18,888 research outputs found

    Energy efficient security and privacy management in sensor clouds

    Get PDF
    Sensor Cloud is a new model of computing for Wireless Sensor Networks, which facilitates resource sharing and enables large scale sensor networks. A multi-user distributed system, however, where resources are shared, has inherent challenges in security and privacy. The data being generated by the wireless sensors in a sensor cloud need to be protected against adversaries, which may be outsiders as well as insiders. Similarly the code which is disseminated to the sensors by the sensor cloud needs to be protected against inside and outside adversaries. Moreover, since the wireless sensors cannot support complex, energy intensive measures, the security and privacy of the data and the code have to be attained by way of lightweight algorithms. In this work, we first present two data aggregation algorithms, one based on an Elliptic Curve Cryptosystem (ECC) and the other based on symmetric key system, which provide confidentiality and integrity of data against an outside adversary and privacy against an in network adversary. A fine grained access control scheme which works on the securely aggregated data is presented next. This scheme uses Attribute Based Encryption (ABE) to achieve this objective. Finally, to securely and efficiently disseminate code in the sensor cloud, we present a code dissemination algorithm which first reduces the amount of code to be transmitted from the base station. It then uses Symmetric Proxy Re-encryption along with Bloom filters and HMACs to protect the code against eavesdropping and false code injection attacks. --Abstract, page iv

    A Survey of Access Control Models in Wireless Sensor Networks

    Get PDF
    Copyright 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/)Wireless sensor networks (WSNs) have attracted considerable interest in the research community, because of their wide range of applications. However, due to the distributed nature of WSNs and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. Resource constraints in sensor nodes mean that security mechanisms with a large overhead of computation and communication are impractical to use in WSNs; security in sensor networks is, therefore, a challenge. Access control is a critical security service that offers the appropriate access privileges to legitimate users and prevents illegitimate users from unauthorized access. However, access control has not received much attention in the context of WSNs. This paper provides an overview of security threats and attacks, outlines the security requirements and presents a state-of-the-art survey on access control models, including a comparison and evaluation based on their characteristics in WSNs. Potential challenging issues for access control schemes in WSNs are also discussed.Peer reviewe

    An evaluation of break-the-glass access control model for medical data in wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) have recently attracted a lot of attention in the research community because it is easy to deploy them in the physical environment and collect and disseminate environmental data from them. The collected data from sensor nodes can vary based on what kind of application is used for WSNs. Data confidentiality and access control to that collected data are the most challenging issues in WSNs because the users are able to access data from the different location via ad-hoc manner. Access control is one of the critical requirements to prevent unauthorised access from users. The current access control models in information systems cannot be applied straightforwardly because of some limitations namely limited energy, resource and memory, and low computation capability. Based on the requirements of WSNs, we proposed the Break-The-Glass Access Control (BTG-AC) model which is the modified and redesigned version of Break-The-Glass Role-Based Access Control (BTG-RBAC) model. The several changes within the access control engine are made in BTG-RBAC to apply and fit in WSNs. We developed the BTG-AC model in Ponder2 package. Also a medical scenario was developed to evaluate the BTG-AC model for medical data in WSNs. In this paper, detail design, implementation phase, evaluation result and policies evaluation for the BTG-AC model are presented. Based on the evaluation result, the BTG-AC model can be used in WSNs after several modifications have been made under Ponder2 Package

    GRIDKIT: Pluggable overlay networks for Grid computing

    Get PDF
    A `second generation' approach to the provision of Grid middleware is now emerging which is built on service-oriented architecture and web services standards and technologies. However, advanced Grid applications have significant demands that are not addressed by present-day web services platforms. As one prime example, current platforms do not support the rich diversity of communication `interaction types' that are demanded by advanced applications (e.g. publish-subscribe, media streaming, peer-to-peer interaction). In the paper we describe the Gridkit middleware which augments the basic service-oriented architecture to address this particular deficiency. We particularly focus on the communications infrastructure support required to support multiple interaction types in a unified, principled and extensible manner-which we present in terms of the novel concept of pluggable overlay networks

    A component-based middleware framework for configurable and reconfigurable Grid computing

    Get PDF
    Significant progress has been made in the design and development of Grid middleware which, in its present form, is founded on Web services technologies. However, we argue that present-day Grid middleware is severely limited in supporting projected next-generation applications which will involve pervasive and heterogeneous networked infrastructures, and advanced services such as collaborative distributed visualization. In this paper we discuss a new Grid middleware framework that features (i) support for advanced network services based on the novel concept of pluggable overlay networks, (ii) an architectural framework for constructing bespoke Grid middleware platforms in terms of 'middleware domains' such as extensible interaction types and resource discovery. We believe that such features will become increasingly essential with the emergence of next-generation e-Science applications. Copyright (c) 2005 John Wiley & Sons, Ltd

    Fine-grained management of CoAP interactions with constrained IoT devices

    Get PDF
    As open standards for the Internet of Things gain traction, the current Intranet of Things will evolve to a truly open Internet of Things, where constrained devices are first class citizens of the public Internet. However, the large amount of control over constrained networks offered by today's vertically integrated platforms, becomes even more important in an open IoT considering its promise of direct end-to-end interactions with constrained devices. In this paper a set of challenges is identified for controlling interactions with constrained networks that arise due to their constrained nature and their integration with the public Internet. Furthermore, a number of solutions are presented for overcoming these challenges by means of an intercepting intermediary at the edge of the constrained network
    • …
    corecore