425 research outputs found

    A polynomial time algorithm for computing the area under a GDT curve

    Get PDF
    Background Progress in the field of protein three-dimensional structure prediction depends on the development of new and improved algorithms for measuring the quality of protein models. Perhaps the best descriptor of the quality of a protein model is the GDT function that maps each distance cutoff θ to the number of atoms in the protein model that can be fit under the distance θ from the corresponding atoms in the experimentally determined structure. It has long been known that the area under the graph of this function (GDT_A) can serve as a reliable, single numerical measure of the model quality. Unfortunately, while the well-known GDT_TS metric provides a crude approximation of GDT_A, no algorithm currently exists that is capable of computing accurate estimates of GDT_A. Methods We prove that GDT_A is well defined and that it can be approximated by the Riemann sums, using available methods for computing accurate (near-optimal) GDT function values. Results In contrast to the GDT_TS metric, GDT_A is neither insensitive to large nor oversensitive to small changes in model’s coordinates. Moreover, the problem of computing GDT_A is tractable. More specifically, GDT_A can be computed in cubic asymptotic time in the size of the protein model. Conclusions This paper presents the first algorithm capable of computing the near-optimal estimates of the area under the GDT function for a protein model. We believe that the techniques implemented in our algorithm will pave ways for the development of more practical and reliable procedures for estimating 3D model quality

    Improving the Physical Realism and Structural Accuracy of Protein Models by a Two-Step Atomic-Level Energy Minimization

    Get PDF
    AbstractMost protein structural prediction algorithms assemble structures as reduced models that represent amino acids by a reduced number of atoms to speed up the conformational search. Building accurate full-atom models from these reduced models is a necessary step toward a detailed function analysis. However, it is difficult to ensure that the atomic models retain the desired global topology while maintaining a sound local atomic geometry because the reduced models often have unphysical local distortions. To address this issue, we developed a new program, called ModRefiner, to construct and refine protein structures from Cα traces based on a two-step, atomic-level energy minimization. The main-chain structures are first constructed from initial Cα traces and the side-chain rotamers are then refined together with the backbone atoms with the use of a composite physics- and knowledge-based force field. We tested the method by performing an atomic structure refinement of 261 proteins with the initial models constructed from both ab initio and template-based structure assemblies. Compared with other state-of-art programs, ModRefiner shows improvements in both global and local structures, which have more accurate side-chain positions, better hydrogen-bonding networks, and fewer atomic overlaps. ModRefiner is freely available at http://zhanglab.ccmb.med.umich.edu/ModRefiner

    Application and Optimization of Contact-Guided Replica Exchange Molecular Dynamics

    Get PDF
    Proteine sind komplexe Makromoleküle, die in lebenden Organismen eine große Vielfalt an wichtigen Aufgaben erfüllen. Proteine können beispielsweise Gene regulieren, Struktur stabilisieren, Zellsignale übertragen, Substanzen transportieren und vieles mehr. Typischerweise sind umfassende Kenntnisse von Struktur und Dynamik eines Proteins erforderlich um dessen physiologische Funktion und Interaktionsmechanismen vollständig zu verstehen. Gewonnene Erkenntnisse sind für Biowissenschaften unerlässlich und können auf viele Bereiche angewendet werden, wie z.B. für Arzneimitteldesign oder zur Krankheitsbehandlung. Trotz des unfassbaren Fortschritts experimenteller Techniken bleibt die Bestimmung einer Proteinstruktur immer noch eine herausfordernde Aufgabe. Außerdem können Experimente nur Teilinformationen liefern und Messdaten können mehrdeutig und schwer zu interpretieren sein. Aus diesem Grund werden häufig Computersimulationen durchgeführt um weitere Erkenntnisse zu liefern und die Lücke zwischen Theorie und Experiment zu schließen. Heute sind viele in-silico Methoden in der Lage genaue Protein Strukturmodelle zu erzeugen, sei es mit einem de novo Ansatz oder durch Verbesserung eines anfänglichen Modells unter Berücksichtigung experimenteller Daten. In dieser Dissertation erforsche ich die Möglichkeiten von Replica Exchange Molekulardynamik (REX MD) als ein physikbasierter Ansatz zur Erzeugung von physikalisch sinnvollen Proteinstrukturen. Dabei lege ich den Fokus darauf möglichst nativähnliche Strukturen zu erhalten und untersuche die Stärken und Schwächen der angewendeten Methode. Ich erweitere die Standardanwendung, indem ich ein kontaktbasiertes Bias-Potential integriere um die Leistung und das Endergebnis von REX zu verbessern. Die Einbeziehung nativer Kontaktpaare, die sowohl aus theoretischen als auch aus experimentellen Quellen abgeleitet werden können, treibt die Simulation in Richtung gewünschter Konformationen und reduziert dementsprechend den notwendigen Rechenaufwand. Während meiner Arbeit führte ich mehrere Studien durch mit dem Ziel, die Anreicherung von nativ-ähnlichen Strukturen zu maximieren, wodurch der End-to-End Prozess von geleitetem REX MD optimiert wird. Jede Studie zielt darauf ab wichtige Aspekte der verwendeten Methode zu untersuchen und zu verbessern: 1) Ich studiere die Auswirkungen verschiedener Auswahlen von Bias-Kontakten, insbesondere die Reichweitenabhängigkeit und den negativen Einfluss von fehlerhaften Kontakten. Dadurch kann ich ermitteln, welche Art von Bias zu einer signifikanten Anreicherung von nativ-ähnlichen Konformationen führen im Vergleich zu regulärem REX. 2) Ich führe eine Parameteroptimierung am verwendeten Bias-Potential durch. Der Vergleich von Ergebnissen aus REX-Simulationen unter Verwendung unterschiedlicher sigmoidförmiger Potentiale weist mir sinnvolle Parameter Bereiche auf, wodurch ich ein ideales Bias-Potenzial für den allgemeinen Anwendungsfall ableiten kann. 3) Ich stelle eine de novo Faltungsmethode vor, die möglichst schnell viele einzigartige Startstrukturen für REX generieren kann. Dabei untersuche ich ausführlich die Leistung dieser Methode und vergleiche zwei verschiedene Ansätze zur Auswahl der Startstruktur. Das Ergebnis von REX wird stark verbessert, falls Strukturen bereits zu Beginn eine große Bandbreite des Konformationsraumes abdecken und gleichzeitig eine geringe Distanz zum angestrebten Zustand aufweisen. 4) Ich untersuche vier komplexe Algorithmusketten, die in der Lage sind repräsentative Strukturen aus großen biomolekularen Ensembles zu extrahieren, welche durch REX erzeugt wurden. Dabei studiere ich ihre Robustheit und Zuverlässigkeit, vergleiche sie miteinander und bewerte ihre erbrachte Leistung numerisch. 5) Basierend auf meiner Erfahrung mit geleitetem REX MD habe ich ein Python-Paket entwickelt um REX-Projekte zu automatisieren und zu vereinfachen. Es ermöglicht einem Benutzer das Entwerfen, Ausführen, Analysieren und Visualisieren eines REX-Projektes in einer interaktiven und benutzerfreundlichen Umgebung

    Physiological Correlates of Affective Decision-Making in Anxiety and Depression

    Full text link
    Improving our understanding of cognitive and physiological profiles in anxiety and depression has the potential to reveal novel ways to target and improve treatments for these prevalent mental health conditions. The present study examined the impact of self-reported anxiety and depression symptoms on three established decision-making measures, the Iowa Gambling Task (IGT; Bechara, Damasio, Damasio, & Anderson, 1994), Balloon Analogue Risk Task (BART; Lejuez et al., 2002), and Game of Dice Task (GDT; Brand et al., 2005), in a diverse sample of 100 college students (age 18 to 35). Physiological measures of tonic heart rate variability and galvanic skin response were obtained to better characterize autonomic flexibility and sympathetic reactivity, respectively, during decision-making performance. Interoceptive sensitivity, measured via a heart beat perception task (Schandry, 1981), was also examined as a potential moderator in the relationship between sympathetic reactivity and decision-making. Consistent with the literature, BART performance was negatively associated with IGT performance, while GDT performance was positively associated with IGT performance. Contrary to our hypotheses, physiological measures did not distinguish individuals who reported anxiety and/or depression from those who did not. Of the three tasks, only IGT performance was associated with sympathetic reactivity. Consistent with our hypotheses, anxiety and greater sympathetic reactivity to losses in the task predicted better scores. Interoceptive sensitivity moderated the association between sympathetic reactivity and IGT performance, but only among those with anxiety, with better performance associated with a combination of lower interoceptive sensitivity and higher sympathetic reactivity. Low tonic HRV predicted worse IGT performance in depressed participants and worse GDT performance in anxious participants. These findings, though preliminary, have implications for treatment advances involving HRV biofeedback and interoceptive exposure. Our findings also highlight substantial differences between the IGT, BART, and GDT in their associations with anxiety, depression, and physiological markers, for consideration in cross study comparisons and future research

    Using physical features of protein core packing to distinguish real proteins from decoys

    Get PDF
    The ability to consistently distinguish real protein structures from computationally generated model decoys is not yet a solved problem. One route to distinguish real protein structures from decoys is to delineate the important physical features that specify a real protein. For example, it has long been appreciated that the hydrophobic cores of proteins contribute significantly to their stability. As a dataset of decoys to compare with real protein structures, we studied submissions to the bi-annual CASP competition (specifically CASP11, 12, and 13), in which researchers attempt to predict the structure of a protein only knowing its amino acid sequence. Our analysis reveals that many of the submissions possess cores that do not recapitulate the features that define real proteins. In particular, the model structures appear more densely packed (because of energetically unfavorable atomic overlaps), contain too few residues in the core, and have improper distributions of hydrophobic residues throughout the structure. Based on these observations, we developed a deep learning method, which incorporates key physical features of protein cores, to predict how well a computational model recapitulates the real protein structure without knowledge of the structure of the target sequence. By identifying the important features of protein structure, our method is able to rank decoys from the CASP competitions equally well, if not better than, state-of-the-art methods that incorporate many additional features.Comment: 7 pages, 5 figure

    Computational optimization algorithms for protein structure refinement

    Get PDF
    is worthy of acceptance

    Protein Structure Refinement by Optimization

    Get PDF
    corecore