176 research outputs found

    Active and Passive Thermography for the Detection of Defects in Green-State Powdermetallic Compacts

    Get PDF
    Despite its maturity, the powder metallurgy (PM) fabrication process continues to rely heavily on indirect methods to determine and predict the quality of its compacts early in the manufacturing line. Currently, the most comprehensive testing is performed on sintered parts, resulting in higher cost and increased waste. This dissertation addresses the need of early inspection by developing a novel approach whereby PM compacts are tested in the green-state without intrusion and with minimal cost per compact tested. The method is based on an infrared detection scheme with two fundamental embodiments. For high resolution applications, or offline testing, an active thermography approach is adopted; electric energy is deposited into the compact in a contact-less fashion to evaluate all parts for cracks, inclusions, or delaminations. As an alternative, for lower resolution high-yield applications, a system based on a passive thermography approach is developed. This system relies on residual heating emanating from the process. Thermal data is then collected and analyzed in an effort to yield part integrity and process stability information. In this dissertation we will discuss our design approach, theoretical modeling aspects, and a proof-of-concept instrument with associated data processing software. We will first describe the underlying physical principles, followed by predictions from the modeling formulation, including a solution of the heat equation. As part of our experimental data processing, we will present results that are collected both in a laboratory setting and in an industrial manufacturing line. The integrity of the compacts is carried out with the aid of a specialized software package

    Modelling and experimental investigation of magnetic flux leakage distribution for hairline crack detection and characterization

    Get PDF
    The Magnetic Flux Leakage (MFL) method is a well-established branch of electromagnetic Non-Destructive Evaluation (NDE) extensively used to assess the physical condition of ferromagnetic structures. The main research objective of this research work presented in this thesis is the detection and characterization of the MFL distribution caused by rectangular surface and far-surface hairline cracks. It looks at the use of the direct current and pulsed current techniques to investigate the presence of hairline cracks in ferromagnetic steel pipelines, by comparing the Finite Element Modelling (FEM) technique with practical experiments. First, the expected response of an MFL probe scanned across the area of a hairline crack was predicted using the 3D FEM numerical simulation technique. The axial magnetization technique is employed and the characteristics of the surface and far-surface leakage field profile

    Modelling and experimental investigation of magnetic flux leakage distribution for hairline crack detection and characterization

    Get PDF
    The Magnetic Flux Leakage (MFL) method is a well-established branch of electromagnetic Non-Destructive Evaluation (NDE) extensively used to assess the physical condition of ferromagnetic structures. The main research objective of this research work presented in this thesis is the detection and characterization of the MFL distribution caused by rectangular surface and far-surface hairline cracks. It looks at the use of the direct current and pulsed current techniques to investigate the presence of hairline cracks in ferromagnetic steel pipelines, by comparing the Finite Element Modelling (FEM) technique with practical experiments. First, the expected response of an MFL probe scanned across the area of a hairline crack was predicted using the 3D FEM numerical simulation technique. The axial magnetization technique is employed and the characteristics of the surface and far-surface leakage field profile

    Visual Inspection Algorithms for Printed Circuit Board Patterns A SURVEY

    Get PDF
    The importance of the inspection process has been magnified by the requirements of the modern manufacturing environment. In electronics mass-production manufacturing facilities, an attempt is often made to achieve 100 % quality assurance of all parts, subassemblies, and finished goods. A variety of approaches for automated visual inspection of printed circuits have been reported over the last two decades. In this survey, algorithms and techniques for the automated inspection of printed circuit boards are examined. A classification tree for these algorithms is presented and the algorithms are grouped according to this classification. This survey concentrates mainly on image analysis and fault detection strategies, these also include the state-of-the-art techniques. Finally, limitations of current inspection systems are summarized

    Infrared Thermography Enhancements for Concrete Bridge Evaluation

    Get PDF
    Infrared thermography is a well-recognized non-destructive testing technique for evaluating concrete bridge elements such as bridge decks and piers. However, overcoming some obstacles and limitations are necessary to be able to add this invaluable technique to the bridge inspector\u27s tool box. Infrared thermography is based on collecting radiant temperature and presenting the results as a thermal infrared image. Two methods considered in conducting an infrared thermography test include passive and active. The source of heat is the main difference between these two approaches of infrared thermography testing. Solar energy and ambient temperature change are the main heat sources in conducting a passive infrared thermography test, while active infrared thermography involves generating a temperature gradient using an external source of heat other than sun. Passive infrared thermography testing was conducted on three concrete bridge decks in Michigan. Ground truth information was gathered through coring several locations on each bridge deck to validate the results obtained from the passive infrared thermography test. Challenges associated with data collection and processing using passive infrared thermography are discussed and provide additional evidence to confirm that passive infrared thermography is a promising remote sensing tool for bridge inspections. To improve the capabilities of the infrared thermography technique for evaluation of the underside of bridge decks and bridge girders, an active infrared thermography technique using the surface heating method was developed in the laboratory on five concrete slabs with simulated delaminations. Results from this study demonstrated that active infrared thermography not only eliminates some limitations associated with passive infrared thermography, but also provides information regarding the depth of the delaminations. Active infrared thermography was conducted on a segment of an out-of-service prestressed box beam and cores were extracted from several locations on the beam to validate the results. This study confirms the feasibility of the application of active infrared thermography on concrete bridges and of estimating the size and depth of delaminations. From the results gathered in this dissertation, it was established that applying both passive and active thermography can provide transportation agencies with qualitative and quantitative measures for efficient maintenance and repair decision-making

    Evaluating the Need to Seal Thermal Cracks in Alaska’s Asphalt Concrete Pavements

    Get PDF
    INE/AUTC 12.2

    Synthesis Study: Overview of Readily Available Culvert Inspection Technologies

    Get PDF
    Culverts, conduits that facilitate passage of water beneath roadways and other structures, represent important components of infrastructure systems, helping to drain, direct or divert surface water and prevent the disruption of roadways. Their efficient inspection and maintenance is thus critical to safe operation of Indiana’s transportation infrastructure. Although approximately 25% of culverts associated with INDOT managed roadways are inspected each year, inspectors face many challenges determining the actual condition of culverts, which can vary substantially in material type, form, length, depth of cover, accessibility, and age. This study was therefore performed to understand and synthesize technical culvert inspection alternatives with a focus on identifying and prioritizing readily available solutions. Research revealed that no standard inspection guidelines exist for small culverts, and that inspection practices vary significantly across states. DOT survey results indicate that DOTs primarily rely on visual examination conducted by field personnel, often from the open ends of the culvert, limiting the range of flaws and failure modes that can be identified, and the desired early warning benefits of inspection. While a range of technologies exist to facilitate inspection, most methods apply to only a limited set of culvert materials and operating conditions. This study thus provides a ranked recommendation of readily available culvert inspection solutions, segmented according to their applicability to varying culvert conditions and inspection needs. Techniques involving mobile visual camera systems and multi-sensing modes stand out for their potential to provide insight into the condition of a variety of culvert types at moderate cost

    Acoustic Emission

    Get PDF
    Structural testing and assessment, process monitoring, and material characterization are three broad application areas of acoustic emission (AE) techniques. Quantitative and qualitative characteristics of AE waves have been studied widely in the literature. This book reviews major research developments in the application of AE in numerous engineering fields. It brings together important contributions from renowned international researchers to provide an excellent survey of new perspectives and paradigms of AE. In particular, this book presents applications of AE in cracking and damage assessment in metal beams, asphalt pavements, and composite materials as well as studying noise mitigation in wind turbines and cylindrical shells
    • …
    corecore