155 research outputs found

    Synthesis, Interdiction, and Protection of Layered Networks

    Get PDF
    This research developed the foundation, theory, and framework for a set of analysis techniques to assist decision makers in analyzing questions regarding the synthesis, interdiction, and protection of infrastructure networks. This includes extension of traditional network interdiction to directly model nodal interdiction; new techniques to identify potential targets in social networks based on extensions of shortest path network interdiction; extension of traditional network interdiction to include layered network formulations; and develops models/techniques to design robust layered networks while considering trade-offs with cost. These approaches identify the maximum protection/disruption possible across layered networks with limited resources, find the most robust layered network design possible given the budget limitations while ensuring that the demands are met, include traditional social network analysis, and incorporate new techniques to model the interdiction of nodes and edges throughout the formulations. In addition, the importance and effects of multiple optimal solutions for these (and similar) models is investigated. All the models developed are demonstrated on notional examples and were tested on a range of sample problem sets

    Finding and Mitigating Geographic Vulnerabilities in Mission Critical Multi-Layer Networks

    Get PDF
    Title from PDF of title page, viewed on June 20, 2016Dissertation advisor: Cory BeardVitaIncludes bibliographical references (pages 232-257)Thesis(Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2016In Air Traffic Control (ATC), communications outages may lead to immediate loss of communications or radar contact with aircraft. In the short term, there may be safety related issues as important services including power systems, ATC, or communications for first responders during a disaster may be out of service. Significant financial damage from airline delays and cancellations may occur in the long term. This highlights the different types of impact that may occur after a disaster or other geographic event. The question is How do we evaluate and improve the ability of a mission-critical network to perform its mission during geographically correlated failures? To answer this question, we consider several large and small networks, including a multi-layer ATC Service Oriented Architecture (SOA) network known as SWIM. This research presents a number of tools to analyze and mitigate both long and short term geographic vulnerabilities in mission critical networks. To provide context for the tools, a disaster planning approach is presented that focuses on Resiliency Evaluation, Provisioning Demands, Topology Design, and Mitigation of Vulnerabilities. In the Resilience Evaluation, we propose a novel metric known as the Network Impact Resilience (NIR) metric and a reduced state based algorithm to compute the NIR known as the Self-Pruning Network State Generation (SP-NSG) algorithm. These tools not only evaluate the resiliency of a network with a variety of possible network tests, but they also identify geographic vulnerabilities. Related to the Demand Provisioning and Mitigation of Vulnerabilities, we present methods that focus on provisioning in preparation for rerouting of demands immediately following an event based on Service Level Agreements (SLA) and fast rerouting of demands around geographic vulnerabilities using Multi-Topology Routing (MTR). The Topology Design area focuses on adding nodes to improve topologies to be more resistant to geographic vulnerabilities. Additionally, a set of network performance tools are proposed for use with mission critical networks that can model at least up to 2nd order network delay statistics. The first is an extension of the Queueing Network Analyzer (QNA) to model multi-layer networks (and specifically SOA networks). The second is a network decomposition tool based on Linear Algebraic Queueing Theory (LAQT). This is one of the first extensive uses of LAQT for network modeling. Benefits, results, and limitations of both methods are described.Introduction -- SWIM Network - Air traffic Control example -- Performance analysis of mission critical multi-layer networks -- Evaluation of geographically correlated failures in multi-layer networks -- Provisioning and restoral of mission critical services for disaster resilience -- Topology improvements to avoid high impact geographic events -- Routing of mission critical services during disasters -- Conclusions and future research -- Appendix A. Pub/Sub simulation model description -- Appendix B. ME Random Number Generatio

    Project BeARCAT : Baselining, Automation and Response for CAV Testbed Cyber Security : Connected Vehicle & Infrastructure Security Assessment

    Get PDF
    Connected, software-based systems are a driver in advancing the technology of transportation systems. Advanced automated and autonomous vehicles, together with electrification, will help reduce congestion, accidents and emissions. Meanwhile, vehicle manufacturers see advanced technology as enhancing their products in a competitive market. However, as many decades of using home and enterprise computer systems have shown, connectivity allows a system to become a target for criminal intentions. Cyber-based threats to any system are a problem; in transportation, there is the added safety implication of dealing with moving vehicles and the passengers within

    Formally designing and implementing cyber security mechanisms in industrial control networks.

    Get PDF
    This dissertation describes progress in the state-of-the-art for developing and deploying formally verified cyber security devices in industrial control networks. It begins by detailing the unique struggles that are faced in industrial control networks and why concepts and technologies developed for securing traditional networks might not be appropriate. It uses these unique struggles and examples of contemporary cyber-attacks targeting control systems to argue that progress in securing control systems is best met with formal verification of systems, their specifications, and their security properties. This dissertation then presents a development process and identifies two technologies, TLA+ and seL4, that can be leveraged to produce a high-assurance embedded security device. The method presented in this dissertation takes an informal design of an embedded device that might be found in a control system and 1) formalizes the design within TLA+, 2) creates and mechanically checks a model built from the formal design, and 3) translates the TLA+ design into a component-based architecture of a native seL4 application. The later chapters of this dissertation describe an application of the process to a security preprocessor embedded device that was designed to add security mechanisms to the network communication of an existing control system. The device and its security properties are formally specified in TLA+ in chapter 4, mechanically checked in chapter 5, and finally its native seL4 architecture is implemented in chapter 6. Finally, the conclusions derived from the research are laid out, as well as some possibilities for expanding the presented method in the future

    Advanced Topics in Systems Safety and Security

    Get PDF
    This book presents valuable research results in the challenging field of systems (cyber)security. It is a reprint of the Information (MDPI, Basel) - Special Issue (SI) on Advanced Topics in Systems Safety and Security. The competitive review process of MDPI journals guarantees the quality of the presented concepts and results. The SI comprises high-quality papers focused on cutting-edge research topics in cybersecurity of computer networks and industrial control systems. The contributions presented in this book are mainly the extended versions of selected papers presented at the 7th and the 8th editions of the International Workshop on Systems Safety and Security—IWSSS. These two editions took place in Romania in 2019 and respectively in 2020. In addition to the selected papers from IWSSS, the special issue includes other valuable and relevant contributions. The papers included in this reprint discuss various subjects ranging from cyberattack or criminal activities detection, evaluation of the attacker skills, modeling of the cyber-attacks, and mobile application security evaluation. Given this diversity of topics and the scientific level of papers, we consider this book a valuable reference for researchers in the security and safety of systems

    Wide spectrum attribution: Using deception for attribution intelligence in cyber attacks

    Get PDF
    Modern cyber attacks have evolved considerably. The skill level required to conduct a cyber attack is low. Computing power is cheap, targets are diverse and plentiful. Point-and-click crimeware kits are widely circulated in the underground economy, while source code for sophisticated malware such as Stuxnet is available for all to download and repurpose. Despite decades of research into defensive techniques, such as firewalls, intrusion detection systems, anti-virus, code auditing, etc, the quantity of successful cyber attacks continues to increase, as does the number of vulnerabilities identified. Measures to identify perpetrators, known as attribution, have existed for as long as there have been cyber attacks. The most actively researched technical attribution techniques involve the marking and logging of network packets. These techniques are performed by network devices along the packet journey, which most often requires modification of existing router hardware and/or software, or the inclusion of additional devices. These modifications require wide-scale infrastructure changes that are not only complex and costly, but invoke legal, ethical and governance issues. The usefulness of these techniques is also often questioned, as attack actors use multiple stepping stones, often innocent systems that have been compromised, to mask the true source. As such, this thesis identifies that no publicly known previous work has been deployed on a wide-scale basis in the Internet infrastructure. This research investigates the use of an often overlooked tool for attribution: cyber de- ception. The main contribution of this work is a significant advancement in the field of deception and honeypots as technical attribution techniques. Specifically, the design and implementation of two novel honeypot approaches; i) Deception Inside Credential Engine (DICE), that uses policy and honeytokens to identify adversaries returning from different origins and ii) Adaptive Honeynet Framework (AHFW), an introspection and adaptive honeynet framework that uses actor-dependent triggers to modify the honeynet envi- ronment, to engage the adversary, increasing the quantity and diversity of interactions. The two approaches are based on a systematic review of the technical attribution litera- ture that was used to derive a set of requirements for honeypots as technical attribution techniques. Both approaches lead the way for further research in this field

    ANOMALY INFERENCE BASED ON HETEROGENEOUS DATA SOURCES IN AN ELECTRICAL DISTRIBUTION SYSTEM

    Get PDF
    Harnessing the heterogeneous data sets would improve system observability. While the current metering infrastructure in distribution network has been utilized for the operational purpose to tackle abnormal events, such as weather-related disturbance, the new normal we face today can be at a greater magnitude. Strengthening the inter-dependencies as well as incorporating new crowd-sourced information can enhance operational aspects such as system reconfigurability under extreme conditions. Such resilience is crucial to the recovery of any catastrophic events. In this dissertation, it is focused on the anomaly of potential foul play within an electrical distribution system, both primary and secondary networks as well as its potential to relate to other feeders from other utilities. The distributed generation has been part of the smart grid mission, the addition can be prone to electronic manipulation. This dissertation provides a comprehensive establishment in the emerging platform where the computing resources have been ubiquitous in the electrical distribution network. The topics covered in this thesis is wide-ranging where the anomaly inference includes load modeling and profile enhancement from other sources to infer of topological changes in the primary distribution network. While metering infrastructure has been the technological deployment to enable remote-controlled capability on the dis-connectors, this scholarly contribution represents the critical knowledge of new paradigm to address security-related issues, such as, irregularity (tampering by individuals) as well as potential malware (a large-scale form) that can massively manipulate the existing network control variables, resulting into large impact to the power grid

    Cyber-Physical Threat Intelligence for Critical Infrastructures Security

    Get PDF
    Modern critical infrastructures comprise of many interconnected cyber and physical assets, and as such are large scale cyber-physical systems. Hence, the conventional approach of securing these infrastructures by addressing cyber security and physical security separately is no longer effective. Rather more integrated approaches that address the security of cyber and physical assets at the same time are required. This book presents integrated (i.e. cyber and physical) security approaches and technologies for the critical infrastructures that underpin our societies. Specifically, it introduces advanced techniques for threat detection, risk assessment and security information sharing, based on leading edge technologies like machine learning, security knowledge modelling, IoT security and distributed ledger infrastructures. Likewise, it presets how established security technologies like Security Information and Event Management (SIEM), pen-testing, vulnerability assessment and security data analytics can be used in the context of integrated Critical Infrastructure Protection. The novel methods and techniques of the book are exemplified in case studies involving critical infrastructures in four industrial sectors, namely finance, healthcare, energy and communications. The peculiarities of critical infrastructure protection in each one of these sectors is discussed and addressed based on sector-specific solutions. The advent of the fourth industrial revolution (Industry 4.0) is expected to increase the cyber-physical nature of critical infrastructures as well as their interconnection in the scope of sectorial and cross-sector value chains. Therefore, the demand for solutions that foster the interplay between cyber and physical security, and enable Cyber-Physical Threat Intelligence is likely to explode. In this book, we have shed light on the structure of such integrated security systems, as well as on the technologies that will underpin their operation. We hope that Security and Critical Infrastructure Protection stakeholders will find the book useful when planning their future security strategies
    corecore