This is a short review on an interdisciplinary field of quantum information
science and statistical mechanics. We first give a pedagogical introduction to
the stabilizer formalism, which is an efficient way to describe an important
class of quantum states, the so-called stabilizer states, and quantum
operations on them. Furthermore, graph states, which are a class of stabilizer
states associated with graphs, and their applications for measurement-based
quantum computation are also mentioned. Based on the stabilizer formalism, we
review two interdisciplinary topics. One is the relation between quantum error
correction codes and spin glass models, which allows us to analyze the
performances of quantum error correction codes by using the knowledge about
phases in statistical models. The other is the relation between the stabilizer
formalism and partition functions of classical spin models, which provides new
quantum and classical algorithms to evaluate partition functions of classical
spin models.Comment: 15pages, 4 figures, to appear in Proceedings of 4th YSM-SPIP (Sendai,
14-16 December 2012