
 1

The Mother

Recursive Percentage based Hybrid Pattern Training for

Supervised Learning

Authors: Kiruthika Ramanathan* and Sheng Uei Guan

Affiliation: Department of Electrical and Computer Engineering

 National University of Singapore

Address: 10 Kent Ridge Crescent, Singapore 119260

Email: kiruthika_r@nus.edu.sg

Abstract

Supervised learning algorithms, often used to find the I/O relationship in data, have the tendency to

be trapped in local optima as opposed to the desirable global optima. In this paper, we discuss the

RPHP learning algorithm. The algorithm uses Real Coded Genetic Algorithm based global and

local searches to find a set of pseudo global optimal solutions. Each pseudo global optimum is a

local optimal solution from the point of view of all the patterns but globally optimal from the point

of view of a subset of patterns. Together with RPHP, a Kth nearest neighbor algorithm is used as a

second level pattern distributor to solve a test pattern. We also show theoretically the condition

under which finding several pseudo global optimal solutions requires a shorter training time than

finding a single global optimal solution. As the difficulty of curve fitting problems is easily

estimated, we verify the capability of the RPHP algorithm against them and compare the RPHP

algorithm with three counterparts to show the benefits of hybrid learning and active recursive subset

selection. The RPHP shows a clear superiority in performance. We conclude our paper by

identifying possible loopholes in the RPHP algorithm and proposing possible solutions.

Keywords: evolutionary algorithms, task decomposition, hybrid learning, pattern

learning, subset finding, data oriented training

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/334125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

1. Introduction

Imagine a situation where a teacher is to teach a group of students (the population) a set of

problems (the tasks). In a normal classroom, the teacher would repeatedly teach the various

problems until either the teacher is satisfied with the results or the students are unable to learn any

more tasks. Usually, the aptitude of the students is limited and without a very good teacher, it is

unlikely that they will learn all the tasks. On the other hand, although very good teachers are hard to

find, it is necessary that the class learn all the problems.

Therefore, a new solution is proposed. The teacher now teaches all the problems until some

students (Group A) in the class learn some of the problems (Set A) (The students do not have to

learn these problems perfectly, they can make some errors during the learning). Now the teacher

isolates these Group A students and allows them to learn set A problems alone.

The teacher now blanks the memory of the remaining students and focuses their attention

on the remaining problems. As the students’ memories are reinitialized, their previous lack of

knowledge will not come into account when dealing with the remaining problems. The teacher

teaches the remaining problems until a group of students (Group B) learns some of them (Set B).

The teacher now isolates Group B and lets them learn set B problems until the problems are

perfected.

This process is repeated until there are too few problems left to allow further

decomposition. The class is then set to learn these remaining problems in the best way possible. The

teacher therefore induces a team effort, such that, as a team, the class is able to solve the problems

better than an individual student would. She isolates students showing aptitude for a set of problems

by allowing them to focus their attention on those problems in particular and not worry about the

 3

problems that they find difficult. These problems will still be learnt… there are other students who

will show aptitude for these problems.

The teacher’s job is therefore simplified. The students’ job is simplified as well, since they

only have to learn those problems they find easy and can therefore solve them faster and better.

This is the concept of RPHP algorithm. The pool of solutions (population), along with the

teacher, uses a genetic algorithm based global search to decompose the datasets recursively. Each

data subset is considered simple by the solution S that has learnt it to certain extent. This solution S

now concentrates on specializing on the decomposed dataset and learns it perfectly using a local

training technique (based on genetic algorithms or neural networks). The set of solutions S obtained

can therefore solve any problem in the domain as long as we know which subset of problems the

new problem belongs to. In RPHP, this subset identification is performed using the Kth nearest

neighbor algorithm. We also make use of extensive validation and early stopping techniques to

ensure that overtraining is avoided.

The RPHP algorithm displays the following salient properties

1. Pattern training, as well as error training, are focused on, as opposed to error training only. Error

training alone has the disadvantage of over-training of some patterns while other patterns can be

left untrained or under-trained.

2. Since all patterns receive equal attention in training, there is a higher possibility of obtaining

better training, as well as generalization accuracy.

3. Since the RPHP algorithm is also clustering based, adding new training patterns after training is

complete will simply result in the development of new clusters to deal with the new patterns,

instead of complete retraining.

 4

4. As progressively less samples are learnt in each recursion, the training time required for each

epoch is reduced.

5. As the difficulty of the training patterns increases progressively with each recursion (from the

point of view of the students), the population focuses more on the difficult samples

6. The recursions stop when the number of samples reduces to a small amount, avoiding the

likelihood of overtraining.

7. The combination of global and local training reduces the possibility of the KNN pattern

distributor error. This is done by explicitly learning each pattern by one sub-solution and by

implicitly learning it by one or more solutions, creating some cushion against the error of the

pattern distributor This property is further discussed in section 2.5

8. The decomposition algorithm takes the problem structure into account, while being problem

independent at the same time. Therefore, this process is more natural than other data

decomposition techniques described below.

9. The RPHP algorithm also reduces dependence on several training parameters often introduced

in other hybrid algorithms and subset finding algorithms. These include the subset size, the

degree of error tolerance ξ and the number of epochs to be trained before the training mode

can change from global to local.

1.1. Related literature review

The RPHP algorithm can be summarized as an efficient combination of three types of

weak learning algorithms – hybrid learning, task decomposition, and pattern distribution. In this

section, we will briefly review related work in these three fields and discuss their respective

strengths and weaknesses.

1.1.1. Hybrid learning

 5

Global search algorithms such as genetic algorithms (Goldberg, 1989) and genetic

programming (Riolo and Worzel, 2003) have been used in conjunction with local search techniques

such as backpropagation (Rumelhart et al., 1986), dynamic backpropagation (Ash, 1987; Marchesi

et al., 1990) and decision tree algorithms (Quilan, 1996; Quilan, 1986; Breiman, 1994).

Combinations of global and local search algorithms have been proposed and tested successfully in

the literature. Carvalho and Freitas (2004) proposed and verified that a hybrid GA/ decision tree

algorithm performed better than the local training algorithm for 16 out of 21 classification problems.

In another paper, Andreas et al. (2002) proposed the use of a genetic algorithm to optimize adaptive

neural networks for exchange rates forecasting. Other applications of genetic algorithms to improve

neural networks include friction compensation (Chaitanya and Zalzala, 2000), function

approximation (Rovithakis, 2004), antennas and propagation (Devi et al., 2003), image

segmentation (Dokur, 2002) and classification (Pendharkar and Rodger, 1999) . However, besides

neural networks and decision trees, the global search ability of genetic algorithms have been widely

applied to supplement training algorithms such as Particle Swarm Optimization (Juang, 2004) and

simulated annealing (Aydin and Fogarty, 2004; Mahfoud and Goldberg, 1992)).

Since genetic algorithms can be oriented towards both global and local search depending

on its tuning parameters, hybrid combinations of global and local search in genetic algorithms have

been proposed in various papers, beginning with the Lamarckian evolution (Ackley and Littmann,

1993). A recent work by Vasconcelos et al. (2001) proposed the Linear Interpolation algorithm,

which automatically adjusted the degree of global and local search in a GA based optimization

problem. In order to simplify the theory of the algorithm proposed, we will focus, in this paper,

specifically on hybrids of global and local search using real coded genetic algorithms.

 6

While all the above papers concluded that hybrid algorithms are generally better as they

appear to combine the breadth of global search with the hill climbing of a local search, the reason

why hybrid algorithms work is still predominantly a black box. A notable question that arises is

when to change from global to local search and vice versa. A number of algorithms, including

(Dokur, 2002; Pendharkar, 1999, Yasunaga et al., 1999) use the number of generations of global

search as a criterion for switching between global and local search.

In Linear Interpolation (Vasconcelos et al., 2001), however, the genetic diversity of the

population is used to determine the probability of global search and the probability of local search.

While these switchover methods suffice for optimization applications, the performance of a

supervised learning algorithm depends on the patterns learnt. In an earlier work (Guan and

Ramanathan, 2005), we showed empirically that a good point of switchover between global and

local search would be when approximately 50% of the patterns are learnt by the system. We also

showed, by experiments, that using global search to learn 50% of the patterns increases the

probability of finding a global optimal neighborhood. The RPHP algorithm will use this property

that was observed in (Guan and Ramanathan, 2005).

1.1.2. Task decomposition

Many papers have been written on the possibility of using a subset of training patterns for

training instead of the whole dataset. A notable work by Foody (1998) argued that the classifier

structure can be determined by the border patterns (i.e, those whose Mahalanobhis distances are

close to patterns of other classes), while the core patterns can be discarded. Another paper by

Gathercole et al. (1994) assigns a difficulty value to a pattern based on how often the best

performing chromosome learns it and then using this probability to select a subset. The topology

based dynamic selection (Lasarcyck et al., 2004) again selects subsets of training patterns based on

 7

their difficulty. The difficulty of the pattern is determined by whether a pattern can be learnt with an

accuracy of ξ. More and more “difficult” patterns are chosen until a desired subset size is reached.

The theory behind these approaches is that when training emphasis is given to the difficult

patterns, it is possible to obtain an accurate classifier. However, neither method outlines a method

for finding the size of a subset or the preferred learning accuracy, ξ. Moreover, it is likely that

information (and generalization capability) can be lost when the core or “easy” patterns are ignored

when training.

Several methods have also been proposed to emphasize on learning difficult patterns while

still learning the easy patterns. Techniques include incremental learning with active data selection

(Zhang and Cho, 1998) and repeated learning of difficult patterns (Stoianov et al., 2001).

While the above algorithms in the literature were shown to be effective, they still try to

increase the probability of finding one good solution. On the other hand, it is possible to split the

training set into several smaller subsets, find a solution for each subset, and put them all together.

This way, although emphasis is given to difficult patterns, the easy patterns are not ignored. Many

recent algorithms implement this subset selection by decomposing the data manually according to

class labels (Guan et al., 2003; Fu et al., 2001). The assumption is that a two-class problem is easier

to solve than a K class problem. Therefore a K-class problem is divided into K two-class problems

and each sub problem is solved by using a separate classifier.

There are two fundamental problems with this approach. Firstly, it is not necessarily true

that a two-class problem is simpler than a K-class problem. For example, the two spiral problem (2

classes), is inarguably more complicated than the Iris (3-class) problem. Therefore, this approach is

not foolproof. Secondly, the separation of data is manual and based on class labels. Therefore the

algorithm itself can only be applied to classification problems.

 8

The multisieving algorithm (Lu et al., 1995) aims to combat these issues. In the

multisieving algorithm, the neural network is trained using all the available data until stagnation

occurs. At that point, all the patterns which produce valid outputs, i.e., ξ<− jj OD , where ξ is

an error tolerance, are considered learnt and therefore isolated along with their corresponding

network. The remaining (unlearnt) patterns are further trained using another network and the

process is repeated until all the patterns are learnt. Using the two spiral problem, the authors showed

the validity of their approach.

Although the multi-sieving approach combats the problems of class based decomposition,

the following issues remain unsolved: Firstly, the algorithm is not completely adapted to the

problem topology since its performance depends on the error tolerance ξ , which is a predefined

value. A low value of ξ could lead to overtraining while too large an ξ possibly results in patterns

not being learnt near optimal. The parameter therefore has to be set to an accurate value.

Furthermore, the algorithm described did not provide for generalization but only for 100%

training accuracy to the limit of the error tolerance. Moreover, there is no documentation on how to

best deal with a test pattern, other than introduce it into the various modules until one of the

modules produces an output of 1. Further, The generalization accuracy of the algorithm was not

reported. Our survey showed that, while the multisieving algorithm has been widely cited in the

literature, no follow-up work has been done to improve the algorithm.

1.1.3. Pattern distribution

When data is decomposed into several subsets as discussed in section 1.1.2, and each

subset trained and represented by a separate network, there appears the problem of system

generalization accuracy. How do we best assign an unseen pattern into one of the K subsets? In Lu

et al. (1995) the authors proposed that a pattern be presented to each network in turn until one of the

 9

networks produces an output of 1. However, this procedure produces a bias on the result of the first

network. A pattern distributor is therefore introduced (Guan et al., 2003) to solve this problem. The

input patterns and the index of the subset are used to train another network which acts as a second

layer classifier. This classifier classifies the patterns into subsets, which in turn provide the solution

to the problem. However, the pattern distributor, in itself, produces a classification error which must

be taken into account.

The RPHP algorithm can be generally overviewed as a robust generalization of hybrid

genetic algorithms, topology based subset finding, multisieving and pattern distribution. As we

proceed with this paper, we shall explain the structure of the RPHP algorithm and how it overcomes

the disadvantages of the various algorithms outlined above. The rest of the paper is organized as

follows: Section 2 presents related theory and introduces the RPHP algorithm. In section 3, we

present theoretical analysis of the effectiveness of the RPHP algorithm. In section 4, we describe the

problems considered and present the simulation results. While the RPHP algorithm improves the

training results, it has two associated problems. These are discussed in Section 5. Section 5 also

suggests the RPHP2 algorithm, which solves these problems. Section 6 presents the conclusions of

our research and the future work we wish to undertake with regards to the RPHP algorithm.

2. RPHP algorithm and related theory

2.1. The RPHP algorithm overview

The RPHP training algorithm is a supervised learning algorithm designed to improve

training time and generalization accuracy when finding the global optimal solution of a sufficiently

complex surface. The algorithm begins with fitting a solution to all the training patterns.

2.1.1. Training

 10

1. As we are only looking for a partial solution fast, we use genetic algorithms to perform the

global search across the solution space with all the available training patterns.

2. We continue training until one of the following two conditions are satisfied: a). There is

stagnation or b) 50% of the patterns are learnt. The condition of 50% patterns learnt has

been imposed based on our earlier work (Guan and Ramanathan, 2005). The reason for

implementing this condition is explained in section 2.5.

3. At this stage, we use a condition similar to that in Lasarzyck (2004) and the multisieving

network (Lu et al., 1995) to identify learnt patterns, i.e, a pattern is considered learnt if

ξ<− jj OD . More formally, we can define the percentage of total patterns learnt as

[]∑ ∑
= =

−

−−=

T

i

O

j

jijig OD
OT

L
0 0

,, 1
11

ξφδ ((((1111))))

In the above equation, ξ is the predefined error tolerance and)(xδ is the unit impulse

function.)(xφ is the unit step function. Note that although, similar to the multisieving

algorithm, a tolerance ξ is used to identify learnt patterns, the arbitrarily set value of ξ for

RPHP does not affect the performance of the algorithm, as explained later.

4. The dataset is now split into learnt and unlearnt patterns. With the unlearnt patterns, we

repeat steps 1 to 3.

5. Since the learnt patterns are only learnt up to a tolerance ξ , we use a local search oriented

genetic algorithm to find the nearest optima for the learnt patterns. This optima is called the

pseudo-global optimal solution, and is found using a validation set of data to prevent over

training and to overcome the dependence of the algorithm on ξ . The concept of pseudo

global optima is explained in the next section. The local search oriented genetic algorithm

 11

is used because of illustration simplicity and can easily be replaced by any hill climbing

technique.

As the number of patterns in a data subset is small, especially as the number of recursions

increases, it is possible for the pseudo global optimal solution to overfit the data in the subset. In

order to avoid this possibility, we use a validation dataset. The validation dataset is used along

with the training data to detect generalization loss using an algorithm in (Guan and Li, 2002).

The algorithm details are given in the appendix.

G1

(T)

Recursion=1 Recursion=3 Recursion=N

L1

(T/2)

G2

(T/2)

L2

(T/4)

G3

(T/4)

L3

(T/8)

GN

(T/2N-1)

LN

(T/2N)

G1

(T)

Recursion=1 Recursion=3 Recursion=N

L1

(T/2)

G2

(T/2)

L2

(T/4)

G3

(T/4)

L3

(T/8)

GN

(T/2N-1)

LN

(T/2N)

Figure 1. Recursive Data Decomposition employed by RPHP

The data decomposition technique of the RPHP algorithm can be best described by Figure 1.

During the first recursion, the entire training set (size T) is learnt using global training until T/2

patterns are learnt or until stagnation occurs. Only the learnt patterns are then further learnt locally,

with measures to prevent overtraining. This ensures the finding of a pseudo global optimal solution.

The second recursion repeats the same procedure with the unlearnt patterns. The process repeats

until the total number of patterns in a given recursion (Recursion N) is too small, in which case,

local training is applied to the whole dataset to learn the remaining patterns to the best possible

extent. Figure 2 gives the detailed pseudocode of the RPHP algorithm

 12

Figure 2. Detailed pseudocode of the RPHP1 algorithm

2.1.2. Testing

Testing in the RPHP algorithm is implemented using a Kth nearest neighbor (Wong and Lane,

1983) based pattern distributor. KNN was used to implement the pattern distributor because of the

ease in its implementation. At the end of the RPHP training phase, we have N subsets of data. A

given test pattern is matched with its nearest neighbor. If the neighbor belongs to subset i, the

pattern is also deemed as belonging to subset i the solution for subset i is used to find the output of

the pattern. This process is illustrated by Figure 3.

Pattern Distributor

implemented using

the KNN algorithm

Pseudo Global

Optimal Solution 1

Pseudo Global

Optimal Solution K

Pseudo Global

Optimal Solution 2

Final solution

Final solution

Final solution

Pattern Distributor

implemented using

the KNN algorithm

Pseudo Global

Optimal Solution 1

Pseudo Global

Optimal Solution K

Pseudo Global

Optimal Solution 2

Final solutionFinal solution

Final solutionFinal solution

Final solutionFinal solution

 Figure 3. The two level RPHP problem solver

Train (i)
{ Globally train the dataset Gi using a new set of chromosomes

 IF approximately 50% of the patterns are learnt OR stagnation occurs

 { 1. Identify the learnt patterns

2. Split Gi into Li (consisting of the learnt patterns) and Gi+1 (consisting of the unlearnt patterns)

3. Locally train the existing solutions using data set Li. The procedure is validated using dataset V1

4. IF local training is complete (stagnation OR generalization loss)

 IF Gi has too few patterns

{ a. Copy Gi to Li

b. Locally train Li until Generalization loss OR stagnation

c. STORE solution i

 d. END Training

}

 ELSE

{ FREEZE solution i

 Train (i+1)

 }}}

 13

 2.2. Terms and Definitions

In order to demonstrate effectively the theoretical implications and effectiveness of the RPHP

algorithm, we use the simplest forms of the various algorithms proposed in the literature. As many

new algorithms proposed black boxes, we decided to use fundamental principles and algorithms to

justify our techniques. Simulations on the two spiral dataset were carried out to demonstrate that the

RPHP algorithm can also be built on top of newer algorithms. In this section we will define the

terminology used in this paper.

2.2.1. Global and local training

We define global and local search based on the fact that global search searches for fitter

individuals through the whole search space while local search searches within a given

neighborhood.

Global training is therefore implemented with single point crossover and mutation with a

large random change in one or more elements of the chromosome. Local training is implemented

by a mutation only genetic algorithm. The chromosome is changed by a small random δ, where δ is

a normally distributed variable.

2.2.2. Global optimal neighbourhood

Figure 4 illustrates the idea of a global optimal neighborhood. It is defined as the largest

continuous segment of the error against x curve where the value of error is monotonically

increasing for xg+ or xg-. The neighborhood is bounded by xgmax and xgmin.

 14

Figure Figure Figure Figure 4444. A global optimal neighborhood

2.2.4. Chromosome encoding

Since this paper aims to cast some theoretical insight to the behavior and advantages of

RPHP, it was necessary to find the best possible experimental algorithms to simulate the theories.

The problems considered in this paper are curve fitting problems, i.e., problems whose I/O data and

the general form of the relationship function are known, but the actual coefficients are unknown.

The elements in the real coded genetic algorithm represent one of the several unknown coefficients.

For generalization and comparison purposes, we have also included simulation results from

the two spiral classification problem. In that example, a messy genetic algorithm (Goldberg et al.,

1991) is used to evolve both the topology and the weights of the neural network simultaneously.

This represented the global search phase. The local search was carried out by performing back

propagation on the best chromosome. The chromosome thus encodes the weights and architecture

of the neural network.

2.3. Pseudo global optima

The better performance of the RPHP algorithm can be attributed to the fact that RPHP aims

to find several pesudo-global solutions as opposed to a single global solution. We define a pseudo-

global optimal solution as follows:

 15

Definition 1: A pseudo-global optima is a global optima when viewed from the perspective of a

subset of training patterns, but could be a local (or global) optima when viewed from the

perspective of all the training patterns.

To illustrate the connection between pseudo global optima and the RPHP algorithm, we

present the argument below:

Consider the use of the RPHP algorithm to model a function)(wx,fy = , where x and y

are the feature and output values respectively and f is a vector function of a vector variable x. w is

the set of values to be optimized. Given N training patterns, the training error at any point of time is

given by

unlearntlearntunlearntunlearntlearntlearnt

N

i

EENNE +=+=−=∑
=

εε
1

^

)(iii xfy (2)

where)(
^

ii xf is an approximation to)(xf . Further, we know that at any given point, E can be split

into Elearnt and Eunlearnt, which represents the errors due to the learnt and unlearnt patterns

respectively. By definition of learnt and unlearnt patterns unlearntlearnt εξε <≤ , where ξ is the

error tolerance Also, as we approach the optimal points, 0→learntE .

Also, consider that at the end of global training, all the learnt patterns have an error less than

the error tolerance ξ, i.e.

unlearntlearntunlearntlearnt ENEEE +<+= ξ (3)

RPHP splits up the training patterns after global training of recursion k (Gk) such that the

local training Lk of recursion k is carried out with Nlearnt patterns and the step Gk+1 with Nunlearnt

patterns. The value of Eunlearnt is therefore constant during Lk, i.e. for any given local training epoch,

CEE learnttotal += (4)

 16

Figure 5 illustrates how the RPHP algorithm, a single staged hybrid algorithm such as the

linear interpolation algorithm (Vasconcelos et al., 2001) or the Lamarckian evolution (Ackley et al.,

1993), and the multisieving algorithm (Lu et al., 1995)) find their solutions. The graph shows a

hypothetical one-dimensional error surface to be optimized with respect to w. Assume that at the

end of the global training phase, solution Sg has an error value Eg computed according to Equation

2.

Figure 5. Illustration of solutions found by (i) RPHP (SRPHP) (ii) Single-staged hybrid search

(SSS) (iii) Multisieving algorithm (Sm)

A single-staged hybrid search algorithm, at this stage, will either try to search for an optima

or, if the probability of finding the optima is too small, climb the hill and reach the local optima

marked by Sss .

However, by virtue of equation 4, Eunlearnt is a constant value C. The error curve (represented by the

dotted line), is just a vertically translated copy of the part of the original curve, which is of interest to

us.

 17

Now, if we consider the multisieving algorithm (Lu et al., 1995), the data splitting depends

on the error tolerance of learnt patterns ξ, as defined in equation 1. The solution Sg, in itself, is

found by a local training algorithm. The final solution Sm is a vertically translated Sg.

On the other hand, we can see from Figure 5, that the translated local optima (TLO) due to

the splitting of patterns is more optimal than the other optimal solutions, i.e,

globalTLO EE ≤ ((((5555))))

This is by virtue of the fact that 0→learntE as we approach the optimal point. Further, from

Equation 4, 0→
∂

∂

w

totalE
 as 0→

∂
∂

w

learntE
 Therefore, the solution found by the RPHP

algorithm is a pseudo global optima, i.e, it could be a local optima but it appears global from the

perspective of a pattern subset.

It must be noted that the solution found by the multisieving algorithm, Sm, can only be

equal to the translated local optima TLO if the error tolerance ξ is set to optimum values. However,

due to local training at the end of each recursion, the solution adapts itself accordingly, regardless of

the error tolerance ξ. Finding a pseudo global optima therefore reduces the dependence of the

algorithm on the error tolerance of learnt patterns ξ. It is also the natural optima based on the data

subset.

Note: Since early stopping is implemented during local training so as to prevent overtraining, the

optima found by RPHP may not necessarily be SRPHP, but in the vicinity of SRPHP.

2.5. The advantage of the RPHP pattern distributor

As described in section 2.1.2, testing with the RPHP algorithm is implemented using the

Kth nearest neighbor based pattern distributor. The pattern distributor processes the incoming test

pattern and checks to see which pseudo global optimal solution can fit it best. The solution chosen is

 18

switched on while the others are switched off. The chosen solution is applied to the test pattern and

the final output for the given test pattern obtained.

 The error of the system is, therefore, the combination of the errors of the pattern distributor

and the error of the RPHP system. The KNN algorithm has a fairly high accuracy but patterns that

are close to the neighborhood boundary (i.e., points marking class separations) are more susceptible

to errors. Moreover, the distribution mechanism of RPHP is automatic, and therefore, its properties

and results cannot be predicted.

The hypothesis of 50% PHP, earlier proposed (Guan and Ramanthan, 2005), is used in

order to have a better control over the pattern distribution. This is explained below:

If the error probability of the pattern distributor is PDeP , , the number of test patterns

classified wrongly by the pattern distributor is PDets PT , , where Tts is the total number of testing

patterns The total number of test patterns being predicted wrongly by a RPHP system is therefore,

()()[]∑
=

−−−=
K

i

ieiPDtsets PPTT
1

,,, 111 (6)

where iPDP , is the probability of wrong classification of the KNN algorithm for the ith solution, K

is the total number of solutions resulting from the RPHP algorithm and ieP , is the probability of

wrong prediction of the pseudo global optimal solution i, where []Ki ,1∈ .

If we express iPDP , as a ratio of wrongly classified patterns to solution i, i.e,

ts

iPD

T

T

iPDP ,

, = , we can simplify equation 6 as given below:

∑∑∑
===

++=
K

i

ieiPD

K

i

iets

K

i

iPDets PTPTTT
1

,,

1

,

1

,, (7)

The first term of equation 7 is the total error of the pattern distributor and depends on the

accuracy of the KNN algorithm. However, considering the last two terms of the equation

 19

and expressing ieP , as a ratio of the number of test patterns that are wrongly solved by the

pseudo global optima i to the number of test patterns presented to the solution i, we

obtain
i

ie

T

T

ieP ,

, = .

From Figure 5, we can see that the number of patterns TRPHP, learnt by the RPHP solution

Si is such that gRPHP TT ≥ , meaning that the larger the distance between Sg and Sss, the larger the

difference between RPHPT and gT and more than one pseudo global optima is representative

of a given pattern, i.e.
g

ie

RPHP

ie

T

T

T

T

RPHPieP ,,

,, ≤= . This improves the test accuracy, as can be

seen from equation 7.

In some of our earlier experiments on PHP (Guan and Ramanathan, 2005), we observed

that implementing 50% PHP results in a large percentage of chromosomes in the global optimal or

the near global optimal neighborhood, implying that TRPHP-Tg will be larger. Since we are using

50% PHP training as a switching point for local optimization and recursion, we are

minimizing etsT , and therefore cushioning the error of the pattern distributor. This is a

unique feature of the percentage and topology based training which cannot be

implemented on a class based or manual task decomposition algorithm (Guan et al.,

2003; Fu et al., 2001; Lu et al., 1995; Guan and Li, 2002).

3. The RPHP efficiency model

In order to illustrate the advantage that RPHP has over other algorithms with respect to training

time, we assume that, for all i∈α , each ε vs wi curve has G globally optimal solutions and L locally

optimal solutions, where ε is the training error. Given that the problem can be solved with α

 20

independent parameters, i.e., a chromosome with α elements, we make the following assumptions

to simplify our analysis:

1. There is at least one global optimal solution for the problem considered. i.e., for all i, each ε

vs wi curve, must have at least one global optimal solution.

2. All the global optima occur with probabilities gP and the local optima occur with

probabilities lP , i.e., for a single dimension,

1=+ lg LPGP (8)

A global optimal solution occurs only if the values of training error are optimum for all dimensions.

The total probability of finding a global optimal solution in a α -dimensional error space is

therefore the product of GPg, over all the i dimensions , ()
1

gs g i
i

P GP
α

=

 =
 ∏ .

From Definition 1, since pseudo optimal solutions only require the presence of a local

minima, the probability of finding a pseudo globally optimal solution is

1=+= lsgspgs PPP (9)

From equation 9, we know that a pseudo global optimal solution will always be found, for any

problem. Therefore pgsgs PP ≤ . We can therefore deduce that

pgsgs NN ≥ (10)

Where Ngs and Npgs are the number of epochs of learning required to find a global solution and a

pseudo global solution respectively.

For the RPHP algorithm, we require K recursions to decompose the problem. The

following considerations have to be taken into account to find the best value of K.

Condition 1: Training Accuracy

 21

For good training accuracy, every pattern, no matter how difficult, needs to be learnt. In order to

make sure that every pattern is learnt, K recursions are required, where ()()TceilK 2log= .

Condition 2: Generalization accuracy

In order to ensure generalization accuracy and to filter out noise components, we need to make sure

that there are enough training patterns in the Kth recursion. For this, we use the rule of thumb

advocated by in Haykins (1999) for the number of training patterns required for good generalization

accuracy in a problems. K is therefore set such that the number of training patterns in the Kth

recursion is greater than 10 times the number of free parameters α .

The ideal RPHP situation (assuming no stagnation) follows 50% division in patterns. This

gives us a geometric reduction in training patterns i.e,

1KK321 2
TT TT ,TT T,T −====

42

Therefore, for optimal training we require α10>
−1K

2

T

Solving for K, we obtain

1
10

log 2 +

<

α

T
K

Therefore,

=

α10
log2

T
ceilK (11)

Conditions 1 and 2, give us an ideal value of K as given by equation 11. Note that if the training is

stopped by stagnation, it means that there is little correlation between the training, testing and

validation data. In this case, more training patterns are required for the reliability of the solution, and

a smaller K is advocated.

Condition 3: Training time

 22

As K recursions are required for RPHP to give accurate training results, we can say that RPHP

training is faster than other methods that focus on finding a single global optima listed in the survey

(Carvalho and Freitas, 2004; Rovithakis et al., 2004; Vasconcelos et al., 2001; Guan and

Ramanathan, 2005; Yasunaga et al., 1999) if the number of epochs required to find a global optimal

solution is greater than the number of epochs required to find K local optimal solutions.

∑
=

>
K

i

ipgs,gs NN
0

 (12)

where K is as given in equation 11. We assume that the number of epochs required to obtain an

optimal solution is inversely proportional to the probability of obtaining that solution, i.e.,

P
N

β= , where P is the probability of finding the optima and N is the number of epochs required

to find the optima and β is the proportionality constant. We further assume that for a problem with

G global optima and L local optima, 1 2 G Lβ β β += = = , i.e, the probability of finding a pseudo

global optima is equal to or greater than the probability of finding a global optima.

We hypothesize that for inequality 12 to be true, inequality13 should be satisfied

K
Pgs

1
< (13)

Theorem 1. For the RPHP technique to find K pseudo optimal solutions and be more efficient than

a technique to find the single global optimal solution, the probability of finding the global optimal

solution must be smaller than 1/K.

Proof: Apagoge is used.

We prove the validity of inequality 13 by assuming that the opposite is true, ie,
K

Pgs
1≥ . This

means that the probability of finding a global minimum is not very difficult. Therefore,

 23

∑
=

≥
K

i

pgs
gs N

N

1

11
, resulting in ∑

=

≤
K

i

ipgs,gs NN
0

, i.e., classical GA will perform faster than the

RPHP. Therefore, for RPHP to be faster than classical GA, inequality 13 must hold.

Implications of Theorem 1

From the experiment results, we can observe that the number of recursions is usually small.

Therefore, Pgs is often less than 1/K and the RPHP algorithm solves the problem in fewer epochs.

On the other hand, the number of training patterns required for RPHP to be successful in

generalization is determined by equation 11. This means that RPHP requires more training patterns

than single-staged algorithms. No guarantees can be made on generalization accuracy if the number

of training patterns is too small. RPHP will then try to find the best solution based on the training

and validation data.

4. RPHP1 Experiments and Results

4.1. Problems considered and experimental setup

Four curve fitting problems and one classification problem (two spiral) were chosen as benchmark

problems.

4.1.1. Curve fitting problems

The RPHP algorithm was set to solve for the coefficients of each of the problem equations

below. A normally distributed noise ξ was added to the training, testing and validation sets in order

to test the generalization capability of the RPHP algorithm. All the problem definitions were

obtained from the non-linear regression repository (NIST, 2000) and in order to achieve the

sufficient number of training patterns, data was artificially generated using the problem definitions

and added to the data in the repository.

 24

To obtain the training, testing and validation datasets, the dataset was randomly split into

three parts in the ratio of 2:1:1.

The problems were chosen according to varying degrees of difficulty, the LINEAR

problem being the easiest and the HAHN problem being the most difficult. The difficulty of a given

problem is measured by the Pgs value of the problem (i.e, the probability of finding a global optimal

neighborhood). The pseudocode for evaluating the Pgs value of a curve fitting problem is given in

Figure 6. Note that this value of Pgs can only be obtained when the problem structure is fixed and

the ideal values of independent parameters are known. The values used here are therefore simply

measures of difficulty and cannot be found in real world problems.

The procedure in Figure 6 will give us the error vs wi curve for a single dimension. From the

curve, the value of Pgs for the dimension i is given by:

, ,max , ,min

1

,

,max ,min

G

j g j g

j

gs i

j j

w w

P
w w

=

−

=
−

∑
 ((((14141414))))

where G is the number of global optima in the dimension i. The value of Pgs for the whole problem

with α dimensions is therefore ,

1

gs gs i

i

P P
α

=

= ∏

Figure 6. Pseudo code to evaluate the value of Pgs for a given problem

1. Assume the problem has K independent parameters. Work with a single

chromosome.

2. Initialize all the chromosome element values to optimal values.

3. For all i, where i<=N,

a. Keep all other element values constant

b. Vary the value of i in small steps to cover the range of value(i)

c. Evaluate for each i

2

, ,

0 0

1
()

T O

i j i j

i j

E D O
T = =

= −∑∑

d. Plot the graph of E against value(i)

 25

Problem 1. LINEAR

The LINEAR problem is the control problem and is used to show that when Pgs is large, i.e, when

inequality 13 is not satisfied, the use of RPHP is not recommended. The LINEAR problem is a

classic linear regression problem and is defined in Equation 15, with the values of w1, w2 and w3 as

40, 0.005 and 0.2516. The Pgs value of the LINEAR problem is 1.0 when 500 training patterns were

used.

2

1 2 3y w w x w x ξ= + + + ((((15151515))))

Problem 2: ENSO

The ENSO problem is a benchmark problem used in non linear regression and curve fitting

problems. The data are monthly averaged atmospheric pressure differences. The x values are the

time, while the y values are the atmospheric pressure. Equation 16 defines the problem. The

problem was trained with 500 training patterns.

1 2 3 5 6 8 9

4 4 7

2 2 2 2 2 2
cos() sin() cos() sin() cos() sin()

12 12 7

x x x x x x
y A A A A A A A

A A A A
ξ

Π Π Π Π Π Π
= + + + + + + + (16)

Table 3 shows the optimal values for the coefficients A1 to A9

Table 1. Coefficient values for the ENSO problem

Index A1 A2 A3 A4 A5 A6 A7 A8 A9

Value 10.51 3.07 0.53 44.31 -1.62 0.525 26.89 0.212 1.49

 The ENSO problem can be considered to be of medium difficulty. The value of Pgs for the ENSO

problem is 0.01.

Problem 3: GAUSS

The probability that this problem will find a global optimum is approximately 3.5x10
-4
. Equation 17

defines the problem and Table 2 lists the coefficients. 250 patterns were used to train the problem.

 26

2 2 2 2

1 2 3 4 5 6 7 8exp() exp[() /] exp[() /]y B B x B x B B B x B B ξ= − + − − + − − + (17)

Table 2. Coefficient values for the GAUSS problem

Index B1 B2 B3 B4 B5 B6 B7 B8

Value 98.778 1.04*10
-2
 100.489 67.481 23.129 71.994 178.998 18.389

Problem 4: HAHN

The HAHN equation is the result of a NIST study involving the thermal expansion of copper. y is

the coefficient of thermal expansion, and x is temperature in degrees Kelvin. 1000 training patterns

were used in training. The Pgs value for the HAHN problem is 2.04x10
-5
. Equation 18 defined the

problem. The coefficient values are given in Table3.

2 3

1 2 3 4

2 3

5 6 71

w w x w x w x
y

w x w x w x
ξ

+ + +
= +

+ + +
 (18)

Table 3. Coefficient values for the HAHN problem

Index W1 W2 W3 W4 W5 W6 W7

Value 1.078 -1.266x10
-1
 4.087x10

-3
 -1.43x10

-6
 -5.76x10

-3
 -1.23x10

-7
2.40x10

-4

4.1.2. The Two spiral problem

Simulations were carried out on the two-spiral algorithm in order to illustrate the advantage

that RPHP has in terms of a) Evolutionary search, b) Pseudo global optima, c) Recursive subset

search. Results are compared with those obtained by the multisieving algorithm (Lu et al., 1995),

which implements only recursive subset search, and the Topology-based Subset Selection

(Lasarzyck et al., 2004), which implements single subset finding based on evolutionary algorithms.

Both algorithms were discussed in our literature survey. The two spiral dataset was chosen because

it is considered a fairly difficult problem and because it was the only experiment referred to by Lu et

al, in the multisieving algorithm (Lu et al., 1995).

 27

The dataset consists of 194 patterns, which were decomposed into sets of 2:1:1 for

comparison with the multisieving algorithm. To ensure a fair comparison to the TSS algorithm

(Lasarcyck et al., 2004), test and validation datasets of 192 patterns each were constructed by

choosing points next to the original points in the dataset as mentioned in the TSS paper.

A messy genetic algorithm with variable length chromosomes was implemented based on

Goldbergs’s messy algorithms (Goldberg, 1991). Each chromosome encoded the weights and

structure of a two-layered feedforward neural network. During each recursion, the best network

obtained from global training was used to perform the local training. Local training was simply

performed by training the resulting neural network using the learnt patterns and the back

propagation algorithm.

4.1.3. Experimental parameters

The following table summarizes the problem information and training parameters. The training

parameters were kept constant through simulations on all the datasets.

Table 4. Experimental Parameters used in the RPHP algorithm

Parameter Value

Global search 0.9 Crossover Probability, Pc

Local search 0.1

Global search 0.1 Small change Mutation Probability, Pm

Local search 0.9

Global search 0.7 Large change mutation probability

Local search 0.0

Pattern learning tolerance for global training ξ 0.1

Population size 50

NN learning rate (For two spiral problem) 10
-2

Generalization loss tolerance (Ref Appendix) 1.5

Number of neighbors considered for KNN pattern distributor 1

Problem ID Linear ENSO Gauss HAHN Two-spiral

Problem type Curve fitting Classification

Number of variables 3 9 8 7 2 real valued inputs, 2 classes.

NN solved

Fitness function
2

, ,

0 0

1
()

T O

i j i j

i j

E D O
T = =

= −∑∑

 28

Training 500 500 250 1000 194

Testing 250 250 125 500 192

Number of

Patterns

Validation (V1+V2) 250 250 125 500 192

Test and validation sets

used to compare with

TBS and multisieving

Number of recursions 2 3 3 4 3

4.2. Experimental results

4.2.1. RPHP vs single staged hybrid training for curve fitting

The graphs below show the typical performance of RPHP, PHP (Guan and Ramanthan, 2005) and

the linear interpolation hybrid algorithm (Vasconcelos et al., 2001). We chose the Linear

Interpolation algorithm for comparison as it is one of the more recent hybrid algorithms developed

using evolutionary algorithms only. Each simulation was carried out 15 times. Table 5 gives the

average values and standard deviations of the generalization accuracy of each experiment.

From the training graph of the linear problem, we can observe that RPHP takes a longer

training time than PHP and LI. This is expected, as the LINEAR problem does not satisfy the

condition in inequality 13. All the solutions reach the global optimum and the generalization

accuracy is 100%.

The simulation results of the other problems show that the RPHP algorithm has a lower

training error than both PHP and Linear Interpolation. In particular, both the GAUSS and the

HAHN problems have a very small value of Pgs. It is observed from Figure 7 that the number of

training epochs when using RPHP is much lower than the results of using Single staged hybrid

training.

 29

Figure 7. Training comparison between Linear Interpolation, PHP and RPHP for (a) ENSO

(b)GAUSS (c)HAHN and (d) LINEAR

Table 5. Comparison of Generalization accuracy values between Linear Interpolation, PHP and

RPHP

Linear Interpolation

Accuracy

PHP Accuracy RPHP Accuracy Problem

Name

µµµµ σσσσ2 µµµµ σσσσ2 µµµµ σσσσ2

ENSO 0.74 0.132 0.74 0.11 0.85 0.060

GAUSS 0.64 0.214 0.719 0.151 0.87 0.089

HAHN 0.404 0.091 0.451 0.094 0.680 0.063

LINEAR 1.0 0 1.0 0 1.0 0

4.2.2. Studies on the two spiral problem

According to Lu et al., (1995), the multisieving algorithm achieved 100% training

accuracy. However, with the small number of training patterns, 100% training accuracy does not

hold much value unless accompanied by equal generalization capability. We therefore compare the

 30

data splitting mechanisms of the multisieving algorithm (as reported in Lu et al. (1995)) and the

RPHP algorithm. This will show us the clear advantage of using evolutionary algorithms as a base

for data decomposition. Figure 8(a) shows the original training data of the two spiral set and the

decomposition of the data by the RPHP and the multisieving algorithm 8(b). The lines show

separation between the two classes of the two spiral problem.

It is observed that the global search implicitly finds separable sets of data, i.e, compared to

the original dataset, the decomposed datasets are more separable and hence more suited for

backpropagation training. The separation is better defined with the RPHP algorithm than with the

multisieving algorithm

As mentioned in section 4.1.2, the generalization accuracy of the RPHP solution

when applied to the two spiral dataset was evaluated based on the accuracy of artificially

generated 192 test patterns in a method similar to that in the TBS algorithm (Lasarcyck et

al., 2004). Both the TBS algorithm and the RPHP algorithm validates the solution based

on a 192-pattern validation data set, generated in the same way as the test set. Table 6

compares the results of the constructive backpropagation(CBP) algorithm (Lehtokangas,

1999), TBS, multisieving (Lu et al., 1995) and RPHP in terms of the mean classification

accuracy and the 95% confidence interval of the solutions

Table 6. Mean classification accuracy and 95% confidence interval on the test set for the

two-spiral problem.

Algorithm RPHP CBP TBS Multisieving

Mean

Generalization

accuracy

0.8892 0.5062 0.72 0.7639

95% confidence

interval

[-0.0031,+0.0031] [-0.0014,+0.0013] [0.029,+0.015] [-0.093,+0.093]

 31

The superior performance of RPHP both in terms of data decomposition as well as in

terms of generalization accuracy reinforces the advantage of evolutionary search for

learnt patterns, pseudo global optima and recursive subset selection.

(a.) (b)

Figure 8. (a) One instance of the RPHP decomposition of the two-spiral dataset. (b). Decomposition

of the two spiral data by the multi sieving algorithm (Lu et al, 1995)

5. Can we improve RPHP?

5.1. The necessity for improving the RPHP algorithm

From the training graphs in Figure 7, we can observe that each of the graphs display a trend as

shown in Figure 9.

 32

Figure 9. Expected behavior of the RPHP1 algorithm (training error vs number of epochs)

In Figure 9, the expected global and local optimization curves for recursion k are marked as

Gk and Lk respectively. We can observe, in each case, a marked increase in the training error at the

end of each recursion due to the introduction of a new population. While this characteristic does not

affect the final result, we feel that the algorithm can be improved to make the training smoother.

Secondly, though the RPHP1 algorithm resulted in faster training and good generalization

accuracy, experimentally, it was found that the algorithm tended to over-train the solutions at times.

The theoretical speculation for this behavior of RPHP is given later in this section. The possibility of

RPHP1 to over train is also attributed to the PHP component of the algorithm and its dependence on

error tolerance.

5.2. The RPHP2 algorithm

RPHP2 is proposed to solve this problem using a simple pattern validation component at

the end of local training. For implementing RPHP2, the validation set is split into two parts, V1 and

V2. V1 acts to prevent overtraining while V2 acts as a pattern validator, so as to ensure that

overtraining has not taken place in the global training phase itself. The RPHP2 algorithm is similar

in form to the RPHP algorithm with the following pseudocode implemented at the end of local

training in each recursion.

 33

Pattern Test on the training data (G1), V1 and V2

IF [Accuracy(V2)<1/2(Accuracy(V1)+Accuracy(G1)- δ]

{

a. Increase the error tolerance ε by ζ

b. Repeat that Recursion i.e, Global training

}

In the pseudocode above, Accuracy(X) refers to the percentage of patterns in the dataset X correctly

predicted by the solution. For all the experiments carried out, the value of ζ and δ were both set to

5%.

Further, RPHP2 inherits the best chromosome at the end of each recursion. All other chromosomes

are randomly generated. This reduces the increase in the training error at the end of each recursion.

5.3. Over training and RPHP2

The RPHP training is based on the PHP algorithm, the performance of which requires the

accurate setting of the error tolerance (ξ) values. Inaccurate values of optimal tolerance (a problem

dependent value) can result in over-training of the problem. The use of pseudo global optima

prevents inaccuracies due to too large values of ξ. However, over-training can result if ξ is initially

set to a value too low. RPHP2 implements continuous error validation as well as pattern validation

at the end of each recursion. The pattern validation protects RPHP2 against possible overtraining

due to low values of ξ.

Consider the hypothetical situation described by Figure 10, showing the training error and

validation error with the number of epochs. If we let optimal tolerance for best possible training to

be oξ , we define solutions A and B such that oA ξξ > and oB ξξ <

Case 1: oA ξξ >

 34

 In this case, global training will result in solution A and if we condition 50% PHP

(Guan et al., 2005), we obtain the training and testing pattern accuracy as given by equations 19 and

20 respectively.

[] 5.01)(
11

0 0

2

,,, ≈

−

−−= ∑ ∑

= =

T

i

O

j

jijiAtrg OD
OT

L ξφδ (19)

[] Agtrg

Ts

i

O

j

jijiAtsg LOD
OTs

L ,,

0 0

2

,,, 1)(
11

µξφδ −=

−

−−= ∑ ∑

= =

 (20)

 Where 1,gµ is the accuracy difference in the percentage of patterns learnt between the training and

the testing sets. Local training and continuous error validation is now set to optimize the solution to

obtain O. If oA ξξ > , then tsgtstot LL ,, > and the following relationship holds

AgotstottrtotAtot LL ,,,, µµµ ≤=−=

We say that no pattern generalization loss has occurred. And the optimal solution O has been found.

Case 2: oB ξξ <

In this case, global training results in solution B. After local training, we obtain Bgtrgtsg LL ,,, µ−= .

However, with solution B, there has already been a fair amount of generalization loss. Therefore,

with error validation based termination, the best solution is therefore, B

and oBgBtot µµµ >= ,, where oµ is the accuracy loss allowance for optimal training. RPHP1

therefore exhibits possible over training capability at low ξ values.

 RPHP2 implements pattern validation and global retraining if there is large difference in the

pattern accuracy of the training set and the pattern accuracy of the validation set.

 35

Figure 10. Hypothetical situation showing typical behaviors of training and validation errors with #

of epochs

5.4. Experimental results on the use of RPHP2

The ability of the RPHP2 algorithm to provide better training is clearly observed from Figure 11.

RPHP2 displays lower increase in training error at the end of each recursion when compared to

RPHP (RPHP1), resulting in some turbulence in training. This is attributed to the pattern validated

component of RPHP2. Table 7 compares the generalization accuracies of RPHP1 and RPHP2. It is

observed that the implementation of the pattern validated component results in a more reliable

algorithm – the standard deviation of generalization accuracy is much lower in the case of RPHP2.

 36

Figure 11. Training comparison between RPHP1 and RPHP2 for (a) ENSO (b)GAUSS (c)HAHN

and (d) LINEAR

Table 7. Comparison of Generalization accuracy values between PHP and RPHP

RPHP1 Accuracy RPHP2 Accuracy Problem

Name µµµµ σσσσ2 µµµµ σσσσ2

LINEAR 1.0 0 1.0 0

ENSO 0.85 0.060 0.85 0.041

GAUSS 0.87 0.089 0.921 0.069

HAHN 0.680 0.063 0.711 0.055

6. Conclusions and future work

In this paper, we have introduced two versions of the Recursive Percentage based Hybrid Pattern

training algorithm (RPHP and RPHP2). Both algorithms use the concept of pseudo global optimal

 37

solutions to find several suitable local optimal solutions. Each local optimal solution acts as a global

optimal solution from the point of view of a chosen set of patterns. Theoretically, we have shown

that RPHP performs better than traditional methods as long as the probability Pgs of finding a global

optimal solution is less than 1/K where K is the number of recursions. The use of PHP (Guan et al.,

2005 in RPHP is hypothesized to act as a cushion against pattern distributor error. We also observed

that the use of evolutionary search in task decomposition results in more separable subsets. From

experimental simulations we can conclude that the RPHP2 algorithm is superior to traditional

subset finding and hybrid algorithms in terms of both generalization accuracy and training time.

Further work on the RPHP algorithm would include hybrids of TBS and RPHP as well as a deeper

study on its application to neural networks.

References

Ash T (1989), Dynamic node creation in backpropagation networks, ICS Report 8901, UCSD.

 Ackley, D.H. and Littmann M.L (1993). A Case for Lamarckian Evolution. Artificial Life III

Edited by Langton C. G, MA. Addison Wesley, pp 3-10.

Andreou A S, Efstratios F, Spiridon G, Likothanassis D (2002), Exchange-Rates Forecasting: A

Hybrid Algorithm Based on Genetically Optimized Adaptive Neural Networks, Computational

Economics, 20(3).

Aydin M E, Fogarty T C (2004), A distributed Evolutionary Simulated Annealing Algorithm for

Combinatorial Optimisation Problems, Journal of Heuristics, 10 (3).

Breiman L (1984), Classification and regression trees, Wadsworth International Group.

Carvalho D R, Freitas A A (2004), A hybrid decision tree/ genetic algorithm method for data

mining, Information Sciences: an International Journal, 163(1-3).

Chaiyaratna. N, Zalzala. AMS (2000), Hybridization of neural networks and a genetic algorithm for

friction compensation, Proceedings of the 2000 congress on Evolutionary Computation, 1.

Devi. S, Panda D.C, Pattnaiik, S.S, Khuntia, B, Neog, D.K (2003), Initializing Artificial neural

networks by genetic algorithm to calculate the resonant frequency of single shortpost rectangular

patch antenna, IEEE Antennas and Propagation Society International Symposium, 3, pp 144-147.

 38

Dokur Z(2002), Segmentation of MR and CT images using Hybrid Neural Network Trained by

Genetic Algorithms, Neural Processing Letters, 16(3).

Foody G M (1998), Issues in training set selection and refinement for classification by a feedfoward

neural network, Geoscience and Remote Sensing Symposium Proceeding.

Fu H C, Lee Y P, Cheng C C, Pao H T (2001), Divide and Conquer learning and modular

percepteron networks, IEEE transactions on neural networks, 12(2).

Gathercole C, Ross P, Bridge S (1994), Dynamic training subset selection for supervised learning in

genetic programming, Parallel Problem Solving from Nature.

Goldberg D E (1989), Genetic Algorithms in Search, Optimization and Machine Learning:

Addition Wesley.

Goldberg, D.E., Deb, K., and Korb, B (1991), Don't worry, be messy, Proceedings of the Fourth

International Conference in Genetic Algorithms and their Applications, edited by R. Belew and L.

Booker pp24-30.

Guan S U, Ramanathan K (2005), A Lateral Symmetry approach to Percentage based Hybrid

Pattern (PHP) Training, Journal of Intelligent Systems, Accepted.

Guan S U and Zhu F (2004), Class Decomposition for GA-based Classifier Agents – A Pitt

Approach, IEEE Transactions on Systems, Man, and Cybernetics B, 34(1), pp381-392

Guan S U and Li S (2002), Parallel Growing and Training of Neural Networks Using Output

Parallelism, IEEE Trans. on Neural Networks, 13(3), pp 542 -550

Guan S U, Neo T and Bao C (2003), Task Decomposition using Pattern distributor, Journal of

Intelligent Systems, accepted.

Haykins, Simon (1999), Neural Networks, Prentice Hall, Chapter 4, pp 208

Juang CF (2004) , A Hybrid of Genetic Algorithm and Particle Swarm Optimization for Recurrent

Network Design, IEEE Transactions on Systems, Man and Cybernetics, Part B, 34(2) pp 997-

1006.

Lasarzyck CWG, Dittrich P, Banzhaf W (2004), Dynamic subset selection based on a Fitness Case

Topology, Evolutionary Computation.

Lu B L, Ito K, Kita H, Nishikawa Y (1995), Parallel and modular multi-sieving neural network

architecture for constructive learning. In Proceedings of the 4th International Conference on

Artificial Neural Networks. 409, pp 92-97.

M. A. Wong and T. Lane (1983). A kth nearest neighbour clustering procedure. Journal of the

Royal Statistical Society (B), 45(3), pp362-368.

 39

M. Lehtokangas (1999), Modelling with constructive backpropagation, Neural Networks, 12, pp

707

Mahfoud, S.W. and Goldberg D E (1992). A genetic algorithm for parallel simulated annealing,

Parallel Problem Solving From Nature 2, Edited by Männer, R. and B. Manderick , pp. 301-310.

Marchesi M, Orlandi O, Piazza F, Pignotti G, Uncini A (1990), Dynamic topology neural network,

Parallel Architectures and Neural Networks III, Edited by Caianiello E R, World Scientific, pp.

107-. 115

National Institute of Standards and Technology (2000), Statistical reference datasets,

http://www.itl.nist.gov/div898/strd/index.html

Pendharkar P C, Rodger J A (1999), An empirical study of non-binary genetic algorithm based

neural approaches for classification, Proceeding of the 20th international conference on

Information Systems.

Quilan J R (1986), Introduction of Decision trees, Machine learning, 1, pp81-106.

Quilan J R (1996), Improved Use of Continuous Attributes in C4.5, Journal of Artificial

Intelligence Research

Riolo R, Worzel B (2003), Genetic programming theory and practice, Boston: Kluwer Academic

Rovithakis, G.A, Chalkiadakis. I, Zeravakis, M.E, (2004) High – Order Neural Network Structure

Selection for Function Approximation Applications using Genetic Algorithms, IEEE Transactions

on Systems, Man and Cybernetics, 34(1), pp 150-158.

Rumelhart, D. Hinton, G. and Williams, R (1986). Learning internal representations by error

propagation., Parallel Distributed Processing, edited by D. Rumelhart and J. McClelland, 1 MIT

Press

Stoianov I, Stowe L and Nerbonne J (2001), How Neural Networks Can Learn Irregularities in

Grapheme to Phoneme Conversion, Neurological Basis of Language Conference

Vasconcelos J.A., Ramirez J.A., Takahashi RHC, and R.R. Saldanha (2001), Improvements in

Genetic algorithms, IEEE Transactions on Magnetics, 37 (5).

Yasunaga, M.; Yoshida, E.; Yoshihara, I (1999), Parallel back-propagation using genetic algorithm:

real-time BP learning on the massively parallel computer CP-PACS, International Joint

Conference on Neural Networks, 6, pp4175-4180.

Zhang BT, Cho DY (1998), Genetic Programming with Active Data selection, Simulated Evolution

and Learning

 40

Appendix: Validation and early stopping[31]

In order to prevent over- or under-training of a neural network, a validation set of

data is used to terminate the network training. The total training error of a neural network

is defined based on the difference between the desired and the obtained outputs of the

network as shown below:

∑∑ −=
p k

trainpktrainpktrain ODE
2

)()()(
2

1

The network’s validation error is therefore ∑∑ −=
p k

valpkvalpkval nOnDnE 2

)()())()((
2

1
)(

The total network error given by Etot = Etrain+Eval

The value Eopt(n) is defined to be the lowest validation set error obtained in epochs up to

epoch n, i.e,)'(min)(
'

nEnE tot
nn

opt
≤

=

The generalization loss at epoch n is defined as the relative increase of the total error

over the minimum so far.

)1
)(

)(
()(−=

nE

nE
nGL

opt

tot

The validation set termination criterion is set such that a high generalization loss will

result in termination of the training. This method is specifically designed to reduce the

possibility of loss of generalization accuracy due to over-training.

