774,724 research outputs found

    Normal forms and invariants for 2-dimensional almost-Riemannian structures

    Full text link
    Two-dimensional almost-Riemannian structures are generalized Riemannian structures on surfaces for which a local orthonormal frame is given by a Lie bracket generating pair of vector fields that can become collinear. Generically, there are three types of points: Riemannian points where the two vector fields are linearly independent, Grushin points where the two vector fields are collinear but their Lie bracket is not, and tangency points where the two vector fields and their Lie bracket are collinear and the missing direction is obtained with one more bracket. In this paper we consider the problem of finding normal forms and functional invariants at each type of point. We also require that functional invariants are "complete" in the sense that they permit to recognize locally isometric structures. The problem happens to be equivalent to the one of finding a smooth canonical parameterized curve passing through the point and being transversal to the distribution. For Riemannian points such that the gradient of the Gaussian curvature KK is different from zero, we use the level set of KK as support of the parameterized curve. For Riemannian points such that the gradient of the curvature vanishes (and under additional generic conditions), we use a curve which is found by looking for crests and valleys of the curvature. For Grushin points we use the set where the vector fields are parallel. Tangency points are the most complicated to deal with. The cut locus from the tangency point is not a good candidate as canonical parameterized curve since it is known to be non-smooth. Thus, we analyse the cut locus from the singular set and we prove that it is not smooth either. A good candidate appears to be a curve which is found by looking for crests and valleys of the Gaussian curvature. We prove that the support of such a curve is uniquely determined and has a canonical parametrization

    Fast Fencing

    Get PDF
    We consider very natural "fence enclosure" problems studied by Capoyleas, Rote, and Woeginger and Arkin, Khuller, and Mitchell in the early 90s. Given a set SS of nn points in the plane, we aim at finding a set of closed curves such that (1) each point is enclosed by a curve and (2) the total length of the curves is minimized. We consider two main variants. In the first variant, we pay a unit cost per curve in addition to the total length of the curves. An equivalent formulation of this version is that we have to enclose nn unit disks, paying only the total length of the enclosing curves. In the other variant, we are allowed to use at most kk closed curves and pay no cost per curve. For the variant with at most kk closed curves, we present an algorithm that is polynomial in both nn and kk. For the variant with unit cost per curve, or unit disks, we present a near-linear time algorithm. Capoyleas, Rote, and Woeginger solved the problem with at most kk curves in nO(k)n^{O(k)} time. Arkin, Khuller, and Mitchell used this to solve the unit cost per curve version in exponential time. At the time, they conjectured that the problem with kk curves is NP-hard for general kk. Our polynomial time algorithm refutes this unless P equals NP

    Fast B-Spline 2D Curve Fitting for unorganized Noisy Datasets

    Get PDF
    In the context of coordinate metrology and reverse engineering, freeform curve reconstruction from unorganized data points still offers ways for improvement. Geometric convection is the process of fitting a closed shape, generally represented in the form of a periodic B-Spline model, to data points [WPL06]. This process should be robust to freeform shapes and convergence should be assured even in the presence of noise. The convection's starting point is a periodic B-Spline polygon defined by a finite number of control points that are distributed around the data points. The minimization of the sum of the squared distances separating the B-Spline curve and the points is done and translates into an adaptation of the shape of the curve, meaning that the control points are either inserted, removed or delocalized automatically depending on the accuracy of the fit. Computing distances is a computationally expensive step in which finding the projection of each of the data points requires the determination of location parameters along the curve. Zheng et al [ZBLW12] propose a minimization process in which location parameters and control points are calculated simultaneously. We propose a method in which we do not need to estimate location parameters, but rather compute topological distances that can be assimilated to the Hausdorff distances using a two-step association procedure. Instead of using the continuous representation of the B-Spline curve and having to solve for footpoints, we set the problem in discrete form by applying subdivision of the control polygon. This generates a discretization of the curve and establishes the link between the discrete point-to-curve distances and the position of the control points. The first step of the association process associates BSpline discrete points to data points and a segmentation of the cloud of points is done. The second step uses this segmentation to associate to each data point the nearest discrete BSpline segment. Results are presented for the fitting of turbine blades profiles and a thorough comparison between our approach and the existing methods is given [ZBLW12, WPL06, SKH98]

    On fixed figure problems in fuzzy metric spaces

    Get PDF
    summary:Fixed circle problems belong to a realm of problems in metric fixed point theory. Specifically, it is a problem of finding self mappings which remain invariant at each point of the circle in the space. Recently this problem is well studied in various metric spaces. Our present work is in the domain of the extension of this line of research in the context of fuzzy metric spaces. For our purpose, we first define the notions of a fixed circle and of a fixed Cassini curve then determine suitable conditions which ensure the existence and uniqueness of a fixed circle (resp. a Cassini curve) for the self operators. Moreover, we present a result which prescribed that the fixed point set of fuzzy quasi-nonexpansive mapping is always closed. Our results are supported by examples

    A Sequential Descent Method for Global Optimization

    Full text link
    In this paper, a sequential search method for finding the global minimum of an objective function is presented, The descent gradient search is repeated until the global minimum is obtained. The global minimum is located by a process of finding progressively better local minima. We determine the set of points of intersection between the curve of the function and the horizontal plane which contains the local minima previously found. Then, a point in this set with the greatest descent slope is chosen to be a initial point for a new descent gradient search. The method has the descent property and the convergence is monotonic. To demonstrate the effectiveness of the proposed sequential descent method, several non-convex multidimensional optimization problems are solved. Numerical examples show that the global minimum can be sought by the proposed method of sequential descent
    • 

    corecore