) and corresponded with subwatershed‐level statistics (r = 0.77–0.96). The RFML 

classifier identified soil properties and land surface temperature to be the strongest predictors of 

SSD. Predictor variables differed between the two spatial scales, suggesting that SSD models are 

sensitive to the spatial scale. In Chapter 3, the spatial SSD maps developed in Chapter 2 were 

used to quantify hydrological responses by the SSD expansion using the Noah-MP LSM. The 

inclusion of SSD in Noah-MP causes the surface soil moisture in SSD to decrease faster 

compared to UD conditions. There are remarkable differences in total evapotranspiration 

between SSD and UD conditions in the summer. We found that decreasing soil water storage 

directly results in decreased total evapotranspiration. The magnitude of peak runoff events (as 

well as the amount of surface runoff) in SSD tends to be larger than that of UD.  

With the limitation of the model’s physic, accurate observations are critical to 

determining flood forecasting capacity in the north-central U.S. However, uncertainties in 

current airborne gamma snow survey hamper operational flood forecasting model. As described 

in Chapter 4, the operational gamma SWE observations were improved by updating antecedent 
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soil moisture conditions using the SMAP satellite. The SMAP-updated gamma SWE had better 

agreement with ground-based SWE and microwave satellite SWE as compared to the operational 

gamma SWE. A sensitivity analysis was conducted to quantify how much SWE updates can 

increase streamflow in RRB using the flood forecasting model. Based on the analysis, the peak 

flow in 2013 can increase by 130% with a 25% (43 mm of SWE) increase in annual maximum 

SWE. Considering that the current gamma SWE observations were updated up to 41 mm by 

antecedent soil moisture, the improvement of SWE by SMAP soil moisture can contribute to 

accurate flood forecasting in the north-central U.S.  

From a long-term perspective, flood forecasters and state governments need knowledge 

of historical changes in snowpack and snowmelt to develop flood management plans to adapt to 

climate changes. However, historical snowmelt trends are little known due to the limited long-

term snow observations. In Chapter 5, three available long-term SWE products were evaluated 

to find the most reliable SWE data. As compared to SSMI/S and GlobSnow‐2 SWE, UA SWE 

has much better agreement with gamma SWE in all land cover types and snow classes. This 

suggests that UA SWE is reliable for trend analysis of historical snowpack and snowmelt over 

the continental U.S including the northern great plains region. Tree cover and topographic 

heterogeneity affect the agreement between the gamma and gridded SWE and the accuracy of 

gamma SWE itself. Using the well-vetted UA SWE with the national snow product from 

SNODAS, described in Chapter 6, a trend analysis of extreme SWE and snowmelt events for 

the last 40 years was provided using the long-term UA SWE data over the U.S. The trend 

analyses showed negative trends in most mountainous regions of western states but positive 

trends in annual maximum snowmelt in the north-central U.S. For several states in the western 

U.S., there exist regions with decreases in annual maximum SWE (e.g. New Mexico, Colorado, 
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and Nevada). Positive trends in annual maximum SWE were rare but remarkably present in 

North Dakota and Minnesota. North Dakota and Minnesota also had regions with statistically 

significant snowmelt increases, respectively.  

7.2 Contributions 

7.2.1 Current Flood Forecasting in Practice 

This dissertation contributes to the state of practice by improving the current operational 

NOAA NWS flood forecasts. For example, in spring 2019, updated gamma SWE observations 

using the method developed in Chapter 4 were requested by and provided to the flood forecasters 

at the NCRFC and the NOAA’s Office of Water Prediction. That year’s original gamma SWE 

observations were updated by to 5 – 10 mm when corrected using the antecedent fall soil 

moisture conditions captured by SMAP. Due to abrupt increases in soil moisture by rainfall 

events in the late fall 2018 over the southern RRB, the original gamma survey overestimated 

SWE. This overestimate would have caused flood forecasts to overpredict the magnitude of 

spring floods. The practical use showed that the method can enhance the capability of the current 

flood forecasting model.  

For year-by-year forecasting, the reliable SWE information may be more important than 

other factors over the north-central U.S. In a general comparison between the given results in 

Chapters 3 and 4, the improvement in gamma SWE has a larger influence on the peak flow than 

the inclusion of the current SSD condition. Given the snowmelt flood-generating mechanism, 

even small change in SWE can impact snowmelt-driven peak flow (personnel communication, 

Mike DeWeese NCRFC) due to land surface characteristics in this region (e.g. the extremely flat 

and very low-permeable clay soils).  
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While not immediately and directly relevant to the flood forecast models, from a long-

term perspective, the inclusion of the SSD scheme in the NWM will become critical. Currently, 

flood forecast modelers in the region use their knowledge of soil water retention to modify the 

soil-related parameters (e.g. ZPERC [Maximum Percolation Rate Coefficient] and REXP 

[Percolation Equation Exponent]) to match flood forecasts into the observations for the regions 

where the models are not performing well. The manual adjustments by modelers may work in the 

current condition (the current percentage of the SSD area in RRB is less than 10% only). 

However, the SSD impact on the model capacity could have non-linear impacts on the flood 

response as the SSD system is exponentially expanded over the north-central U.S., particularly in 

the Northern Great Plains (Lark et al., 2015; Otto et al., 2016; US Farm Bill conservation 

programs were reduced). Using the future flood forecasting model (Noah-MP), this work 

provided valuable insights on potential hydrological changes due to the SSD expansion (Chapter 

3). They will help to improve the next-generation flood forecast system capacity.  

The significant snowmelt trends in the north-central U.S. found in Chapter 6 demand 

attention by communities and governments to allocate capacity and budgets to help flood 

management and to develop strategies to adapt to climate changes. The trend results may also 

urge flood forecasters to improve melting physics in the current and future flood forecasting 

model. The SNOW-17 used in the current flood model uses depletion curves that relate the areal 

snow cover versus the mean areal SWE. However, the depletion curves cannot capture 

anomalous patterns of accumulation and melt nor are they appropriate when new snow occurs on 

partially depleted surfaces. The north-central region may not be well suited for depletion curve 

input to runoff estimation due to wind redistribution and storm patterns. The Noah-MP snowmelt 

process in the future flood forecasting model has more sophisticated physics compared to the 
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SNOW-17 and uses multi-layer snowpack and parameterization schemes (e.g., snow surface 

albedo, snow cover fraction, liquid water retention and refreezing; Niu et al., 2011). However, 

my ongoing study found that in the melting phase, Noah-MP snowmelt rates are still too fast 

compared to UA and SNODAS SWE data. This indicates that there are still areas requiring 

improvement in the melting physics in the Noah-MP (e.g. accurate simulations of the diurnal 

cycle of snow temperature). 

7.2.2 Research Advance in Hydrology 

In addition to the practical use for enhanced flood forecasting, this work contributes to 

research advances in hydrology and agricultural water management. This work provides a novel 

SSD identification framework that can be widely used for hydrological changes in drainage-

dominant regions worldwide. Currently, SSD remains largely unregulated throughout the north-

central U.S. and Canada. The U.S. drainage census data are inconsistent with errors. In many 

regions, the SSD system had been already installed without historical records. The SSD RFML 

method is a powerful tool to track existing SSD locations which is required for multiple-scale 

hydrological studies (Kelly et al., 2017). Also, emerging remote sensing platforms such as 

CubeSat and Unmanned Aerial Vehicles can easily be used in the current SSD identification 

method as inputs with ultrahigh resolutions via the Google Earth Engine computing platform 

(McCabe et al., 2017; NASA CubeSat Launch Initiative, 2018). More than 130 CubeSats 

launched by Planet currently provide daily visible and near‐infrared imagery with ultrahigh 

resolutions (e.g., 3 m and 72 cm), capturing daily near‐global coverage (Planet Team, 2018).  

The RFML method with SSD spatial maps will help to address the water quality issue. 

For example, phosphorus loss from agricultural landscapes has been an important water quality 
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issue for decades because phosphorus transport plays in eutrophication. In an agricultural 

watershed, there are two primary pathways for nutrients to enter river flow or reservoir: surface 

runoff and subsurface flow. Nutrients transport via SSD pathways was often deemed “unknown” 

or inaccurate assumption due to the lack of spatial SSD information (King et al., 2014). With 

reliable SSD maps, researchers will be able to understand variations in nutrients delivery to 

rivers and lakes across the study area and to quantify the role of SSD in nutrient transport at a 

watershed scale.  

The updated SSD information can also directly improve coupled-land surface/climate 

models by providing reliable ancillary information about recent land-use change conditions. For 

example, recent studies investigated the effects of human modifications (e.g. irrigation, 

deforestation, and urbanization) on atmospheric feedback at local to regional scales (Mahmood 

et al., 2014; Pei et al., 2016; Zhang et al., 2017). However, the widely used land surface models 

(e.g. Variable Infiltration Capacity, Community Land Model, and Noah-MP) currently do not 

consider the SSD expansion. Thus, the inclusion of SSD information might lead to better 

characterizing surface hydrologic processes and states (e.g. surface moisture and temperature, 

infiltration, surface, and subsurface runoff) as well as local weather and climate feedback in the 

current land surface model systems.  

7.2.3 Research Advances in Snow Science 

This work contributes to the snow science community and future snow satellite mission. 

In the snow science community, the evaluation of global SWE products has been limited due to 

the lack of reliable, independent SWE datasets over various snow and land cover classifications. 

The results in Chapter 5 provided important findings including the (1) limitations of GlobSnow 
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and microwave satellite SWE products, (2) the reliability of the UA SWE products regardless 

land environments, and (3) the value of the gamma radiation technique to measure SWE, 

especially in forested regions.  

As land surface models (e.g. Snow Ensemble Uncertainty Project [SEUP]; Kim et al., 

2020) and regional climate models (e.g. Coordinated Regional Downscaling Experiment 

[CORDEX]) continue to evolve, independent and reliable SWE data are required to evaluate 

SWE outputs from the models. These evaluations will identify potential limitations of snow 

physical processes involved in each model and target snow classes and snow phase for 

improvement. The historical 40-year and ongoing NOAA airborne gamma SWE record will be a 

valuable reference for snow hydrologists and modelers, even though the record has limited 

spatial and temporal coverages compared to the gridded satellite and reanalysis products. For 

example, NASA scientists and the SEUP group are considering using the historical gamma SWE 

observations as a calibration reference to develop an assimilated optimal SWE ensemble for an 

observing system simulation experiment (OSSE). 

This work also contributes to the future snow satellite mission. Currently, efforts are 

underway to determine which sensors should be included in the next generation snow satellite 

mission (NASA SnowEx plan, Durand et al. 2019; Kim et al., 2020). The NASA Terrestrial 

Hydrology Program has initiated an airborne and ground campaign (SnowEx) to collect SWE 

observations for snow mission design. As a well-vetted technique, the NOAA airborne gamma 

snow survey team has participated in SnowEx 2020 to test SWE algorithms by providing multi-

sensor observations of a seasonal snow-covered landscape. The historical gamma SWE record 

and its accuracy may provide insights to refine the observational requirements of a future 

anticipated snow mission.  
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7.3 Future Direction and Research Needs 

NWM flood forecasting model The high-resolution NWM will replace the thirteen 

individual RFC flood forecast models. Because the NWM uses the Noah-MP (without SSD 

scheme) to simulate land surface processes, the SSD scheme developed in this study would 

enhance surface hydrological processes in the NWM. As the snowpack variable was updated in 

the current NWS flood forecasting model, the NWM-simulated snowpack can also be evaluated 

in various environments and updated with the updated gamma SWE and UA SWE for enhanced 

forecasting. With advancing high-performance computing, LSMs including NWM will evolve 

their capacity to create hyperspatial and temporal resolution.  

Airborne gamma SWE The historical 40‐year and ongoing NOAA airborne gamma SWE 

records are useful for snow hydrologists and modelers in providing accurate SWE values in 

various environments. To maximize an additional use of gamma SWE products, further inquiry 

into the gamma observation capabilities will be necessary. Studies have shown that the 

improvements to the operational gamma SWE products are possible by minimizing the errors, 

even though potential sources of errors were identified before the 1990s (e.g., the spatial 

variance within the footprint, and dense forest effect). Future studies can utilize state‐of‐the‐art 

high‐resolution earth observation products (e.g., lidar, synthetic aperture radar, and multi‐

spectrometer) to quantify snow or land characteristics within a gamma flight footprint to improve 

this valuable resource. Additionally, the use of state-of-the-art assimilation techniques instead of 

the linear regression model may potentially help to expand the reliability of the updated gamma 

SWE despite its limited spatial and temporal coverage on the spatial distributed SWE (Margulis 

et al., 2016). 



192 
 

Compound impacts of change Understanding the compound impact of climate change 

and evolving agricultural practices (e.g. irrigation and SSD expansion) on the regional water 

cycle is critical to predicting extreme events and future water availability. Future research can 

quantify the combined effects using land surface hydrological models with regional climate 

models (RCMs) outputs with different future emission scenarios (e.g. Representative 

Concentration Pathway; RCP 2.6, 4.5, and 8.5) from the Coupled Model Intercomparison Project 

(CMIP) 5 & 6. This would improve our understanding of future snowpack and melting phases 

and quantify consequent impacts on water availability and flood timing and magnitude in light of 

human modifications.   

7.4 Concluding Remarks 

My dissertation seeks to overcome flood forecasting operational and scientific challenges 

that result from human modification to the landscape and climate change and to enhance 

snowmelt flood predictions. The dissertation statement is human and climate impacts, as well as 

limited and noisy data, cause uncertainties in flood prediction in the great plains, but integrated 

approaches using remote sensing, big data analytics, and modeling can quantify the 

hydrological changes and reduce the uncertainties. Through its five main chapters, this 

dissertation contributes to improving flood forecasting in practice and research advances in 

hydrology and snow science.  
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APPENDIX 

CHAPTER 2 

Text S1. Variable equations 

             The following equations were used to calculate four vegetation indices, STR, and aridity: 

 NDVI (Normalized Difference Vegetation Index) 

 = (NIR – Red) / (NIR + Red) 

 EVI (Enhanced Vegetation Index, Huete et al., 2002) 

 = 2.5 * (NIR -Red) / (NIR + 6*Red – 7.5 * Blue + 1) 

 GI (Green Index, Gitelson et al., 2005)  

 = NIR / Green 

 NDWI (Normalized Difference Water Index, Gao, 1996)  

 = (NIR – SWIR) / (NIR + SWIR) 

 STR (Shortwave Infrared Transformed Reflectance, Sadeghi et al., 2015) 

 = (1 – SWIR)2/ 2* SWIR 

 Aridity  

 = Precipitation / Potential Evapotranspiration (PET) 

where NIR is the near-infrared band (0.77 - 0.90 µm), Red, Blue, and Green are the visible red 

(0.63 - 0.69 µm), blue (0.45 - 0.52 µm), and green (0.52 - 0.60 µm) band, respectively. SWIR is 

the shortwave Infrared Reflectance which is band 5 (SWIR1, 1.55 - 1.75 µm) and 7 (SWIR2, 

2.08 - 2.35 µm) for Landsat 7 ETM+ and band 6 (SWIR1, 1.57 - 1.65 µm) and 7 (SWIR2, 2.11 - 

2.29 µm) for Landsat 8 OLI/TIRS. 

 

 

Figure S1. A hydrograph at Fargo, ND (USGS: 0505400), a major streamflow gage in the Red 

River of the North Basin 

 

https://en.wikipedia.org/wiki/Potential_evapotranspiration
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Figure S2. Subwatershed (HUC12)-level accuracy assessment over BdSW, Minnesota (N=34) in 

2010, 2012, 2013, 2015, and 2016 

 

 

 

 

Figure S3. (a) A spring mean map of Sentinel-1 SAR data at VV polarization (as logarithm 

scale) and the RFML SD map generated by RFML including Sentinel-1 data (spring mean and 

range) as input variables over BdSW in 2017 
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Figure S4. Subwatershed (HUC12)-level accuracy assessment of RFML SD maps (using 10 

variables only) over BdSW, Minnesota (N=34). SD permit area from the BdSW district permit 

records compared with SD area from RFML classified maps against a 1:1 line (light dashed). 

Agreement between the two datasets was assessed with correlation coefficient (r) metrics from 

simple linear regression (trend line = thick dashed line, a = slope). 

 

 

CHAPTER 4 

Text S1. Statistical metrics 

The agreement between airborne gamma survey and satellite/model SM (or SWE) products were 

quantified by the Pearson’s linear correlation coefficient, R, the mean bias, Bias, the root mean 

square difference, RMSD, and the unbiased RMSD, ubRMSD, where additive bias is removed as 

follows: 

1 2

1 2
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V1 and V2 refer to two different SM (or SWE) products. cov(•) and std(•) yield covariance and 

standard deviation statistics, respectively. 
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Figure S1. Histogram of bulk densities for gamma flight lines in U.S. calculated by selecting a 

majority value within the footprint using the 1-km POLARIS soil datasets (available at 

www.polaris.earth; Chaney et al., 2016) 
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Figure S2. Comparison of agreements between NOAA airborne gamma soil moisture with 

constant bulk density, 1.295 g/cm3 and individual bulk densities for each flight line, with Phase 2 

of the North American Land Data Assimilation System (NLDAS-2) Mosaic, VIC, and Noah 

model SM products 

 



226 
 

 

Figure S3. Comparison of NOAA airborne gamma soil moisture with Phase 2 of the North 

American Land Data Assimilation System (NLDAS-2) Mosaic, VIC, and Noah model SM 

products 
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Figure S4. The ground-based SWE locations with the NOAA airborne gamma flight lines with 

IGBP land cover and elevation maps. The Glacial Ridge, Minnesota site operated by the United 

States Department of Agriculture (USDA) Soil Climate Analysis Network (SCAN) (green color) 

and three snow survey sites collected by the United States Army Corps of Engineer (USACE) St. 

Paul District (red color).  
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Figure S5. Schematic diagram of the entire process by separating the soil moisture (SM) and 

snow water equivalent (SWE) parts 
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Figure S6. Comparison of NOAA airborne gamma soil moisture with NLDAS-2 Mosaic, 

SMAP, and AMSR2 SM products along with NLDAS-2 VIC and Noah model SM products for 

only forests 
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Figure S7. Agreements between operational NOAA airborne gamma SWE and Special Sensor 

Microwave Imager Sounder (SSMIS) SWE according to land cover type. 
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Figure S8. Same as Figure 7, but for grassland & croplands (a, b), grassland (c, d), and 

croplands (e, f), separately. 
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CHAPTER 5 

 

 

Figure S1. Comparison between daily SSMI/S, GlobSnow-2, and UA snow water equivalent 

with daily NOAA airborne gamma radiation snow water equivalent observations from 1982 to 

2017 with coloring land cover type by NOAA river forecasting centers (RFCs) boundaries: 

North-Central (NC), Missouri Basin (MB), Ohio (OH), North-East (NE) 
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Figure S2. Same as Figure S1, but for Mid-Atlantic (MA), Colorado Basin RFC (CB), 

Northwest (NW), and California Nevada (CN) 
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Figure S3. Scatterplot between gamma SWE and UA SWE for a gamma flight line “WY122” in 

Wyoming, U.S.  
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Figure S4. A series of boxplots for R-value between daily SSMI/S, GlobSnow-2, and UA snow 

water equivalent and daily NOAA airborne gamma radiation snow water equivalent where (a) 

each of the snow classifications is subdivided by six land cover types and (b) each of the land 

cover types is subdivided by five snow classes. 
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Figure S5. Comparison of SWE differences between original SSMI/S and modified SSMI/S by 

forest factor against airborne gamma radiation SWE data with fractional tree cover (%) (Foster et 

al., 2005). Forest factor is calculated by %tree cover ranging from 1 (no forest) to 2 (100% 

fractional forest cover). 
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Table S1. The number of airborne gamma radiation SWE flights in grasslands and evergreen 

Needleleaf forest land cover type by U.S. states  

 

 

Table S2. The number of airborne gamma radiation SWE flights in areas with more than 80% of 

tree cover fraction by U.S. states  

 

 

 

 

 

 

 

 

 

 

 

 

 

Grasslands Evergreen needleleaf forest 

U.S. State 
Number of 

SWE flights 

Percent, 

% 
U.S. State 

Number of 

SWE 

flights 

Percent, 

% 

Wyoming 771 29.2 Colorado 897 51.7 

Utah 650 24.6 California 262 15.1 

Colorado 556 21.1 Utah 171 9.9 

Montana 175 6.6 Arizona 164 9.5 

North Dakota 160 6.1 Wyoming 66 3.8 

Idaho 97 3.7 Idaho 65 3.7 

California 92 3.5 Oregon 43 2.5 

Nevada 49 1.9 Montana 41 2.4 

Oregon 44 1.7 Washington 26 1.5 

South Dakota 44 1.7    

Arizona 2 0.1    

> 80% of tree cover fraction 

U.S. State 
Number of 

SWE flights 

Percent, 

% 

Maine 805 31.9 

New York 622 24.6 

Michigan 285 11.3 

Vermont 188 7.4 

New Hampshire 162 6.4 

Wisconsin 159 6.3 

Minnesota 74 2.9 

West Virginia 73 2.9 

Pennsylvania 70 2.8 

Massachusetts 54 2.1 

Idaho 13 0.5 

Connecticut 11 0.4 

California 4 0.2 

Montana 3 0.1 

Colorado 2 0.1 

Washington 1 0.0 
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