733 research outputs found

    Quantum information and statistical mechanics: an introduction to frontier

    Get PDF
    This is a short review on an interdisciplinary field of quantum information science and statistical mechanics. We first give a pedagogical introduction to the stabilizer formalism, which is an efficient way to describe an important class of quantum states, the so-called stabilizer states, and quantum operations on them. Furthermore, graph states, which are a class of stabilizer states associated with graphs, and their applications for measurement-based quantum computation are also mentioned. Based on the stabilizer formalism, we review two interdisciplinary topics. One is the relation between quantum error correction codes and spin glass models, which allows us to analyze the performances of quantum error correction codes by using the knowledge about phases in statistical models. The other is the relation between the stabilizer formalism and partition functions of classical spin models, which provides new quantum and classical algorithms to evaluate partition functions of classical spin models.Comment: 15pages, 4 figures, to appear in Proceedings of 4th YSM-SPIP (Sendai, 14-16 December 2012

    QuASeR -- Quantum Accelerated De Novo DNA Sequence Reconstruction

    Full text link
    In this article, we present QuASeR, a reference-free DNA sequence reconstruction implementation via de novo assembly on both gate-based and quantum annealing platforms. Each one of the four steps of the implementation (TSP, QUBO, Hamiltonians and QAOA) is explained with simple proof-of-concept examples to target both the genomics research community and quantum application developers in a self-contained manner. The details of the implementation are discussed for the various layers of the quantum full-stack accelerator design. We also highlight the limitations of current classical simulation and available quantum hardware systems. The implementation is open-source and can be found on https://github.com/prince-ph0en1x/QuASeR.Comment: 24 page

    The Power Of Quantum Walk Insights, Implementation, And Applications

    Get PDF
    In this thesis, I investigate quantum walks in quantum computing from three aspects: the insights, the implementation, and the applications. Quantum walks are the quantum analogue of classical random walks. For the insights of quantum walks, I list and explain the required components for quantizing a classical random walk into a quantum walk. The components are, for instance, Markov chains, quantum phase estimation, and quantum spectrum theorem. I then demonstrate how the product of two reflections in the walk operator provides a quadratic speed-up, in comparison to the classical counterpart. For the implementation of quantum walks, I show the construction of an efficient circuit for realizing one single step of the quantum walk operator. Furthermore, I devise a more succinct circuit to approximately implement quantum phase estimation with constant precision controlled phase shift operators. From an implementation perspective, efficient circuits are always desirable because the realization of a phase shift operator with high precision would be a costly task and a critical obstacle. For the applications of quantum walks, I apply the quantum walk technique along with other fundamental quantum techniques, such as phase estimation, to solve the partition function problem. However, there might be some scenario in which the speed-up of spectral gap is insignificant. In a situation like that that, I provide an amplitude amplification-based iii approach to prepare the thermal Gibbs state. Such an approach is useful when the spectral gap is extremely small. Finally, I further investigate and explore the effect of noise (perturbation) on the performance of quantum walk
    corecore