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A Geometric Newton-Raphson Method for
Gough-Stewart Platforms

J.M. Selig and Hui Li

Abstract A geometric version of the well known Newton-Raphson meghisdn-
troduced. This root finding method is adapted to find the zéeofanction defined
on the group of rigid body displacements. At each step of kpershm a rigid dis-
placement is found that approximates the solution. The ateth applied to the
forward kinematics problem of the Gough-Stewart platform.

1 Introduction

The forward kinematics of parallel manipulators is a welbkm ‘hard’ problem. It
requires that the rigid-body displacement undergone byldwform is found given
the lengths of the six legs. For a general Gough-Stewarfpiaf there are up to 40
possible solutions, [10, 6, 9, 11, 1, 14]. Many workers haedunumerical methods
for this problem, for example [4, 15, 2, 7, 3, 8]. Most of thienk concerns finding
all solutions and uses general numerical techniques whachad take account of
the geometry of the group of rigid-body displacements.

Here we present a practical, fast numerical algorithm tinalisfa single solution
given the solution at a nearby position. The idea is that kipershm might be used
in real-time with the solution at the last time-step as aiguess for the current
configuration. Many different root-finding techniques abible used here but no-
tice that the solution required is a rigid displacement.tS@éms sensible to use a
method that respects this structure. That is a geometriernioad method, a method
designed to work on a smooth manifold or Lie group. Such ndstame becoming
more popular though most current work seems to be on geanieteigration, see
[5] for example.
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The idea of a geometric root finding method for this probleemséo have been
first suggested by Wang [16]. The method proposed here hasaselifferences
to Wang’s. Our method is a geometric version of the well-kndvewton-Raphson
method and hence can be expected to be fast and reasonalsy. vblso our method
of updating the approximation for the rigid displacemeittased on the exponential
map, this is more accurate than the method used by Wang.I{;hiud condition
for termination of the algorithm is based on the differenetneen the desired leg-
lengths and the computed lengths rather thaadhocmetric in the group. There
some other minor differences too.

We begin with some background material to establish a caeménotation.

2 Rigid Body Displacements and Screws

Rigid body displacements can be written as 4 matrices,

(5 )

with Ra 3x 3 rotation matrix and a translation vector. We denote a point in space
by a vectomp = (x, y, 2)", then we extend this vector by adding an extra 1. After the
rigid transformation the new position of the point will bevgn by,

7= (7)=(5 1) (5)= (") =we

Notice that we use the tilde to denote the 4-dimensionatiposiector.

Elements of the Lie algebra of the group correspond to vidmscor small dis-
placements, they are called twists or screws. A motion iglaipahe group given by
a continuously parameterised sequence of group elerivjs At any parameter
value there is a Lie algebra element given by,

S— (%M(t)) M(t) L = (% ‘6)

whereQ is a 3x 3 anti-symmetric matrix corresponding to the angular viéyoaf
the motion. The vector is the linear velocity of the origin.
It is often convenient to write screws as 6-dimensional me;tcorresponding

to a screwS= <£(§ \6) we can write a vectors = i‘;) , Where the vectow
corresponds to the anti-symmetric matéxin the following way, for any vectou

we haveQu = w x u.
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Fig. 1 The General Gough-Stewart Platform.

Elements of the dual space to the Lie algebra are called \Wwesnand written,
W = <|€> , whereF is a force and is a moment. These could also be linear and

angular momenta, if we were considering dynamics.

If a rigid body is moving with instantaneous velocity giventhe screwsand is
acted on by a total force and moment given by the wrefictinen the instantaneous
power exerted on the body is given by,

power=#Ts=T-w+F-v.

A more comprehensive account of this view of screw theorybeafound in [12].

3 The Gough-Stewart Platform

Assume the position and orientation of the platform is gjube leg-lengths are
simple to find. Letg; be the position of the centre of the spherical joint onitiie
leg at the base. In the home configuration the correspondisijign of the joint
centre on the platform will béy;. The length of thé-th leg, or rather its square, is,

7= (a—-Mb) (& —Mb) i=1...6 1)

HereM is a rigid transformation written as a 4 matrix amds the 4-vector corre-
sponding to the poirth;, see the previous section.

In equation (1), the matrikl represents the displacement that takes the platform
from home to the current position. Think of the leg lengthsamponents of a
mapping from the group to the space of leg-leng8&,3) — R®. A point in R®
is given in coordinates g$1, I», . . ., lg). We will need the Jacobian of this mapping,
and its inverse later. To find the Jacobian the derivativeb®feg-lengths can be
taken,
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—Ll =2l = —2(& —B) " Shy. )

dt |,_o

The matrixShere is the velocity screw of the rigid transformati@as (M)M~1,
Rearranging (2) using the cyclic property of the scalatérgroduct, gives,

R ~ 1 w
li = I__(bi —ai)TSbi = l—((a| xbi)T, (b —a)") (V) .
| |
This gives the joint rate of each leg as a linear function efitblocity screw of the
platform. The Jacobia, is the matrix satisfying the formula,

()=

So it can be seen that the rows of this Jacobian matrix are\gimp

T = %((aa xbi)T, (b —a&)T), i=1,....6.

This is the wrench given by a unit force directed alongitkteleg.

4 A Geometric Newton-Raphson M ethod

In general we are trying to find a root of the vector functigiM ), in particular this
vector function is given by the inverse kinematics of thefplan. That is we set,
Li= (&—Mb) (& —Mb)—12,  i=1,...6

PERIINIPR O

and then, ;
F(M) = (L11L21L37L41L5,L6) .

So, given the six leg-lengths, ..., ls we seek the rigid transformatidd which
satisfied=(M) = 0.

The key idea here is to represent an error in position andh@tien by an ex-
ponential of the form & whereS represents the error in the Lie algebra. We will
refer toS as theerror screw So the recursion for the rigid-body displacement we
are trying to find will have the form,

M+ — es“)M(i)
whereM () is thei-th iterate for the solution an®l’) is thei-th error screw. The error
screw is found as follows. Consider the Taylor series agpration for the function
F(€'SM) about the rooM,
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d
F(&5M) ~ F(M) +taF(etSM)t:0.
SinceM is a root ofF, F(M) = 0. To compute the derivative ¢ we can look at
the component functions and as in the previous section,

dlj

~ AT - / / i W
Etzoz—z(a@—Mbi) SNbi:Z((axbi)T,(bi—a)T)( ) (3)

v
whereb; = Rb; +t is the position of the poirtt; at the solution. The Taylor expan-
sion can now be written,

F(eSM) ~ K(M)st,

where the matribK (M) = 2diagly, I»,...,ls)J(M), with J(M) the Jacobian of the
platform. The error screw, is found by solving the above equation with- 1, so
s= —KY(M)F(eM).

As usual with the Newton-Raphson method, we don't know theevaf the
inverse Jacobian at the solutibvhso we approximate it bK*l(M(”). This justifies
our use of the following recurrence relation &r

s = KLY FMD),
This recurrence relation, together with the update retefoo M():
M+ — eS“)M(i)’

forms our numerical method. A sensible choice for the camwlifor iteration to
terminate is that the quantiti#(M®")|? be smaller than some predetermined thresh-
old. Notice that this quantity is the sum of the squares ofeurners,Lf +-+ Lé.

In practical situations the threshold value should be deitezd by the accuracy to
which the leg-lengths can be measured.

5 Summary of the Algorithm

For convenience we summarise the algorithm sketched alaree h

Inputs:
Home position of passive joints,...,as, b; ..., bs,
Current position and orientatidvi©,
Desired leg-lengthdy, .. ., ls,
Accuracy threshold).

Outputs:
Position and orientation for desired leg-lengtis,

Method:
ComputeF(M(©),
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ComputelF(M©@)2,
While § > |[F(M())[2 Repeat:
Evaluate the Jacobia(M (1)),
Compute the error screw,
g+l — —K_l(M(i))F(M(i)),
Update the position and orientation estimate,
M+ — 87 Mm@,
ComputeF(M{+1),
ComputelF(M(+D)]2,
OutputM = M{+D),

6 Implementation Details

The proposed algorithm was implementedMiathematicafor simplicity and lit-
tle attention was paid to optimising the code. The followiegharks are relevant
whatever language is used.

When computing the rows of the Jacobian equation (3) shoeldded rather
than the relatioik (M) = 2diadly, I, ...,16)J(M).

The error screvg, can be found using standard linear algebra libraries. Ofsz
this will fail when the Jacobian is singular or nearly sirayuhnd these exceptions
should be caught.

A fundamental question is whether rigid displacements khioei represented by
matrices or quaternions. The action of matrices on poirggngler than the corre-
sponding action using quaternions. On the other hand thdupt®f two rigid dis-
placements is simpler using quaternions. Especially if amsiders that the result
of a matrix multiplication must be subject to a Gramm-Schmithogonalisation
to ensure that it is still an orthogonal matrix. By contragtaternions only need to
be normalised.

The exponential of a scre®can be computed using a degree 3 polynomial in
the 4x 4 matrix S, similar to the Rodrigues formula for rotations, see [1B7j.
similar relations can be found for quaternions. To mininti@enumber of arithmetic
operations, nested multiplication should be used to etalh&se polynomials.

Absolute Error

3 T 3

Iteration Number

Fig. 2 Initial and final pose of the Gough-
Stewart Platform for the first example in
the text.

Fig. 3 Plot of the absolute error in the
length leg 1 against iteration number for
the second example in the text.
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7 Numerical Examples

Here we study the example presented by Wang [16]. The pnositod the passive
spherical joints on the base and the home positions of theriaih joints on the
platform are,

a; = (2sin(11/12),2cog1/12),0)7, by = (2sin(3m/12),2cog3m/12),3)7,
ap = (2sin(7m/12),2cog7m/12),0)7 by = (2sin(5m/12),2cog5m/12),3)7,
ag = (2sin(971/12),2cog9m/12),0)7, bs = (2sin(111/12),2c0g11m1/12),3)7,
as = (2sin(157/12),2 cog157m/12),0)7, by = (2sin(13711/12),2cog1311/12),3)7,
as = (2sin(17m/12),2cog1711/12),0)7, bs = (2sin(1971/12),2cog1971/12),3)7,
as = (2sin(23m/12),2cog231/12),0)". be = (2sin(2171/12),2cog2171/12),3)T.

We seek a rigid displacement for which the leg-lengths are
l; =5.7568 |, = 6.6353 I3 = 7.383614 = 7.1991 |5 = 5.5535 |g = 6.2567.

After 5 iteration of the algorithm, using the identity as inéial value M(©), the

resultis,
0.4329 06250 —0.6495 —1.0514

—0.7500 06495 01250 16250
0.5000 04331 Q7500 27500
0 0 0 1

This position is illustrated in Fig.2. The leg-length egathat is the difference be-
tween the desired and computed leg-lengths-ag5 x 1072, —8.8 x 107°,—2.9x
102,56 x 10719 1.2 x 1078,1.8 x 10 ° respectively for the legs 1 to 6.

This computation took 0.01s running on a 2GHz Pentium 4 msmewith
496MB of RAM.

We can make the algorithm work harder by setting the desagddngths closer
to a singularity. The manipulator will be singular if platfio and base are coplanar.
Setting the desired leg-lengths to,

M:

1 =2.844291,=1.07787 13=2.844291,=1.07787 |5 =2.8442915 =1.07787,
gives the rigid displacement from the home position,

0.5000 —0.8660 Q0000 Q000

0.8660 050000 00000 Q0000

0.0000 Q0000 10000 —2.7000]°
0 0 0 1

M:

after 7 iterations. A plot of the error in the length of leg Jaatst the number of it-

erations is shown in Fig. 3, this shows the quadratic impresma in error expected
of the Newton-Raphson method. Plots of the errors in therdélgelengths are very
similar. After the seven iterations the errors in all the-leggths 1 to 6 are respec-
tivly, 1.3x10°2,34x10°1.3%x10°934x10°1.3x10 %and 34x 10°°.
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8 Conclusions

The algorithm presented here appears to be fast and redgoobbst. However
some improvements may be possible.
For some designs of Gough-Stewart platform, notably thep&orm, it is pos-
sible to use a semi-numerical routine to find the inversekliaowf the manipulator.
Rather than use the exponential map to represent errorigjtit tre better to use a
Cayley map instead, see[13]. This is because the expoheragainvolves division
by the rotational error, this can be small if the error is adireopure translation.
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