248 research outputs found

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    DeLiA: a New Family of Redundant Robot Manipulators

    Get PDF

    Distance geometry in active structures

    Get PDF
    The final publication is available at link.springer.comDistance constraints are an emerging formulation that offers intuitive geometrical interpretation of otherwise complex problems. The formulation can be applied in problems such as position and singularity analysis and path planning of mechanisms and structures. This paper reviews the recent advances in distance geometry, providing a unified view of these apparently disparate problems. This survey reviews algebraic and numerical techniques, and is, to the best of our knowledge, the first attempt to summarize the different approaches relating to distance-based formulations.Peer ReviewedPostprint (author's final draft

    A geometric Newton-Raphson method for Gough-Stewart platforms

    Get PDF
    A geometric version of the well known Newton-Raphson methods is introduced. This root finding method is adapted to find the zero of a function defined on the group of rigid body displacements. At each step of the algorithm a rigid displacement is found that approximates the solution. The method is applied to the forward kinematics problem of the Gough-Stewart platform. © 2009 Springer-Verlag Berlin Heidelberg

    Mobile Icosapods

    Get PDF
    Pods are mechanical devices constituted of two rigid bodies, the base and the platform, connected by a number of other rigid bodies, called legs, that are anchored via spherical joints. It is possible to prove that the maximal number of legs of a mobile pod, when finite, is 20. In 1904, Borel designed a technique to construct examples of such 20-pods, but could not constrain the legs to have base and platform points with real coordinates. We show that Borel’s construction yields all mobile 20-pods, and that it is possible to construct examples where all coordinates are real
    • …
    corecore