
Thank

Citatio

See th

Version

Copyri

Link to

you for do

on:

is record i

n:

ght Statem

o Published

wnloading

in the RMI

ment: ©

d Version:

 this docum

IT Researc

ment from

ch Reposit

the RMIT R

ory at:

Research RRepository

PLEASE DO NOT REMOVE THIS PAGE

 Demange, M, Ekim, T and Ries, B 2016, 'On the minimum and maximum selective graph
coloring problems in some graph classes', Discrete Applied Mathematics, pp. 1-13.

https://researchbank.rmit.edu.au/view/rmit:34118

Accepted Manuscript

2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dam.2015.10.005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RMIT Research Repository

https://core.ac.uk/display/32238587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchbank.rmit.edu.au/

On the Minimum and Maximum Selective

Graph Coloring Problems in some Graph

Classes

Marc Demange∗ Tınaz Ekim† Bernard Ries‡

October 21, 2015

Abstract

Given a graph together with a partition of its vertex set, the minimum selective coloring

problem consists of selecting one vertex per partition set such that the chromatic

number of the subgraph induced by the selected vertices is minimum. The contribution

of this paper is twofold. First, we investigate the complexity status of the minimum

selective coloring problem in some specific graph classes motivated by some models

described in [9]. Second, we introduce a new problem that corresponds to the worst

situation in the minimum selective coloring; the maximum selective coloring problem

aims to select one vertex per partition set such that the chromatic number of the

subgraph induced by the selected vertices is maximum. We motivate this problem by

different models and give some first results concerning its complexity.

Keywords: complexity; approximation; graph classes.

∗RMIT University, Melbourne, Victoria, Australia, e-mail: marc.demange@rmit.edu.au
†Bogazici University, Istanbul, Turkey, e-mail: tinaz.ekim@boun.edu.tr
‡Université de Fribourg, DIUF, Fribourg, Switzerland, e-mail: bernard.ries@unifr.ch
This work was supported in part by TUBITAK PIA BOSPHORUS Grant No. 111M303 and PHC

BOSPHORE 2012 PROJECT N 26284RB. M. Demange was also partially supported by the French Agency
for Research under the DEFI program TODO, ANR-09-EMER-010. Both supports are greatly acknowledged.

1

1 Introduction

All graphs that we will consider in this paper are undirected and without loops and multiple

edges. Let G = (V,E) be such a graph. A stable set (resp. clique) is a subset S ⊆ V of

pairwise nonadjacent (resp. adjacent) vertices. An induced path on k vertices is denoted by

Pk. The graph obtained by taking k disjoint copies of G (with no edges between any two

copies) is referred to as kG. For V ′ ⊆ V , G[V ′] denotes the subgraph of G induced by V ′. A

k-coloring of G is a mapping c : V → {1, . . . , k} (c(u) is called the color of vertex u) such

that c(u) 6= c(v) for all uv ∈ E. The smallest integer k such that G is k-colorable is called the

chromatic number of G and is denoted by χ(G). Given a graph G = (V,E), the problem of

deciding whether G is k-colorable is called k-Colorability and the problem of computing

χ(G) together with a χ(G)-coloring is called Minimum Coloring. k-Colorability is

well known to be NP-complete for any k ≥ 3 [13].

In previous works [8, 9], we have motivated and investigated a new kind of coloring problem

called minimum selective coloring, denoted by Sel-Col. Given a graph G = (V,E), consider

a partition V = (V1, V2, . . . , Vp) of the vertex set V of G. The sets V1, . . . , Vp are called

clusters and V is called a clustering. A selective k-coloring of G with respect to V is a

mapping c : V ′ → {1, . . . , k}, where V ′ ⊆ V with |V ′ ∩ Vi| = 1 for all i ∈ {1, . . . , p},
such that c(u) 6= c(v) for all uv ∈ E. A selection is a subset of vertices V ′ ⊆ V such that

|V ′ ∩ Vi| = 1 for all i ∈ {1, . . . , p}. Thus, determining a selective k-coloring with respect to

V consists in finding a selection V ′ such that G[V ′] admits a k-coloring.

We may define the following two problems:

Sel-Col

Input: An undirected graph G = (V,E) and a clustering V = (V1, . . . , Vp) of V .

Output: A selection V ∗ such that χ(G[V ∗]) is minimum.

Let k ≥ 1 be a fixed integer.

k-Dsel-Col

Input: An undirected graph G = (V,E) and a clustering V = (V1, . . . , Vp) of V .

Question: Does there exist a selection V ′ such that χ(G[V ′]) ≤ k? We call such a selection

a k-colorable selection.

For any k ≥ 1, k-Dsel-Col is clearly in NP in general graphs and consequently we will

not mention NP-membership in the NP-completeness proofs. In [8], the complexity of the

problem has been studied in some graph classes including split graphs, threshold graphs,

2

complete bipartite graphs, nC4’s and nP3’s. In [9] several applications have been presented

that motivate the problem in other graph classes (indicated in parenthesis in the next sen-

tence). These applications concern routing and wavelength assignment (edge intersection

graphs of paths in different kinds of host graphs), dichotomy-based constraint encoding

(twin graphs), antenna positioning and frequency assignment ((unit) disk graphs), schedul-

ing ((linear) interval graphs), multiple stacks TSP (permutation graphs) and berth allocation

(rectangle intersection graphs). Some of these applications also motivate the particular case

when all clusters are cliques; this case is called compact clustering. One such application is

antenna positioning and frequency assignment where each set of antennas forming a cluster

has pairwise intersecting impact areas because of coverage constraints. Another application

comes from timetabling problems where for each event to be scheduled, the set of available

time periods that form a cluster is around a given time because although some flexibility is

provided, the time periods cannot deviate too much from some prescribed time (see [9] for

more details). The compact clustering was already considered in [8] for mainly theoretical

results, without being justified by applications.

Note that Sel-Col has previously been studied in the class of edge intersection graphs of

paths under the name of partition coloring or path coloring ; the main motivation in these

studies was to solve the second phase (namely the wavelength assignment) of the Routing

and Wavelength Assignment problem ([11, 12, 17, 18, 19], see [9] for more details on the

content of these references). To the best of our knowledge, this application, and therefore

the class of edge intersection graphs of paths, is the only one considered in the framework

of selective coloring before [9]; as a consequence all graph classes considered in the present

paper are new with respect to the study of the complexity of the selective coloring problem.

In the first part of this paper (Section 2) we study the complexity study of the problem by

focusing on graph classes related to applications described in [9].

In the second part (Section 3) we introduce the opposite problem consisting in determining

a selection that maximizes the chromatic number of the corresponding induced subgraph.

This corresponds to the worst possible solution when considering Sel-Col. We call this

new problem maximum selective coloring problem, and denote it by Sel-Col+. It can be

formally defined as follows:

Sel-Col+

Input: An undirected graph G = (V,E); a clustering V = (V1, . . . , Vp) of V .

Output: A selection V ∗ such that χ(G[V ∗]) is maximum.

3

Graph class Sel-Col Sel-Col+

Twin
2-Dsel-Col NP-c even if all clusters
are two adjacent vertices, Prop 2.1

?

Planar UDG

1-Dsel-Col NP-c even if ∆ ≤ 3,
compact clustering with |Vi| = 2 or
3, ∀i = 1, . . . , p, and the intersection
model given, Prop 2.2 (the same shown
without compact clustering in [8])

?

Linear Interval
k-Dsel-Col in O(|V |+ |E|) with con-
secutive clustering, Thm 2.8 (NP-c with
general clustering [8])

Linear, Cor 3.1

Interval

k-Dsel-Col is in P if k is fixed and
with compact clustering, Thm 2.4 (NP-
c with compact clustering but k is not
fixed, Thm 2.3 by [10])

Linear, Cor 3.1

Chordal
Already NP-hard in unit/proper/linear
interval graphs [8]

Linear, Cor 3.1

Complete k-partite NP-hard [8] Polynomial, Prop 3.2

Permutation
1-DselCol NP-c even with sparse clus-
tering [8]

NP-hard even with compact clus-
tering, Rem 3.2. χ+

SEL(G,V)-
approximation algorithm even in
comparability graphs, Prop 3.3
and Alg 4

Table 1: Summary of the complexity situation for Sel-Col and Sel-Col+.

In the applications described in [9], the selection process was completely controlled by the

user trying to minimize some scarce resource. In contrast, if one has no full control over

the selection process, the selection does not necessarily minimize the use of this resource. In

such a case, it becomes important to measure how bad a selection can be with respect to

the use of the resources. When facing such situations, it becomes important to evaluate the

impact of the worst possible selection on the resources. This motivates Sel-Col+. After

introducing this new problem, we start investigating its complexity in some particular cases.

Let us summarize the complexity results on Sel-Col and Sel-Col+ in Table 1 where

results with no bibliographic reference are the ones obtained in this paper and a question

mark means that the complexity of the problem in the related graph class is not known.

4

2 Complexity of Minimum Selective Coloring

In this section, we investigate the complexity of Sel-Col in several graph classes each

motivated by an application in [9]. We provide both NP-hardness and polynomial time

solvability results.

2.1 Twin graphs

Let S = {s1, . . . , sn} be a set of n states. An encoding of length k is a mapping from

S into {0, 1}k. A dichotomy in S is an unordered pair {P,Q} of disjoint subsets of S,

with P ∪ Q 6= ∅. An encoding of S satisfies a dichotomy {P,Q} if there is at least one

component that takes value 0 for all states in P and value 1 for all states in Q, or vice versa.

Let C = {D1, . . . , Dp} be a set of dichotomies in S with Di = {Pi, Qi}, i = 1, . . . , p, the

Constrained Encoding problem consists in finding an encoding of S of minimum length

which satisfies all the dichotomies in C.

With an instance (S,C) of the Constrained Encoding problem, we associate a graph

G and a clustering V as follows (see [6]): with each dichotomy Di ∈ C, we associate two

vertices (Pi, Qi) and (Qi, Pi) corresponding to the two possible oriented pairs. Vertices (S, T)

and (S ′, T ′) are linked by an edge if and only if S ∩ T ′ 6= ∅ or S ′ ∩ T 6= ∅; in particular

(P,Q) and (Q,P) are linked by an edge. The clustering V = (V1, . . . , Vp) is defined by

Vi = {(Pi, Qi), (Qi, Pi)}, for i = 1, . . . , p. It is shown in [9] that for an integer k ≥ 1, there

exists an encoding of S of length at most k satisfying all dichotomies in C if and only if

(G,V) is selective k-colorable.

A graph G = (V,E) constructed from an instance (S,C) as described above is called a

twin graph. See Figure 1 for an example of a twin graph for states S = {1, 2, 3, 4} and

dichotomies C = {{{1, 3}, {2}}; {{1}, {2, 4}}; {{1, 2}, {3, 4}}; {{1, 4}, {3}}}. The selection

shown with circled vertices is 3-colorable and corresponds to an encoding ϕ of S of length 3:

the first color includes {{1, 3}, {2}} and {{1}, {2, 4}}, the second one includes {{3, 4}, {1, 2}}
and the third one includes {{1, 4}, {3}}; the state 1 will be coded ϕ(1) = (010) since for the

first and the third colors it appears in the first part of the dichotomy while in the second

color it appears in the second part of the dichotomy; for state 2, two equivalent choices are

possible: ϕ(2) = (110) or ϕ(2) = (111) (see [9] for more information about this model).

In what follows we suppose that the twin graphs are given with a related list of dichotomies,

which avoids to consider the problem of deciding whether a given graph is a twin graph. As

5

{{ 1, 3}, { 2}} {{ 1}, { 2, 4}} {{ 1, 2}, { 3, 4}} {{ 1, 4}, { 3}}

{{ 2}, { 1, 3}} {{ 2, 4}, { 1}} {{ 3, 4}, { 1, 2}} {{ 3}, { 1, 4}}

Figure 1: An example of a twin graph for S = {1, 2, 3, 4} and dichotomies C =
{{{1, 3}, {2}}; {{1}, {2, 4}}; {{1, 2}, {3, 4}}; {{1, 4}, {3}}}.

mentioned in [9], a twin graph is 1-selective colorable if and only if it is bipartite. Conse-

quently 1-Dsel-Col is polynomial in twin graphs. The following result shows that deciding

whether there exists an encoding of length at most 2 satisfying all dichotomies of a given set

is NP-complete.

Proposition 2.1 2-Dsel-Col is NP-complete in twin graphs even if all clusters consist of

two adjacent vertices.

Proof: We use a reduction from 4-Colorability which is NP-complete (see [13]). Consider

a graph G = (V,E) on n vertices v1, . . . , vn. Without loss of generality, we may assume that

G has no isolated vertex.

Consider now an arbitrary orientation of the edges of G and associate with every vertex

vi ∈ V the oriented pair (Pi, Qi) where Pi is the set of edges oriented as arcs starting at vi

and Qi is the set of edges oriented as arcs ending at vi. Each non-oriented pair {Pi, Qi},
vi ∈ V , is a dichotomy in E since G has no isolated vertex.

Let us now construct the corresponding twin graph. With each dichotomy {Pi, Qi}, vi ∈ V ,

we associate two vertices (Pi, Qi) and (Qi, Pi). By definition of a twin graph, we link two

vertices (Pi, Qi), (Pj, Qj), i 6= j, if and only if Pi ∩ Qj 6= ∅ or Pj ∩ Qi 6= ∅. This holds

if and only if vivj ∈ E: in this case {vivj} = Pi ∩ Qj if vivj is oriented from i to j and

{vivj} = Pj ∩ Qi else. Similarly (Qi, Pi), (Qj, Pj), i 6= j are linked if and only if vivj ∈ E.

6

Finally, two vertices (Pi, Qi), (Qj, Pj) are linked if and only if i = j. As a consequence,

the resulting twin graph G′ = (V ′, E ′) corresponds to two disjoint copies of G linked by a

perfect matching consisting of edges (Pi, Qi)(Qi, Pi), vi ∈ V . We then consider the clustering

V = {V0, V1, . . . , Vn} defined by Vi = {(Pi, Qi), (Qi, Pi)}, i = 0, 1, . . . , n. By construction,

(G′,V) is selective 2-colorable if and only if V can be partitioned into to sets that both induce

a bipartite graph in G. This is equivalent to say that G is 4-colorable, which concludes the

proof. �

As mentioned in [9], the structure of Sel-Col allows to distinguish two subproblems: the

selection problem which aims to select one vertex per cluster (formally finding a feasible

solution of Sel-Col) and the problem of deciding whether a given selection induces a k-

colorable graph. This second problem, called evaluation problem, corresponds to evaluating

the objective function of a given feasible solution. In [9], some examples are presented which

illustrate that the complexity status of these two problems (the selection problem and the

evaluation problem) are independent and that the hardness of Sel-Col can result either

from the selection problem or from the evaluation problem or from both.

To conclude this section, we show that 3-Dsel-Col remains hard even for a subclass of twin

graphs for which an optimal selection is known. This implies that the evaluation problem is

hard for twin graphs.

We consider a slight modification of the reduction given in Proposition 2.1. We start from a

graph G = (V,E) with V = {v1, . . . , vn} corresponding to an instance of 3-Colorability

which is NP-complete. From any orientation of G, we define the sets Pi, Qi as previously

and add a state s0 to each set Pi to obtain P ′i = {s0} ∪ Pi. The twin graph associated

with the dichotomies {P ′i , Qi} is composed of two copies G1 = (V 1, E1), G2 = (V 2, E2) of

G that are completely linked, denoted by 2G: V 1 corresponds to all pairs (P ′i , Qi) and V 2

to all symmetric pairs (Qi, P
′
i). Indeed, ∀i, s0 /∈ Qi and consequently the introduction of

s0 does not change the edges between two vertices (P ′i , Qi), (P
′
j , Qj) or between two vertices

(Qi, P
′
i), (Qj, P

′
j). However every two vertices (P ′i , Qi), (Qj, P

′
j), are adjacent since s0 ∈

P ′i ∩ P ′j .

Taking the clustering V = {V0, V1, . . . , Vn} defined by Vi = {(P ′i , Qi), (Qi, P
′
i)}, i = 0, 1, . . . , n,

we have χSEL(2G,V) = χ(G). Indeed, V1 (or V2) being a selection, we have χSEL(2G,V) ≤
χ(G) and any coloring of a selection gives a coloring of the original graph since no two vertices

in different copies of G can receive the same color; so, χSEL(2G,V) ≥ χ(G). Consequently

both V 1 and V 2 correspond to an optimal selection, making the selection process trivial

7

in this case. In terms of encoding schemes, this represents a situation where the selection

process is easy (select for instance all oriented dichotomies (P,Q) with s0 ∈ P) but deciding

whether a 3-dimensional encoding can represent all dichotomies is still hard since it corre-

sponds to 3-Colorability in G. Obviously, deciding whether 2 dimensions are enough is

polynomial in this case.

2.2 Unit Disk Graphs

Next we consider the minimum selective coloring problem in unit disk graphs. This is

motivated by a frequency assignment problem [9] which will be reconsidered in Section 3.1.

The model also motivates the compact clustering case. A graph G = (V,E) is a (unit) disk

graph, denoted by (U)DG, if one can associate with every vertex v a disk (of radius 1) in

the plane such that two vertices are adjacent if and only if the corresponding disks intersect.

Deciding whether a given graph is a UDG is known to be NP-complete [3]. Hence, we will

suppose here that an intersection model is given with the graph.

Note also that k-Dsel-Col is NP-complete in UDGs for any fixed k ≥ 3 even if all clus-

ters contain a single vertex since under this assumption, the problem is equivalent to k-

Colorability which is known to be NP-complete in planar unit disk graphs for k = 3 [5, 20]

and in unit disk graphs for k > 3 [16] even if an intersection model is known. In [8], it is

shown that 1-Dsel-Col is NP-complete in graphs isomorphic to nP3, even if clusters are of

size either 2 or 3. This class is trivially included in planar UDGs and consequently, 1-Dsel-

Col is NP-complete in planar UDGs with clusters of size 2 or 3, even if an intersection model

is known. Here we go further by investigating the complexity of the compact clustering case.

Proposition 2.2 1-Dsel-Col is NP-complete in planar UDGs of maximum degree 3 with

compact clustering and clusters containing either 2 or 3 vertices, even if an intersection

model is known.

Proof: Our reduction combines ideas from the proof of NP-completeness of 3-Colorability

in planar UDGs [5, 20] and from the proof of NP-completeness of 1-Dsel-Col in planar

graphs of maximum degree 3 with compact clustering and clusters of size 2 or 3 given in [8].

We will use in particular a reduction from Restricted Planar 3-Sat which was shown

to be NP-complete in [7] and which is defined as follows: we are given a set X of variables

as well as a set C of clauses over X such that each clause contains either 2 or 3 literals;

8

furthermore each variable occurs exactly 3 times, once as a negative literal and twice as a

positive literal; finally the bipartite graph H = (X ∪ C,E), where xc ∈ E if the variable

corresponding to x appears (as positive or negative literal) in the clause corresponding to c,

is planar; we want to decide whether there exists a truth assignment such that each clause

contains at least one true literal.

Let I be an instance of Restricted Planar 3-Sat with variables x1, . . . , xn and clauses

c1, . . . , cm. We first revisit the construction proposed in [8]. Consider the planar bipartite

graph H = (X ∪ C,E) associated with I and a vertex xi ∈ X, corresponding to variable

xi, as well as its neighbors cj, ck, c` ∈ C corresponding to the clauses in which xi appears.

Suppose without loss of generality that xi appears as a negative literal in ck (and hence it

appears as a positive literal in cj and in c`). We delete xi from H and replace it by the

graph Hi with vertex set {x1i , x′i, x′′i , xi, x2i } and edge set {x1ix′i, x′ix2i , x′ix′′i , x′′i xi} (these edges

are called variable edges). Then we make cj adjacent to x1i , ck adjacent to xi and c` adjacent

to x2i . We do this for every vertex xi ∈ X and call H ′ the resulting graph which is still

planar and has maximum degree 3. Let Z = {x1i , x2i , xi, i = 1, . . . , n} be the set of vertices

representing the occurrences of the variables in the clauses. For every clause cj ∈ C, we will

denote by zhj ∈ Z, j ∈ {1, . . . ,m}, h = 1, 2, 3 the vertices representing the occurrences of the

literals appearing in clause cj (if a clause contains only 2 literals, we simply set h = 1, 2).

We now complete the construction of [8] as follows. Consider a vertex cj ∈ C, associated with

clause cj, and its neighbors in H ′ denoted by z1j , z
2
j and eventually z3j representing the 2 or 3

literals appearing in clause cj. We remove vertex cj from H ′ and replace it by an edge with

vertices c1j , c
2
j if cj contains two literals and by a triangle with vertices c1j , c

2
j , c

3
j if cj contains 3

literals (these edges are called clause edges). We then add edges zhj c
h
j for h = 1, 2 if cj contains

2 literals and for h = 1, 2, 3 if cj contains 3 literals. We will call these edges H-edges. We do

so for every clause cj ∈ C and denote by H ′′ the resulting graph. Clearly, in H ′′, H-edges

are in one-to-one correspondence with the edges of the graph H. The graph H ′′ is clearly

still planar and has maximum degree 3. The edge set of H ′′ is made of variable edges, clause

edges and H-edges. We finally replace every H-edge e = zhj c
h
j , j ∈ {1, . . . ,m}, h ∈ {1, 2, 3}

by an even length path zhj , y
h,1
j , . . . , y

h,2kjh+1
j , chj and denote by H? the resulting graph. As

shown in [5] it is possible to choose integers kjh, j ∈ {1, . . . ,m}, h ∈ {1, 2, 3} such that H? is

a UDG and moreover an intersection model can be built in polynomial time. Note that H?

is still planar and has maximum degree 3.

The reader is referred to Figure 2 for an example of the graph H? associated with the instance

(x1∨x3)∧ (x1∨x2)∧ (x2∨x3)∧ (x1∨x2∨x3) of Restrictive Planar 3-Sat. The graph is

9

Figure 2: An example of graph H? with an intersection model for the instance (x1 ∨ x3) ∧
(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

10

represented together with an intersection model. Thick edges are clause and variable edges

while thin edges correspond to the edges of the even length paths.

To complete the reduction we define a clustering V = (V1, . . . , Vp) for H? as follows: for every

i ∈ {1, . . . , n}, x′i and x′′i form a cluster; for every j ∈ {1, . . . ,m}, chj , h = 1, 2 or h = 1, 2, 3

form a cluster of size 2 or 3; for every H-edge we define clusters {zhj , y
h,1
j }, {y

h,2
j , yh,3j } , . . . ,

{yh,2kjhj , y
h,2kjh+1
j }, all of size 2.

The reduction can be done in polynomial time and the instance (H?,V) of 1-Dsel Col

satisfies all conditions of the proposition. To complete the proof we need to show that the

instance I of Restricted Planar 3-SAT is a yes-instance if and only if (H?,V) is 1-

selective colorable. Suppose first there is a truth assignment satisfying all clauses in I. For

every variable xi, i ∈ {1, . . . , n}, select x′i and xi in the solution if xi is false and x′′i together

with x1i and x2i if xi is true. For every clause cj, we select one vertex chj such that zhj is a

true literal and include it in the solution. Then, for every j ∈ {1, . . . ,m} and h ∈ {1, 2}
(resp. h ∈ {1, 2, 3}), we consider the path zhj , y

h,1
j , . . . , y

h,2kjh+1
j , chj and complete the solution

with y2`j , ` = 1, . . . , kjh if the literal associated with zhj is true and with y2`+1
j , ` = 0, . . . , kjh

if the literal associated with zhj is false. It can be easily verified that the resulting solution

is a stable set intersecting each cluster exactly once, which shows that (H?,V) is 1-selective

colorable.

Conversely, suppose that (H?,V) is 1-selective colorable and let S be the corresponding

stable set. For every variable xi, i ∈ {1, . . . , n}, if x′i ∈ S then variable xi is set to false and

if x′′i ∈ S then variable xi is set to true. This defines a truth assignment for every variable.

For every clause cj, j ∈ {1, . . . ,m}, we consider the vertex in S belonging to the cluster

associated with cj. We need to show that this vertex, say chj , corresponds to a true literal

zhj . In the path zhj , y
h,1
j , . . . , y

h,2kjh+1
j , chj , since chj ∈ S necessarily ∀` ∈ {1, . . . , kjh}, y2`j ∈ S

and thus zhj ∈ S, meaning that zhj is true in the truth assignment we have computed. This

concludes the proof. �

In Sections 2.3 and 2.4 we will present some polynomial cases of the minimum selective

coloring problem in interval graphs (IG) with compact clustering when k is fixed and unit

interval graphs (UIG) with consecutive clustering (definitions will be given in these sections).

These particular cases can also be seen as special cases of the present problem in DGs and

UDGs which contain respectively IGs and UIGs.

11

2.3 Interval graphs

In [8, 9], some scheduling problems are introduced which motivate the study of the minimum

selective coloring problem in interval graphs, in particular with compact clustering. A graph

G = (V,E) is called an interval graph, if one can associate an interval on the real line with

every vertex such that two intervals intersect if and only if the corresponding vertices are

adjacent. The following was shown in [10].

Theorem 2.3 [10] The decision version of Sel-Col is NP-complete in the strong sense in

interval graphs with compact clustering, even if the vertices of the graph can be partitioned

into three cliques.

However, for a fixed k the problem to decide whether a k-colorable selection exists becomes

polynomial.

Theorem 2.4 For any fixed k, Algorithm 2 solves k-Dsel-Col in polynomial time for

interval graphs G with compact clustering V. Moreover, if χSEL(G,V) ≤ k, then it computes

a selective k-coloring.

Proof: Notations

We consider an instance of k-Dsel-Col defined by an interval graph G = (V,E), whose

vertices are associated with a set of n intervals I = {I1, . . . , In}, and a compact clustering

V = (V1, . . . , Vp) of V . Since vertices represent intervals, we will use the terms vertices and

intervals indifferently. We suppose that G is given by its interval representation. For every

r ∈ {1, . . . , p}, we denote by Gr the graph Gr = G[V1 ∪ . . . ∪ Vr]. Every solution of the

problem restricted to Gr corresponds to a selection of r intervals Jr = {J1, . . . , Jr} with

Ji ∈ Vi, i = 1, . . . , r and will be called a partial selection on Gr or just of order r if the

related graph is defined without ambiguity; a partial selection of order p is just a solution of

the original problem.

Main idea

Algorithm 2 solves the problem by dynamic programming. It is based on a notion of states

defined below. States are associated with partial solutions (i.e. selections on graphs Gr,

1 ≤ r ≤ p). Many different solutions may be associated with a given state, however the

definition of states ensures that all partial selections with the same state are either all

feasible or all unfeasible; more precisely feasibility of a partial selection can be immediately

12

and easily stated by reading its state. A state associated with feasible partial selections is

called feasible; the total number of feasible states is O(nk). As shown by the analysis, one

only needs to compute one particular feasible solution for any feasible state.

The dynamic programming process consists in filling in a table T line by line. T has one

column per feasible state and one line per cluster, each entry T [r, σ] being either a k-colorable

partial selection of order r and of state σ or ∅ if such partial selection does not exist. Line

r (2 ≤ r ≤ p) is filled in from line r − 1; to this aim, given a state σ of a partial selection of

order r − 1, Algorithm 1 computes the state σ̃ of a partial selection of order r obtained by

adding one particular interval I ∈ Vr to a partial selection of order r− 1. σ̃ only depends on

σ and I.

Clusters’ ordering

The hypothesis that the clustering is compact allows us to define a specific order of clusters.

For every cluster Vi, i ∈ {1, . . . , p}, we consider Hi = ∩I∈ViI; since the clustering is compact,

Hi 6= ∅, i = 1, . . . , p. We assume that the clusters are ordered so that the intervals Hi, i =

1, . . . , p are in non-decreasing order of their left endpoint.

Definition of states

Consider a partial selection of order r, i.e. r intervals Jr = {J1, . . . , Jr} with Ji ∈ Vi, i =

1, . . . , r. We denote Ji = [ai, bi] and associate with Jr its state σ defined by an array of

(k + 1) values σ = [S0, . . . , Sk], where S` = max{x, |{J ∈ Jr, x ∈ J}| ≥ k + 1 − `} with

max(∅) = −∞. σ = [S0, . . . , Sk] is a non-decreasing sequence. It is feasible if and only if

S0 = −∞, which means that the interval graph associated with Jr is k-colorable.

Note that for all ` ∈ {0, . . . , k}, we have S` ∈ {−∞} ∪ {b1, . . . , br} (so S` can take at most

n+1 different values) and consequently, the number of different states for any partial solution

is at most (n + 1)(k+1) and the number of feasible states is at most (n + 1)k. We denote

by Σ the set of all possible feasible states, in one-to-one correspondance with the set of all

non-decreasing sequences of k numbers, each belonging to {−∞} ∪ {b,∃a, [a, b] ∈ I}.

Analysis

The for-loop from line 2 to line 4 of Algorithm 2 fills in the first line of T by computing

all possible states corresponding to selecting one interval in V1. Suppose that the r − 1 first

lines are all filled in, with 2 ≤ r ≤ p; then given a solution Jr−1 on Gr−1 and an interval

I = [a, b] ∈ Vr, the state σ̃ of the solution Jr−1 ∪ {I} on Gr only depends on the state σ

associated with Jr−1 and the interval I. This state is computed in O(k) time by Algorithm 1.

Line 3 of Algorithm 1 deals with values of S̃`’s not affected by I. To justify the correctness

13

Algorithm 1 Updating states

Require: A feasible state σ = [S0, . . . , Sk] of a partial selection Jr−1 on Gr−1, 2 ≤ r ≤ p,
and an interval I = [a, b] ∈ Vr.

Ensure: The state σ̃ = [S̃0, . . . , S̃k] of the solution Jr−1 ∪ {I} on Gr.
1: `0 ← min({`, S` > b} ∪ {k + 1})
2: for ` ≥ `0 AND ` ≤ k do
3: S̃` = S`
4: S̃`0−1 = b
5: `1 ← min({`, S` ≥ a} ∪ {`0 − 1})
6: for `1 ≤ ` ≤ `0 − 1 do
7: S̃`−1 ← S`
8: for ` ≤ `1 − 2 do
9: S̃` ← S`

Algorithm 2 k-Dsel-Col in interval graphs with compact clustering

Require: An interval graph G defined by a set of intervals I and a compact clustering
V = (V1, . . . , Vp).

Ensure: Either a selection J ⊂ I inducing a k-colorable graph or the information that it
does not exist.

1: Order clusters in non-decreasing order of left endpoint of ∩I∈ViI
2: for I = [a, b] ∈ V1 do
3: σ ← (−∞, . . . ,−∞, b)
4: T [1, σ]← {I}
5: for r = 2 to p do
6: for I = [a, b] ∈ Vr do
7: for σ such that T [r − 1, σ] 6= ∅ do
8: Compute the state σ′ of solution T [r − 1, σ] ∪ I by using Algorithm 1
9: if σ′ is feasible then

10: T [r, σ′]← T [r − 1, σ] ∪ {I}
11: if ∀σ ∈ Σ, T [p, σ] = ∅ then
12: G is not k-selective colorable
13: else
14: Select a state σ such that T [p, σ] 6= ∅
15: return T [p, σ]

14

of Line 4 of Algorithm 1, note that the ordering chosen for clusters guarantees that, for every

I ′ = [a′, b′] ∈ V1∪ . . .∪Vr−1 and I = [a, b] ∈ Vr, we have a′ < b. If `0 = k+1, then no interval

in Jr−1 ends after b and we have b = S̃k. If `0 ≤ k and S`0−1 < b, then, using the above

property, exactly k + 1 − `0 + 1 intervals contain b: I and the k + 1 − `0 intervals of Jr−1
containing S`0 . If S`0−1 = b, then the same holds but we have S̃`0−1 = S̃`0−2 = b. Finally,

Line 7 and Line 9 (of Algorithm 1) allow to compute values of S̃` for ` < `0. Algorithm 2

computes all possible feasible states of feasible solutions in lines 1 to p of table T . A k-

colorable selection corresponds then to a feasible state on the pth line of T . The complexity

of Algorithm 2 is O(n(n+1)k) = O(nk+1): Line 2 (of Algorithm 2) takes O(|Σ|), while Line 8

is executed O(n|Σ|) times and requires Algorithm 1 of complexity O(k). This concludes the

proof. �

Given an interval graph G defined by the set I of intervals and a compact clustering V =

(V1, . . . , Vp), we denote by GV the intersection graph of the sets Ci = ∪I∈ViI. Since V is

compact, GV is an interval graph and its clique number ω(GV) can be computed in polynomial

time [15]. It is straightforward to verify that χSEL(G,V) ≤ ω(GV) ≤ ω(G). So, if GV

has bounded clique number, then the previous result applies and Algorithm 2 computes

χSEL(G,V).

Corollary 2.5 If G is an interval graph with compact clustering V and if ω(GV) ≤ k for a

constant k, then χSEL(G,V) can be computed in polynomial time.

A circular arc graph G = (A,E) defined by a set A of arcs on a circle has a vertex for

each arc in A and two vertices are adjacent if they correspond to intersecting arcs; of course

interval graphs constitute a subclass of circular arc graphs. Since there is a one-to-one

correspondence between vertices and arcs of a circular arc graph, we will use both terms

interchangeably. Let the load λ(G) be the maximum number of arcs a point on the circle

may belong to. Of course, in the particular case of an interval graph, the load is equal to

the clique number and to the chromatic number. In a circular arc graph however, we have

λ(G) ≤ ω(G) ≤ χ(G) since circular arc graphs are not perfect (moreover, k-Colorability

is NP-complete in circular arc graphs, but becomes polynomial if k is fixed [14]). Given a

clustering V of G we can define the Minimum Selective Load problem in the same way

as the Minimum Selective Clique problem, denoting by λSEL(G,V) its optimal value.

Consider then a point x on the circle and denote by Ax the set of arcs in A containing x;

G[A \ Ax] is an interval graph. Consider then a set of arcs P ⊂ Ax such that |P ∩ Vi| ≤

15

1, i = 1, . . . , p, and for every arc p ∈ P we break it at x so as to define two disjoint arcs

p− and p+ respectively before and after x in a clockwise orientation of the circle. Then

G̃ = G[(A \ (Ax ∪
⋃
i,Vi∩P 6=∅ Vi)) ∪ {p

−, p+, p ∈ P}] is an interval graph and each arc a ∈
(A \ (Ax ∪

⋃
i,Vi∩P 6=∅ Vi))∪{p

−, p+, p ∈ P} can be immediately associated to an interval I(a)

such that {I(a), a ∈ (A \ (Ax ∪
⋃
i,Vi∩P 6=∅ Vi))∪{p

−, p+, p ∈ P}} is an interval representation

of G̃. Moreover, defining Ṽ = (Vi \ (Vi ∩ Ax), i such that Vi ∩ P = ∅, {p−}, {p+}, p ∈ P),

ωS(G̃, Ṽ) is exactly the value of a minimum selective load in G for which P is the related

selection among Ax.

If λ(G) ≤ k for a constant k, one can use this for every set P ⊂ Ax satisfying |P ∩ Vi| ≤
1, i = 1, . . . , p, so we have:

Corollary 2.6 λSEL(G,V) can be computed in polynomial time in circular arc graphs of

bounded load and for a clustering V satisfying ∩a∈Via 6= ∅, i = 1, . . . , p.

2.4 Linear Interval Graphs

In [9], a quality test scheduling problem was introduced which motivated the study of the

minimum selective coloring problem in linear interval graphs (LIG), introduced in [4] and

defined below. Let L be a line and V a finite set of points of L; given a set of intervals

from L (an interval means a proper subset of L homeomorphic to [0, 1]), the related linear

interval graph G = (V,E) has vertex set V and u, v ∈ V are adjacent in G if u, v belong

both to a same interval. It follows from this definition that if vi is adjacent to vj, with vi

being to the left of vj in L, then vi, vj and all vertices lying between these two vertices in

L form a clique. We say that vi < vj if vi lies on the left of vj in L. When dealing with

selective coloring in this graph class, a clustering V = {V1, . . . , Vp} of the vertex set is called

consecutive if for every set V` ∈ V we have the following property: if vi, vj ∈ V` with vi < vj,

then vr ∈ V` for all vr such that vi ≤ vr ≤ vj. Linear interval graphs occurred in the quality

test scheduling problem described in [9] and consecutive clustering was naturally appearing

in this application. As illustrated in Theorem 2.8, this restriction allows to get a polynomial

result while the problem is hard in LIG under general clustering (see Table 1).

Before explaining how we can solve the problem in polynomial time in this graph class with

consecutive clustering, let us mention a few properties concerning linear interval graphs. First

we will show that linear interval graphs are equivalent to proper interval graphs (PIG) (i.e.,

interval graphs admitting an interval representation in which no interval properly contains

16

v1

v6

v9

v10

v8
v7

v5

v4
v3

v2

Graph G LIG representation of G

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

PIG representation of G

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Iv1

Iv2

Iv3

Iv10

Iv4

Iv5

Iv6

Iv7

Iv8

Iv9

LIG representation of G

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Figure 3: Transformations between LIG and PIG representations.

another), which are in turn equivalent to unit interval graphs (UIG) (i.e., interval graphs

admitting an interval representation in which each interval has unit length) as shown in [21].

Proposition 2.7 A graph G = (V,E) is a LIG if and only if it is a PIG. Moreover, given

any LIG representation RLIG of G with points v1, . . . , vn, one can construct in linear time

(in the size of RLIG) a PIG representation of G such that the order of left endpoints of the

intervals Iv1 , . . . , Ivn is the same as the order of points v1, . . . , vn in RLIG and vice versa.

Proof: The reader is referred to Figure 3 for the following constructions.

Assume G is a LIG and consider a LIG representation of G with points v1, . . . , vn on the real

line L and intervals representing cliques. Now, one can obtain a proper interval representation

of G by assigning an interval Ivi to each vertex vi in the following manner: Ivi starts at the

point vi on L and ends at the rightmost right endpoint of all the intervals containing the

point vi. Note that if vj > vi then the right endpoint of Ivj is not smaller than the right

endpoint of Ivi . Now, if in the resulting representation there are more than one interval

with the same right endpoint, order them according to their left endpoints (which are all

different since all points vi are distinct). Let Ivi , . . . , Ivi+j
be these ordered intervals (they

17

necessarily correspond to consecutive points) and vr their common right end point in L.

Then replace Ivi+t
= [vi, vr] with [vi, vr + t × ε] for t = 1, . . . , j and ε > 0. It is easy to see

that, by definition, such intervals never properly contain another. Moreover, by choosing

ε sufficiently small (ε < min |vj − vi|/n) this does not change the related interval graph.

Besides, this is a proper interval representation of G. Indeed, if two vertices u, v are adjacent

in G, then in its LIG representation, there is an interval I containing their corresponding

points. Consequently, in the above described PIG representation, Iu and Iv contain the right

endpoint of I and therefore u and v are adjacent. Now, if two vertices u and v are non-

adjacent in G, then it means that none of the intervals in its LIG representation contains

both points representing u and v. Assume without loss of generality that the point u lies

on the left of the point v on the real line L. Then we have in particular that the interval

containing u and having the rightmost right endpoint does not contain v and therefore Iu

does not contain the point v which is the starting point of Iv; hence u and v are non-adjacent

and G is a PIG.

Conversely, assume G = (V,E) is a PIG and consider a PIG representation of G. We need to

show that we can define points on the real line L and a set of intervals of L such that u, v ∈ V
are adjacent if and only if they are both contained in some interval. For each interval I in

the proper interval representation, we add a point on the real line L corresponding to the

left endpoint of I and consider the same set of intervals as in the PIG representation. We

claim that this is a LIG representation of G. Consider two adjacent vertices u, v ∈ V and the

corresponding intervals Iu, Iv. Without loss of generality, assume that the left endpoint of Iu

comes before the left endpoint of Iv. Then the corresponding points on L belong both to the

interval Iu. Now let u, v ∈ V be two non-adjacent vertices in G. Then their intervals Iu and

Iv do not intersect. Without loss of generality, we may assume that the left endpoint of Iu

comes before the left endpoint of Iv. If there was an interval I containing the corresponding

points on L then this interval would necessarily contain Iu, a contradiction since we started

with a PIG representation. Thus G is a LIG.

To conclude, it is enough to observe that the described representations have the desired

property. �

In [8], it is shown that 1-Dsel-Col is NP-complete in linear/proper/unit interval graphs.

The next theorem shows that with consecutive clustering it can be solved in linear time.

Theorem 2.8 k-Dsel-Col in LIG with consecutive clustering can be solved in time O(|V |+

18

Algorithm 3 k-Dsel-Col in LIG with consecutive clustering

Require: A LIG G = (V,E) with consecutive clustering V = {V1, . . . , Vp}.
Ensure: Yes, if a selective k-coloring exists, No if it does not exist.

1: Set V ∗ = {v∗1, . . . , v∗k} where v∗i is the first (i.e., leftmost) vertex of Vi for i = 1, . . . , k.
2: for i = 1 to p− k do
3: if V ∗ ∩ Vi is not complete to Vi+k then
4: select the first (i.e., leftmost) non-neighbor of V ∗ ∩ Vi in Vi+k, denoted by v∗i+k, and

add it to V ∗;
5: else
6: return No, (G,V) is not selective k-colorable;
7: return Yes, G[V ∗] is k-colorable and hence (G,V) is selective k-colorable.

|E|).

Proof: Let G = (V,E) be a LIG and let V = {V1, V2, . . . , Vp} be a consecutive clustering

of V . We apply Algorithm 3 to the graph G; using the LIG representation of G it first

selects the leftmost possible vertex in the k first clusters and then greedily selects (when it

is possible) one vertex in clusters k+ 1, . . . , p in such a way it does not create a clique of size

k + 1. As shown in the analysis, if the algorithm fails at some step in selecting one vertex

in one cluster, then the graph is not k-selective colorable and in the opposite case it builds

a k-colorable selection.

Clearly, Algorithm 3 runs in time O(|V |+ |E|) since each vertex and each edge is considered

at most once. Thus we are left with the proof of correctness of Algorithm 3. Note that for

any selection V ′, G[V ′] is k-colorable if and only if G[V ′] does not contain a clique of size

greater than or equal to k+1, since LIG are perfect graphs (this follows from Proposition 2.7

and the fact that interval graphs are perfect).

First assume that Algorithm 3 finds a vertex in each cluster and let V ∗ be the set of chosen

vertices. Suppose by contradiction that G[V ∗] is not k-colorable. It follows from the above

that it necessarily contains a clique of size greater than or equal to k+1. The definition of LIG

and the fact that |V ∗∩Vi| = 1, i = 1 . . . p, imply that in such a case, there necessarily exists

a clique K of size k+ 1 in G[V ∗] induced by vertices v∗l , . . . , v
∗
l+k for some l ∈ {1, . . . , p− k}.

But this contradicts the fact that we choose in Vl+k a non-neighbor of V ∗∩Vl = {v∗l }. Thus,

if Algorithm 3 computes V ∗ such that |V ∗ ∩ Vi| = 1, i = 1, . . . , p, then G[V ∗] is k-colorable

and hence G admits a selective k-coloring.

Now assume that Algorithm 3 does not find such a set V ∗. Hence there exists Vi ∈ V such

that V ∗ ∩ Vi = {v∗i } is adjacent to all the vertices in Vi+k. It follows from the definition of

19

LIG, that the vertices in the sets Vi+1, . . . , Vi+k form a clique K and in addition that v∗i as

well as all the vertices vj ∈ Vi such that v∗i < vj are pairwise adjacent and complete to K.

Thus, if a solution exists, then it must necessarily contain a vertex vr ∈ Vi such that vr < v∗i

since otherwise we will always get a clique of size greater than or equal to k + 1. But now,

{v∗i−k, v∗i−k+1, . . . , v
∗
i−1, vr} form a clique of size k + 1 since v∗i was the first non-neighbor of

v∗i−k. Repeating the same argument, we conclude that we must choose a vertex vs ∈ Vi−k
such that vs < v∗i−k. Continuing in the same manner, we finally conclude that we must

choose a vertex v ∈ Vj, j ∈ {1, . . . , k} such that v < v∗j , which is clearly impossible. Thus

no solution exists. �

3 Maximum Selective Graph Coloring Problem

In this section, we first consider some applications of Sel-Col in order to emphasize the

use of Sel-Col+ in each one of these contexts. Readers may refer to [9] for more details

on various models which are briefly described here. Second, we consider the complexity

and the approximability of Sel-Col+ in graph classes encountered in the aforementioned

applications, namely, perfect graphs, chordal graphs and comparability graphs.

3.1 Motivation

Let us consider the Antenna Positioning and Frequency Assignment Problem (AP-FAP)

where a GSM operator has to decide for each base station a position among a predefined set

such that the number of frequencies assigned to the base stations while avoiding all interfer-

ences is minimized. If each position is represented by a vertex, two vertices corresponding

to positions that are close enough for possible interference (in case the same frequency is

assigned to the antennae) are adjacent, and the vertex set corresponding to possible positions

for a base station forms a cluster, then AP-FAP boils down to Sel-Col in this clustered

(unit) disk graph. Now, assume that a central institution or an external stakeholder decides

where to install the base stations in each region instead of the GSM operator. This may be

preferable for instance in order to ensure that the electromagnetic waves are restricted to

a certain level and/or to optimize some other criteria in terms of the overall GSM network

including all operators. In this case, although the operator has a set of predefined locations

for each base station, the selection of the location is not made in a way to minimize the total

20

number of frequencies to be used. However, it is important for the operator to assess the

maximum number of frequencies needed in the worst case. In other words, the operator is

interested in knowing the cost of the worst selection.

In the framework of Scheduling Problems, Sel-Col models the problem of minimizing the use

of some resource while all jobs are scheduled, given that for each job, one can choose a period

among a set of available time periods. Indeed, this problem corresponds to Sel-Col in the

graph having a vertex per available time period, edges between vertices whose corresponding

time periods intersect and clusters consisting of vertices corresponding to the set of available

time periods for a same job. In [9], timetabling for speakers in a conference, quality test

scheduling and berth allocation problems are the scheduling problems considered within this

framework, illustrating Sel-Col in respectively interval graphs, linear interval graphs and

rectangle intersection graphs. Let us focus on the specific example of the construction of a

timetabling and imagine that we are given the available time periods of each speaker but the

speakers are free to choose the period they will use (or the scheduling of the speakers will

be made only a few days before the conference starts). However, for organizational reasons,

one has to book the seminar rooms in advance. Since each room has a cost, we want to

book a minimum number of rooms, but of course, there should be enough rooms for all

speakers whichever period they choose (or they are scheduled to). Consequently, we have

to book as many rooms as the value of the chromatic number corresponding to the worst

possible selection. We will see in Section 3.2 that unlike Sel-Col, one can solve Sel-Col+

in polynomial time in interval graphs (even in chordal graphs containing interval graphs).

Another application that motivates the study of Sel-Col+ in permutation graphs is the

so-called Multiple Stacks TSP [9] where items should be collected from some pick-up network

and distributed in some delivery network. This time, we will see that Sel-Col+ is also NP-

hard in permutation graphs just like Sel-Col and consequently, in Section 3.2 we provide

an approximation algorithm with performance guarantee in this case.

Motivated by the above applications, the maximum selective coloring problem Sel-Col+ is

the problem of finding the worst selection, i.e. the selection which needs a maximum number

of colors. More formally, given a graph G = (V,E) and a clustering V of V , Sel-Col+

is the problem of finding the largest integer k for which G admits a selection V ∗ such that

χ(G[V ∗]) = k. This optimal value is called the worst selective chromatic number, denoted

by χ+
SEL(G,V) and a selection V ∗ realizing χ+

SEL(G,V) is called a worst selection.

Given a graph G = (V,E) and a partition V of V , we also define the Maximum Selective

21

Clique problem as the problem of finding a selection V ∗ such that ω(G[V ∗]) is maximized.

The size of such a clique, called maximum selective clique, is denoted by ω+
SEL(G,V). Clearly,

for any (G,V), we have ω+
SEL(G,V) ≤ χ+

SEL(G,V). Note that ω+
SEL(G,V) is equal to the

maximum number of clusters a single clique can intersect. Given such a clique K intersecting

` clusters, an optimal selection for the Maximum Selective Clique of value ` can be

obtained by selecting one vertex in K for clusters intersecting K and by completing this

set to a selection by arbitrarily choosing a vertex from the remaining clusters. Similarly, to

approximate ω+
SEL it is enough to compute in polynomial time a clique intersecting a large

number of clusters (see Proposition 3.3).

By definition, for any (G,V) we have χSEL(G,V) ≤ χ+
SEL(G,V). However, it can be noted

that χSEL(G,V) ≤ ω+
SEL(G,V) does not necessarily hold. Indeed, consider a 5-cycle C5 where

each vertex forms a cluster by itself. Clearly, we have χSEL(G,V) = 3 but ω+
SEL(G,V) = 2.

Note that, similarly to ω+
SEL(G,V), we can define ωSEL(G,V) as the minimum value of

ω(G[V ′]) among all possible selections V ′ in (G,V).

Remark 3.1 Let G = (V,E) be a perfect graph with partition V of V . Then χ+
SEL(G,V) =

ω+
SEL(G,V) and χSEL(G,V) = ωSEL(G,V).

Let us note at that point that unlike in perfect graphs, it is not enough to require these

equalities for all induced subgraphs in order to obtain a meaningful definition of selective-

perfectness. A formal notion of selective-perfect graphs is introduced and studied in [2].

3.2 Complexity and Approximation results

To the best of our knowledge, Sel-Col+ has not been considered yet in the literature.

However the above models motivate its systematic study for different graph classes. Here,

we do a first step in this direction by investigating first complexity questions for Sel-Col+.

It is straightforward to see that, in the general case, there is no link between the complexity

of Sel-Col and Sel-Col+. In particular, given a graph G = (V,E) with a clustering

V = {V1, . . . , Vp}, it suffices to add to G a stable set (resp. a clique) of size p with no edge

between G and the stable set (resp. the clique); then we add exactly one vertex of the stable

set (resp. the clique) to each cluster. Thus we obtain a new graph G̃ with a clustering Ṽ
verifying:

χSEL(G̃, Ṽ) = 1 (select the vertices of the stable set) and χ+
SEL(G̃, Ṽ) = χ+

SEL(G,V).

22

(resp. χ+
SEL(G̃, Ṽ) = p (select the vertices of the clique) and χSEL(G̃, Ṽ) = χSEL(G,V).

On the other hand, for instances with only one vertex per cluster both problems Sel-Col

and Sel-Col+ are equivalent from a complexity point of view, showing in particular that

Sel-Col+ is hard in general.

In the sequel, we present first complexity and approximation results for Sel-Col+; in

particular we point out some cases where χ+
SEL(G,V) can be computed in polynomial time

while the computation of χSEL(G,V) is NP-hard and give some theoretical links between

both problems. This provides first ideas for a more systematic study of the complexity of

Sel-Col+.

We have seen that interval graphs are of special interest for both Sel-Col and Sel-Col+.

In [8], it is shown that computing χSEL(G,V) is NP-hard in unit/proper/linear interval

graphs. However, χ+
SEL(G,V) can easily be computed in an even larger class of graphs,

namely chordal graphs. A graph is chordal if it does not contain any induced cycle of length

at least four.

Proposition 3.1 Let G be a class of perfect graphs for which we can enumerate all maximal

cliques in polynomial time. Then, Sel-Col+ can be solved in polynomial time in G.

Proof: Let G = (V,E) be a graph in G and let V be a partition of V . From Remark

3.1, it follows that it is enough to determine ω+
SEL(G,V). To this end, we enumerate all

maximal cliques of G, which can be done in polynomial time. Then we choose the clique K

intersecting a maximum number of clusters. In each cluster intersecting K we select exactly

one vertex from K and complete the selection by choosing one vertex in each remaining

cluster arbitrarily. �

Since for chordal graphs we can enumerate all maximal cliques in time O(n) (see [15]), we

obtain the following corollary.

Corollary 3.1 Sel-Col+ can be solved in linear time in chordal graphs.

Another graph class for which Sel-Col is NP-hard [8] but Sel-Col+ can be solved in

polynomial time is the class of complete k-partite graphs. A graph G = (V,E) is a complete

k-partite graph if its vertex set can be partitioned into k stable sets U1, . . . , Uk such that

between any two stable sets Ui, Uj, i 6= j, there are all possible edges.

23

Proposition 3.2 Sel-Col+ can be solved in polynomial time in complete k-partite graphs.

Proof: Let G = (U1, . . . , Uk, E) be a complete k-partite graph and let V = (V1, . . . , Vp) be

a clustering of V . Since complete k-partite graphs are perfect, it follows from the above and

Remark 3.1 that it is enough to determine ω+
SEL(G,V). In order to do so, we will reduce our

problem to a Maximum Flow problem which can be solved in polynomial time (see for

instance [1]). Let us denote by vi1, . . . , v
i
|Vi| the vertices in cluster Vi, for i = 1, . . . , p. Let us

now construct the following network: consider the vertices vi1, . . . , v
i
|Vi|, for i = 1, . . . , p; for

every cluster Vi, i = 1, . . . , p, we add a vertex wi and add all arcs (wi, v
i
j) for j = 1, . . . , |Vi|

and i = 1, . . . , p; for every set U`, ` = 1, . . . , k, we add a vertex u`; then, for every vertex

vij ∈ U`, we add an arc (vij, u`); we add two vertices s, t (the source and the sink of our

network) as well as the arcs (s, wi) for i = 1, . . . , p and (u`, t) for ` = 1, . . . , k; finally, we set

the capacity of each arc to 1. This clearly gives us a network N which can be constructed

in polynomial time given the graph G.

Now we claim that ω+
SEL(G,V) = q if and only if the value of a maximum flow in N is q.

Indeed, let K be a clique of size q in G intersecting each cluster at most once. Let Vi1 , . . . , Viq

be the clusters in G containing exactly one vertex of K. Clearly each such vertex belongs to

a different partition set among U1, . . . , Uk. Without loss of generality, we may assume that

{vij1 } = K ∩ Vij ∩Uij , for j = 1, . . . , q. Then we obtain a flow in N of value q as follows: for

j = 1, . . . , q, we set the flow value to one on each arc (s, wij), (wij , v
ij
1), (v

ij
1 , uij), (uij , t).

Conversely, assume that there exists a flow of value q in N . Since all capacities of the arcs are

equal to one and each vertex, except s and t, has exactly one outgoing arc or one incoming

arc, it follows that there exist q vertex disjoint paths from s to t (not considering vertices s

and t). For each such path (s, wi), (wi, v
i
j), (v

i
j, u`), (u`, t), we consider vertex vij in cluster Vi.

Then it follows from the construction of N and the fact that the paths are vertex-disjoint

(not considering vertices s and t) that these q vertices induce a clique intersecting q distinct

clusters. �

A class of graphs C is called auto-complementary if for all G ∈ C we have Ḡ ∈ C, where Ḡ is

the complement of G.

Remark 3.2 Let C be an auto-complementary class of perfect graphs. If 1-Dsel-Col is

NP-complete in C, then Sel-Col+ is NP-hard in C.

24

Proof: Sel-Col+ in a graph G ∈ C with a clustering V consists in finding a clique

intersecting a maximum number of clusters in G. This is equivalent to finding a stable set

intersecting a maximum number of clusters in (Ḡ,V). It is straightforward to verify that

1-Dsel-Col polynomially reduces to this last problem. �

As a consequence, Sel-Col+ is NP-hard in permutation graphs (i.e., comparability graphs

whose complements are also comparability graphs; see definition below) even with compact

clustering since 1-Dsel-Col is NP-complete in permutation graphs even if each cluster in V
is a stable set (sparse clustering) [8]. Note also that, if G is a perfect graph and each cluster

in V is a stable set, then χ+
SEL(G,V) = ω(G) and hence it can be computed in polynomial

time.

For NP-hard cases, it is natural to ask whether the problem can be approximated in poly-

nomial time. The next proposition gives a first approximation result for Sel-Col+ in

comparability graphs which generalize permutation graphs.

Given an undirected graph G, a transitive orientation of G is the assignment of orientations

to the edges of G in such a way that if xy and yz are respectively oriented from x to y and

from y to z, then there is an edge xz oriented from x to z. A graph G is a comparability

graph if its edges are transitively orientable. It is known that a graph G is a permutation

graph if and only if both G and its complement Ḡ are comparability graphs [15].

Algorithm 4 Approximation algorithm for χ+
SEL in comparability graphs.

Require: A comparability graph G = (V,E) with a clustering V = {V1, . . . , Vp}.
Ensure: A selection V ′ satisfying χ(G[V ′]) ≥

√
χ+
SEL(G,V); an optimal coloring of G[V ′]

1: Compute a transitive orientation O of G;
2: Construct partial subgraphs G1...p and Gp...1 of G (see proof of Proposition 3.3)
3: Compute a maximum clique in G1...p and in Gp...1 and let K ′ be the largest one;
4: Complete K ′ into a selection V ′ of (G,V) by greedily adding one vertex per cluster not

intersecting K ′;
5: return V ′ and a minimum coloring of G[V ′].

Proposition 3.3 Let G = (V,E) be a comparability graph with a clustering V = {V1, . . . , Vp}
of V . Algorithm 4 is polynomial and approximates χ+

SEL(G,V) within a ratio of
√
χ+
SEL(G,V).

Proof: Let k = χ+
SEL(G,V). Using Remark 3.1 and the fact that comparability graphs are

perfect, we have k = ω+
SEL(G,V). We will show how to compute in polynomial time a clique

25

intersecting at least
√
k clusters. Completing it into a selection by adding one vertex per

cluster not intersecting this clique we get a selection V ′ such that ω(G[V ′]) ≥
√
k.

We consider a transitive orientation O of G = (V,E) and then define two comparability

graphs, G1...p and Gp...1 with respect to this orientation. G1...p = (V,E1...p) (resp. Gp...1 =

(V,Ep...1)) is a partial subgraph of G obtained by keeping only edges xy such that x ∈ Vi,
y ∈ Vj for 1 ≤ i < j ≤ p and xy is oriented from x to y (resp. from y to x) in O. It is easy

to verify that O induces a transitive orientation of both G1...p and Gp...1. Indeed assume that

there are edges xy and yz in G1...p oriented from x to y and from y to z. By definition of

G1...p, x, y and z belong respectively to clusters Vi, Vj and V` such that i < j < ` and since O
is a transitive orientation, there is an edge xz (in G) oriented from x to z which also belongs

to G1...p. The same result holds for Gp...1.

Let us consider a clique K∗ in G of size |K∗| = k = χ+
SEL(G,V) and such that ∀i ∈

{1, . . . , p}, |K∗ ∩ Vi| ≤ 1. The orientation O induces a transitive orientation of K∗ which

gives an order on its vertices. So we may assume that K∗ = {v1, . . . , vk} such that vivj is

oriented from vi to vj for all i and j such that 1 ≤ i < j ≤ k. We then define a permutation

σ = (σ1, . . . , σk) such that for all i ∈ {1, . . . , k}, vi ∈ Vσi . We denote by Gσ the permutation

graph, of order k, associated with σ. A stable set in Gσ, corresponding to an increasing

sub-sequence of σ, is associated with a clique in G1,...,p of the same size. Similarly, a clique

in Gσ, corresponding to a decreasing sub-sequence of σ, is associated with a clique in Gp,...,1

of the same size. So we have

ω(G1,...,p) ≥ α(Gσ), (1)

ω(Gp,...,1) ≥ ω(Gσ). (2)

On the other hand, since Gσ is perfect and of order k we have α(Gσ)ω(Gσ) ≥ k. Indeed, in a

perfect graph G, we have χ(G) = ω(G) and since every color class is a stable set (hence of size

less than or equal to α(G)), the number of vertices in G is at most α(G)ω(G). Consequently,

we have

max(ω(G1,...,p), ω(Gp,...,1)) ≥
√
k. (3)

Note that any clique of G1,...,p or Gp,...,1 defines a clique of G intersecting at most once each

cluster since in G1,...,p and Gp,...,1, there is no edge between vertices of a same cluster. Con-

26

sequently, by computing a maximum clique of G1,...,p and Gp,...,1 and taking the largest one,

we get a clique of G intersecting at least
√
k clusters, which shows the result. Furthermore,

Algorithm 4 runs in polynomial time since determining a transitive orientation and comput-

ing a maximum clique are both polynomial in comparability graphs [15], which concludes

the proof. �

Finally, let us conclude with two remarks on the equivalence of some problems related to

Sel-Col and Sel-Col+.

Remark 3.3 Let G = (V,E) be a graph and let V = {V1, . . . , Vp} be a clustering of V . Then

1-Dsel-Col is equivalent to deciding whether ω+
SEL(Ḡ,V) = p.

Remark 3.4 Let G = (V,E) be a graph and let V = {V1, . . . , Vp} be a clustering of V . Then

1-Dsel-Col is equivalent to deciding whether χ+
SEL(Ḡ,V) = p.

4 Conclusion

In this paper, we investigate the complexity of Sel-Col in graph classes motivated by

various applications that were presented in [9]. In particular, we provide NP-hardness results

for Sel-Col in twin graphs and unit disk graphs (even with specific clustering). However,

we show that restricting the clustering may change the complexity status: although it is NP-

complete in interval graphs, we show that, for a fixed k, k-Dsel-Col becomes polynomial

in interval graphs with compact clustering. Similarly, Sel-Col is hard in linear interval

graphs but becomes polynomial time solvable when restricted to consecutive clustering.

In addition, we introduce a new problem, Sel-Col+, which corresponds to evaluating the

cost of the worst selection and thus provides an upper bound on χSEL. We emphasize that

solving Sel-Col+ can be helpful in many contexts: we revisit some models for Sel-Col

and show that Sel-Col+ can also be motivated by these models. We start to investigate

the complexity of this new problem in different graph classes. In this paper, we mainly focus

on comparing the complexity of Sel-Col and Sel-Col+. We give an example where Sel-

Col is easy while Sel-Col+ is hard. Symmetrically we point out classes of graphs where

Sel-Col is NP-hard but solving Sel-Col+ becomes polynomial time solvable. In this

case, it gives an upper bound for the optimal value of Sel-Col. We also give an example

where the hardness of Sel-Col implies the hardness of Sel-Col+. This is the case in

27

permutation graphs and consequently Sel-Col+ is hard in permutation graphs and thus

in comparability graphs. Finally, we give an approximation algorithm with a square-root

factor performance guarantee for Sel-Col+ in comparability graphs. We leave as an open

problem to find whether it can be approximated within a constant approximation ratio.

As further work, we plan to systematically study the complexity of Sel-Col+ in different

graph classes and in particular in the classes motivated by applications.

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithms and

Applications, Prentice Hall, 1998.

[2] F. Bonomo, D. Cornaz, T. Ekim, B. Ries, Perfectness of clustered graphs, Discrete

Optimization 10 (2013) 296–303.

[3] H. Breu, D. G. Kirkpatrick, Unit disk graph recognition is NP-hard, Computational

Geometry: Theory and Applications, 9(1-2) (1998) 3–24.

[4] M. Chudnovsky, P. Seymour, Claw-free graphs VII. Quasi-line graphs, Journal of

Combinatorial Theory Series B 102 (2012) 1267–1294.

[5] B. N. Clark, C. J. Colbourn, D. S. Johnson Unit disk graphs, Discrete Mathe-

matics, 86(1–3) (1990) 165–177.

[6] O. Couderc, A New Paradigm for Dichotomy-based Constrained Encoding, in Pro-

ceedings of Design, Automation and Test in Europe (DATE), Paris, 1998.

[7] E. Dahlhaus, P. D. Seymour, C. H. Papadimitriou, M. Yannakakis, The

complexity of multiterminal cuts, SIAM Journal on Computing 23 (1994) 864–894.

[8] M. Demange, J. Monnot, P. Petrica, B. Ries, On the complexity of the selective

graph coloring problem in some special classes of graphs, Theoretical Computer Science

540-541 (2014) 89–102.

[9] M. Demange, T. Ekim, B. Ries, C. Tanasescu, On Some Applications of the Se-

lective Graph Coloring Problem, European Journal of Operational Research 240 (2015)

307–314.

28

[10] M. Demange, J. Monnot, B. Ries, Selective coloring in interval graphs, manuscript

(2015).

[11] T. Erlebach, K. Jansen, The complexity of path coloring and call scheduling, The-

oretical Computer Science 255 (2001) 33–50.

[12] Y. Frota, N. Maculan, T. F. Noronha, C. C. Ribeiro, A Branch-and-Cut

Algorithm for Partition Coloring, Networks, 55(3) (2010) 194–204.

[13] M.R. Garey, D.S. Johnson, Computers and intractability, a guide to the theory of

NP-completeness, Freeman, New York (1979).

[14] M.R. Garey, D.S. Johnson, G.L. Miller, C.H. Papadimitriou, The complexity

of coloring circular arcs and chords, SIAM Journal on Algebraic and Discrete Methods

1(2) (1980) 216-227

[15] M. C. Golumbic, Algorithmic graph theory and perfect graphs. Computer Science and

Applied Mathematics, Academic Press, 1980.

[16] A. Gräf, M. Stumpf, G. Weißenfels, On Coloring Unit Disk Graphs, Algorithmica

20(3) (1998) 277–293.

[17] L. Guangzhi, R. Simha, The partition coloring problem and its application to wave-

length routing and assignment, in Proceedings of the First Workshop on Optical Net-

works, 2000, Dallas.

[18] E. A. Hoshino, Y. Frota, C. C. de Souza, A Branch-and-Price Approach for The

Partition Coloring Problem, Operations Research Letters 39(2) (2011) 132–137.

[19] T. F. Noronha, C. C. Ribeiro, Routing and wavelength assignment by partition

colouring, European Journal of Operational Research 71(3) (2006) 797–810.

[20] R. Peeters, On coloring j-unit sphere graphs, Tilburg University, Technical Report,

1991.

[21] F.S. Roberts, Indifference graphs, Proof Techniques in Graph Theory, F. Harary, ed.,

Academic Press, NY (1969), 139–146.

29

	Due Diligence Record Log.pdf
	Iyer-Raniga, Usha- n2006046404- A greenhouse gas.pdf
	Abstract
	Introduction
	Method
	Unit of assessment and system boundary
	Inventory
	Impact assessment

	Results
	Discussion
	Limitations
	Exclusion of travel
	Partition methodology
	Stadium life time and attendance
	Exclusion of upstream construction processes

	Conclusion
	Acknowledgement
	Funding
	References

