

Fast fencing

Citation for published version (APA):
Abrahamsen, M., Adamaszek, A., Bringmann, K., Cohen-Addad, V., Mehr, M., Rotenberg, E., Roytman, A., &
Thorup, M. (2018). Fast fencing. arXiv, 2018, Article 1804.00101 . https://doi.org/10.48550/arXiv.1804.00101

DOI:
10.48550/arXiv.1804.00101

Document status and date:
Published: 01/01/2018

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.48550/arXiv.1804.00101
https://doi.org/10.48550/arXiv.1804.00101
https://research.tue.nl/en/publications/e353b7b1-ca87-48e0-8d4f-875e616981ba

Fast Fencing

Mikkel Abrahamsen1, Anna Adamaszek1, Karl Bringmann2, Vincent Cohen-Addad3,
Mehran Mehr4, Eva Rotenberg5, Alan Roytman1, and Mikkel Thorup1

1Department of Computer Science, University of Copenhagen, Denmark
2Saarland Informatics Campus, Max Planck Institute for Informatics, Germany

3Sorbonne Université, CNRS, Laboratoire d’informatique de Paris 6, LIP6, F-75252 Paris,
France

4Department of Computer Science, TU Eindhoven, Netherlands
5Department of Applied Mathematics and Computer Science, Technical University of

Denmark, Denmark

Abstract

We consider very natural “fence enclosure” problems studied by Capoyleas, Rote, and Woeg-
inger and Arkin, Khuller, and Mitchell in the early 90s. Given a set S of n points in the plane,
we aim at finding a set of closed curves such that (1) each point is enclosed by a curve and
(2) the total length of the curves is minimized. We consider two main variants. In the first
variant, we pay a unit cost per curve in addition to the total length of the curves. An equivalent
formulation of this version is that we have to enclose n unit disks, paying only the total length
of the enclosing curves. In the other variant, we are allowed to use at most k closed curves and
pay no cost per curve.

For the variant with at most k closed curves, we present an algorithm that is polynomial in
both n and k. For the variant with unit cost per curve, or unit disks, we present a near-linear
time algorithm.

Capoyleas, Rote, and Woeginger solved the problem with at most k curves in nO(k) time.
Arkin, Khuller, and Mitchell used this to solve the unit cost per curve version in exponential
time. At the time, they conjectured that the problem with k curves is NP-hard for general k.
Our polynomial time algorithm refutes this unless P equals NP.

ar
X

iv
:1

80
4.

00
10

1v
1

 [
cs

.C
G

]
 3

1
M

ar
 2

01
8

1 Introduction

We consider some very natural “fence enclosure” problems studied by Capoyleas, Rote, and Woeg-
inger [6] and Arkin, Khuller, and Mitchell [3] in the early 90s. Given a set S of n points in the
plane, we aim at finding a set of closed curves such that (1) each point is enclosed by a curve and
(2) the total length of the curves is minimized. We consider two main variants. In the first variant,
we pay an opening cost η > 0 per curve, which is part of the input. An equivalent formulation
is that a circle with radius η/2π is centered at each point, and we need to enclose these circles
with curves of minimal total length, paying no opening cost. The equivalence is illustrated and
explained in Figure 1. By a suitable scaling, we may assume that the circles are unit circles. We
thus refer to this variant as the unit disk fencing problem. In the other variant, we are allowed to
use at most k closed curves and pay no cost per curve. We can think of this as dividing the points
into k clusters and then viewing the closed curves as perimeters of the convex hulls of the clusters.
For this reason, we refer to the variant as the k-cluster fencing problem (also referred to as the
minimum perimeter sum problem in the literature).

Capoyleas, Rote, and Woeginger [6] presented an algorithm for the k-cluster fencing problem
that runs in time ρ(k)nO(k), where ρ(k) is the number of nonisomorphic planar graphs on k nodes.
This yields a polynomial running time when k is fixed. Arkin et al. [3] conjectured the problem to
be NP-hard when k is part of the input and neither an NP-hardness proof nor a polynomial time
algorithm has been found so far. To solve the unit disk version, which is equivalent to having a unit
cost per cluster, Arkin et al. suggested running their algorithm for the k-cluster fencing problem
for all k ≤ n, adding k to the total perimeter length. These were the best known bounds except in
the special case of the k-cluster fencing problem for k ∈ {1, 2} (see the discussion on related work
for more details).

1.1 Our Results

We present polynomial time algorithms for both problems. More specifically, for the unit disk
fencing problem, we present an efficient near-linear time algorithm (Theorem 1). For the k-cluster
fencing problem, we present an algorithm that is polynomial in both n and k (Theorem 3). In
particular, this refutes the conjectured hardness unless P = NP.

Our algorithm for the unit disk fencing problem can be generalized to the case where the input
consists of objects that are allowed to be disks with different diameters or polygonal objects that
have to be fenced. For this variant, our running time increases by a factor that is logarithmic in
the ratio between the maximum and the minimum object diameter.

In order to achieve near-linear bounds for the unit disk fencing problem, we introduce new
techniques that we believe can have other applications in computational geometry. We give a
detailed overview of the techniques below.

Throughout our paper, we assume that it is possible to compare the costs of two different
clusterings efficiently. Note that this is a standard assumption in computational geometry.

1.2 Applications

The problem of fencing in disks or objects appears very commonly in the real world. A good
example is the protection of trees, either at construction sites to protect the roots, or in the wild
to protect rare trees from deer and other animals. When trees are planted by nature, we have no
control over their location. In this context, each disk should have a sufficient diameter to protect
rare trees from wildlife (see Figure 1).

1

Figure 1: A set of 11 points and the set of enclosing curves minimizing the total length plus the
opening cost η per curve. There are three curves, enclosing 1, 2, and 8 points, drawn in gray (one
cannot be seen, as it consists of just one input point). A dashed circle centered at each point with
radius η/2π is drawn. For each cluster, the curve enclosing the respective circles is drawn in black.
We note that the perimeter of each black curve is exactly η larger than the perimeter of the gray
curve, as the linear pieces sum to the perimeter of the gray curve and the circular arcs sum to η.
Hence, the problem of enclosing points with curves, minimizing the total length plus an opening
cost η per curve, is equivalent to that of enclosing circles with curves of minimal total length.

There are many standards that specify how far fences should be from trees, and even discussions
on different advantages of grouping trees beyond the fence cost (e.g., see [8]).

1.3 Our Techniques

Approach for the unit disk fencing problem. Our approach is as follows. We first parti-
tion the plane and recursively subdivide it into four quadrants, using a quadtree dissection-type
approach. This divides the plane into cells of geometrically decreasing sizes. Each cell of width w
consists of four cells of width w/2. We find optimal partitions for the smallest cells first (i.e., the
lowest level of the quadtree). We then work with increasing cell sizes, solving the problem layer by
layer in the quadtree. To obtain a solution at a given cell size, we rely on solutions to smaller cell
sizes. For this to work, we need to have precomputed the solutions for various polyominoes made
of some constant number of cells of smaller sizes.

For a given polyomino, we show how to obtain an optimal clustering of the points within the
polyomino by merging the solutions for smaller polyominoes. In some cases, merging is not enough
as there can be one large cluster intersecting all the cells of the polyomino, which we do not find
by merging solutions of smaller polyominoes.

Hence, we need an efficient algorithm for finding the best cluster C intersecting all the cells of
the polyomino. In order to do this, we give a subroutine running in time O(n log3 n) that finds the
best cluster that intersects all cells. The subroutine works in two steps: it first finds a point x0 that
belongs to the cluster we are looking for together with a point p on the boundary of the cluster.
Once we have x0 and p, the idea is to make an angular sweep of a ray from x0, and consider the
points in the order the ray sweeps over them. For each point v, we calculate the “best” path from p
to v, in terms of both its length and how many clusters’ opening costs it may save. We prove that
the “best” path consists of line segments between points, and save for each v information about
the last line segment on the path to v (see the red lines in Figure 2). This information allows us to

2

finally retrieve the boundary of the convex hull of C recursively.

x0

p

t

Figure 2: Given the advice that p lies on the perimeter of the cluster containing x0 in an optimal
clustering, we can compute the cluster containing x0 with an angular sweep. Here, the angular
sweep has reached the point t.

Approach for the k-cluster fencing problem. Our algorithm for the k-cluster fencing problem
shares some similarities with the work of Gibson et al. [10], in which a dynamic programming
approach was used to solve the minimum radius sum problem. One main difference is that the
running time complexity they obtain is O(n881), whereas our approach works in O(n27) time. Their
technique is to divide a given instance (S, k) of the minimum radius sum problem into subproblems,
where S is the set of points to be clustered and k is a constraint on the number of clusters we can
use. The problem (S, k) is solvable if we have a solution to all subproblems. However, the number
of subproblems is exponential. To get a polynomial time algorithm, they showed that a solution
can be found after considering only a polynomial number of subproblems.

We also use a dynamic programming approach for our problem, although we need new techniques
since the number of candidate clusters for the minimum radius sum problem is only O(n2) (as each
disk is determined by two points in S, one determining the center and the other determining the
radius). In contrast, our problem has an exponential number of candidate clusters (dictated by
all subsets of S). We define subproblems based on boxes, which are rectangles that cover some
portion of the plane and some number of input points from S. Our key observation is that there
is some separator of each box (i.e., a vertical line segment or a horizontal line segment) that splits
the box into two strictly smaller boxes such that an optimal solution only has a constant number
of line segments that intersect this separator (in fact, we give a bound of two on the number of
such intersecting line segments).

A dynamic programming approach naturally follows: we simply guess the position of such a
separator (for which we argue there are O(n) choices), and then guess which segments crossing this
separator belong to an optimal solution. We first obtain solutions for smaller boxes, and then glue
together solutions for smaller boxes to obtain solutions for larger boxes.

We note that there is an unpublished solution [12] (i.e., polynomial time algorithm) for the
rectilinear version of the problem, where we must enclose n points using k axis-parallel rectangles
rather than convex hulls (as in our setting). The solution to the axis-parallel version uses similar

3

ideas. In particular, it is possible to argue the existence of separators that do not cut through any
clusters of an optimal solution in this setting. This is not possible for our problem. For the k-
cluster fencing problem, it is possible that any such vertical or horizontal separator cuts at least one
cluster, and allowing skew separators would result in subproblems of high complexity. In particular,
consider an example with n sufficiently large and assume k < n/3. We have n−k+ 1 points spread
evenly on a circle as the corners of a regular (n− k + 1)-gon, and k − 1 points spread evenly on a
surrounding circle with the same center. The surrounding points are fairly close yet sufficiently far
enough away that the optimal solution is to cluster the inner n− k + 1 points together, and open
a cluster for each of the k − 1 points on the surrounding circle. Cutting away the k − 1 points on
the outside (with not necessarily axis-aligned separators) creates subproblems defined on polygonal
regions with k − 1 sides, resulting in high complexity subproblems.

1.4 Related Work

The literature on geometric clustering is vast [2], and thus we focus on the most relevant prior
works. Arkin, Khuller, and Mitchell [3] considered many clustering variants related to the problems
studied in the present paper. For the variant where points have a value associated with them, they
showed that the problem of maximizing profit (i.e., sum of values of points enclosed minus the total
perimeter) is NP-hard when values are unrestricted in sign. When values are strictly positive, they
gave an O(n3) time algorithm. For the version in which there is a budget on the total perimeter we
can use, the problem of maximizing profit is also NP-hard, even when values are strictly positive
(they provided a pseudo-polynomial algorithm when the values are integers).

The k-cluster fencing problem for k = 1 is the very well-known problem of computing the convex
hull of a set of points in the plane [7]. There has also been some work for the special case of k = 2
clusters. The work of Mitchell and Wynters [13] studied four flavors of the problem: minimizing
the sum of perimeters, the maximum of the perimeters, the sum of the areas enclosed by the fences,
and the maximum of the areas. They gave polynomial time solutions for all four flavors, running in
time O(n3) (for some of them, they gave improved running time bounds of O(n2)). More recently,
the work of Abrahamsen et al. [1] gave an algorithm running in time O(n log4(n)) that solves the
case of k = 2 clusters, yielding the first subquadratic time algorithm for this setting.

There have been many other papers studying related geometric clustering problems. Capoyleas,
Rote, and Woeginger [6] studied a general geometric k-clustering framework in which the cost of a
solution is determined by some weight function that assigns real weights to any subset of points in
the plane (i.e., each cluster), after which a symmetric k-ary function over k-tuples is applied (e.g.,
the sum function). For the case when the weight function is the diameter, radius, or perimeter
and the symmetric k-ary function is an arbitrary monotone increasing function (such as the sum
or the maximum), they gave an algorithm running in time ρ(k)nO(k), where ρ(k) is the number of
nonisomorphic planar graphs on k nodes. This is polynomial if k is fixed and not given as input.

In addition, the work of Behsaz and Salavatipour [4] studied objectives such as minimizing the
sum of radii and minimizing the sum of diameters subject to the constraint of having at most k
clusters. For minimizing the sum of radii, they gave a polynomial time algorithm for clustering
points in metric spaces that are induced by unweighted graphs, assuming no singleton clusters are
allowed. They also showed that finding the best single cluster for each connected component of
the graph yields a 3

2 -approximation algorithm, assuming no singleton clusters are allowed. For the
problem of minimizing the sum of diameters, they gave a polynomial time approximation scheme
when points lie in the plane with Euclidean distances, along with a polynomial time exact algorithm

4

when k is constant (for the metric setting).
Many classical clustering problems are NP-hard when k is given as part of the input, though

there are some notable exceptions. In 2012, Gibson et al. [10] devised a polynomial time algorithm
for finding k disks, each centered at a point in S, such that the sum of the radii of the disks is
minimized subject to the constraint that their union must cover S. In their paper, they used a
dynamic programming approach to get a running time of O(n881T (n)), where T (n) is the time
needed to compare two candidate solutions.

2 The Unit Disk Fencing Problem

Given a set of points A in the plane, we denote by H(A) the convex hull of A, and by h(A) the
perimeter of H(A).

Let A be a finite set of points in R2 and let η > 0 be the opening cost. Consider a partition
C := {C1, . . . , C`} of A. We refer to each set Ci as a cluster. The cost of C with respect to η is

η · `+
∑̀
i=1

h(Ci).

The partition C is optimal for (A, η) if no partition of A has a lower cost. We denote the cost of
an optimal partition for (A, η) as Opt(A, η). When the opening cost is clear from the context, we
might omit it. In the unit disk fencing problem, we are given a set of points A and an opening cost
η, and the goal is to find an optimal partition for (A, η).

Observation 1. In an optimal partition, the clusters have pairwise disjoint convex hulls.

We say that A is indivisible if {A} is an optimal partition for (A, η).

Observation 2. Each cluster of an optimal partition is indivisible.

We say an optimal partition {C1, . . . , C`} for (A, η) is maximal if there is no optimal partition
{C ′1, . . . , C ′`′} of (A, η), where `′ < `, such that for each i ∈ {1, . . . , `}, there is some j ∈ {1, . . . , `′}
such that Ci ⊆ C ′j .

2.1 Structural Results

Lemma 1. Let A,B be two indivisible sets of points in R2 under the opening cost η. If H(A) and
H(B) intersect, then the set A ∪B is indivisible.

Proof. Let C be a maximal optimal partition of (A ∪B, η). Let {C1, . . . , Cm} be the clusters from
C such that A ∩ Ci 6= ∅ and B ∩ Ci 6= ∅ for 1 ≤ i ≤ m. Assume for contradiction that m = 0. This
means that A∩B = ∅ and each cluster of C is a subset of either A or B, and hence that |C| ≥ 2. If
|C| = 2, then C = {A,B}, and C cannot be optimal as H(A) and H(B) intersect. If |C| > 2, then
C cannot be maximal as A and B are indivisible. Hence m ≥ 1.

We want to show that the set A′ := A∪
⋃m
i=1Ci is indivisible. Let {A1, . . . , Aj}, where possibly

j = 0, be the clusters of C that are contained in A. Then the set A := {A1, . . . , Aj , C1, . . . , Cm}
is a partition of A′. Note that A must be an optimal partition of A′, as otherwise C would not be
optimal for A ∪B.

The cost of A is thus

Opt(A′) = (j +m)η +

j∑
i=1

h(Ai) +
m∑
i=1

h(Ci).

5

Figure 3: The polygon Q from the proof of Lemma 1 is the set H(A)∪
⋃3
i=1H(Ci). Note that the

perimeter is h(Q) = h(A) +
∑3

i=1(h(Ci)− h(Pi)).

Now, for each cluster Ci, we define a polygon Pi = H(A) ∩H(Ci). As H(A) and H(Ci) are both
convex, so is Pi.

Note that all points in A′ are contained in the polygon Q := H(A) ∪
⋃m
i=1H(Ci), see Figure 3.

It hence follows that

h(A′) ≤ h(Q) = h(A) +
m∑
i=1

(h(Ci)− h(Pi)).

Note that {A1, . . . , Aj , P1 ∩ A, . . . , Pm ∩ A} is a partition of A. Hence, by the indivisibility of A,
we have

η + h(A) ≤ (j +m)η +

j∑
i=1

h(Aj) +
m∑
i=1

h(Pi).

Combining these two inequalities yields

h(A′) + η ≤ (j +m)η +

j∑
i=1

h(Aj) +
m∑
i=1

h(Ci) = Opt(A′),

and so A′ is indivisible.
As A′ is indivisible, A′ is the union of clusters of C, and C is maximal, it follows that A′ is itself

a cluster of C, i.e., m = 1 and j = 0. Recall furthermore that A′ contains A and intersects B. In a
similar way, it can be shown that B′ := B ∪

⋃m
i=1Ci is a cluster of C that contains B and intersects

A. Since A′ ∩B′ 6= ∅ and C is optimal, we must have A′ = B′ = A∪B, so C = {A∪B} and A∪B
is indivisible.

Lemma 2. Let A ⊆ B be sets of points in R2, and let A be indivisible. Let C = {C1, . . . , C`} be a
maximal optimal partition of B. Then A ⊆ Ci for some i ∈ {1, . . . , `}.

Proof. Let S ⊆ C be the set of clusters of C that intersect A. By Lemma 1, each of the sets S ∪A,
where S ∈ S, is indivisible. It thus follows that A ∪

⋃
S∈S S =

⋃
S∈S S is also indivisible. Since C

is maximal, it must then be the case that S consists of a single cluster Ci that contains A.

6

Lemma 3. Each instance (A, η) of the unit disk fencing problem has a unique maximal optimal
partition.

Proof. Consider two maximal optimal partitions C = {C1, . . . , C`} and C′ = {C ′1, . . . , C ′`′} of A.
Lemma 2 gives that each cluster Ci of C is contained in some cluster C ′j of C′. Likewise, each
cluster C ′j of C′ is contained in some cluster Ci of C. Since the clusters of an optimal partition are
disjoint, it now follows that there is a one-to-one correspondence between the partitions C and C′,
i.e., they are the same partition of A.

Lemma 4. Let A =
⋃
i∈I Ai be a set of points such that A =

⋃
i∈I A

{
i , where A{

i := A\Ai for i ∈ I.

Let Ci be the maximal optimal partition of A{
i , and C the maximal optimal partition of A. Any

cluster of Ci that intersects a cluster C ∈ C is also contained in C, and it follows in particular that
each cluster C ∈ C is the union of clusters of the partitions Ci. Furthermore, each cluster C ∈ C is
either a cluster of some partition Ci or has a non-empty intersection with each set Ai.

Proof. In order to prove that first part, consider some cluster Ci ∈ Ci that intersects C ∈ C. Since
Ci is indivisble, Lemma 2 gives that there is a cluster of C containing Ci. That cluster must be C,
as the clusters of C are disjoint. It hence also follows that each cluster C ∈ C is the union of some
clusters of the partitions Ci.

In order to prove the second part, consider a cluster C ∈ C that does not intersect some set
Ai. Then, C ⊆ A{

i . Since C is indivisible, Lemma 2 gives that there is a cluster Ci of Ci such that
C ⊆ Ci. By the above, we also have that Ci ⊆ C. Hence C = Ci, i.e., C is a cluster of Ci.

2.2 Partitioning into Independent Instances

Consider an instance (A, η) of the unit disk fencing problem. Observe that any two points p1, p2 ∈ A
such that ‖p1p2‖ < η/2 must be in the same cluster in any optimal partition of A. We will prove
that we can efficiently decompose the problem instance (A, η) into a collection of independent
subinstances (Ai, η), such that for each subinstance diam(Ai) = poly(|Ai|) · η.

Lemma 5. Any n-point instance (A, η) of the unit disk fencing problem can be reduced in time
O(n log2 n) into a disjoint collection of subinstances (Ai, η), where A =

⋃
iAi and each subinstance

is bounded by a box of side lengths at most 2|Ai|2 ·η. The subinstances are independent in the sense
that an optimal partition for (A, η) is the union of the optimal partitions for (Ai, η).

Proof. Clearly, the optimal partition for (A, η) has cost of at most n · η, as a partition of cost n · η
can be obtained by opening n singleton clusters. Therefore, if any two points are at a distance
greater than n · η/2, they must be in separate clusters of any optimal partition (as the perimeter
of any cluster containing such two points would be greater than Opt(A)).

We first sort all points from A with respect to their x-coordinate. Denote the sorted points
by p1, . . . , pn. Whenever for two consecutive points pi, pi+1 the difference in their x-coordinate is
greater than n · η/2, we know that the sets of points {p1, . . . , pi} and {pi+1, . . . , pn} can be treated
separately, i.e., each cluster of any optimal partition will be contained in either {p1, . . . , pi} or
{pi+1, . . . , pn}. That gives us a partition of {p1, . . . , pn} into subinstances, where each subinstance
is contained in a vertical slab of width at most n2 ·η/2. Now, for each subinstance we sort the points
according to their y-coordinate, and perform a similar operation. Therefore, in time O(n log n) we
partitioned (A, η) into subinstances (Ai, η), such that A =

⋃
iAi, each subinstance has a bounding

7

Figure 4: Basic polyominoes.

box of size at most n2 ·η/2×n2 ·η/2, and an optimal partition for (A, η) is the union of the optimal
partitions for (Ai, η).

Note that if |Ai| ≥ |A|/2, then n2 · η/2 = |A|2 · η/2 ≤ 2|Ai|2 · η, and the size of the bounding
box is as required. It therefore remains to consider subinstances (Ai, η) for which |Ai| < |A|/2
and the smallest bounding box has size at least 2|Ai|2 · η. In such an instance, there must be
two consecutive points in the order of x- or y-coordinates where the respective coordinates differ

by at least 2|Ai|2·η
|Ai|−1 > |Ai| · η/2. Thus, the instance (Ai, η) can be recursively partitioned into yet

smaller subinstances. Since at each recursive level, at most half of the points from the previous
level remain, the depth of the recursive tree is at most O(log n). The total running time is therefore
O(n log2 n).

2.3 Cells and Polyominoes

Consider an instance (A, η) of the unit disk fencing problem with bounding box S (which is an
axis-parallel square of side length poly(|A|) · η). We will recursively subdivide S into cells, starting
with a single cell S, and recursively partitioning each cell into four smaller squares, ending when the
side length of the cells is at most η/8. This happens after some L = O(log n) recursive operations
due to the partitioning described in Section 2.2. We call a cell a level i cell if it has been obtained
after i− 1 levels of subdivision. The square S is thus a level 1 cell.

We consider level i cells and define polyominoes to be simple polygons consisting of some level
i cells. Two cells are neighbouring if their boundaries share an edge or a corner. We will be
particularly interested in monominoes, which consist of a single cell, dominoes, which are the union
of two cells sharing an edge, L-trominoes, which are the union of three pairwise neighbouring cells
(i.e., which are in the shape of the letter L), and square-tetrominoes, which are a 2×2-square of cells.
A basic polyomino is a monomino, a domino, an L-tromino, or a square-tetromino. See Figure 4
for all the basic polyominoes. Note that any non-basic polyomino contains two non-neighbouring
cells. Polyominoes consisting of level i cells are called level i polyominoes. We say that a polyomino
π is convex if the intersection of π with any horizontal or vertical line has at most one connected
component.

Note that each level i monomino, domino, tromino, or tetromino, for i < L, contains 4, 8, 12, or
16 cells at level i+1, respectively. We define a subpolyomino at level i+1 to be a convex polyomino
at level i+ 1 that is contained in a basic polyomino at level i. Note that each basic polyomino at
level i+ 1 and at level i is also a subpolyomino at level i+ 1. For all subpolyominoes, see Figure 5.

As we want each input point to belong to exactly one cell of a given level, we define a cell
to include its right and bottom edge and the bottom-right corner. The other edges and corners
then belong to the neighbouring cells. For any collection of cells π (not necessarily a polyomino),
we define Aπ := A ∩ π to be the input points in π. We say that a polyomino π is empty if
Aπ = ∅. We will consider subproblems of the original unit disk fencing problem instance (A, η),
each subproblem corresponding to the input points Aπ lying in a non-empty basic polyomino π
of some level. Note that the number of non-empty basic polyominoes of a given level i is O(n),
as each point belongs to a constant number of such polyominoes. Therefore, the total number of

8

Figure 5: The 260 different subpolyominoes (up to rotations and reflections).

non-empty basic polyominoes is at most O(n log n).
We compute an optimal partition for each subproblem (Aπ, η), where π is a non-empty basic

polyomino. We start with the polyominoes at level L. At level L, any two points in the same
basic polyomino π have distance less than η/2 and therefore Aπ is indivisible. Suppose now that
we have already computed the optimal partition for each non-empty basic polyomino at some level
i ≤ L. As we will see, this makes it possible to compute the optimal partitions for all non-empty
subpolyominoes at level i. Since each basic polyomino at level i − 1 is a subpolyomino at level i,
we thus also know the optimal partitions of each basic polyomino at level i− 1. It follows that the
process can be repeated until we reach level 1, i.e., we have computed an optimal partition of A.

To compute and process the polyominoes efficiently, we will use a quadtree construction as
described in the next section.

2.4 Quadtree Construction

A quadtree is a geometric data structure for objects in the Euclidean plane. The root of the quadtree
corresponds to a square containing all the input objects, while the children of each node correspond
to the four subsquares of the given square. The leaves correspond to subsquares that have small
enough side length, or where the input objects have small complexity, e.g., subsquares containing
at most some constant number of input objects. See [11, Chapter 2] for more information on
quadtrees, and for their applications.

In our case, the root of the quadtree corresponds to the level 1 cell S. Each node corresponding
to a level i cell C has at most 4 children, which correspond to level i+1 cells contained in C. We do
not create nodes corresponding to empty cells, i.e., with no points from A. The leaves correspond

9

Figure 6: A situation from the proof of Lemma 6.

to the highest level cells, i.e., the side length of the leaf cells is at most η/8. As there are at most
n non-empty cells at each level, the number of nodes of the quadtree is at most n ·L = O(n log n).
The quadtree can be constructed in time O(n log n), as at each of the L levels, we have to compute
the subsquares for the n points.

While constructing the quadtree, for each node corresponding to each level i cell, we can compute
the nodes corresponding to the eight neighbouring cells (if such nodes exist, i.e., the corresponding
cells are non-empty). Remembering this information will allow us to construct the polyominoes
easier.

From the quadtree, we can construct the set of all non-empty basic polyominoes in time
O(n log n), assigning each basic polyomino π to the nodes of the quadtree corresponding to the
cells of π. We do that by considering all nodes of the tree, for each node corresponding to a cell
c considering the 21 basic polyominoes containing c, and either constructing a new polyomino, or
assigning an existing polyomino to the currently considered node.

2.5 Finding an Optimal Partition for Each Basic Polyomino

We now describe an algorithm for finding an optimal partition for each basic polyomino.

Leaf polyominoes. Consider a basic polyomino π at level L. As π consists of level L cells, and
the side length of such cells is at most η/8, the distance between any two points in π is smaller
than η/2. Therefore, an optimal partition for (Aπ, η) consists of one indivisible set of points Aπ.
Therefore, optimal partitions for leaf polyominoes can be computed efficiently.

At most one big cluster. Suppose that we have already computed the optimal partitions for all
basic polyominoes at level i. In order to compute the optimal partitions for the basic polyominoes
at level i−1, we first compute the optimal partitions for all subpolyominoes at level i. This suffices
as the basic polyominoes at level i − 1 are also subpolyominoes at level i. To find an optimal
partition for each subpolyomino π efficiently, we make use the following property.

10

Lemma 6. Let π be a non-basic polyomino at some level i. Let C = {C1, . . . , C`} be a maximal
optimal partition of Aπ. For any pair Γ1,Γ2 of non-neighbouring cells of π, there is at most one
cluster C ∈ C such that H(C) intersects both Γ1 and Γ2. In particular, C has at most one cluster
C such that H(C) intersects all cells of π.

Proof. Assume that there are two clusters C1, C2 ∈ C such that H(C1) and H(C2) both intersect
Γ1 and Γ2. The situation is depicted in Figure 6. Since C is optimal, H(C1) and H(C2) are disjoint,
and it follows that both boundaries ∂Γ1 and ∂Γ2 intersect both boundaries ∂H(C1) and ∂H(C2).
We may then define the point pij , for each choice i, j ∈ {1, 2}, to be the intersection point of ∂Γi
with ∂H(Cj) such that (i) pi1p

i
2 ∩ (H(C1) ∪H(C2)) = {pi1, pi2}, and (ii) p1

jp
2
j ∩ (Γ1 ∪ Γ2) ⊆ {p1

j , p
2
j}.

Let S be the quadrilateral with vertices at pij for i, j ∈ {1, 2}, and consider the polygon C12 =
H(C1) ∪H(C2) ∪ S. We will show that h(C12) is not larger than h(C1) + h(C2). As C12 contains
all points of C1 ∪ C2, this shows that C is not optimal or maximal.

In the following, we show the inequality

‖p1
1p

1
2‖+ ‖p2

1p
2
2‖ ≤ ‖p1

1p
2
1‖+ ‖p1

2p
2
2‖. (1)

The desired result then follows as the latter sum is at most the length of the perimeter of H(C1)
and H(C2) contained in S. Let α be the side length of the cells. If Γ1 and Γ2 are in the same row
or column of cells, then clearly ‖pi1pi2‖ ≤ α ≤ ‖p1

jp
2
j‖, and the inequality 1 holds. Otherwise, let

v1, v2 be the corners of Γ1,Γ2 minimizing the distance between the cells. By considering cases of
where the points pij are on ∂Γi, one can observe that it always holds that

‖pi1pi2‖ =
√
‖pi1vi‖2 + ‖pi2vi‖2 ≤

√
α2 + ‖pijvi‖2 ≤

√
α2 + ‖p1

jv1‖2 + ‖p2
jv2‖2 ≤ ‖p1

jp
2
j‖,

and inequality (1) follows.

Cluster unions. Consider a given subpolyomino π at some level i for which we want to compute
the maximal optimal partition of the input points Aπ. The overall approach is the following. We
use maximal optimal partitions Cj for Aπj for various smaller collections πj (π of level i cells.
We then construct the merger of the partitions Cj , which is the partition of Aπ we get when we
unite the partitions Cj and keep merging clusters with overlapping convex hulls. The merger C thus
consists of clusters with pairwise disjoint convex hulls, but is in general not optimal. As we shall
see, a maximal optimal partition of Aπ can be obtained by uniting one subset of the clusters of C
into one big cluster. This is the motivation for the following definitions.

Let C = {C1, . . . , C`} be a partition of a set A of points such that H(Ci) ∩H(Cj) = ∅ for any
i 6= j. For any subset S ⊆ C consider the set US =

⋃
Ci∈S Ci. Let C[S] be the partition consisting

of the cluster US and every Ci /∈ S. Consider the set S∗ ⊆ C minimizing the cost of the partition
C[S∗]. If there is more than one such partition, we are interested in a maximal one. We say that
S∗ is an optimal cluster union for the clustering C.

Lemma 7. Let A =
⋃
i∈I Ai be a set of points such that A =

⋃
i∈I A

{
i , where A{

i := A\Ai for i ∈ I.
Let C∗ be the maximal optimal partition of A and suppose that there is at most one cluster in C∗
that intersects each set Ai. Let Ci be the maximal optimal partition of A{

i and let C be the merger
of the partitions Ci. Let S∗ be an optimal cluster union for C. Then C[S∗] and C∗ are the same
partition.

11

Proof. By Lemma 4, each cluster of C∗ is either a cluster of some Ci, or has non-empty intersection
with each set Ai. Since there is at most one cluster in C∗ of the latter kind, it follows that C∗ has
the form {C1, . . . , Ck}, where each Ci, i ≥ 2, is contained in a cluster of the partition C. Each
cluster C of C is indivisible by Lemma 1, so it is contained in some cluster Ci ∈ C∗ by Lemma 2.
For each cluster Ci where i ≥ 2, there must be a cluster C ∈ C contained in Ci, and it follows
that C = Ci. Hence, C has the form {D1, . . . , D`, C2, . . . , Ck}, where C1 =

⋃`
i=1Di. Therefore, the

optimal cluster union for C is S∗ := {D1, . . . , D`}, and C[S∗] is the partition C∗.

Lemma 8. Let π be a non-basic convex polyomino. There are two cells Γ1,Γ2 of π with the following
properties:

(i) Γ1,Γ2 are non-neighbouring,

(ii) π \ Γ1 and π \ Γ2 are convex, and either

(iii.a) the horizontal distance between Γ1 and Γ2 is at least as large as the vertical distance, Γ1 is
leftmost and Γ2 is rightmost in π, or

(iii.b) the vertical distance between Γ1 and Γ2 is at least as large as the horizontal distance, Γ1 is
topmost and Γ2 is bottommost in π.

Proof. Since π is non-basic, it has either width of at least 3 cells or height of at least 3 cells. Assume
without loss of generality that the width of π is at least as large as the height of π. We will choose
Γ1 to be one of the leftmost cells of π, and Γ2 to be one of the rightmost cells of π. As we want
π \ Γ1 and π \ Γ2 to be convex, Γ1 and Γ2 have to be topmost or bottommost in their columns.
If there is only one cell in the leftmost (rightmost) column, we take it as Γ1 (respectively, Γ2), as
then clearly π \Γ1 (respectively, π \Γ2) remains a convex polyomino. If there are at least two cells
in the column, then, by convexity of π, at least one of them can be removed without disconnecting
the polyomino.

The following lemma states that we can find optimal cluster unions efficiently. The proof is in
sections 2.6–2.8.

Lemma 9. Let π be a collection of cells and Γ1,Γ2 two non-neighbouring cells of π such that either

(i) the horizontal distance between Γ1 and Γ2 is at least as large as the vertical distance, Γ1 is
leftmost and Γ2 is rightmost in π, or

(ii) the vertical distance between Γ1 and Γ2 is at least as large as the horizontal distance, Γ1 is
topmost and Γ2 is bottommost in π.

Let C be a partition of the points Aπ such that for i ∈ {1, 2}, C restricted to the points of Aπ\Γi
is the maximal optimal partition of Aπ\Γi. An optimal cluster union for C can be found in time
O(n · polylog n), where n is the number of points in Aπ.

Solving non-basic subpolyominoes. We can now describe how to find maximal optimal par-
titions of the points in non-basic subpolyominoes.

Lemma 10. Let π be a non-basic subpolyomino at level i. Given maximal optimal partitions for
basic polyominoes at level i, we can compute an optimal partition of Aπ in time O(n · polylog n),
where n is the number of points in Aπ.

12

Figure 7: A demonstration of how the optimal partition C∗ of the set Aπ of points in the non-basic
3 × 3-cell polyomino π is obtained from optimal partitions C∗1 , C∗2 , C∗3 of points Aπ1 , Aπ2 , Aπ3 in
smaller collections of cells π1, π2, π3, as described the proof of Lemma 10. The cells have width 1
and the opening cost is η := 5/4. The second, third and fourth figure show the optimal clusterings
C∗1 , C∗2 , C∗3 . The fifth figure shows the merger C of these. The final figure shows C∗ (the optimal
cluster union consists of all the clusters of C).

Proof. We first find cells Γ1,Γ2 of π as in Lemma 8. Let π1 := π\Γ1, π2 := π\Γ2, and π3 := Γ1∪Γ2.
As each monomino Γi is a basic polyomino at level i, we know the maximal optimal partition of
AΓi by assumption. Let C3 be the merger of the maximal optimal partitions of AΓ1 and AΓ2 (which
is in fact just the union of the partitions, as the cells are disjoint). Then, Γ1 ∪ Γ2 together with
the partition C3 satisfy the conditions of Lemma 9, and we can find an optimal cluster union S3

for C3 in time O(n · polylog n). Define C∗3 := C3[S3]. By Lemma 6, the maximal optimal partition
of AΓ1∪Γ2 contains at most one cluster the intersects Γ1 and Γ2. Hence, by Lemma 7, C∗3 is the
maximal optimal partition of AΓ1∪Γ2 .

See Figure 7. Denote the maximal optimal partition ofAπ as C∗. Consider the sets Aπ1 , Aπ2 , Aπ3 ,
and suppose for now that we know their optimal partitions C∗1 , C∗2 , C∗3 . By Lemma 4 (taking A := Aπ,
A1 := AΓ1 , A2 := AΓ2 , and A3 := Aπ\(Γ1∪Γ2)), we get that a cluster of C∗ that is not a cluster of
any C∗i must intersect both Γ1 and Γ2. Due to Lemma 6, there is at most one such cluster in C∗.
Let C be the merger of the partitions C∗1 , C∗2 , C∗3 . Applying Lemma 9 for π, Γ1, Γ2, and C, we obtain
an optimal cluster union S for C. By Lemma 7, we get that C[S] = C∗.

As the polyomino π has at most 16 cells, we need to find optimal partitions for a constant
number of subpolyominoes πi before we get down to the basic polyominoes. That gives the total
running time of O(n · polylog n).

Summing up. Consider the subpolyominoes Πi at some level i. By Lemma 10, the total com-
putation for level i takes time∑

π∈Πi

O(|Aπ| · polylog |Aπ|) ≤ polylog n ·
∑
π∈Πi

O(|Aπ|) = O(n · polylog n),

where the equality follows since each point belongs to O(1) level i subpolyominoes. Due to the
preprocessing described in Lemma 5, the number of levels is O(log n), so the total running time of
the algorithm is O(n · polylog n). We have thus proven the following theorem:

Theorem 1 (The unit disk fencing problem). There is an algorithm running in O(n polylog(n))
time that, given any set A of n points in the plane and an opening cost η, finds a set of ` closed
curves such that each point in S is enclosed by a curve and the total length of the curves plus η · `
is minimized.

13

2.6 Finding Optimal Cluster Unions

In order to find optimal cluster unions, we first solve a more specialized problem where we require a
special point x0 to be contained in the cluster union. To be more precise, the optimal cluster union
S∗ for the pair (C, x0), where C is a partition, is a maximal subset of the clusters of the partition
Cx0 := C ∪ {{x0}} such that {x0} ∈ S∗ and the cost of Cx0 [S∗] is minimal. Note that we use the
terms point and vertex interchangeably in the following.

In this section, we prove the following result.

Lemma 11. Let C = {C1, . . . , C`} be a partition of a given set A of points such that H(Ci) ∩
H(Cj) = ∅ for any i 6= j, and let x0 be an arbitrary point. A maximal optimal cluster union for
(C, x0) can be found in time O(n · polylog n), where n is the number of points in A.

Our first goal is to solve the following more specialized problem. Given an “internal” point x0

and a “perimeter” point p 6= x0, and given a set of input points and pre-clustered input points, the
goal is to find the optimal cluster containing x0 with an angle-monotone perimeter seen from x0

and with p on its perimeter. We present an algorithm to solve this problem. The algorithm can
take into account that the cluster must be contained within some delimiting outer boundary.

The idea is to make an angular sweep of a ray from x0, and consider the points in the order the
ray sweeps over them. For each point v, we calculate the best path (see Section 2.6.4) from p to v,
in terms of both its length and how many clusters’ opening costs it may save. In this process, we
only store for each vertex its parent par(v), which is an input point with the property that a best
path to v ends with the line segment from par(v) to v. Finally, we calculate the parent of p, and
have thus specified the entire cluster and may generate its convex hull by recursively outputting
the parent until we end back at p.

2.6.1 Preliminaries

Definition 1. Any closed simple curve σ divides the plane R2 into two regions: the bounded
interior, denoted int(σ), and the unbounded exterior, denoted ext(σ). We write int(σ) = σ∪ int(σ)
and ext(σ) = σ ∪ ext(σ).

Definition 2. A region R of Euclidean space is star shaped if there exists a point s ∈ R such that
for all r ∈ R, the line segment sr is contained in R. We say that R is star shaped seen from s.

Definition 3. Given a point s, a curve π : [0, 1] −→ R2 is angle-monotone with respect to s if
](π(0), s, π(x)) <](π(0), s, π(x′)) for x < x′. Here,](a, b, c) is the counterclockwise angle from
the unit vector a−b

‖a−b‖ to the unit vector c−b
‖c−b‖ on the unit circle.

When a cluster only contains one point, we call it trivial, otherwise, it is non-trivial. If a curve
intersects the interior of a cluster, we say that it dissects the cluster. Given a partition C of some
points, we denote by V (C) the set of points, V (C) :=

⋃
C∈C C.

We denote by Br(x) the ball of radius r around the point x.

2.6.2 Problem formalization

We are given:

• special points x0 and p,

• clusters C := {C0, . . . , Cl−1} with costs cost(Ci),

14

• an outer limit, corresponding to the perimeter of an unbounded cluster Cl, which the cluster
containing x0 is not allowed to intersect.

We may assume that no two clusters touch or intersect, and that each cluster is convex. Unclustered
points v are treated as trivial clusters Ci = {v}.

Definition 4. QC(p, x0) is the set of all closed simple curves σ with p ∈ σ, not dissecting any
cluster in C, and such that σ is angle-monotone from x0.

The cost of a curve σ ∈ QC(p, x0) is:

length(σ) +
∑

C∈C,C⊆ext(σ)

cost(C).

Note that we sometimes omit the subscript C when it is clear from context.

Problem. Given C, Cl, p, and x0 as described above, compute infσ∈Qp,x0 cost(σ).

Note here that even if no outer limit is given as part of the construction, we may take any
bounding box around x0 containing all of V (C) as an outer limit.

Lemma 12. We can compute infσ∈Qp,x0 cost(σ) and also output arg minσ∈Qp,x0 cost(σ) in time

O(n log n), where n is the total number of vertices in V (C).

The rest of this section is dedicated to a proof of the lemma above.

2.6.3 Reduction to the case where every cluster is non-trivial.

We reduce the original C to an instance C′ where every cluster has a non-empty interior.
This reduction follows the framework of symbolic perturbation [9, 15, 14]. We introduce an

infinitesimal ε, and replace each vertex v ∈ V (C)∪{x0} by three vertices v′, v′′, v′′′ in an equilateral
triangle centered at v. Each precluster C ′ ∈ C′ will consist of the set {v′, v′′, v′′′ | v ∈ C} for some
C ∈ C. We thus have that every cluster in C′ has a non-trivial interior.

Finally, we replace every vertex v ∈ V (C′) by v+ ε2 · (N (0, 1), 0), that is, we perturb each point
by a very small random number, such that no three points lie on the same line. Therefore, in the
following we can assume all the vertices are in general position.

Note that we may disregard any vertex that does not lie on the convex hull of its cluster.

2.6.4 Subproblem structure.

For any cluster C not containing x0, note that the set of angles {](p, x0, v) | v ∈ H(C)} is either
an interval [a, b] with 0 < a < b < 2π, or the union of intervals [a, 2π)∪ [0, b], with 0 < b < a < 2π.
Because of the symbolic perturbation introduced in Section 2.6.3, these values a and b are realized
by unique vertices on the convex hull of C. Denote by l(C) the vertex realizing a, and by r(C) the
vertex realizing b.

Definition 5. For t /∈ {p, x0}, QC(x0, p, t) is the set of all simple angle-monotone curves π from p
to t, not dissecting any cluster C.

Denote by cone(p, t) the cone with apex x0 through p and t. Denote by int(π) and ext(π) the
bounded, and unbounded, region of cone(p, t) \ π, respectively.

The cost of a curve π is:

cost(π) = length(π) +
∑

C∈C,l(C)∈ext(π)

cost(C).

15

Observation 3. Let C and C′ be as in the reduction (Section 2.6.3). Then, since ε was chosen to
be infinitesimal, the difference between infπ∈C cost(π) and infπ′∈C′ cost(π′) is also infinitesimal.

Definition 6. PC(x0, p, t) ⊆ QC(x0, p, t) is the subset of polygonal curves consisting of line segments
between points of V (C).

Lemma 13.
inf

π∈PC(x0,p,t)
cost(π) = inf

π′∈QC(x0,p,t)
cost(π′).

Proof. For any curve π in QC(x0, p, t), let V int denote the set of internal points, and V ext denote
the set of external points. Then, the shortest curve separating V int and V ext will consist of line
segments between vertices of V int ∪ V ext. Since length(π′) ≤ length(π), and since they cover the
same clusters, cost(π′) ≤ cost(π).

Definition 7. For p 6= t 6= x0, PC(x0, p, t) 6= ∅, let π(t) = arg minπ∈PC(x0,p,t) cost(π). Since π(t) is
polygonal, we may write it as the polygonal curve on the vertex set p = π1, . . . , πz = t. We say
that πz−1 is the parent par(t) of t.

The cost of π(t) may be rewritten in the following way:

cost(π(t))

= length(π1, . . . , πz−1) +
∑

C∈C,l(C)∈ext(π)

cost(C) + d(πz−1, t).

We denote by fixedcost(t) the expression length(π1, . . . ,par(t)) +
∑

C∈C,l(C)∈ext(π)
cost(C).

When PC(x0, p, t) = ∅ for some point not contained in any cluster C ∈ C, we set par(t) = ⊥
and fixedcost(t) = ∞. When a point lies in the interior of some cluster, t ∈ int(C), or when t lies
outside the outer limit, we write par(t) = ∅ and fixedcost(t) =∞.

2.6.5 Calculating parents via a data structure of intervals.

For each point v ∈ V (C), we may calculate its angle](p, x0, v). We may sort the vertices of V (C)
increasing according to their angle, p = v0, v1, . . . , vl = p′, where p′ represents a copy of p with
](p, x0, p

′) = 2π, for convenience.
We rotate a sweep-ray R from x0 through vi for i = 0, 1, . . . , l. While doing so, we maintain a

data structure that encodes for each r ∈ R the values fixedcost(r) and par(r). Here, if par(vi) = vj ,
then j < i.

The data structure maintains a partitioning of R into maximal intervals {I0, . . . , Il} with the
same values of (fixedcost(t), par(t)) for all t ∈ Ii. The first and last intervals are special in the sense
that the first, I0, is dedicated to the cluster containing x0, and the last, Il, is dedicated to ensuring
that we do not cross the outer limit specified in the problem instance.

We observe that the boundaries between intervals only change continuously, and we thus only
store an implicit representation of them. We only consider the sweep-ray at discrete times when
either

• we reach a vertex vi, corresponding to a vertex insertion in the data structure, or,

• an interval shrinks to ∅, corresponding to the interval being deleted from the data structure.

16

For any vertex v ∈ V (C), it dominates a region of R2 in the sense that every point in that region
would have v as its parent. We call these points the children of v:

children(v) = {t ∈ R2 | v = par(t)}.

Lemma 14. The region children(v) is star shaped seen from v.

Proof. Let t ∈ children(v), denote by π the optimal curve from p to t, and assume for contradiction
t′ /∈ children(v) for some t′ on the line segment between t and v. Then, par(t′) = v′ 6= v. Let π′ be
the optimal path from p to t′. Note that π′ passes through par(t′) = v′ 6= v. But then, since both
π and π′ pass through t′, concatenating π′ with the line segment t′t is better than π.

Denote by PR the partitioning of the ray R into intervals consisting of points that have the
same parent. For an interval I ∈ PR, denote by par(I) the shared parent p(t) of all points t ∈ I.

Lemma 15. |PR| ≤ 4n+ 4 for all angles.

Proof. Enumerate the intervals of R consecutively by I0, I1, . . ., such that I0 has x0 as an endpoint.
For each cluster in C with a non-trivial intersection with R, we have an unreachable interval I

with par(I) = ∅. A cluster intersecting with R can contribute with at most 1 unreachable interval
I with par(I) = ⊥, namely, the interval above or below the cluster. For any other interval I we
have that par(I) ∈ {v0, . . . , vl}. It follows from Lemma 14 that the intervals form a hierarchy, that
is, if i < j < k, and par(Ii) = par(Ik) 6= par(Ij), then for any Il with par(Il) = par(Ij), it must
hold that i < l < k. It follows that there are at most 2n such intervals.

par(I)

l(C) t′′

t

t′

Figure 8: The value of fixedcost(t) is fixed within an interval.

Lemma 16. For any I ∈ PR, for t, t′ ∈ I, we have fixedcost(t) = fixedcost(t′).

Proof. Let t, t′ ∈ I. Then, par(t) = par(t′) = par(I). But then, the only way fixedcost(t) could be
different from fixedcost(t′) would be if the set of clusters C ∈ C, l(C) ∈ ext(par(t)t) differed from
the set of clusters C ∈ C, l(C) ∈ ext(par(t′)t′).

Assume for contradiction that there exists a cluster C with l(C) ∈ ext(par(I)t′) and l(C) /∈
ext(par(I)t) (see Figure 8). Then, there would exist a point t′′ ∈ R between t and t′ with par(t′′) 6=
par(I), since any line from t′′ dissects C. But then, t′′ ∈ I with par(t′′) 6= par(I); contradiction.

We denote by fixedcost(I) the constant value fixedcost(t) for any t ∈ I.

17

Determining the boundaries of regions. We may categorize boundaries based on how they
arise.

Some are lines due to visibility (see Figure 9, left), while some are found by equating two costs:

fixedcost(I) + d(par(I), t) = fixedcost(I ′) + d(par(I ′), t).

One may easily check that this yields a quadratic equation, and thus describes a parabola or a line
(see Figure 9, right).

v

par(I)

par(I ′) I ′

I

Figure 9: Boundaries between intervals are either a line due to visibility (left) or described by a
quadratic equation (right).

Hence, we may store the intervals and the functions describing the boundaries between the
intervals on the ray. We may build a balanced binary search tree over these intervals, such that each
leaf is an interval, and each non-leaf node stores the function describing the boundary between its
children. We call this the succinct representation of PR. We note that this succinct representation
is enough to determine the parent of a point on the sweep-ray:

Lemma 17. Given a succinct representation of PRα at some angle α, and assuming no boundaries
of intervals intersect between angles α and β, then for any t ∈ Rβ we can find (fixedcost(t),par(t))
in O(log n) time.

Proof. This can be done by searching the balanced binary search tree of Rα. At each node, starting
with the root, we may evaluate the function describing the boundary between its children at the
angle β, and recurse into the child whose range contains t. Since the tree is a balanced binary
search tree over the O(n) intervals, it has height O(log n), and thus the total time is O(log n).

Initializing the data structure. The sweep-ray R is initialized at angle 0 (that is, with p ∈ R).
It is initialized with an interval I0 containing x0. For each cluster crossing the line segment between
x0 and p, we have two consecutive intervals: an unreachable interval I2m−1 with par(I2m−1) = ⊥,
and an interval corresponding to the inside of the cluster I2m with par(I2m) = ∅. Then, there will
be an interval Ip with par(Ip) = p, and then, for each cluster intersecting the ray after p, there will
be two consecutive intervals I2m and I2m+1 with par(I2m) = ∅ and par(I2m+1) = ⊥. Finally, the
last interval will be delimited by the outer limit given as part of the input.

For any pair of consecutive intervals, exactly one of them corresponds to a cluster, and the
boundary between them follows the line segment of the convex hull of the cluster.

18

For all intervals I, fixedcost(I) is initialized to 0.

2.6.6 Updating the data structure.

We now describe how we update the interval structure of the sweep-ray.
There are two types of updates. Vertex insertions, and interval annihilations. Whenever we

update the data structure, we can foresee when the next interval annihilation will occur. Thus,
when we encounter a point, we know that the topology of PR has not changed.

Interval annihilations. An interval Ii shrinks to ∅ if and only if its boundaries to its two
neighbors, Ii−1 and Ii+1, intersect (see Figure 10).

For any triplet of consecutive intervals, Ii−1, Ii, Ii+1, we store the predicted annihilation-angle
for Ii, that is, when Ii−1 and Ii+1 have dominated it. Whenever an interval disappears, only at
most two such triplets are affected, namely, we must make a new predicted annihilation-angle for
Ii−1 and for Ii+1, where they take each other into account.

Note that by star shapedness (Lemma 14), par(Ii−1) 6= par(Ii+1), and thus we never have to
merge intervals.

par(I)

par(I ′)

l(C)

I ′

I

I∅

Ii

Ii+1

Ii−1

Figure 10: An interval is deleted because it is dominated by its neighbors.

Vertex insertions. Assume we reach a vertex t and update our sweep-ray such that t ∈ R.
Due to Lemma 17, we can determine the interval I containing t, and thus, determine par(t) and
fixedcost(t).

Now, t gives rise to at most three intervals in R, which we add to the data structure. Recall
that every vertex we consider lies on the convex hull of some non-trivial cluster C. In the following,
denote by e− and e+ the edges of the perimeter of C incident to t such that e− comes just before
e+ in a clockwise order. We divide our description into four cases, that depend on how the edges
of the convex hull incident to t relate to R (see Figure 11).

1. t = l(C),

2. t lies on the outer perimeter of C, that is, ∃t′ ∈ C ∩R with t′ closer to x0 than t,

3. t lies on the inner perimeter of C, that is, ∃t′ ∈ C ∩R with t′ further from x0 than t,

4. t = r(C).

19

t

t

t

t

Figure 11: Cases 1, 2, 3, and 4.

Since C is convex, these are the only cases.
In Case 1, a new interval It,∅ is created, with par(It,∅) = ∅ and fixedcost(It,∅) = ∞. The

succinct representation of the boundaries of It,∅ are just the straight lines prolonging e− and e+

(see Figure 12, left and middle).
In Cases 1, 2, and 3, everything that is visible from par(t) belongs to children(par(t)), and

everything else belongs to children(t) unless it belongs to It,∅ (see Figure 12).

Lemma 18. The intervals described above are the correct intervals for Cases 1, 2, and 3.

Proof. Because of the symbolic perturbation of Section 2.6.3, we may assume that t does not lie
on the border between intervals. That is, there exists some δ > 0 such that all of Bδ(t) ∩ R
belongs to the interval I containing t. But then, there exists some δ′ with δ ≥ δ′ > 0, such that
Bδ′(t) ⊆ children(par(t)) ∪ children(t) ∪ children(∅).

Then, for any reachable point in v ∈ Bδ′(t) (i.e., v ∈ Bδ′(t) such that PC(x0, p, v) 6= ∅), the
optimal path goes through par(t) either as the second to last, or as the third to last vertex. Thus,
if par(t) is visible from v, then par(v) = par(t). Otherwise, necessarily, par(v) = t.

par(t) t

par(t) t

par(t) t

Figure 12: The vertex t gives rise to at most 3 new intervals.

Finally, in Case 4, t lies on the border between the intervals I, I ′. We may in constant time
calculate and compare the two costs and determine whether par(t) = par(I) or par(t) = par(I ′). It
follows from the symbolic perturbation in Section 2.6.3 that there are no ties; one is strictly better
than the other. Given par(t), we may calculate fixedcost(t).

We now introduce a new interval Ĩ that has par(Ĩ) = t and fixedcost(Ĩ) = fixedcost(t). We
need to initialize the boundaries of Ĩ correctly: note that an arbitrary number of intervals may
be deleted because they are dominated by Ĩ, however, they are consecutive intervals, and we may
spend constant time on each deletion, since deleted intervals will never resurrect (this follows from
the star shapedness property in Lemma 14).

Lemma 19. The interval described above is the correct interval for Case 4.

Proof. Assume par(t) = par(I), which is strictly better than par(I ′). Then, following the same
lines as the proof of Lemma 18, there exists a small δ′ > 0 such that Bδ′(t) ⊆ children(par(t)) ∪
children(t) ∪ children(∅). Thus, it is necessary to introduce the interval Ĩ. It follows from star
shapedness (Lemma 14) that introducing Ĩ is also sufficient.

20

Iv

Ip

p

x0

v
Ii−1
Ii−2 Iv

v

Figure 13: The insertion of the vertex v = r(C) may cause the deletion of several intervals.

What remains is to handle the changes to fixedcost efficiently and correctly. The only change
to fixedcost of any cluster happens in Case 1: the cost of C needs to be added to fixedcost(I) for
every interval I between x0 and t on R.

Note that no boundaries change because of this: if I ′ and I ′′ are intervals that are not separated
by t, then their fixedcost either stays the same or is increased by the same amount, that is, cost(C).
The only boundary that could be affected is one incident to It,∅. However, the boundaries of It,∅

are lines determined by the convex hull of C.
Finally, we argue that fixedcost can be added to all intervals between x0 and t in O(log n) time:

since we store PR in a balanced binary search tree, we simply update every vertex of the root path
of It,∅ with a lazy delta value that they should push down to their children upon inspection.

2.7 Proof of Lemma 11

In this section, we assume that we are given a polyomino, a point x0 belonging to an optimal
cluster union, and a set of clusters of points within the polyomino. We will be concerned with
Jordan curves that are not self-intersecting. When we consider a curve we only refer to such a
curve.

We say that a ray R is good if it satisfies the following conditions:

• it starts at a point x0 of an optimal cluster union, and

• any input point is at distance at least η/n2 from the ray.

2.7.1 Finding a good ray.

Lemma 20. Given a point x0 that belongs to an optimal cluster union, there exists an O(n log n)
time algorithm that finds a good ray.

Proof. We know by definition of the point set that x0 is at distance at least η/2 from any other
point. Thus, we can perform a clockwise scan around x0 and, by the pigeonhole principle, there
must be at least one ray out of x0 that is at distance at least η/n2 from all the other points. This
ray is a good ray.

21

2.7.2 Nested curves.

For any point p ∈ R2, denote by σmin(p) the optimal curve found in Lemma 12.
We want to show that we can find a suitable p such that the convex hull H(C) of the cluster C

containing x0 in an optimal clustering is the same curve as σmin(p).
To show this, we need some structural lemmas, stating that the curves for different values

p1, p2, . . . along a ray are nested nicely around x0 without crossings.

Lemma 21. Consider two points p1, p2 on the same ray from x0, and assume that d(p2, x0) >
d(p1, x0). Then, σmin(p1) is completely contained in int(σmin(p2)).

x0 p1 p2

y1
y2

Figure 14: When p1 and p2 are on the same ray (here, aligned with the x-axis), their best curves
do not cross.

Proof. Assume for contradiction that C1 = σmin(p1) intersects the exterior of C2 = σmin(p2) (see
Figure 14). Since p1 ∈ C1 and p1 ∈ int(C2), we have by Jordan’s theorem that the curves cross

at least twice. Consider two crossing points y1, y2. Denote by C
|y2,y1|
i the part of Ci \ {y1, y2}

containing pi (for i = 1, 2), and let C
|y1,y2|
i denote the part not containing pi.

Denote by σmin(y1, y2) = arg minπ∈QC(x0,y1,y2) the best curve from y1 to y2 (see Definition 5).

Since there was a crossing, we must have that σmin(y1, y2) 6= C
|y1,y2|
i for some i ∈ {1, 2}, and thus

cost(σmin(y1, y2)) < cost(C
|y1,y2|
i).

But then, cost(σmin(pi)) > cost(C
|y2,y1|
i ◦ σmin(y1, y2)), which is a contradiction since C

|y2,y1|
i ◦

σmin(y1, y2) ∈ QC(pi, x0).

Denote by σ∗ the best curve containing x0, that is, the curve describing the convex hull of the
cluster Cx0 containing x0 in the optimal clustering.

Lemma 22. For any point p, σmin(p) and σ∗ do not cross.

Proof. Denote by p′ the intersection between σ∗ and the ray from x0 through p. It follows from
convexity and boundedness of Cx0 that p′ is uniquely defined.

Clearly, σ∗ = σmin(p′). But now, p and p′ are points on the same ray from x0, and thus, it
follows directly from Lemma 21 that σmin(p) and σmin(p′) = σ∗ do not cross. In fact, we have that
σ∗ is completely contained in either int(σmin(p)) or ext(σmin(p)).

22

2.7.3 Discretizing the ray.

Consider a good ray R with origin x0. For ease of exposition, we rotate the point set and assume
that R is parallel to the x-axis. Define the landmarks of R to be the points of R at distance i · η/n
from x0, for any non-negative integer 0 ≤ i ≤ n7. In particular, we call the point on R at distance
i · η/n from x0 the ith landmark and denote it by xi.

Denote by Hi the region of the plane containing all the points having x-coordinate greater than
the x-coordinate of xi. Note that H1 ⊃ H2 ⊃ H3 ⊃ Denote by L (respectively R) the region
of the plane that contains all the points with y-coordinate greater (respectively smaller) than the
y-coordinate of x0. Furthermore, we define the ith curve Ci to be the best curve in R2 \ Hi that
intersects R at the ith landmark.

For any curve C, let V int(C) and V ext(C) be the set of points in int(C) and ext(C), respectively.

Lemma 23. There exists an index i∗ satisfying the property n/2 ≥ |V int(Ci∗−1)|, |V ext(Ci∗)|.

Proof. The proof follows immediately from Lemmas 21 and 5. Since the curves are nested, it must
be that there is such an index i∗.

Lemma 24. Consider the best curve C∗. We have that C∗ is contained in

1. int(Ci∗−1), or

2. ext(Ci∗), or

3. int(Ci∗) ∩ ext(Ci∗−1).

Define u to be the first input point met by a clockwise walk on Ci∗ starting at xi∗ and similarly
define v to be the first input point met by a counterclockwise walk on Ci∗ starting at xi∗ . Consider
the angle](u, xi∗ , v) and the bisector of this angle. Let s be the line perpendicular to the bisector
that goes through xi∗−1. We now define the tube T to be the set of points that are in the interior
of Ci∗ and at distance less than η/2 from s.

We say that a point (wx, wy) is above s if wy ≥ g(wx), where g is the equation of line s. Define
r to be the point of Ci∗ ∩R that is above s and the farthest away from s, and ` the point of Ci∗ ∩L
that is above s and the farthest away from s.

Lemma 25. Consider the best curve C∗ that crosses R in the interval [xi∗−1, xi∗). We have
that either both ` and r belong to the tube or there exists a curve with a better cost that lies in
ext(Ci∗) ∪ Ci∗.

Proof. Assume that C∗ is the best curve overall. By Lemma 21, C∗ lies in int(Ci∗)∪Ci∗ . Consider
Ci∗ and C∗. Observe that the distance from xi∗ to C∗ is at most η/n7. Therefore, the cost of Ci∗

is at most the cost of C∗ plus 2η/n7.
Now, observe that if the angle at xi∗ is at least π, then the lemma holds immediately as the

interval [xi∗−1, xi∗) has size η/n7 and the tube has size η/2 and C∗ crosses [xi∗−1, xi∗) and remains
in int(Ci∗) ∪ Ci∗ .

Thus, assume that the angle is at most π, and let Θ denote this angle. Observe that since
the maximum length of an edge is bounded by n2η, we have that the angle has to be such that
n2 · η · sin(Θ) > η/2 in order for r to be outside of the tube. Thus sin(Θ) > 1/(2n2).

We first prove some useful facts regarding sin(x) and cos(x). First, we have sin(x) ≤ x for all
x ≥ 0, which holds as the function f(x) = x− sin(x) satisfies f(0) = 0 and f ′(x) = 1− cos(x) ≥ 0.
Moreover, for all 0 ≤ x ≤ π/2, we have the property that cos(x) ≤ 1 − x2/π ≤ 1 − x2/4. To

23

see this, consider the function g(x) = 1 − x2/π − cos(x). This function satisfies g(0) = 0 and
g′(x) = −2x/π + sin(x) ≥ 0, where the inequality holds since sin(x) ≥ 2x/π for all 0 ≤ x ≤ π/2
(since sin(x) is concave on the interval [0, π/2], sin(0) = 0 = 2 ·0/π, and sin(π/2) = 1 = 2 ·(π/2)/π).

Now, since sin(Θ) > 1/(2n2), we know that Θ ≤ π − 1/(2n2). Otherwise, we would get a
contradiction: 1/(2n2) < sin(Θ) = sin(π − Θ) ≤ π − Θ < π − (π − 1/(2n2)) = 1/(2n2), where the
second to last inequality uses the fact that sin(x) ≤ x. We define C ′ to be the convex hull of Ci∗ .
Since the angle is smaller than π, we have that C ′ does not intersect xi∗ . We now compute the cost
difference between C ′ and Ci∗ , namely, we define δ = Ci∗ − C ′ > 0. We have that the gain δ is at
least dist(xi∗ , r) + dist(xi∗ , `)− dist(r, `). We claim that if the angle Θ is such that r is outside of
the tube, then δ > 2η/n7, and so we have C ′ + 2η/n7 < C ′ + δ ≤ Ci∗ ≤ C∗ + 2η/n7, and therefore
C ′ < C∗. This means that C∗ is not optimal and so we get a contradiction.

Thus, we aim at showing that δ > 2η/n7. Now, consider the triangle formed by the three points
xi∗ , `, and r. Let β denote the angle formed by the line segment between the points xi∗ and `,
along with the line segment between the points ` and r. Similarly, let γ denote the angle formed by
the line segment between the points xi∗ and r, along with the line segment between r and `. Since
Θ ≤ π − 1/(2n2), and we have Θ + β + γ = π, we must have β + γ = π −Θ ≥ π − (π − 1/(2n2)) =
1/(2n2). Thus, we know that max{β, γ} ≥ 1/(4n2).

For ease of notation, let a = dist(xi∗ , `), b = dist(xi∗ , r), and c = dist(r, `). Observe that
c = dist(r, `) is precisely dist(xi∗ , `) cos(β) + dist(xi∗ , r) cos(γ) = a cos(β) + b cos(γ). If Θ ≤ π/2,
then we know max{β, γ} ≥ π/4, and hence c = a cos(β) + b cos(γ) ≤ max{a + b/

√
2, a/
√

2 + b}.
This yields δ ≥ a+b−c ≥ a+b−max{a+b/

√
2, a/
√

2+b} ≥ (1−1/
√

2) min{a, b}. Hence, consider
the case when Θ > π/2, which implies 0 ≤ β, γ ≤ π/2. Now, since we have max{β, γ} ≥ 1/(4n2),
we obtain c = a cos(β) + b cos(γ) ≤ max{a+ b(1− 1/(64n4)), a(1− 1/(64n4)) + b} (the inequality
follows from cos(x) ≤ 1 − x2/4, which we can apply due to the fact that β, γ ≤ π/2). This yields
δ ≥ a+ b− c ≥ min{a, b}/(64n4).

In all, as long as min{dist(xi∗ , r), dist(xi∗ , `)}/(64n4) > 2η/n7, we are done. This holds as long
as we ensure that the minimum distance of any point to the ray is sufficiently far (by definition of
a good ray), as then every input point p has the property that dist(xi∗ , p) is sufficiently large.

We define the right tube as TR = T ∩R∩ int(Ci∗)∩ ext(Ci∗−1). Consider the points of the right
tube and order them from their distance to the interval [xi∗−1, xi∗). Let dR1 , . . . , d

R
|TR| be the points

of the right tube in this ordering. Define SRj to be the best curve in int(Ci∗) ∪ Ci∗ that has dRj on
its boundary, contains x0, and crosses R in the interval [xi∗−1, xi∗).

We have the following lemma.

Lemma 26. Consider two integers i, j, i < j. For any points dRi , d
R
j ∈ TR, we have SRi ⊆

SRj ∪ int(SRj).

Proof. Assume towards a contradiction that the lemma is not correct. By definition, SRj crosses R
in [xi∗−1, xi∗); let p∗ be the crossing point. By optimality, the segment L from dRi to p∗ lies in TR.

Now, observe that since dRi is closer to [xi∗−1, xi∗) than dRj , the distance from dRi to L is less

than η/2. Thus, including p∗ yields a better curve that lies in Ci∗ ∪ int(Ci∗), that has dRj on its
boundary, crosses R in [xi∗−1, xi∗), and contains x0, a contradiction.

24

Define SRj to be the best curve in (int(Ci∗)∩ext(Ci∗−1))∪Ci∗−1∪Ci∗ starting at dRj and crossing
R in [xi−1, xi).

The lemma below follows immediately by combining Lemma 21 and Lemma 26 with Lemma 23.

Lemma 27. There exists an index jR satisfying the property |V int(SjR−1)|, |V ext(SjR)| ≤ n/2.

We proceed similarly with the left part of the tube. Namely, we define TL = T ∩L∩ int(SjR)∩
ext(SjR−1). Let dL1 , . . . , d

L
|TL| be the points in TL in order of non-decreasing distances to the interval

[xi∗−1, xi∗).
We denote by SLj the best curve starting at dLj and staying in int(SjR)∩ ext(SjR−1). Mimicking

the proof of Lemma 26, we have the following.

Lemma 28. Consider two integers i, j, i < j. For any points dLi , d
L
j ∈ TL, we have SLi ⊆

SLj ∪ int(SLj). Moreover, there exists an index jL such that |V int(SjL−1)|, |V ext(SjL)| ≤ n/2.

Before concluding the proof, we define dL
jL
, dL
jL−1

, dR
jR−1

, dR
jR

to be the dominating points.

Lemma 29. Consider the best curve C∗. We have that C∗ is contained in

1. int(SjL−1) ∪ SjL−1, or

2. ext(SjL) ∪ SjL.

Proof. To show the lemma we need to prove that C∗ does not intersect int(SjL) ∩ ext(SjL−1).
Observe that ext(Ci∗)∪Ci∗ ⊆ ext(SjR)∪SjR ⊆ ext(SjL)∪SjL and int(Ci∗−1)∪Ci∗−1 ⊆ int(SjR−1)∪
SjR−1 ⊆ int(SjL−1) ∪ SjL−1. Thus, for C∗ to intersect int(SjL) ∩ ext(SjL−1) we need that C∗

intersects ext(Ci∗−1)∩ int(Ci∗) and ext(SjR−1)∩ int(SjR). Hence, by Lemma 22, for C∗ to intersect
ext(Ci∗−1)∩int(Ci∗), we need that C∗ lies in ext(Ci∗−1)∩int(Ci∗)∪Ci∗∪Ci∗−1. Applying Lemma 22
and the definition of SjR−1, SjR , for C∗ to intersect int(SjR) ∩ ext(SjR−1), we have that C∗ lies in
int(SjR) ∩ ext(SjR−1) ∪ SjR ∪ SjR−1.

Finally, if C∗ intersects int(SjL)∩ ext(SjL−1), then Lemma 25 applies and we have that C∗ has
to intersect a point in the tube. Now observe that the only points in the tube in int(SjR) ∪ SjR ∪
ext(SjR−1) ∪ SjR−1 are the dominating points. Hence, C∗ must be one of SjR , SjR−1, SjL , SjL−1,
and the lemma follows.

Proof of Lemma 11. We can apply the algorithm defined in Lemma 20 to obtain a good ray R with
origin p.

We can also apply a binary search on the landmarks to find i∗. By Lemma 5, the number of
landmarks is bounded by O(n9) – observe that the set of landmarks does not have to be computed
explicitly. In particular, we apply a binary search procedure that makes O(log n) calls to the
algorithm of Section 2.6 (Lemma 12) to find i∗.

We compute dR1 , . . . , d
R
|TR| and apply a binary search procedure making O(log n) calls to the

algorithm to find jR. Proceed similarly to find dL
jL
, dL
jL−1

, and proceed recursively on SL
jL
∪ext(SL

jL
)

and SL
jL−1

∪ int(SL
jL−1

).

By Lemma 27, the depth of the recursion is at most O(log n) and so, since each vertex appears
in at most 2 regions of the plane at each recursive call, each vertex contributes to the running time
of the algorithm of Section 2.6 (Lemma 12) at most O(log n) times. It follows that the overall
complexity is at most O(n · log3 n). The correctness follows from Lemma 29.

25

2.8 Proof of Lemma 9

Given a weighted set of points P , where for each p ∈ P we have a weight wp, an approximate
centerpoint c is a point in the plane such that, for an arbitrary line containing the point, each of

the open halfplanes bounded by the line contains a weight of at least
∑
p∈P wp

5 . Given a tube T
(i.e., quadrilateral), let Lmax denote its perimeter, and let Lmin ≥ 999

1000Lmax denote the assumed
minimum perimeter of an optimal cluster union within T . Consider the optimal clusters that are
completely contained within the tube, which we denote by T1, . . . , Tm. For each such cluster Ti, we
choose an arbitrary point pi ∈ Ti, and assign it a weight of wpi := h(Ti) + η. Let W :=

∑m
i=1wpi .

Moreover, for any set of points S ⊆ P , we let w(S) :=
∑

p∈S wp. Since we assume the existence of
an optimal cluster union, we assume that W ≥ Lmin + η.

In the following, we seek to find an approximate centerpoint efficiently.

Lemma 30. Let ` be a line such that the total weight of points on the line is at least Lmin+η
100 . Then

there exists a point p∗ on ` that belongs to an optimal cluster union that we can find in O(n log n)
time.

Proof. We let W` denote the total weight of points that lie on the line `, so that W` ≥ Lmin+η
100 .

We first sort the points on the line by ascending x-coordinate. Then, we can find a weighted point
p∗ on the line in this sorted ordering such that the total weight of points (including the point p∗)
that appear earlier in the sorted ordering is at least W`

2 , and similarly the total weight of points

appearing later in the sorted ordering is at least W`
2 . This can essentially be done by computing

the prefix sum of the sorted points, and then performing a binary search. In all, this process takes
O(n log n) time.

We claim that p∗ belongs to an optimal cluster union. In particular, suppose towards a contra-
diction that this is not the case. For ease of notation, let P1 be the points appearing earlier than
(and including) p∗ in the ordering, and similarly define P2 to be those that appear later (including
p∗). Then it must be the case that either all of P1 does not lie in an optimal cluster union, or all
of P2 does not lie in an optimal cluster union. Otherwise, if there is some point p1 ∈ P1 in an
optimal cluster union and some point p2 ∈ P2 in an optimal cluster union, then by convexity the
point p∗ must also belong to an optimal cluster union. Hence, the total weight of points outside
of an optimal cluster union must be at least W`

2 ≥
Lmin+η

200 . Now, an optimal cluster union has
weight at least Lmin + η, and hence the total cost of the optimal partition in the tube T is at least
Lmin + η + W`

2 ≥ (Lmin + η)(1 + 1
200). Since we have that Lmin ≥ 999

1000Lmax, we have that this
quantity is at least (1 + 1

200)(999
1000Lmax + η) > Lmax + η. This yields a contradiction however, since

the supposed optimal partition is not optimal.

In order to find an approximate centerpoint, we make use of the notion of weighted ham-
sandwich cuts as defined in [5]. It is helpful to define the following notation, as developed in [5].
For a line `, we denote by `+ and `− the two open halfplanes bounded by `. We say that a line `
bisects a weighted set of points S if |w(S ∩ `+)−w(S ∩ `−)| ≤ |w(S ∩ `)| (note that, in our setting,
w(S ∩ `) is always non-negative, and hence |w(S ∩ `)| = w(S ∩ `)).

Definition 8 (Weighted Ham-Sandwich Cut [5]). Let A,B be two sets of weighted points, where
for each point p ∈ A ∪B, we are given a weight wp. A weighted ham-sandwich cut for A and B is
a line that bisects both weighted sets A and B simultaneously.

We make use of the following result.

26

Lemma 31 (Theorem 1, [5]). Given two sets A,B ⊆ R2 of weighted points, with |A|+ |B| = n, a
weighted ham-sandwich cut can be computed in O(n log n) time.

Using Lemma 31, we show how to obtain a point in an optimal cluster union.

Lemma 32. Consider a tube T . There exists an algorithm running in time O(n log n) that finds a
point belonging to an optimal cluster union contained in T , assuming it exists.

Proof. Consider a vertical line `v defined by x = u cutting through the tube T with the property
that the total weight of points in T with an x-coordinate of at most u is at least W

2 , and the total
weight of points in T with an x-coordinate of at least u is at least W

2 . Note that such a line can
be found in O(n log n) time by sorting the weighted points in the tube in ascending order of their
x-coordinate, computing the prefix sum of the ordered points, and performing a binary search. By
Lemma 30, we can assume that the total weight of points on any such line `v that belong to the
tube is at most Lmin+η

100 ≤ W
100 (as otherwise, we have already found a point in an optimal cluster

union).
For convenience, let P1 be the set of weighted points with an x-coordinate strictly less than u,

and let P2 be the set of weighted points with an x-coordinate strictly more than u. We can apply
Lemma 31 to the two sets P1, P2 to get a weighted ham-sandwich cut in time O(n log n) (note that
|P1|+ |P2| ≤ n). We denote by `s the weighted ham-sandwich cut. Observe that if the total weight
of points on the line `s is at least Lmin+η

100 , then by Lemma 30, we are done since we can find a point
in an optimal cluster union lying on `s in O(n log n) time. Note that `s and `v intersect, and hence
partition the plane into four quadrants. We claim that their point of intersection, denoted by p∗,
is an approximate centerpoint.

From now on we assume that the total weight of points lying on `v is at most W
100 , and similarly

the total weight of points on `s is at most Lmin+η
100 ≤ W

100 . Consider any line that contains the point
p∗, and consider the two open halfplanes induced by such a line. We argue that each such open
halfplane has weight at least W

5 , which gives the lemma.
To this end, observe that w(P1), w(P2) ≥ W

2 −
W
100 . This holds since `v was chosen to ensure

that the total weight lying to the left (and including) u is at least W
2 . Since the weight on line `v is

at most W
100 , the total weight of points with an x-coordinate strictly less than u (which is precisely

w(P1)) must be at least W
2 −

W
100 . A symmetric argument holds for w(P2).

Since `s is a weighted ham-sandwich cut, we have |w(P1∩ `+s)−w(P1∩ `−s)| ≤ w(P1∩ `s) ≤ W
100 ,

and similarly for the set P2. Consider the open quadrant to the left of `v and above `s given by
`+s ∩`−v . The total weight of points in this open quadrant is given by w(P1∩`+s), which we know is at
least w(P1∩`−s)− W

100 . On the other hand, we also know w(P1∩`−s)+w(P1∩`+s) ≥ W
2 −

W
100 . Hence, we

get w(P1∩`+s) ≥ w(P1∩`−s)− W
100 ≥

W
2 −

W
100−w(P1∩`+s), implying that w(P1∩`+s) ≥ W

4 −
W
100 ≥

W
5 .

We can symmetrically show that each of the four open quadrants contains a weight of at least W
5 .

Finally, the two open halfplanes induced by an arbitrary line containing p∗ must fully contain
an open quadrant that lies to the left of `v, and the other open halfplane must fully contain an open
quadrant that lies to the right of `v. Hence, the weight of each such open halfplane is at least W

5
and p∗ is an approximate centerpoint.

It is now enough to show that the approximate centerpoint p∗ lies in an optimal cluster union.
As an optimal cluster union is convex, for any point p that is outside of an optimal cluster union,
we can draw a line `p that does not intersect it. As the weight outside of an optimal cluster
union is smaller than W

5 , on one side of `p we have clusters of weight smaller than W
5 and p is not

27

an approximate centerpoint. Therefore, all approximate centerpoints are contained in an optimal
cluster union.

We are now able to prove Lemma 9.

Proof of Lemma 9. Assume without loss of generality that we are in case (i), and Γ1 is at least as
high as Γ2. As for i ∈ {1, 2}, C restricted to the points of Aπ\Γi is a maximal optimal partition of
Aπ\Γi , then for an optimal cluster union B for C, H(B) has to intersect both Γ1 and Γ2.

Consider a vertical line segment I constructed as follows. The horizontal distance of I to Γ1 is
equal to the horizontal distance of I to Γ2, the top endpoint of I lies on a line `t connecting the
top-right vertex of Γ1 with the top-right vertex of Γ2, and bottom endpoint of I lies on a line `b
connecting the bottom-left vertex of Γ1 with the bottom-left vertex of Γ2. Then, as H(B) intersects
both Γ1 and Γ2, and H(B) is convex, it must intersect I. Let L be the side length of the cells
Γ1 and Γ2. Then, as the horizontal distance between Γ1 and Γ2 is at least as large as the vertical
distance, the length of I is at most 2L. Similarly, we place vertical intervals I` and Ir as follows.
I` contains the left edge of Γ1, has its top endpoint at the line connecting the bottom-left corner of
Γ2 and the top-right corner of Γ1, and its bottom endpoint at the line connecting the bottom-left
corner of Γ2 and the bottom-left corner of Γ1. Ir contains the right edge of Γ2, has its top endpoint
at the line connecting the top-right corner of Γ1 and the top-right corner of Γ2, and its bottom
endpoint at the line connecting the top-right corner of Γ1 and the bottom-left corner of Γ2. The
lengths of I` and Ir are upper bounded by 4L.

Let α = 100 be a constant. We place 2α equidistant points p1, . . . , pα on I, the first one at
the top endpoint and the last one at the bottom endpoint of I. Similarly, we place 4α equidistant
points at I` and Ir, denoted by p`j and prj , respectively. Then, the distance between two consecutive
points at each of the segments is at most L/α.

We will show that if an optimal cluster union B exists, then either H(B) contains in its interior
at least one of the points pi, or it is contained in a long and thin quadrilateral spanned by some
four points p`j , p

`
j′ , p

r
k, p

r
k′ , where |p`jp`j′ |, |prkprk′ | ≤ 8L/α.

Assume that an optimal cluster union B exists, and H(B) does not contain any point pi. Then,
H(B)∩I lies between some two points pi, pi+1. As H(B) is convex, contains a point of both Γ1 and
Γ2, and the horizontal distance from Γ1 and Γ2 to I is at most L/2, the intersection of any vertical
line with H(B) is a line segment of width at most 3|pipi+1| ≤ 3L/α. Consider a line segment J
connecting a leftmost point of H(B) with a rightmost point of H(B). Due to convexity of H(B),
this line segment is contained in H(B). Therefore, H(B) is contained in a tube around J , of height
6L/α. We can extend this tube to a tube of height at most 8L/α, with endpoints at the points of
I` and Ir.

We start by running the algorithm from Lemma 11 for finding an optimal cluster union for
(C, pi) for i ∈ {1, . . . , α}. If an optimal cluster union exists and contains one of the points pi, it
will be found by this procedure. Then, we consider the set of O(α2) tubes T , each tube defined
by a pair of points p`j , p

r
k, and of height at most 8L/α. For each such tube T ∈ T , we will find an

optimal cluster union contained in T , if such a cluster exists. For this, we construct α equidistant
vertical lines within Γ1, and also α equidistant vertical lines within Γ2, and for each such pair of
lines we construct a sub-tube T ′ ⊆ T , by cutting of the corresponding left and right parts of T .
Let T ′ be the resulting collection of O(α4) sub-tubes. For each T ′ ∈ T ′, we will want to find an
optimal cluster union of Aπ, assuming that the cluster is contained in T ′ and not contained in any
shorter tube.

28

Consider a tube T ′ ∈ T ′, and assume that an optimal cluster union of Aπ is contained in T ′

and not contained in any shorter tube. Let p(T ′) be the perimeter of T ′. Clearly, the perimeter
of an optimal cluster union is at most p(T ′). Also, as an optimal cluster union stretches nearly all
the way from the left of the tube to the right of the tube, and the height of T is at most 8L/α,
we have that the perimeter of an optimal cluster union is at least p(T ′)− 20L/α. Additionally, we
know that p(T ′) ≥ 2α. Therefore, by using the reasoning from Lemma 32, we can find a point in
the center of an optimal cluster union. Then, it is enough to run the algorithm from Lemma 11 for
this point.

This algorithm uses a constant number of invocations of the algorithm from Lemma 11, therefore
its running time is O(n · polylog n).

3 The k-Cluster Fencing Problem

In the k-cluster fencing problem, we are given a set of n points S in the plane and an integer k
as an input instance I, which we denote by the pair I := (S, k). Our main approach is to use
dynamic programming to solve this problem. Our subproblems are based on the notion of boxes
(i.e., rectangles in the plane), which contain some subset of the input points that we would like to
cluster optimally. Great care is needed in order to ensure that there are only polynomially many
subproblems we need to consider. To this end, we prove some structural properties regarding an
optimal solution that enable us to reduce the complexity of the subproblems that we solve. We
first describe some relevant notation and preprocessing that we do to the input.

3.1 Preliminaries

An edge e is defined by its distinct head and tail p, q ∈ R2 and is denoted by e := pq. A loop o is
defined by its only point p ∈ R2 and is denoted by o := pp. An edge set is defined to be a set of
edges or a set containing a single loop. For a convex polygon P , define ∂P to be the boundary of
P and h(P) to be the perimeter of P . We use E(P) to denote the edge set defining ∂P oriented in
counterclockwise order. For the special case where P is a single point p ∈ R2, E(P) := {pp}.

For a set of geometric objects O, define H(O) to be the convex hull of O. Specifically, for a
set S of points in the plane, H(S) is the convex hull of S. With some abuse of notation, we define
∂S := ∂H(S), h(S) := h(H(S)), and E(S) := E(H(S)). For the special case where S is a single
point p, define E({p}) := {pp}. We denote by G(S) the set of the O(n2) oriented segments defined
by any ordered pair of points in S.

We define a k-clustering of S as a partition C := {S1, . . . , Sk} of S into k subsets or clusters
S1, . . . , Sk ⊆ S. Let Part(S) be the set of all possible clusterings of a set S. Let Φ(C) :=

∑k
i=1 h(Si)

be the cost of the clustering C. An optimal k-clustering is a k-clustering COpt
k (S) such that

Φ(COpt
k (S)) ≤ Φ(C) for any k-clustering C. Here, COpt

k (S) denotes an arbitrary optimal k-clustering
of S. We slightly abuse notation and refer to the edges of COpt

k (S) as the edges induced by the
convex hulls of the clusters in COpt

k (S). Let Optk(S) := Φ(COpt
k (S)).

A clustering C := {S1, . . . , Sk} is called a disjoint clustering if the convex hulls of any two
clusters Si, Sj ∈ C are disjoint, i.e., H(Si) ∩H(Sj) = ∅.

Observation 4. Given a set of points S in the plane, COpt
k (S) is a disjoint clustering.

We first ensure that no two points in S have the same x- or y-coordinate. This is possible to do
in O(n2) time by computing the slopes of segments between all pairs of points in S. If one of the

29

slopes is vertical or horizontal, we apply a slight rotation to the coordinate system to eliminate all
the horizontal and vertical slopes without introducing new ones.

Let p1, . . . , pn be the points in S sorted by their x-coordinates x1 < · · · < xn. We construct two
vertical lines v−i and v+

i with each x-coordinate xi, such that v−i formally is to the left of pi and v+
i

formally is to the right of pi. Thus, an edge pjpi for j < i intersects v−i at pi but does not intersect
v+
i , whereas pipj for i < j intersects v+

i at pi but does not intersect v−i . The set of all lines v−i , v
+
i

for all i ∈ {1, . . . , n} are the vertical main lines. Between any two consecutive vertical main lines
v+
i , v

−
i+1, we define 19999 vertical help lines with x-coordinates xi+

xi+1−xi
20000 ·j for j ∈ {1, . . . , 19999}.

That is, these 19999 vertical help lines induce 20000 intervals between xi and xi+1, each of which
has the same length given by xi+1−xi

20000 . In a similar way, we define two horizontal main lines with
the y-coordinate of each input point p, one formally below p and the other formally above p. Let
h−1 , h

+
1 , . . . , h

−
n , h

+
n be the horizontal main lines sorted by ascending y-coordinate. We also define

19999 equidistant horizontal help lines between any two consecutive horizontal main lines.

Boxes. Let B(S) be the set of all rectangles with edges contained in main or help lines. Note that
the size of B(S) is O(n4). We use SB as an abbreviation for B ∩ S where B ∈ B(S). We denote by
l(B) and r(B) the left and right vertical edge of B and by b(B) and t(B) the bottom and top edge
of B. We denote by w(B) the width of B, i.e., the difference in the x-coordinates of r(B) and l(B).
Similarly, we denote by h(B) the height of B, i.e., the difference in the y-coordinates of t(B) and
b(B). We define the length of a box B ∈ B(S) as max{w(B), h(B)} and denote it by length(B).
Consider an arbitrary k-clustering C := {S1, . . . , Sk}. For a box B ∈ B(S), consider for each Si ∈ C
the part of the boundary of H(Si) that is in B. The cost of C in B is denoted as ΦB(C), and we
define it to be the total length of these parts for all the clusters S1, . . . , Sk.

For a box B, let ` be a vertical line defined by an x-coordinate lying strictly between the x-
coordinates of l(B) and r(B). We say that the vertical line segment s := `∩B is a vertical separator
of B. A vertical separator of a box B is good if it intersects at most two edges in COpt

k (S). We also
analogously define a horizontal separator, along with the notion of a good horizontal separator. We
call a box elementary if there are no vertical help or main lines that lie strictly in between l(B)
and r(B), and no horizontal help or main lines that lie strictly in between b(B) and t(B).

Finally, we define a vertical strip of a box B to be a rectangle T contained in B where the
bottom edge of T is contained in b(B) and the top edge of T is contained in t(B) (i.e., the top and
bottom edges of T lie on the boundary of B). Similarly, a horizontal strip of a box B is a rectangle
H contained in B where the left edge of H is contained in l(B) and the right edge of H is contained
in r(B). For a vertical strip T of a box B, we denote by w(T) the length of the bottom (or top)
edge of T , and for a horizontal strip H of a box B, we denote by h(H) the length of the left (or
right) edge of H.

We interpret vertical strips of a box B as the portion of B that lies between two consecutive
vertical help lines, or possibly between a vertical help line and a vertical main line. We similarly
interpret horizontal strips of a box to be the portion of the box between two consecutive horizontal
help lines, or possibly between a horizontal help line and a horizontal main line. Note that, with
this interpretation, elementary boxes are precisely those that consist of one vertical strip and one
horizontal strip.

3.2 Structural Properties

The main structural property we aim to show is that in a subproblem for a box B ∈ B(S), there
is a good vertical or horizontal separator contained in a main or help line that divides B into two

30

smaller boxes. In particular, in order to ensure subproblems of low complexity, we aim to maintain
the following invariant.

Definition 9. A box B ∈ B(S) satisfies the box invariant if each of its edges is intersected by at
most two edges of COpt

k (S).

Hence, we make some useful observations and prove some lemmas that aid us in this goal. The
following observation exploits the general position assumption that no two points in S have the
same x- or y-coordinate.

Observation 5. Let B,B1, B2 ∈ B(S) be boxes such that B = B1∪B2 and B1 and B2 have disjoint
interiors. Let C be any clustering of S. Then ΦB(C) = ΦB1(C) + ΦB2(C).

We also have the property that no point lies on the boundary of a box B.

Observation 6. Due to the way we have defined the main lines, it follows that no box B ∈ B(S)
has a boundary containing a point from S. Furthermore, if the convex hull C of a cluster of COpt

k (S)
(or an edge e of such a convex hull) intersects the boundary of a box B ∈ B(S), then C (or the edge
e) is not contained in B.

The following lemma states that, for an optimal solution, the total cost of the portion of its
edges that lie in a box B cannot exceed the perimeter of the box.

Lemma 33. Let B ∈ B(S). Then ΦB(COpt
k (S)) ≤ 2w(B) + 2h(B).

Proof. Assume towards a contradiction that this is not the case. Let S1, . . . , Sk be the clusters
of COpt

k (S) with convex hulls intersecting B. Let P := B ∪
⋃k
i=1H(Si). Now, P has a perimeter

strictly smaller than
∑k

i=1 h(Si). However, the merged cluster
⋃k
i=1 Si has a convex hull with a

perimeter at most as large as P , which is a contradiction.

The following lemma is a key ingredient in our algorithm, and it is the main structural property
we show in this section.

Lemma 34. If B ∈ B(S) is an elementary box, then there are at most two edges of COpt
k (S)

intersecting B (in particular, B satisfies the box invariant). Otherwise, let B ∈ B(S) be any box
satisfying the box invariant. Then B has a good vertical or horizontal separator s contained in a
main or help line such that s divides B into two strictly smaller boxes Bl and Br, both of which
satisfy the box invariant.

We prove the following sequence of lemmas, which we later show how to combine to yield a
proof of Lemma 34.

Lemma 35. Consider any box B ∈ B(S). Let X be an arbitrary partition of B into verti-
cal strips, and let Y be an arbitrary partition of B into horizontal strips. Moreover, let A :=
{A1, . . . , Am}, Z = {Z1, . . . , Zq} be arbitrary nonempty subsets of X,Y , respectively. Then either
there is a vertical separator of B contained in some vertical strip Ai ∈ A or a horizontal separator
of B contained in some horizontal strip Zj ∈ Z that intersects at most 2

√
2 w(B)+h(B)∑

Ai∈A
w(Ai)+

∑
Zj∈Z

h(Zj)

edges of COpt
k (S).

Proof. Define t1, t2 to be the values such that the edges l(B) and r(B) are contained in the vertical
lines x = x1 and x = x2, respectively. Similarly, define y1, y2 to be the values such that the edges
b(B) and t(B) are contained in the horizontal lines y = y1 and y = y2, respectively. That is,

31

x1, x2, y1, y2 define the coordinates of the bounding box B. In addition, let x1 := t1 < t2 < · · · <
tm+1 := x2 be the values such that, for each vertical strip Ai, the left and right edges of Ai are
contained in the vertical lines x = ti and x = ti+1, respectively. Similarly, let y1 := s1 < s2 < · · · <
sq+1 := y2 be the values such that, for each horizontal strip Zi, the lower and upper edges of Zi are
contained in the horizontal lines y = si and y = si+1, respectively.

Assume towards a contradiction that all vertical separators that are contained in some vertical
strip Ai ∈ A and all horizontal separators that are contained in some horizontal strip Zj ∈ Z

intersect strictly more than 2
√

2 w(B)+h(B)∑
Ai∈A

w(Ai)+
∑
Zj∈Z

h(Zj)
edges of COpt

k (S). Define the function

f(x) to be the number of edges of COpt
k (S) that have at least some portion in B and intersect the

vertical separator at x (for each x1 ≤ x ≤ x2). Similarly, define the function g(y) to be the number
of edges of COpt

k (S) that have at least some portion in B and intersect the horizontal separator at
y (for each y1 ≤ y ≤ y2).

Consider an edge e (or portion of an edge) of COpt
k (S) that lies in B, and suppose it has length

δ. We want to understand its contribution to the sum of integrals
∫ x2
x1
f(x)dx +

∫ y2
y1
g(y)dy (e.g.,

a vertical segment contributes δ to the sum, along with a horizontal segment). In particular, we
want to understand the maximum contribution possible by such a line segment (i.e., edge). To
this end, consider the right triangle formed by the two endpoints of the line segment (which is the
hypotenuse) along with the point defined by the intersection of the vertical line passing through
the upper endpoint and the horizontal line passing through the lower endpoint. Let δ1 denote the
length of one leg and δ2 denote the length of the other leg, and observe that δ1 + δ2 is precisely the
contribution of edge e to the sum of integrals. Hence, we wish to maximize δ1 + δ2 subject to the
constraint δ2 = δ2

1 + δ2
2 , which yields δ1 = δ2 = δ√

2
(obtained when the triangle is a right isosceles

triangle). This implies that an edge of length δ contributes at most
√

2δ to the sum of integrals.
By Lemma 33, we know that ΦB(COpt

k (S)) ≤ 2w(B) + 2h(B). Hence, we obtain a contradiction
as follows:

2w(B) + 2h(B) ≥ ΦB(COpt
k (S)) ≥

∫ x2
x1
f(x)dx+

∫ y2
y1
g(y)dy

√
2

≥

∑m
i=1

∫ ti+1

ti
f(x)dx+

∑q
j=1

∫ sj+1

sj
g(y)dy

√
2

>

(
2

w(B) + h(B)∑
Ai∈Aw(Ai) +

∑
Zj∈Z h(Zj)

)∑
Ai∈A

w(Ai) +
∑
Zj∈Z

h(Zj)

= 2w(B) + 2h(B).

Here, the second inequality follows from the maximum amount that an edge (or portion of an
edge) of COpt

k (S) can contribute to the sum of integrals, the third inequality follows since we are
integrating over a smaller domain, and the last inequality follows from our assumption that each
vertical separator that belongs to some vertical strip intersects many edges (and similarly for such
horizontal separators).

We first consider boxes that have many small vertical strips and many small horizontal strips
(i.e., many main lines and help lines). We argue that such boxes have either a good vertical
separator or a good horizontal separator in the following lemma.

32

Lemma 36. Let B be any box and consider the vertical strips induced by the vertical help (and
main) lines going through B, along with the horizontal strips induced by the horizontal help (and
main lines) going through B. Moreover, suppose that for every such vertical strip T we have
w(T) ≤ 1

200w(B) and for all such horizontal strips H we have h(H) ≤ 1
200h(B). Then there exists

a good vertical separator of B that is contained in a vertical help or main line that splits B into two
smaller boxes (i.e., the separator does not lie on l(B) or r(B)), or there exists a good horizontal
separator of B with similar properties.

Proof. Consider any such box B (i.e., B has many horizontal and vertical lines that are close).
We consider each portion of B that lies between two consecutive vertical help lines (or between a
vertical help line and a vertical main line) to be a vertical strip of B. We similarly consider the
horizontal strips of B induced by the corresponding horizontal help and main lines. Throughout
the proof, we assume inductively that each of the four edges of B is intersected by at most two
edges of COpt

k (S) (and hence, there are at most eight such edges in total intersecting the boundary
of B).

One of the vertical strips has a left edge that is precisely l(B), and another one of the vertical
strips has a right edge that is precisely r(B). In particular, since we aim to split the box B into two
smaller boxes with our separator, we discard these two vertical strips. Moreover, we also discard
any vertical strip T that has an edge of COpt

k (S) intersecting the top edge of T or the bottom
edge of T . By our inductive assumption, there are at most four such edges of COpt

k (S) (since at
most two such edges intersect t(B), and at most two such edges intersect b(B)). Each such edge of
COpt
k (S) can result in discarding at most two vertical strips (in case the edge intersects the corner

of a vertical strip, in which case two strips are affected). Hence, in all, we discard at most 10
vertical strips. Similar reasoning applies to horizontal strips, resulting in discarding at most 10
horizontal strips. Note that the total width of vertical strips that are not discarded is at least
(1− 10

200)w(B) = 19
20w(B), and similarly the total height of horizontal strips that are not discarded

is at least 19
20h(B).

By Lemma 35, either there exists a vertical separator of B contained in some vertical strip
that is not discarded or a horizontal separator of B contained in some horizontal strip that is not
discarded that intersects at most 2

√
2 w(B)+h(B)

19
20

(w(B)+h(B))
< 3 edges of COpt

k (S). Suppose there is some

such remaining (i.e., not discarded) vertical strip T containing a good vertical separator (as the
other case is symmetric). Since T was not discarded, its left edge is not l(B) and its right edge is
not r(B). Moreover, since there are no edges of COpt

k (S) intersecting the top or bottom edge of T ,
there can be no edge of COpt

k (S) that intersects the left or right edge of T without also intersecting
the good vertical separator contained in T . Hence, either the left or right edge of T serves as a
good vertical separator of B.

We now argue that boxes that consist of many vertical strips (induced by the corresponding
vertical help or main lines) and are much wider than they are tall have a good vertical separator.
A similar result holds in the horizontal direction.

Lemma 37. Let B be any box and consider the vertical strips induced by the vertical help (and
main) lines going through B, along with the horizontal strips induced by the horizontal help (and
main lines) going through B. Moreover, suppose that w(B) > 4h(B) and all such vertical strips
T have w(T) ≤ 1

200w(B). Then there exists a good vertical separator of B that is contained in a
vertical help or main line that splits B into two smaller boxes (i.e., the separator does not lie on

33

l(B) or r(B)). Likewise, if h(B) > 4w(B) and all such horizontal strips H have h(H) ≤ 1
200h(B),

then there exists a good horizontal separator of B with similar properties.

Proof. Consider any such box B, and suppose w(B) > 4h(B), as the other case is proved similarly.
We consider each portion of B that lies between two consecutive vertical help lines (or between a
vertical help line and a vertical main line) to be a vertical strip of B. Assume that all such vertical
strips T satisfy w(T) ≤ 1

200w(B). Moreover, throughout the proof, we assume inductively that each
of the four edges of B is intersected by at most two edges of COpt

k (S). We proceed in a manner
similar to the proof of Lemma 36.

One of these vertical strips has a left edge that is precisely l(B), and another one of these
vertical strips has a right edge that is precisely r(B). In particular, since we aim to split the box
B into two smaller boxes with our separator, we discard these two vertical strips. Moreover, we
also discard any vertical strip T that has an edge of COpt

k (S) intersecting the top edge of T or the
bottom edge of T . By our inductive assumption, there are at most four such edges of COpt

k (S)
(since at most two such edges intersect t(B), and at most two such edges intersect b(B)). Each
such edge of COpt

k (S) can result in discarding at most two vertical strips (in case the edge intersects
the corner of a vertical strip, in which case two strips are affected). Hence, in all, we discard at
most 10 vertical strips. Note that the total width of vertical strips that are not discarded is at least
19
20w(B).

Now, suppose towards a contradiction that all vertical separators in the remaining vertical
strips intersect at least three edges of COpt

k (S). This implies that the total length of such edges is
at least 57

20w(B). By Lemma 33, we know that ΦB(COpt
k (S)) ≤ 2w(B) + 2h(B). Hence, we obtain

a contradiction:

57

20
w(B) ≤ ΦB(COpt

k (S)) ≤ 2w(B) + 2h(B) ≤ 2w(B) +
w(B)

2
=

5

2
w(B).

Hence, there is some remaining vertical strip T that contains a good vertical separator. Since T
was not discarded, its left edge is not l(B) and its right edge is not r(B). Moreover, since there are
no edges of COpt

k (S) intersecting the top or bottom edge of T , there can be no edge of COpt
k (S) that

intersects the left or right edge of T without also intersecting the good vertical separator contained
in T . Hence, either the left or right edge of T serves as a good vertical separator.

We now consider the case regarding boxes that either have some wide vertical strip and are not
much taller than they are wide, or have some tall horizontal strip and are not much wider than
they are tall.

Lemma 38. Let B be any box and consider the vertical strips induced by the vertical help (and
main) lines going through B, along with the horizontal strips induced by the horizontal help (and
main lines) going through B. Moreover, suppose that h(B) ≤ 4w(B) and there exists some vertical
strip T with w(T) > 1

200w(B). Then the left edge of T has at most two edges of COpt
k (S) intersecting

it, and the same holds for the right edge of T . Similarly, if w(B) ≤ 4h(B) and there exists some
horizontal strip H with w(H) > 1

200h(B), then each of the bottom and top edges of H has at most
two edges of COpt

k (S) intersecting them.

Proof. Consider any such box B, and suppose h(B) ≤ 4w(B), as the other case is proved similarly.
We consider each portion of B that lies between two consecutive vertical help lines (or between a
vertical help line and a vertical main line) to be a vertical strip of B. Assume that there exists
some vertical strip T with w(T) > 1

200w(B).

34

Now, consider the two points p1, p2 that give rise to the vertical strip T induced by the corre-
sponding vertical help and main lines, and let x1, x2 be the x-coordinates of p1, p2 (respectively),

with x1 < x2. Observe that h(B) ≤ 4w(B) < 800w(T) = 800x2−x120000 = (x2−x1)
25 , where the inequali-

ties follow from our assumptions in the lemma and the equality follows from the fact that we divide
the interval [x1, x2] into 20000 segments of equal length (induced by the vertical help lines).

Suppose towards a contradiction that the left or right edge of T has at least three edges of
COpt
k (S) intersecting it. Let s denote this vertical edge, and let u denote the x-coordinate induced

by the line s. We must have that at least one of x1, x2 must be far away from u (note that
x1 ≤ u ≤ x2). In particular, either x2 ≥ u+ x2−x1

2 or x1 ≤ u− x2−x1
2 . We consider the former case

as the latter is symmetric, so suppose x2 ≥ u+ x2−x1
2 .

Let e1, e2, e3 denote three consecutive edges of COpt
k (S) that intersect the line segment s, sorted

in decreasing order according to the height of the point of intersection with s (e.g., e1 is above e2,
which is above e3 at x = u). Note that it cannot be the case that all three edges are contained in the
boundary of the convex hull of the same cluster, and hence the three edges lie on the boundaries of
at least two convex hulls (induced by at least two clusters of COpt

k (S)). Without loss of generality,
assume that there exists an optimal cluster C such that H(C) contains both e1 and e2 (the case
when e2 and e3 are on the same boundary is symmetric). Moreover, let C ′ denote the cluster giving
rise to the boundary on which e3 lies.

We first consider the case when the slope of e1 is strictly more than that of e2, and the slope
of e2 is strictly more than that of e3. We imagine extending the line segments e1, e2 to the left
until they meet at some point r1,2 (they must meet at some point), and denote by θ1,2 the angle in
radians formed as a result of extension. We can do a similar process for edges e2, e3 to obtain the
angle θ2,3 (again, extending line segments e2 and e3 to the left must result in an intersection), and
also for edges e1, e3 to obtain an angle θ1,3. Observe that θ1,3 ≤ π, implying that either θ1,2 ≤ π

2 or
θ2,3 ≤ π

2 .
Consider the scenario where θ1,2 ≤ π

2 . We transform the solution as follows. First, we split the
cluster C into two clusters, where we take all points in C with an x-coordinate of at most u to
one cluster C1, and all points in C with an x-coordinate of at least x2 to another cluster C2 (note
that there are no points with an x-coordinate in the open interval (u, x2)). Lastly, we merge the
clusters C1 and C ′ by taking the union C1 ∪ C ′. We note that the total number of clusters, after
performing the split and merge, remains unchanged. Hence, we need only argue that the cost after
splitting and merging does not result in an increase in cost.

To this end, observe that the points in C1 all lie inside the polygon P1 obtained by considering
the original cluster C, cutting it with the vertical line x = u, and taking the left portion (i.e., all
points in H(C) that have an x-coordinate of at most u). By a similar argument, the points in C2 all
lie inside the polygon P2 obtained by considering the original cluster C, cutting it with the vertical
line x = x2, and taking the right portion (i.e., all points in H(C) that have an x-coordinate of at
least x2). Now, consider the polygon Q obtained by merging the polygons P1 and H(C ′) as follows:
we consider a vertical line segment at x = u going from edge e2 to edge e3 (note that both edges
intersect line s at x = u). Observe that Q contains the points in C1∪C ′ and P2 contains the points
in C2, and hence h(C1 ∪ C ′) is at most the perimeter of Q and h(C2) is at most the perimeter of
P2. Hence, we need only bound the perimeter of Q and P2.

Observe that the combined perimeter of Q and P2 is at most h(C) + h(C ′), plus the lengths of
the vertical line segments at x = u and x = x2 going from edge e1 to e2, plus twice the length of the
vertical line segment at x = u going from edge e2 to e3, minus the lengths of the portion of edges

35

e1 and e2 with x-coordinates in between x = u and x = x2. For ease of notation, we denote by b1,2
the length of the vertical line segment at x = x2 (going from e1 to e2), by `1 the length of e1 in the
interval [u, x2], and by `2 the length of e2 in the interval [u, x2]. First, the vertical line segments at
x = u (which, joined together, go from e1 to e3 at x = u) contribute at most 2h(B) to the perimeter
of Q. Now, we upper bound b1,2 by considering the triangle formed by the following three points:
r1,2, the intersection of e1 with the vertical line x = x2, and the intersection of e2 with the vertical
line x = x2. Let β denote the angle formed at the intersection of e1 with x = x2, and γ denote the
angle formed at the intersection of e2 with x = x2. We have that b1,2 = h(B)+`1 cos(β)+`2 cos(γ).
Since θ1,2 ≤ π

2 , we know that max{β, γ} ≥ π
4 . This implies b1,2 = h(B) + `1 cos(β) + `2 cos(γ) ≤

h(B) + max{`1 + `2√
2
, `1√

2
+ `2}. Hence, the new solution’s cost, given by the sum of the perimeters

of Q and P2, is at most h(C) + h(C ′) + 3h(B) + max{`1 + `2√
2
, `1√

2
+ `2} − `1 − `2. We bound this

expression as follows:

3h(B) + max

{
`1 +

`2√
2
,
`1√

2
+ `2

}
− `1 − `2

≤ 3h(B)−
(

1− 1√
2

)
min{`1, `2} ≤ 3h(B)−

(
1− 1√

2

)
(x2 − u),

where the last inequality follows from the fact that both `1 and `2 are at least x2 − u. Hence, as
long as 3h(B)− (1− 1√

2
)(x2 − u) < 0, we have a contradiction. This holds as h(B) < (x2−x1)

25 and

x2 − u ≥ x2−x1
2 , implying 3h(B)− (1− 1√

2
)(x2 − u) < 0.

In the case that θ1,2 >
π
2 , then we know θ2,3 ≤ π

2 . In this setting, we obtain a new solution
by merging the two clusters C and C ′ to get C ∪ C ′, and argue that this new solution is cheaper.
Consider the polygon P obtained by removing the portion of edges e2 and e3 in between x = u and
x = x2, and then joining C and C ′ on the left by a vertical line segment going from the point at
which e2 intersects s to the point at which e3 intersects s (at x = u). Similarly, we join C and C ′

on the right by a vertical line segment between the two points at which edges e2 and e3 intersect
at x = x2. Now, since P contains all points in C ∪C ′, we have h(C ∪C ′) is at most the perimeter
of P . Moreover, we have that the perimeter of P is at most h(C) + h(C ′), plus the lengths of the
left and right vertical segments we added, minus `2 and `3. The left vertical segment contributes
at most h(B) to the perimeter (since the left vertical line segment is contained in s). By a similar
argument as earlier, the right vertical segment is at most h(B) + max{`2 + `3√

2
, `2√

2
+ `3} (using the

fact that θ2,3 ≤ π
2 in this case). Hence, using similar reasoning as before, the perimeter of P is

at most h(C) + h(C ′) + 2h(B) + max
{
`2 + `3√

2
, `2√

2
+ `3

}
− `2 − `3. We bound this expression as

follows:

2h(B) + max

{
`2 +

`3√
2
,
`2√

2
+ `3

}
− `2 − `3 ≤ 2h(B)−

(
1− 1√

2

)
min{`2, `3}

≤ 2h(B)−
(

1− 1√
2

)
(x2 − u).

We again have that this quantity is strictly less than zero, a contradiction.
In the case when either the slope of e1 is at most the slope of e2, or the slope of e2 is at most

the slope of e3, the proof is simpler. In particular, in the former case, we can more easily bound
the vertical line segment we add along the line x = x2 by h(B) (instead of some function of `1, `2).
This holds since the gap between edges e1 and e2 shrinks when going from x = u to x = x2. The
same holds in the latter case when the slope of e2 is at most the slope of e3.

36

Finally, as a type of base case, we argue that boxes that are not much taller than they are
wide and consist of one vertical strip have at most two edges of COpt

k (S) intersecting the whole
box. Likewise, boxes that are not much wider than they are tall and consist of one horizontal strip
satisfy the same property.

Lemma 39. Let B be any box with h(B) ≤ 4w(B) such that no vertical help or main line has an
x-coordinate strictly in between the x-coordinates induced by l(B) and r(B). Then there are at most
two edges of COpt

k (S) intersecting box B. Similarly, if B is any box with w(B) ≤ 4h(B) such that
no horizontal help or main line has a y-coordinate strictly in between the y-coordinates induced by
b(B) and t(B), then there are at most two edges of COpt

k (S) intersecting box B.

Proof. Consider any such box B with h(B) ≤ 4w(B) (as the proof of the other case is symmetric).
We consider each portion of B that lies between two consecutive vertical help lines (or between a
vertical help line and a vertical main line) to be a vertical strip of B. In particular, the assumption
in the lemma regarding vertical help and main lines implies that B consists of exactly one vertical
strip T (induced by l(B) and r(B)), and hence we have w(B) = w(T). The following proof uses
similar ideas as in the proof of Lemma 38.

Now, consider the two points p1, p2 that give rise to the vertical strip T , and let x1, x2 be the
x-coordinates of p1, p2 (respectively), with x1 < x2. Observe that h(B) ≤ 4w(B) = 4w(T) =
4x2−x120000 < x2−x1

200 , where the first inequality and the first equality follow from our assumptions in the
lemma, and the second equality follows from the fact that we divide the interval [x1, x2] into 20000
segments of equal length (induced by the vertical help lines).

Suppose towards a contradiction that there are (at least) three edges of COpt
k (S) intersecting

the interior of B. Let u1, u2 denote the x-coordinates induced by the line segments l(B) and r(B),
respectively. We must have either x2 ≥ u1+u2

2 + x2−x1
2 or x1 ≤ u1+u2

2 − x2−x1
2 . Otherwise, we get a

contradiction: x2 − x1 <
u1+u2

2 + x2−x1
2 − u1+u2

2 + x2−x1
2 = x2 − x1. We consider the former case

as the latter is symmetric, so suppose x2 ≥ u1+u2
2 + x2−x1

2 . In the former case, we focus on the
vertical line x = u1, namely the line containing l(B) (in the latter case, we focus on the vertical
line x = u2, namely the line containing r(B)).

Let e1, e2, e3 denote three edges of COpt
k (S) that intersect the interior of box B. Each such edge

must also intersect the vertical lines x = u1 and x = x2. We consider three such edges that are
consecutive, sorted in decreasing order according to the height of the point of intersection with the
line x = u1 (e.g., e1 is above e2, which is above e3 at x = u1). Note that it cannot be the case that
all three edges are contained in the boundary of the convex hull of the same cluster, and hence
the three edges lie on the boundaries of at least two convex hulls (induced by at least two clusters
of COpt

k (S)). Without loss of generality, assume that there exists an optimal cluster C such that
H(C) contains both e1 and e2 (the case when e2 and e3 are on the same boundary is symmetric).
We also denote by C ′ the cluster giving rise to the boundary on which e3 lies.

For ease of notation, we denote by `1, `2, `3 the lengths of e1, e2, e3 in the interval [u1, x2], and
by g1, g2, g3 the lengths of e1, e2, e3 in an arbitrary interval of length x2−x1

20000 in [u1, x2]. We also
denote by a1,2 the length of the vertical line segment at x = u1 connecting e1 and e2, by a2,3 the
segment at x = u1 connecting e2 and e3, and a1,3 = a1,2 + a2,3 (i.e., the length of the vertical line
segment at x = u1 going from e1 to e3). We define analogous lengths of vertical line segments b1,2
and b2,3 at x = x2 between edges e1, e2 and edges e2, e3, respectively. We note that `i ≥ 1000gi
for 1 ≤ i ≤ 3, since there are at least 1000 disjoint intervals of length x2−x1

20000 in the interval [u1, x2]
(using the fact that x2 ≥ u1+u2

2 + x2−x1
2), and in each such interval the length of ei is precisely gi.

37

We first argue that ai,j ≤ gi + gj + h(B) for all 1 ≤ i < j ≤ 3. For any two such edges ei, ej we
argue this by considering the following three line segments. We can go along ei from the intersection
of edge ei with x = u1 to any intersection point of ei with box B, and then to any intersection
point of ej with box B, and finally go along ej back to x = u1. The cost of connecting ei to ej
along x = u1 is at most the lengths of the projection of these three line segments onto x = u1,
which sum to at most gi + gj + h(B).

Moreover, we show a tighter bound of ai,j ≤ min{gi, gj}+ h(B) for all 1 ≤ i < j ≤ 3 satisfying
the property that the slope of ei is strictly more than that of ej . If the slopes of ei, ej are positive
and negative, respectively, then the intersections of ei, ej with x = u1 must both lie in B, and hence
the cost of connecting them via the vertical line segment at x = u1 is ai,j ≤ h(B). If the slope of ei
is negative, in which case the slope of ej is also negative, then the intersection points of both edges
with x = u1 must lie above b(B), and hence we can obtain the bound via the following two line
segments. We can go from the intersection of edge ei with x = u1 to any point at which it intersects
box B, and then go to the intersection of b(B) with x = u1. The cost of connecting ei to ej along
x = u1 is at most the lengths of the projection of these two line segments onto x = u1, which sum
to at most gi + h(B) (note that gi = min{gi, gj}, since both slopes are negative and the slope of ei
is strictly more than that of ej). A symmetric argument shows that, in the case that ej is positive
(in which case the slope of ei is also positive), we have ai,j ≤ gj + h(B) (we symmetrically have
gj = min{gi, gj}).

We first consider the case when the slope of e1 is strictly more than that of e2, and the slope
of e2 is strictly more than that of e3. This implies a1,2 ≤ min{g1, g2, g3} + h(B) and a2,3 ≤
min{g1, g2, g3} + h(B). In particular, we know a1,2 ≤ min{g1, g2} + h(B), and we also know
a1,2 ≤ a1,3 ≤ min{g1, g3} + h(B), implying a1,2 ≤ min{g1, g2, g3} + h(B). Symmetrically, we have
a2,3 ≤ min{g1, g2, g3}+ h(B).

Now, we imagine extending the line segments e1, e2 to the left until they meet at some point
r1,2 (they must meet at some point), and denote by θ1,2 the angle in radians formed as a result of
extension. We can do a similar process for edges e2, e3 to obtain the angle θ2,3 (again, extending
line segments e2 and e3 to the left must result in an intersection), and also for edges e1, e3 to obtain
an angle θ1,3. Observe that θ1,3 ≤ π, implying that either θ1,2 ≤ π

2 or θ2,3 ≤ π
2 .

Consider the scenario where θ1,2 ≤ π
2 . We transform the solution as follows. First, we split the

cluster C into two clusters, where we take all points in C with an x-coordinate of at most u1 to
one cluster C1, and all points in C with an x-coordinate of at least x2 to another cluster C2 (note
that there are no points with an x-coordinate in the open interval (u1, x2)). Lastly, we merge the
clusters C1 and C ′ by taking the union C1 ∪ C ′. We note that the total number of clusters, after
performing the split and merge, remains unchanged. Hence, we need only argue that the cost after
splitting and merging does not result in an increase in cost.

To this end, observe that the points in C1 all lie inside the polygon P1 obtained by considering
the original cluster C, cutting it with the vertical line x = u1, and taking the left portion (i.e., all
points in H(C) that have an x-coordinate of at most u1). By a similar argument, the points in
C2 all lie inside the polygon P2 obtained by considering the original cluster C, cutting it with the
vertical line x = x2, and taking the right portion (i.e., all points in H(C) that have an x-coordinate
of at least x2). Now, consider the polygon Q obtained by merging the polygons P1 and H(C ′) via a
vertical line segment at x = u1 going from edge e2 to edge e3. Observe that Q contains the points
in C1 ∪ C ′ and P2 contains the points in C2, and hence h(C1 ∪ C ′) is at most the perimeter of Q
and h(C2) is at most the perimeter of P2. Moreover, the combined perimeters of Q and P2 is at

38

most h(C) + h(C ′) + a1,2 + 2a2,3 + b1,2 − `1 − `2.
Now, we upper bound b1,2 by considering the triangle formed by the following three points: r1,2,

the intersection of e1 with the vertical line x = x2, and the intersection of e2 with the vertical line
x = x2. Let β denote the angle formed at the intersection of e1 with x = x2, and γ denote the
angle formed at the intersection of e2 with x = x2. We have that b1,2 = a1,2 + `1 cos(β) + `2 cos(γ).
Since θ1,2 ≤ π

2 , we know that max{β, γ} ≥ π
4 . This implies b1,2 = a1,2 + `1 cos(β) + `2 cos(γ) ≤

a1,2 + max{`1 + `2√
2
, `1√

2
+ `2}. Hence, we obtain

a1,2 + 2a2,3 + b1,2 − `1 − `2 ≤ 2(a1,2 + a2,3) + max

{
`1 +

`2√
2
,
`1√

2
+ `2

}
− `1 − `2

≤ 4(min{g1, g2}+ h(B))−
(

1− 1√
2

)
min{`1, `2}

≤ 4(min{g1, g2}+ 4w(B))− 1000

(
1− 1√

2

)
min{g1, g2} < 0,

where the first inequality follows from substituting our upper bound on b1,2, the second inequality
follows from substituting for our upper bounds on a1,2 and a2,3 and simplifying, the third inequality
follows by the assumption h(B) ≤ 4w(B), along with `1 ≥ 1000g1 and `2 ≥ 1000g2, and the last
inequality follows from the observation that w(B) ≤ min{g1, g2}. Hence, the perimeter sum of Q
and P2 is at most h(C) + h(C ′) + a1,2 + 2a2,3 + b1,2 − `1 − `2 < h(C) + h(C ′), a contradiction.

In the case that θ1,2 >
π
2 , then we know θ2,3 ≤ π

2 . In this setting, we obtain a new solution
by merging the two clusters C and C ′ to get C ∪ C ′, and argue that this new solution is cheaper.
Consider the polygon P obtained by removing the portion of edges e2 and e3 in between x = u1

and x = x2, and then joining C and C ′ on the left by a vertical line segment going from the point
at which e2 intersects x = u1 to the point at which e3 intersects x = u1. Similarly, we join C and
C ′ on the right by a vertical line segment between the two points at which edges e2 and e3 intersect
at x = x2. Now, since P contains all points in C ∪C ′, we have h(C ∪C ′) is at most the perimeter
of P . Moreover, we have that the perimeter of P is at most h(C) + h(C ′) + a2,3 + b2,3 − `2 − `3.

By a similar argument as earlier, we have b2,3 ≤ a2,3 + max{`2 + `3√
2
, `2√

2
+ `3} (using the fact

that θ2,3 ≤ π
2 in this case). Hence, using similar reasoning as before, we obtain

a2,3 + b2,3 − `2 − `3 ≤ 2a2,3 + max

{
`2 +

`3√
2
,
`2√

2
+ `3

}
− `2 − `3

≤ 2(min{g2, g3}+ h(B))−
(

1− 1√
2

)
min{`2, `3}

≤ 2(min{g2, g3}+ 4w(B))− 1000

(
1− 1√

2

)
min{g2, g3} < 0,

where the first inequality follows from substituting for b2,3, the second inequality follows from
substituting for a2,3 and simplifying, the third inequality follows from the assumption h(B) ≤
4w(B), along with `2 ≥ 1000g2 and `3 ≥ 1000g3, and the last inequality follows from w(B) ≤
min{g2, g3}. Thus, the perimeter of P is at most h(C)+h(C ′)+a2,3 +b2,3− `2− `3 < h(C)+h(C ′),
a contradiction.

In the case that the slope of e2 is at most that of e3, then we also argue that merging C and
C ′ to get C ∪ C ′ yields a cheaper solution. In particular, in this case, we know that b2,3 ≤ a2,3 (as
we go from x = u1 to x = x2, the vertical gap between the two edges shrinks since the slope of e2

39

is smaller than the slope of e3). Moreover, we have a2,3 ≤ g2 + g3 + h(B). By similar reasoning as
before, we obtain

a2,3 + b2,3 − `2 − `3 ≤ 2a2,3 − `2 − `3 ≤ 2(g2 + g3 + 4w(B))− `2 − `3
≤ 12 max{g2, g3} − 1000g2 − 1000g3 < 0,

which again yields a contradiction.
In the case that the slope of e1 is at most that of e2, but the slope of e2 is strictly more than

that of e3, we do a similar transformation as previously seen by splitting C into two clusters C1

and C2, and then merging C1 with C ′ to obtain the cluster C1 ∪ C ′. As before, we need to argue
a1,2 +2a2,3 +b1,2−`1−`2 < 0. Note that b1,2 ≤ a1,2, since the vertical gap between e1 and e2 shrinks
when going from x = u1 to x = x2. Moreover, we have a2,3 ≤ min{g2, g3}+ h(B) ≤ g2 + h(B) and
a1,2 ≤ min{g1, g2}+ h(B) ≤ g2 + h(B). Hence, we have

a1,2 + 2a2,3 + b1,2 − `1 − `2 ≤ 2(a1,2 + a2,3)− `1 − `2 ≤ 4(g2 + h(B))− `1 − `2
≤ 4(g2 + 4w(B))− 1000g1 − 1000g2 ≤ 20g2 − 1000g1 − 1000g2 < 0,

yielding a contradiction.

We are now ready to prove Lemma 34.

Proof of Lemma 34. Given any box B ∈ B(S), we consider each portion of B that lies between
two consecutive vertical help lines (or between a vertical help line and a vertical main line) to be a
vertical strip of B. Similarly, we consider the horizontal strips induced by the horizontal help and
main lines in B.

First, we consider the case when B is an elementary box. In this case, B is composed of
precisely one vertical strip and one horizontal strip. In particular, we can apply Lemma 39 to get
that at most two edges in COpt

k (S) intersect the elementary box B (clearly, we must have either
h(B) ≤ w(B) ≤ 4w(B) or w(B) ≤ h(B) ≤ 4h(B)).

Now, suppose B is a box satisfying the box invariant. If B is not an elementary box, then
it has at least two vertical strips or at least two horizontal strips. If all vertical strips T satisfy
w(T) ≤ w(B)

200 and all horizontal strips H satisfy h(H) ≤ h(B)
200 , then we can apply Lemma 36 to get

that there exists either a good vertical separator of B that splits it into two smaller boxes or a
good horizontal separator of B that splits it into two smaller boxes (and is contained in a help or
main line). Since the separator is good, at most two edges of COpt

k (S) intersect it, and hence the
box invariant continues to be satisfied for each of the two smaller boxes.

Hence, suppose there is some vertical strip T satisfying w(T) > w(B)
200 or there is some horizontal

strip H satisfying h(H) > h(B)
200 . If the box B is much wider than it is tall and has many small

vertical strips (i.e., w(B) > 4h(B) and w(T) ≤ w(B)
200 for all vertical strips T), then we can apply

Lemma 37. We get that there is a good vertical separator (contained in a vertical help or main
line) that splits B into two smaller boxes such that the box invariant continues to hold on each of
the smaller boxes (since at most two edges of COpt

k (S) intersect the vertical separator). Likewise,
if the box is much taller than it is wide and has many small horizontal strips (i.e., h(B) > 4w(B)

and h(H) ≤ h(B)
200 for all horizontal strips H), then we can again apply Lemma 37. We get that

there is a good horizontal separator (contained in a horizontal help or main line) that splits B into
two smaller boxes, each satisfying the box invariant.

The only other case to consider is when either the box is not much taller than it is wide and
there is some wide vertical strip T , or the box is not much wider than it is tall and there is some

40

s

B

e1

e2

e3

e4

e5

Figure 15: The cut number of the set of edges E := {e1, . . . , e5} shown in this figure is 2,
i.e. ΘB,s(E) = 2. Note that in this example the border set of E is E, i.e. MB(E) = E, and
it is alternating.

tall horizontal strip H. That is, either h(B) ≤ 4w(B) and there is some vertical strip T satisfying

w(T) > w(B)
200 , or w(B) ≤ 4h(B) and there is some horizontal strip H satisfying w(H) > h(B)

200 .
Suppose the former is the case, as the proof of the latter is symmetric. Hence, we can apply
Lemma 38 to get that either the left edge of T is intersected by at most two edges of COpt

k (S) and
the right edge of T is intersected by at most two edges of COpt

k (S) (in the latter case, we know the
bottom and top edges of H satisfy a similar property).

If either the left edge of T or the right edge of T serves as a good vertical separator of B (i.e.,
if either edge splits B into two strictly smaller boxes), we are done since we already know such
an edge of T is intersected by at most two edges of COpt

k (S). Hence, we need only consider the
case when the box B consists of one vertical strip (i.e., the left and right edges of T are l(B) and
r(B), respectively). Since h(B) ≤ 4w(B), we can apply Lemma 39 to get that at most two edges
of COpt

k (S) intersect the entire box B. Since box B is not elementary, there is either a vertical help
or main line that lies strictly in between l(B) and r(B), or there is a horizontal help or main line
that lies strictly in between b(B) and t(B). Regardless, the separators induced by such lines are
good.

Tying everything together, for boxes B that are not elementary and satisfy the box invariant,
we get that we can always find a good horizontal or vertical separator (contained in a help or main
line) that splits B into two strictly smaller boxes, both of which also satisfy the box invariant.

3.3 Coverings and Signatures

In the rest of this section, we assume we are given a set of points S on the plane, and a number k
and we want to solve the k-clustering problem for S. Moreover, we assume the boxes we work with
are in B(S), the clusterings we work with are clusterings in Part(S), the clusters we work with are
subsets of S, and the edges we work with are in G(S). For brevity, we define C̃ := COpt

k (S).
Let B be a box and E a set of edges and loops. E is called interior-disjoint if the interior of

any edge e ∈ E is not intersected by any other edge in E. Indeed, all sets of edges (and loops)
we work with in this section are interior-disjoint. The border set of E on B is denoted by MB(E)
and is defined as the set of all edges in E intersecting both the boundary and the interior of B.
An intersection q of an edge pp′ ∈ MB(E) and ∂B is called entering if pq does not intersect

41

the interior of B, and is called exiting if qp′ does not intersect the interior of B. Assuming E is
interior-disjoint, all the intersections of the edges in its border set and ∂B are distinct and we can
define a cyclic order on these intersections by sorting them in counterclockwise order. A border
set is called alternating if no two consecutive intersections in this cyclic order are both entering or
both exiting. Moreover, every two consecutive exiting and entering intersection define an interval
on the boundary of B. For an edge s of ∂B the cut number of E on the edge s is denoted by
ΘB,s(E) and is defined as the number of such intervals (if any) intersecting s (see Figure 15).1 The
border sequence of E on B is defined as the sequence e1, . . . , et of all edges in MB(E) sorted in
counterclockwise order according to their intersection with the boundary of B. Note that some
edges might appear twice in this sequence. Moreover, this sequence is not unique as the first edge
in this sequence can be chosen arbitrarily.

Let B be a box. A nonempty set of edges E is called a convex chain on B of size t, where
t := |E|, if there exists a sequence of distinct points p1, . . . , pt+1 such that

• p2, . . . , pt ∈ S ∩B and p1, pt+1 ∈ S \B,

• E = {p1p2, p2p3, . . . , ptpt+1},
•
⋃t
i=1 pipi+1 is a simple open curve intersecting the interior of B, and

• for any i, where 1 ≤ i < t, pipi+1pi+2 is a left turn.

We call this sequence the vertex sequence of the convex chain E. The edge p1p2 is called the starting
edge and the edge ptpt+1 is called the ending edge of the convex chain. Note that the starting and
ending edges of a convex chain are the same when t = 1.

Let B be a box. A cycle on B is defined to be a nonempty set E with the following properties.
We call the set E an inner cycle on B of size t if either t = 1 and E contains a single loop pp,
where p ∈ S ∩B, or if there exists a sequence of distinct points σ := (p1, . . . , pt) such that

• p1, . . . , pt ∈ S ∩B,

• E = {p1p2, p2p3, . . . , pt−1pt, ptp1}, and therefore t = |E|, and

• p1, . . . , pt are the vertices of a convex polygon given in counterclockwise direction.

An inner cycle consisting of a single loop is called a loop cycle on B. Moreover, we call the set E
a border cycle on B if there exists a partition E = E1 ∪ · · · ∪ Ex, where 1 ≤ x ≤ 4, such that

• each Ei, where 1 ≤ i ≤ x, is a convex chain, and

• e1, e
′
1, . . . , ex, e

′
x is a border sequence of E, where ei and e′i are the starting and ending edges

of the convex chain Ei.

Note that by the definition of main and helper lines, no point in S can be on the boundary of
B. It is not hard to verify that the border set of a border cycle is alternating. The coverage of a
cycle E is denoted by RB(E) and is defined either as the set {p} if E is a loop cycle {pp}, or the
intersection of all half planes defined by edges in E and the box B, i.e.,

RB(E) := B ∩
⋂
e∈E

HP(e),

where HP(e) is the half-plane defined by the line passing through e located on the left of e. We
say a point b ∈ B is covered by E if it is in the coverage of E.

1To handle the degenerate cases where an edge intersects a corner of a box, we consider s as an open edge by
excluding its end points.

42

For a given box B, an interior-disjoint set E of edges and loops is called a disjoint covering
or simply a covering on B if E satisfies the following properties. The set E is called a nonempty
covering on B of size t if there exists a partition E = E1 ∪ · · · ∪ Et such that

• each Ei is a cycle,

• when 1 ≤ i < j ≤ t, the coverages of Ei and Ej are disjoint, i.e., RB(Ei) ∩RB(Ej) = ∅,
• S ∩B ⊂ RB(E1) ∪ · · · ∪ RB(Et).

It is not hard to verify that the border set of a covering is alternating. We denote the size of E by
κB(E). By definition, the empty set is a covering on B of size zero if S ∩B = ∅ and we call it the
empty covering on B. The following lemma shows that the size of a covering is well defined.

Lemma 40. For a nonempty covering E defined on an arbitrary box B, the satisfying partition,
i.e. the partition satisfying the conditions for a nonempty covering on B, is unique.

Proof. Note that the coverages of each cycle the satisfying partition is a convex polygon containing
all parts of its edges in B. Therefore as all the coverages are disjoint, no two inner cycles or
convex chains that belong to different border cycles intersect inside B. Moreover because of the
condition on the border sequence of a border cycle, different convex chains of a border cycle cannot
intersect in B. Hence, any other satisfying partition (if exists) consists of the same convex chains
and inner cycles. Additionally, any two convex chain that are in the same border cycle in the
satisfying partition must be in the same border cycle in any other satisfying partition as otherwise
the coverages of their border cycles intersect. This shows that any other satisfying partition must
have the same inner cycles and border cycles which completes the proof.

It is not hard to verify that for an edge s of ∂B the cut number of E on an edge s of B,
i.e. ΘB,s(E), is equal to the number of the coverages of E intersecting s.

We say a cluster C intersects a box B if its convex hull intersects B, and we say it intersects
the boundary of B or simply intersects ∂B if its convex hull intersects ∂B. The signature of C on
B or its boundary is denoted by C u B and C u ∂B respectively and is defined as the set of all
edges of its convex hull intersecting B or the boundary of it, i.e.,

C uB := {e ∈ E(C) | e ∩B 6= ∅}, C u ∂B := {e ∈ E(C) | e ∩ ∂B 6= ∅}.

With some abuse of notation, the signature of a disjoint clustering C on B or its boundary is
denoted by C u B and C u ∂B respectively and is defined as the set of all edges of convex hulls of
its clusters intersecting B or the boundary of it, i.e.,

C uB :=
⋃
C∈C

C uB, C u ∂B :=
⋃
C∈C

C u ∂B.

Note that for any disjoint clustering C, C uB is a covering on B (see Figure 16).

3.4 Subproblems

Let B be a box, M be an interior-disjoint set of edges with |M | ≤ 8, k′ ∈ {0, . . . , n}, and δ ∈ {T, F}
a boolean value. The tuple I := 〈B,M, k′, δ〉 is called a subproblem on B or simply a subproblem
if it satisfies the following properties. The tuple I is called a special subproblem if

• δ = T ,

43

Bp1

p2

p3

p4

p5

p7 p8

p11

p9

p10

p6

Figure 16: The signature of the clustering C := {{p1, . . . , p6}, {p7, p8}, {p9, p10, p11}} on B. The
edges of the covering C uB are solid and the coverage of each cycle is shown in dark grey.

• M = ∅, and

• k′ = 1.

The empty covering (on B) is the only solution to a special subproblem 〈B, ∅, 1, T 〉. The subproblem
I is called a normal subproblem if

• δ = F ,

• M is equal to its border set, i.e. M =MB(M), and

• border set of M , i.e. M , is alternating.

A covering E on B is called a solution to a normal subproblem 〈B,M, k′, F 〉 if MB(E) = M and
κB(E) = k′. The cost of a solution is denoted by ΦB(E) and is defined as the sum of the length of
e∩B over all edges e ∈ E. A solution to I is called optimal if there is no solution to I with smaller
cost. We say a point b ∈ B is covered by a solution E if either b is covered by E or δ = T . Note
that the coverage status of any point on the boundary of B is the similar for all solutions.

The cut number of a subproblem I := 〈B,M, k′, δ〉 on an edge s of B is denoted by ΘB,s(M, δ)
and is defined as

ΘB,s(M, δ) :=

{
1, δ = T,

ΘB,s(M), otherwise.

A disjoint clustering C respects a subproblem I := 〈B,M, k′, δ〉 if either

• δ = T and B is in the convex hull of a cluster in C, or

• δ = F and C uB is a solution to I.

Observation 7. Given a box B, the subproblem I := 〈B, k′, C̃ u∂B, δ〉 is the unique subproblem on
B respected by C̃, where k′ is the number of clusters in C̃ intersecting B and δ is T if B is contained
in the convex hull of a cluster in C̃ and is F otherwise. Moreover, C̃ uB is a solution to I.

Note that the original clustering problem is also a subproblem I0 := 〈B0, ∅, k, F 〉, where B0 is
defined as the box with edges on v−1 , v

+
n , h

−
1 , h

+
n .

Observation 8. For any solution E to I0, there is a disjoint clustering C ∈ Part(S) such that
C uB0 = E. Likewise, for any disjoint clustering C ∈ Part(S), it holds that C uB0 is a solution to
I0.

44

The following property shows that the optimal clustering C̃ is also optimal for subproblems.

Lemma 41. Let I := 〈B,M, k′, δ〉 be a subproblem on a box B respected by C̃. Then, for any
solution E to I, ΦB(C̃) ≤ ΦB(E).

Proof. Assume there exist a solution E to I such that

ΦB(E) < ΦB(C̃).

It is easy to verify that E′ := ((C̃ uB0)\(C̃ uB))∪E is a solution to I0 such that ΦB0(E′) < ΦB0(C̃).
As E′ consists of k inner cycles on B0, the set E′ is the boundary of a clustering C′ with cost less
than C̃, which is a contradiction.

3.5 Split and Merge

We say that a box B splits into Bl and Br if there is a separator s that separates B to Bl and Br.
Here, the box Bl is the upper box if s is horizontal and the left box if s is vertical.

Consider two boxes B1 and B2 whose boundaries share an edge. We say two subproblems
〈B1,M1, k

′
1, δ1〉 and 〈B2,M2, k

′
2, δ2〉 are compatible if their edges match on their shared boundary,

i.e.,
{e ∈M1|e ∩ ∂B2 6= ∅} = {e ∈M2|e ∩ ∂B1 6= ∅}.

Let B be a box that splits into Bl and Br by a separator s. We say a subproblem I :=
〈B,M, k′, δ〉 splits into Il := 〈Bl,Ml, k

′
l, δl〉 and Ir := 〈Br,Mr, k

′
r, δr〉 if Il and Ir are compatible,

ΘB,s(Ml, δl) = ΘB,s(Mr, δr), k
′ = k′l + k′r −ΘB,s(Ml, δl), and δ = δl ∧ δr. Equivalently, we say that

Il and Ir merge to I.

Observation 9. Let B be a box that splits into boxes Bl and Br by a separator s, and C be
a disjoint clustering. If C respects all subproblems I := 〈B,M, k′, δ〉, Il := 〈Bl,Ml, k

′
l, δl〉, and

Ir := 〈Br,Mr, k
′
r, δr〉, then the subproblem I splits into Il and Ir.

The following lemma provides sufficient conditions for a subproblem to have a solution and
helps us to find a solution for a subproblem satisfying those conditions.

Lemma 42. Let I := 〈B,M, k′, δ〉 be a subproblem that splits into subproblems Il := 〈Bl,Ml, k
′
l, δl〉

and Ir := 〈Br,Mr, k
′
r, δr〉. Suppose that El and Er are solutions to Il and Ir, respectively. Then,

E := El ∪ Er is a covering on B and a solution to I. Furthermore, ΦB(I) = ΦBl(El) + ΦBr(Er).

Proof. First assume that none of the subproblems is special. As Il and Ir are compatible and
ΘB,s(El, δl) = ΘB,s(Er, δr), each border cycle in El intersected by s has a corresponding border
cycle in Er. The set E is a covering on B because each pair of corresponding border cycles
intersected by s merge to a cycle on B, and all other cycles from El and Er are also cycles in B.
Moreover, as the number of the corresponding pairs of border cycles is ΘB,s(El, δl), the number of
cycles in E is κB(E) = k′l + k′r − ΘB,s(El, δl). By the definition of a solution, the covering E is
a solution to a subproblem 〈B,MB(E), k′l + k′r − ΘB,s(El, δl), F 〉. However, as E = El ∪ Er, the
border set MB(E) is simply all the edges in Ml and Mr that intersect the boundary of B. As
I splits into Il and Ir, we have M = MB(E) and k′ = k′l + k′r − ΘB,s(El, δl). Moreover, as the
edges of E are simply all the edges of El and Er combined, the cost of the covering E satisfies the
condition mentioned in the statement of the lemma.

It is easy to verify that in case one or both of the subproblems are special, the claim still holds,
which completes the proof of the lemma.

45

3.6 Elementary Subproblems

We call a subproblem elementary if it is defined on an elementary box. In this section, we show
that any elementary subproblem 〈B,M, k′, δ〉 with at most two edges, i.e., |M | ≤ 2, has at most
one solution. Moreover, if such a subproblem has a solution we can recognize it and find its unique
solution in constant time.

An elementary box contains either one point from S or is empty. Therefore, if an elementary
box B is empty, all cycles on B are border cycles. If, on the other hand, B∩S = {p}, then the only
inner cycle on B is the loop cycle {pp}. Furthermore, as B is defined by two pairs of consecutive
main lines, v−i , v

+
i and h−j , h

+
j , and its width and height is zero, any edge intersecting B contains

p. The only covering on B with an inner cycle is {pp}, and all other coverings consists of border
cycles only. Note that if {pp} is a solution to a subproblem, there is no other solution, as in that
case M = ∅ and the loop cycle {pp} is the only way p can possibly be covered.

Now, consider a solution without any inner cycles to an elementary subproblem. As an elemen-
tary box B contains at most one point, the vertex sequence of a convex chain on B has a size at
most three, which means it has at most two edges, and both edges must intersect the boundary of
B. Therefore, for a covering E on an elementary box B that does not have any inner cycles, we
have MB(E) = E.

By considering the possible cases, we make the following observation.

Observation 10. An elementary subproblem I := 〈B,M, k′, δ〉 has a solution if and only if either

• I = 〈B, ∅, 1, F 〉 and S ∩B = {p},
• I = 〈B, ∅, 0, F 〉 and S ∩B = ∅,
• I = 〈B, ∅, 1, T 〉, or

• I = 〈B,M, k′, F 〉, where M is a covering on B of size k′.

Moreover, if a solution exists, it is unique and is equal to {pp} in the first case and M otherwise.

Note that when |M | ≤ 2, we can decide if a set of edges is a solution to an elementary subproblem
in constant time.

3.7 Dynamic Programming Algorithm

Definition 10. A subproblem I := 〈B,M, k′, δ〉 is compact if for each edge of B, at most two edges
in M intersect it.

Observation 11. Let B be a box satisfying the box invariant and I be a subproblem on B such
that C̃ respects I. Then I is compact.

Algorithm 1 solves the minimum perimeter sum problem. For a subproblem I := 〈B,M, k′, δ〉,
the entry Table(I) either stores a solution to I or the value ‘Impossible’, which means we have
not found any solution to I, though it does not mean a solution to I does not exist. After the
execution of the algorithm, Table(〈B0, ∅, k, F 〉) contains the convex hull of an optimal k-clustering.
The algorithm iterates over all compact subproblems sorted ordered by the size of the defining box
(i.e., the number of elementary boxes contained in the box) and stores a solution for some of them
in Table.

• For an elementary subproblem I that has a solution, the algorithm stores the unique solution
in Table(I) only if |M | ≤ 2. The algorithm uses the conditions stated in Observation 10 to

46

Algorithm 1:

1 for b = 1, . . . , (20000n)2 do
2 for all boxes B consisting of b elementary boxes do
3 for all compact subproblems I := 〈B,M, k′, δ〉 do
4 Table(I) := Impossible
5 if b = 1
6 if M = ∅ and k′ = 1 and δ = F and B ∩ S = {p}
7 Table(I) := {pp}
8 else if |M | ≤ 2 and M is a solution to I
9 Table(I) := M

10 else
11 for all compact subproblems Il and Ir that merge to I do
12 if Table(Il) 6= Impossible and Table(Ir) 6= Impossible
13 E := Table(Il) ∪ Table(Ir)
14 if Table(I) = Impossible or ΦB(E) ≤ ΦB(Table(I))
15 Table(I) := E

find the unique solution to such subproblems. In the proof of Lemma 43, we show that we
do not need to find a solution to elementary subproblem with |M | > 2.

• For a subproblem I defined on a non-elementary box, the algorithm finds all possible splits
of I to two compact subproblems Il and Ir. For each such split, it combines the coverings (if
such exist) in Table(Il) and Table(Ir) to get a covering E. Then, it stores E in Table(I) only
if it is a better solution to I than already stored in Table(I). By Lemma 42, the union of the
two solutions to Il and Ir is a solution to I.

Lemma 43. Let I be a subproblem on a box B. Consider the value of Table(I) as Algorithm 1
terminates. If B satisfies the box invariant and C̃ respects I, the entry Table(I) contains a solution
to I of cost ΦB(C̃). In particular, Table(I0) contains a solution to I0 := 〈B0, ∅, k, F 〉 of cost ΦB0(C̃),
and hence, the algorithm solves the k-cluster fencing problem.

Proof. The proof is by induction on the number b of elementary boxes contained in B. Consider
first the case b = 1. If I is respected by C̃, Lemma 34 yields that B is intersected by at most
two edges of the signature of C̃. By Observation 6, there are no points from S on the boundary
of B, which shows |M | ≤ 2 and therefore I is compact and will be generated. Depending on the
subproblem, the algorithm stores either {pp} or M as a solution to I in Table(I) only if M is a
solution to I. As by Observation 10 the solution to I is unique, it must be C̃ uB. If |M | > 2, the
algorithm stores ‘Impossible’ in Table(I) which completes the proof, for the base case.

Suppose the claim holds for boxes consisting of up to b − 1 elementary boxes for some b ≥
2 and consider a subproblem I := 〈B,M, k′, δ) where B consists of b elementary boxes. Note
that if Table(I) is not Impossible, Table(I) must contain a value Table(Il) ∪ Table(Ir) for some
subproblems Il and Ir that merge to I and are defined on boxes consisting of less than b elementary
boxes. By the induction hypothesis, Table(Il) and Table(Ir) contain solutions to Il and Ir and by

47

Lemma 42, Table(I) = Table(Il) ∪ Table(Ir) is a solution to I.
If C̃ respects I and B satisfies the box invariant, by Observation 11, I is compact. By Lemma 34,

B has a separator s contained in a main or helper line and s separates B into two boxes Bl and Br
both satisfying the box invariant. By Observation 7, there are unique subproblems Il and Ir, on
Bl and Br, such that C̃ respects them. By Observation 9, subproblem I splits into Il and Ir. As Bl
and Br consists of less than b elementary boxes, by the induction hypothesis, Table(Il) = ΦBl(C̃)
and Table(Ir) = ΦBr(C̃). By Lemma 42,

Φ(Table(I)) ≤ ΦBl(C̃) + ΦBr(C̃) = ΦB(C̃), (2)

where the equality comes from Observation 5. Furthermore, by the above mentioned argument,
Table(I) is a solution to I and by Lemma 41,

Φ(Table(I)) ≥ ΦB(C̃), (3)

which completes the proof.

3.8 Run-time Analysis

Data structures. We implement Table as an array, so that we can update and insert values at
a given entry Table(I) in time O(1).

We use a special representation for solutions (set of edges and loops) by making a directed
acyclic graph (DAG) to support constant time union operation on solutions (sets). Each solution
E to a subproblem 〈B,M, k′, δ〉 is either the set M , where |M | ≤ 2, or a set containing a single
loop for elementary subproblems, or is the union of two solutions El and Er to two subproblems
defined on smaller boxes Bl and Br for non-elementary subproblems. For elementary subproblems
we simply make a node and store if the solution is a loop or not, and if it is a loop we store the
loop in the node. For non-elementary subproblems we make a node and we store the (at most two)
edges in the solution that intersect the shared edge of Bl and Br but do not intersect ∂B. We also
store two pointers to El and Er in this node; these pointers form a DAG where the number of nodes
visible to each node (solution) is linear and therefore it is possible to find the edges and loops of a
solution in linear time by simply adding up all the loops and edges inside the visible nodes to M .

For a box B and an edge s of B, we can compute the value of ΘB,s(M, δ) for a subproblem
I := 〈B,M, k′, δ〉 in O(1) time as follows. For each subproblem, we store the coverage status of the
four corners of the defining box. It is easy to compute those values for elementary subproblems
and after merging two solutions we can easily merge the coverage status of their corners as well.2

Let ms be the number edges in M intersecting s. As we just work with compact subproblems,
0 ≤ ms ≤ 2. Having the coverage status of the four corners of B, assuming s1 and s2 are the
endpoints of s, the cut number is given by

ΘB,s(M, δ) =

2, ms = 2 and s1 and s2 are covered,

0, ms = 0 and s1 and s2 are not covered,

1, otherwise.

2To handle degenerate cases where an edge intersects a corner of a box, we can store two coverage values for each
corner. One for the coverage of the corner point and a bit more of the boundary in counterclockwise direction and
one for the coverage of the corner point and a bit more of the boundary in clockwise direction.

48

Observation 12. Given a box B, the number of compact subproblems I := 〈B,M, k′, δ〉 is at most

(n+ 1) ·
(
O(n2)

8

)
= O(n17).

Here, n+ 1 is a bound on the number k′ and the factor
(
O(n2)

8

)
is a bound on the number of ways

the edges of M can be selected for a compact subproblem. There is also one special subproblem on
box B and we can consider that case as well.

Observation 13. Let B be a box that splits into Bl and Br. The number of ways to split a
compact subproblem I := 〈B,M, k′, δ〉 to two compact subproblems Il := 〈Bl,Ml, k

′
l, δl〉 and Ir :=

〈Br,Mr, k
′
r, δr〉 is at most

n ·
(
O(n2)

2

)
= O(n5).

Here n is the number of ways we can choose a value for k′l and
(
O(n2)

2

)
is the number subsets of at

most two edges intersecting ∂Bl ∩ ∂Br.

We now describe how Algorithm 1 at line 11 iterates through the O(n5) pairs of subproblems
(Il, Ir) merging to I. At first, assume δl and δr have the value F . The edges M specify all edges
in Ml and Mr except possibly some edges intersecting the edge s := ∂Ml ∩ ∂Mr and not other
edges of ∂Ml or ∂Mr. As Il and Ir are compact and compatible, Ml and Mr can have at most two

such edges. Consider now one of these
(
O(n2)

2

)
choices of edges crossing s. We iterate through each

value k′l ∈ {0, . . . , k′}. For a given value of k′l, the subproblem Il is completely specified. If Il does
not have any solution in Table(Il), we can proceed with another choice of Il. Otherwise, note that
Ir is also specified except for the value k′r. However, we can compute ΘBl,s(E, δl), where E is the
solution stored as Table(Il), in constant time. In order for Il and Ir to merge to I, we now define
k′r := k′ − k′l + ΘBl,s(Ml, δl). There are four different choices for the values δl and δr and it is not
hard to consider those cases as well.

Theorem 2. Algorithm 1 solves the minimum perimeter sum problem in time O(n27).

Proof. Note that B0, the box with edges on v−1 , v
+
n , h

−
1 , h

+
n , satisfies the box invariant. Since C̃

respects I0 := 〈B0, ∅, k, F 〉, Lemma 43 gives that as the algorithm terminates, Table(I0) contains a
solution E to I0 of cost ΦB0(C̃) = Φ(C̃). Moreover, Observation 8 states that there is a clustering
C such that C u B0 = E, and hence, C is an optimal clustering. Furthermore, the clustering C can
easily be computed given E.

The algorithm uses the conditions specified in Observation 10 to verify solutions to elementary
subproblems I := 〈B,M, k′, δ〉 satisfying |M | ≤ 2, which takes constant time and does not affect
the asymptotic running time of the algorithm.

There are O(n4) different boxes in B(S). By Observation 12, the number of compact subprob-
lems on a B is O(n17). For each separator s of B, by Observation 13, the number of ways to split
I to Il and Il is O(n5). As we showed in the beginning of this section, merging two solutions can
be done in constant time. The cost of each solution can be stored as a single real number and
comparing could be assumed to take only O(1) time.3 The running time of the algorithm thus is

O(n4) ·O(n17) ·O(n) ·O(n5) ·O(1) = O(n27),

3In the RAM model, assuming comparing two solutions can be done in time T (n), the running time is O(n27 ·T (n)).

49

where O(n4) is the number of different boxes B ∈ B(S), the factor O(n17) is the number of
subproblems on B, O(n) is the number of separators of B, O(n5) is the number of ways to split a
subproblem into two subproblems for a given separator s, and O(1) is the time needed to compare
two solutions.

Theorem 3 (The k-cluster fencing problem). There is a polynomial time algorithm that, given any
set S of n points in the plane and an integer k, finds a set of at most k closed curves such that
each point in S is enclosed by a curve and the total length of the curves is minimized.

4 Acknowledgments

The authors are very grateful to Joseph S. B. Mitchell for valuable discussions and bringing some
related works to our attention. The authors also thank the reviewers for their insightful comments
and for improving the quality of the paper.

The work of M. Abrahamsen, A. Roytman, and M. Thorup is partially supported by Thorup’s
Advanced Grant from the Danish Council for Independent Research under Grant No. DFF-0602-
02499B, and partly by Basic Algorithms Research Copenhagen (BARC), supported by Thorup’s
Investigator Grant from the Villum Foundation under Grant No. 16582. The work of A. Adamaszek
is supported by the Danish Council for Independent Research DFF-MOBILEX mobility grant. The
work of V. Cohen-Addad was done as a Postdoctoral Fellow at the University of Copenhagen and
supported by the European Union’s Horizon 2020 research and innovation programme under the
Marie Sklodowska-Curie Grant Agreement No. 748094. V. Cohen-Addad was also part of BARC.
M. Mehr is supported by the Netherlands Organisation for Scientific Research (NWO) under Project
No. 022.005.025.

References

[1] M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A. D. Mehrabi. Minimum perimeter-
sum partitions in the plane. In Proceedings of the 33rd International Symposium on Compu-
tational Geometry, pages 4:1–4:15, 2017.

[2] P. K. Agarwal and M. Sharir. Efficient algorithms for geometric optimization. ACM Computing
Surveys, 30(4):412–458, 1998.

[3] E. M. Arkin, S. Khuller, and J. S. B. Mitchell. Geometric knapsack problems. Algorithmica,
10(5):399–427, 1993.

[4] B. Behsaz and M. R. Salavatipour. On minimum sum of radii and diameters clustering.
Algorithmica, 73(1):143–165, 2015.

[5] P. Bose and S. Langerman. Weighted ham-sandwich cuts. In Japanese Conference on Discrete
and Computational Geometry, pages 48–53, 2004.

[6] V. Capoyleas, G. Rote, and G. Woeginger. Geometric clusterings. Journal of Algorithms,
12(2):341–356, 1991.

[7] M. de Berg, M. van Kreveld, M. Overmars, and O. Cheong. Computational geometry: algo-
rithms and applications (3rd edition). Springer-Verlag, 2008.

[8] S. G. Dicke and B. Hubbard. Tree protection standards in construction sites. 2008. The
Forest and Wildlife Research Center, Mississippi State University Extension Service, http:
//fwrc.msstate.edu/pubs/treeprotection.pdf.

50

http://fwrc.msstate.edu/pubs/treeprotection.pdf
http://fwrc.msstate.edu/pubs/treeprotection.pdf

[9] H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: a technique to cope with degen-
erate cases in geometric algorithms. ACM Transactions on Graphics, 9(1):66–104, 1990.

[10] M. Gibson, G. Kanade, E. Krohn, I. A. Pirwani, and K. Varadarajan. On clustering to
minimize the sum of radii. SIAM Journal on Computing, 41(1):47–60, 2012.

[11] S. Har-Peled. Geometric approximation algorithms, volume 173. American Mathematical
Society, 2011.

[12] J. S. B. Mitchell. Private communication, 2017.

[13] J. S. B. Mitchell and E. L. Wynters. Finding optimal bipartitions of points and polygons. In
Proceedings of the 2nd Workshop on Algorithms and Data Structures, pages 202–213, 1991.

[14] R. Seidel. The nature and meaning of perturbations in geometric computing. Discrete &
Computational Geometry, 19(1):1–17, 1998.

[15] C.-K. Yap. A geometric consistency theorem for a symbolic perturbation scheme. Journal of
Computer and System Sciences, 40(1):2–18, 1990.

51

	1 Introduction
	1.1 Our Results
	1.2 Applications
	1.3 Our Techniques
	1.4 Related Work

	2 The Unit Disk Fencing Problem
	2.1 Structural Results
	2.2 Partitioning into Independent Instances
	2.3 Cells and Polyominoes
	2.4 Quadtree Construction
	2.5 Finding an Optimal Partition for Each Basic Polyomino
	2.6 Finding Optimal Cluster Unions
	2.6.1 Preliminaries
	2.6.2 Problem formalization
	2.6.3 Reduction to the case where every cluster is non-trivial.
	2.6.4 Subproblem structure.
	2.6.5 Calculating parents via a data structure of intervals.
	2.6.6 Updating the data structure.

	2.7 Proof of Lemma ??
	2.7.1 Finding a good ray.
	2.7.2 Nested curves.
	2.7.3 Discretizing the ray.

	2.8 Proof of Lemma ??

	3 The k-Cluster Fencing Problem
	3.1 Preliminaries
	3.2 Structural Properties
	3.3 Coverings and Signatures
	3.4 Subproblems
	3.5 Split and Merge
	3.6 Elementary Subproblems
	3.7 Dynamic Programming Algorithm
	3.8 Run-time Analysis

	4 Acknowledgments

