560 research outputs found

    On the structure of (pan, even hole)-free graphs

    Full text link
    A hole is a chordless cycle with at least four vertices. A pan is a graph which consists of a hole and a single vertex with precisely one neighbor on the hole. An even hole is a hole with an even number of vertices. We prove that a (pan, even hole)-free graph can be decomposed by clique cutsets into essentially unit circular-arc graphs. This structure theorem is the basis of our O(nm)O(nm)-time certifying algorithm for recognizing (pan, even hole)-free graphs and for our O(n2.5+nm)O(n^{2.5}+nm)-time algorithm to optimally color them. Using this structure theorem, we show that the tree-width of a (pan, even hole)-free graph is at most 1.5 times the clique number minus 1, and thus the chromatic number is at most 1.5 times the clique number.Comment: Accepted to appear in the Journal of Graph Theor

    Unit Interval Editing is Fixed-Parameter Tractable

    Full text link
    Given a graph~GG and integers k1k_1, k2k_2, and~k3k_3, the unit interval editing problem asks whether GG can be transformed into a unit interval graph by at most k1k_1 vertex deletions, k2k_2 edge deletions, and k3k_3 edge additions. We give an algorithm solving this problem in time 2O(klogk)(n+m)2^{O(k\log k)}\cdot (n+m), where k:=k1+k2+k3k := k_1 + k_2 + k_3, and n,mn, m denote respectively the numbers of vertices and edges of GG. Therefore, it is fixed-parameter tractable parameterized by the total number of allowed operations. Our algorithm implies the fixed-parameter tractability of the unit interval edge deletion problem, for which we also present a more efficient algorithm running in time O(4k(n+m))O(4^k \cdot (n + m)). Another result is an O(6k(n+m))O(6^k \cdot (n + m))-time algorithm for the unit interval vertex deletion problem, significantly improving the algorithm of van 't Hof and Villanger, which runs in time O(6kn6)O(6^k \cdot n^6).Comment: An extended abstract of this paper has appeared in the proceedings of ICALP 2015. Update: The proof of Lemma 4.2 has been completely rewritten; an appendix is provided for a brief overview of related graph classe

    Subclasses of Normal Helly Circular-Arc Graphs

    Full text link
    A Helly circular-arc model M = (C,A) is a circle C together with a Helly family \A of arcs of C. If no arc is contained in any other, then M is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, then M is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc graph is the intersection graph of the arcs of a Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc model. In this article we study these subclasses of Helly circular-arc graphs. We show natural generalizations of several properties of (proper) interval graphs that hold for some of these Helly circular-arc subclasses. Next, we describe characterizations for the subclasses of Helly circular-arc graphs, including forbidden induced subgraphs characterizations. These characterizations lead to efficient algorithms for recognizing graphs within these classes. Finally, we show how do these classes of graphs relate with straight and round digraphs.Comment: 39 pages, 13 figures. A previous version of the paper (entitled Proper Helly Circular-Arc Graphs) appeared at WG'0

    On the minimum and maximum selective graph coloring problems in some graph classes

    Get PDF
    Given a graph together with a partition of its vertex set, the minimum selective coloring problem consists of selecting one vertex per partition set such that the chromatic number of the subgraph induced by the selected vertices is minimum. The contribution of this paper is twofold. First, we investigate the complexity status of the minimum selective coloring problem in some specific graph classes motivated by some models described in Demange et al. (2015). Second, we introduce a new problem that corresponds to the worst situation in the minimum selective coloring; the maximum selective coloring problem aims to select one vertex per partition set such that the chromatic number of the subgraph induced by the selected vertices is maximum. We motivat

    Solving the Canonical Representation and Star System Problems for Proper Circular-Arc Graphs in Log-Space

    Get PDF
    We present a logspace algorithm that constructs a canonical intersection model for a given proper circular-arc graph, where `canonical' means that models of isomorphic graphs are equal. This implies that the recognition and the isomorphism problems for this class of graphs are solvable in logspace. For a broader class of concave-round graphs, that still possess (not necessarily proper) circular-arc models, we show that those can also be constructed canonically in logspace. As a building block for these results, we show how to compute canonical models of circular-arc hypergraphs in logspace, which are also known as matrices with the circular-ones property. Finally, we consider the search version of the Star System Problem that consists in reconstructing a graph from its closed neighborhood hypergraph. We solve it in logspace for the classes of proper circular-arc, concave-round, and co-convex graphs.Comment: 19 pages, 3 figures, major revisio

    Combinatorial Problems on HH-graphs

    Full text link
    Bir\'{o}, Hujter, and Tuza introduced the concept of HH-graphs (1992), intersection graphs of connected subgraphs of a subdivision of a graph HH. They naturally generalize many important classes of graphs, e.g., interval graphs and circular-arc graphs. We continue the study of these graph classes by considering coloring, clique, and isomorphism problems on HH-graphs. We show that for any fixed HH containing a certain 3-node, 6-edge multigraph as a minor that the clique problem is APX-hard on HH-graphs and the isomorphism problem is isomorphism-complete. We also provide positive results on HH-graphs. Namely, when HH is a cactus the clique problem can be solved in polynomial time. Also, when a graph GG has a Helly HH-representation, the clique problem can be solved in polynomial time. Finally, we observe that one can use treewidth techniques to show that both the kk-clique and list kk-coloring problems are FPT on HH-graphs. These FPT results apply more generally to treewidth-bounded graph classes where treewidth is bounded by a function of the clique number

    Succinct Data Structures for Families of Interval Graphs

    Full text link
    We consider the problem of designing succinct data structures for interval graphs with nn vertices while supporting degree, adjacency, neighborhood and shortest path queries in optimal time in the Θ(logn)\Theta(\log n)-bit word RAM model. The degree query reports the number of incident edges to a given vertex in constant time, the adjacency query returns true if there is an edge between two vertices in constant time, the neighborhood query reports the set of all adjacent vertices in time proportional to the degree of the queried vertex, and the shortest path query returns a shortest path in time proportional to its length, thus the running times of these queries are optimal. Towards showing succinctness, we first show that at least nlogn2nloglognO(n)n\log{n} - 2n\log\log n - O(n) bits are necessary to represent any unlabeled interval graph GG with nn vertices, answering an open problem of Yang and Pippenger [Proc. Amer. Math. Soc. 2017]. This is augmented by a data structure of size nlogn+O(n)n\log{n} +O(n) bits while supporting not only the aforementioned queries optimally but also capable of executing various combinatorial algorithms (like proper coloring, maximum independent set etc.) on the input interval graph efficiently. Finally, we extend our ideas to other variants of interval graphs, for example, proper/unit interval graphs, k-proper and k-improper interval graphs, and circular-arc graphs, and design succinct/compact data structures for these graph classes as well along with supporting queries on them efficiently
    corecore