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Zusammenfassung

Proteine sind komplexe Makromoleküle, die in lebenden Organismen eine große Vielfalt an wich-
tigen Aufgaben erfüllen. Proteine können beispielsweise Gene regulieren, Struktur stabilisieren,
Zellsignale übertragen, Substanzen transportieren und vieles mehr. Typischerweise sind umfas-
sende Kenntnisse von Struktur und Dynamik eines Proteins erforderlich um dessen physiologi-
sche Funktion und Interaktionsmechanismen vollständig zu verstehen. Gewonnene Erkenntnisse
sind für Biowissenschaften unerlässlich und können auf viele Bereiche angewendet werden, wie
z.B. für Arzneimitteldesign oder zur Krankheitsbehandlung. Trotz des unfassbaren Fortschritts
experimenteller Techniken bleibt die Bestimmung einer Proteinstruktur immer noch eine heraus-
fordernde Aufgabe. Außerdem können Experimente nur Teilinformationen liefern und Messdaten
können mehrdeutig und schwer zu interpretieren sein. Aus diesem Grund werden häufig Compu-
tersimulationen durchgeführt um weitere Erkenntnisse zu liefern und die Lücke zwischen Theorie
und Experiment zu schließen. Heute sind viele in-silico Methoden in der Lage genaue Protein
Strukturmodelle zu erzeugen, sei es mit einem de novo Ansatz oder durch Verbesserung eines
anfänglichen Modells unter Berücksichtigung experimenteller Daten.

In dieser Dissertation erforsche ich die Möglichkeiten von Replica Exchange Molekulardy-
namik (REX MD) als ein physikbasierter Ansatz zur Erzeugung von physikalisch sinnvollen
Proteinstrukturen. Dabei lege ich den Fokus darauf möglichst nativähnliche Strukturen zu er-
halten und untersuche die Stärken und Schwächen der angewendeten Methode. Ich erweitere die
Standardanwendung, indem ich ein kontaktbasiertes Bias-Potential integriere um die Leistung
und das Endergebnis von REX zu verbessern. Die Einbeziehung nativer Kontaktpaare, die so-
wohl aus theoretischen als auch aus experimentellen Quellen abgeleitet werden können, treibt
die Simulation in Richtung gewünschter Konformationen und reduziert dementsprechend den
notwendigen Rechenaufwand.

Während meiner Arbeit führte ich mehrere Studien durch mit dem Ziel, die Anreicherung
von nativ-ähnlichen Strukturen zu maximieren, wodurch der End-to-End Prozess von geleitetem
REX MD optimiert wird. Jede Studie zielt darauf ab wichtige Aspekte der verwendeten Methode
zu untersuchen und zu verbessern:
1) Ich studiere die Auswirkungen verschiedener Auswahlen von Bias-Kontakten, insbesondere
die Reichweitenabhängigkeit und den negativen Einfluss von fehlerhaften Kontakten. Dadurch
kann ich ermitteln, welche Art von Bias zu einer signifikanten Anreicherung von nativ-ähnlichen
Konformationen führen im Vergleich zu regulärem REX.
2) Ich führe eine Parameteroptimierung am verwendeten Bias-Potential durch. Der Vergleich von
Ergebnissen aus REX-Simulationen unter Verwendung unterschiedlicher sigmoidförmiger Poten-
tiale weist mir sinnvolle Parameter Bereiche auf, wodurch ich ein ideales Bias-Potenzial für den
allgemeinen Anwendungsfall ableiten kann.
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3) Ich stelle eine de novo Faltungsmethode vor, die möglichst schnell viele einzigartige Startstruk-
turen für REX generieren kann. Dabei untersuche ich ausführlich die Leistung dieser Methode
und vergleiche zwei verschiedene Ansätze zur Auswahl der Startstruktur. Das Ergebnis von REX
wird stark verbessert, falls Strukturen bereits zu Beginn eine große Bandbreite des Konformati-
onsraumes abdecken und gleichzeitig eine geringe Distanz zum angestrebten Zustand aufweisen.
4) Ich untersuche vier komplexe Algorithmusketten, die in der Lage sind repräsentative Struk-
turen aus großen biomolekularen Ensembles zu extrahieren, welche durch REX erzeugt wurden.
Dabei studiere ich ihre Robustheit und Zuverlässigkeit, vergleiche sie miteinander und bewerte
ihre erbrachte Leistung numerisch.
5) Basierend auf meiner Erfahrung mit geleitetem REX MD habe ich ein Python-Paket ent-
wickelt um REX-Projekte zu automatisieren und zu vereinfachen. Es ermöglicht einem Benutzer
das Entwerfen, Ausführen, Analysieren und Visualisieren eines REX-Projektes in einer interak-
tiven und benutzerfreundlichen Umgebung.



Abstract

Proteins are complex macromolecules which fulfill a wide range of critical tasks in all kinds of
living organisms. For example, proteins can regulate genes, provide stability, perform cell signal-
ing, carry substances, and perform many other tasks. Comprehensive knowledge of a protein’s
structure and dynamics is typically required to fully understand the physiological function or
interaction mechanisms. Gained insights are essential for life sciences and can be applied to
many fields, such as advanced drug design or disease treatment. Despite the incredible progress
of experimental techniques, protein structure determination remains a very challenging task.
Besides, experiments can only unveil partial information and measured data can be ambiguous
and hard to interpret. For this reason, computer simulations are often performed to provide
additional insight and complement experimental results. Nowadays, many in-silico methods are
capable to obtain accurate models of a protein’s structure, be it either with a de novo approach
or via refinement of an initial model under consideration of experimental restraints.

In this thesis, I explore the capabilities of replica exchange molecular dynamics (REX MD)
as a physics-based approach to generate physical meaningful protein structures. More specif-
ically, I focus on obtaining native-like structures and investigate the method’s strengths and
weaknesses. I extend its base application by integrating a contact-based bias potential in order
to improve the performance and outcome of REX. The inclusion of native contact pairs, which
can be derived from both theoretical or experimental sources, drives the simulation towards de-
sired conformations and accordingly reduces necessary computational costs.

During my work, I performed multiple studies with the goal to maximize the enrichment of
native-like structures thus optimizing the end-to-end process of contact-guided REX MD. Each
study aims to investigate and improve critical aspects of the applied method:
1) I study the effects of different selections of bias contacts, in particular range dependency and
the negative influence of erroneous contacts. Thus I can identify what kind of bias leads to a
significant enrichment of native-like conformations when compared to regular REX.
2) I perform a parameter optimization on the applied bias potential. By comparing the outcome
of REX simulations using different sigmoid-shaped potentials, I can identify good parameter
ranges and infer an ideal bias potential for the general use-case.
3) I introduce a de novo folding method to quickly generate many unique starting structures for
REX. I extensively study the performance of this method and compare two different approaches
of starting structure selection. The outcome of REX is greatly enhanced when initial structures
exhibit already a large variety but minimal distance to the desired native state.
4) I investigate four complex algorithm chains that are capable to extract representative struc-
tures from large biomolecular ensembles generated by REX. I study their robustness and relia-
bility, compare them with each other, and numerically rate their performance.
5) Based on my experience with contact-guided REX MD, I developed a Python package to
automate and facilitate REX projects. It allows a user to design, execute, analyze, and visualize
any REX project in an interactive and user-friendly environment.
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1
Introduction

This chapter provides important background information. The first part puts the thesis into a broader

context and introduces key literature. The second part outlines the purpose and significance of my con-

ducted work. The third part gives an overview of the thesis structure and outlines the content of each

chapter. This chapter is based on the introduction sections of my articles1–3.

Context

Proteins are nanosized macromolecules that fulfill a wide range of critical tasks in living organisms.

They are involved in the regulation of genes, conformational transitions, energy regulation of cells, sig-

naling, enzymatic function, structural stability, protein synthesis, etc. Detailed knowledge of a protein’s

structure and dynamic is essential for understanding its physiological function and associated biological

processes. Structural knowledge is also pivotal in related fields such as pharmacology to understand

pathogenesis on a molecular level as an essential prerequisite to effective drug design. Typically, both

protein structure and function are intrinsically related and defined by the corresponding amino acid

sequence5–7. The majority of proteins thus have a classical structure-function relation, where one native

fold is representative for its biological function. One interesting exception are so-called intrinsically dis-

ordered proteins (IDPs). Such proteins are more flexible in nature and have a set of different structure

ensembles, separated by low-energy barriers, instead of one stable and characteristic native fold. This

heterogeneity as well as fast transitions between structure ensembles during interactions make studies

of IDPs and their functional interpretation much more difficult8,9.
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Over the past years, experimental sequencing techniques have become exceptionally efficient and lead

to fast growing sequence databases, such as Pfam10,11, Uniprot12, etc. For example, GenBank13 has

currently more than 230 million sequence records and grows by approximately 10 million entries per

year14. In contrast, experimental structure determination methods cannot keep up as they are much

more time consuming and expensive. Techniques, such as x-ray diffraction and nuclear magnetic reso-

nance (NMR) spectroscopy, have been used for high-resolution structure determination but recently in

particular cryogenic electron microscopy (Cryo-EM) has achieved spectacular successes15,16. Other ex-

perimental methods, such as Förster resonance energy transfer (FRET) or small-angle x-ray scattering

(SAXS), do not directly provide high-resolution structures. Besides, molecular structures of proteins

are relatively small and have typical diameters of a few nm17,18. Because measured data has to be

interpreted carefully experiments are often complemented by computer simulations15,19,20 to provide

additional insight and aid inferring from experimental data.

Due to the fast-paced evolution of computer technology (cf. Moore’s law 21,22), a broad variety of com-

putational methods emerged over the past years which can generate accurate protein models. Typical

applications combine Monte-Carlo (MC) or molecular dynamics (MD) simulations with theoretically-

or experimentally-derived information to refine structural models. In particular, MD relies on time-

integration of a physics-based force field, thus offering time-resolved insight into biomolecular dynamics

akin to a virtual microscope with atomic resolution. Some advanced methods are even capable to predict

the three-dimensional protein structure de novo, by starting from the amino acid sequence and utilizing

various algorithms to infer a physical meaningful structure. Homology modeling23,24 allows the transfer

of structural details from known proteins to new targets with similar sequence information. Additionally,

many web servers can predict critical structure information, e.g. native contact pairs or bond angles,

based on sequence data. Such information can be integrated into simulations to further improve the

model quality. These web servers are specialized in certain aspects and some are even providing en-

tirely automated workflows for structure prediction. For example, the Robetta server25 mainly utilizes

homology modeling and ab initio fragment assembly in Rosetta. Meanwhile, RaptorX26,27 focuses on

machine learning and is capable of predicting secondary and tertiary structures as well as contact or

distance maps, among many other things.

Every two years a new round of the Critical Assessment of Structure Prediction (CASP)28,29 is held,

which compares and evaluates the currently available state-of-the-art protein structure prediction and

refinement methods. With more and more data available, purely data-driven approaches relying on

machine learning and the training of neural networks can be realized with great success. Such novel

approaches are able to achieve similar or even better results than “traditional” approaches. Recent im-

provements have shown that high-quality protein structures can be reliably obtained30,31. The drawback

of such methods is that they are less transparent, i.e. more difficult to interpret and sometimes alike a

black box solution with millions or even billions of trained model parameters. Additionally, they typi-

cally lack insight into physical processes driving structure adoption and cannot be easily complemented

by experimental information. Depending on the applied method, local structural motifs are often less

resolved and can benefit from additional refinement30.

Physics-driven approaches are particularly suitable for this and based on semi-empirical energy functions

called force fields. MD has provided valuable insight into biomolecular folding and function by itself32.

Studies demonstrated that current force fields are sufficiently accurate to reversibly fold proteins starting

from unfolded conformations33,34. However, the computational costs of such de novo folding simulations

still remain extremely high which makes them only reasonable in rare occasions. The computational

demands of millisecond simulations are even so high that they can only be performed on specialized

supercomputers, such as Anton35,36.
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An alternative approach is given by biased simulations, where conformational transitions can be guided

towards the target structures or ensembles by including an energetic bias37–40. Such bias information

can be derived from various sources using a theoretical, experimental or even a completely data-driven

approach. It is possible to integrate, e.g., sparse NMR data41 or contact maps from co-evolutionary

analysis methods. Evolutionary pressure favors fast folding times and naturally selects amino acid

sequences with minimal frustration and ideally one distinct global minimum42,43. Despite all that,

obtained energy landscapes representing the protein conformations still indicate many competing minima

separated by energetic barriers and can be frustrated or “glass-like”. This is also the reason why plain

MD simulations often experience conformation trapping on low temperatures. The integration of a

bias can smoothen the initially rugged energy landscape, simultaneously reduce the overall sampling

space and thus lower the computational costs of the applied simulation method. Using the example

of Ubiquitin, it was examined to what extent the application of residual contacts can speed up protein

structure determination using all-atom MD simulations when starting from extended folds44. Integration

of a flat-bottom harmonic potential, for different numbers of randomly chosen native contacts, showed a

significantly accelerated convergence to near-native structures even for a rather small number of restraints

as compared to unbiased simulations. In light of these results, the question arises whether one can further

decrease computational demands by enhanced sampling techniques45–47.

Contact information of adjacent amino acids can be obtained from different sources. By themselves

they provide insufficient information for structure generation. However, when combined with MC or

MD simulations, such information can get leveraged and drastically improve the outcome. For instance,

integration of NMR-derived distance restraints into ensemble MD simulations showed that the native

state of the IDP α-Synuclein, which plays a key role in the pathogenesis of Parkinson’s, is composed of a

more compact conformation ensemble than would be expected for a random coil48. Co-evolution analysis

methods, such as direct coupling analysis (DCA)49,50, can infer contact information from large multiple

sequence alignments. DCA identifies co-evolving residue pairs, which can be interpreted as spatially

adjacent. This information was successfully used for structure prediction51 even in large-scale studies

of proteins52 or for RNA53. DCA-derived contacts have already been combined with structure-based

models to uncover conformational diversity for medium to large proteins, including hidden functional

configurations and intermediate states54. However, it often is uncertain how error-prone available contact

information actually is. NMR assignments can be wrong or DCA can contain false-positive contacts.

My contribution

For this purpose, I performed an extensive study to investigate the influence of native (“correct”) and

non-native (“wrong”) contact information with regard to structure determination. To overcome kinetic

entrapment due to the multiple-minima problem during a simulation, I apply replica exchange molecular

dynamics (REX MD) as an enhanced sampling technique55–59. In short, REX simulates multiple copies

(replicas) of a target system at different temperatures in parallel and allows adjacent replicas to switch

places. Such exchanges between temperature levels lead to trajectory jumps which disrupts the correct

system dynamics at a fixed temperature but still maintains a thermodynamically correct description of

the system. Additionally, I integrate a contact-based bias which effectively guides the search towards the

target structure by narrowing the conformational sampling space. By combining both contact informa-

tion and REX MD, I can demonstrate a significant enrichment of native and native-like conformations

in the simulated ensemble of a single run.
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To systematically study and test the method’s performance, I conduct many simulations by starting

from an unfolded state. I investigate different scenarios by varying the bias quality, i.e. the true-positive

rate, and the total number of randomly selected contact pairs. Furthermore I analyze the importance

of short- and long-ranged contacts and infer the required bias-quality threshold to significantly improve

the results as compared to regular REX.

Based on the promising results of this prototype study, I decided to analyze and optimize critical aspects

of contact-guided REX MD with a focus on generating native-like protein structures. One such aspect

is the optimization of the applied bias potential, which has in my case the shape of a sigmoid. The

potential is designed in such a way, that it guides the simulation towards native-like conformations by

applying a weak attraction on predicted native contacts. The interaction strength is the order of a weak

hydrogen bond and has a natural range limitation resulting from the sigmoid shape. Hence the influence

of false-positive bias contacts is effectively reduced and erroneous long-range interactions are completely

suppressed. I performed many simulations using different sets of potential-defining parameters to identify

good parameter values. By performing these tests on one purely α-helical and one purely β-sheet

structure, I am able to define an optimized potential for a general use-case.

Another aspect was the optimization of the REX starting conditions, which can drastically reduce the

required simulation time before observing native-like conformations. I present a method to quickly

generate many unique REX starting structures to populate each individual replica. Furthermore, I

investigate the obtained structure quality and compare two different methods of structure selection. I

aim to maximize structural variety while minimizing the difference towards the native fold. This provides

additional folding paths when used to initialize REX simulations.

In another study I investigate structure selection methods again. This time however, I search for a robust

and reliable solution to select native-like conformations from REX-generated ensembles, representing the

final task of my applied method. I introduce four variations of a complex algorithm chain and analyze

their selection performance in great detail. I compare their pros and cons, investigate each algorithm’s

robustness and rate their reliability in selecting the wanted target structures.

Besides my conducted research utilizing contact-guided REX MD, I developed a software solution to

automate and facilitate REX projects based on my acquired knowledge. However, my software also acts

as an all-purpose tool kit and combines the most critical aspects of each biomolecular study. It allows

a user to design, execute, analyze, and visualize the entire project in an interactive and user-friendly

environment. This is useful for many reasons. First, it lowers the technical boundaries for inexperienced

users who want to apply REX. Second, it enables a fast development of new workflows by utilizing

streamlined functions. But most importantly, everything can be achieved in the same environment and

does not require a mixing of different specialized tools, as it is typical for biomolecular studies.

Overall, the work presented in this thesis covers different stages of contact-guided REX MD as a physical

approach to generate native-like protein conformations. I discuss the general application, investigate

many critical aspects, and perform extensive studies with the goal to optimize the end-to-end process.

I show that contact-guided REX MD is capable to generate high-quality protein structures and that

my proposed selection algorithms can reliably select representative structures from the large pool of

REX-generated structures.
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Thesis outline

PART I: BACKGROUND AND FUNDAMENTALS
This part introduces required biophysical and computational topics to understand the entire thesis.

• Chapter 2 gives a short introduction to important biophysical basics. It covers the topics of

proteins, protein structure, protein folding, and contact derivation.

• Chapter 3 gives a broad overview of all necessary computational methods. It covers molecu-

lar dynamics (MD) in great detail, replica exchange (REX) as an enhanced-sampling technique,

and the application of a sigmoid-shaped bias potential to guide by simulations. I also introduce

two methods of structure comparison and the most commonly used distances metrics. Lastly, I

present my preferred algorithms to perform dimension reduction or clustering and highlight their

differences.

PART II: METHOD DEVELOPMENT
This part covers all of my performed studies and contributions to apply and optimize the REX MD

method when used on protein targets.

• Chapter 4 covers the general aspects of contact-guided REX MD as a method to generate large

amounts of physical meaningful structures. I highlight how the integration of a sigmoid bias

potential can significantly increase native-like conformations. I also perform an extensive study

covering scenarios that use restraints with either an ideal or mixed bias-quality. By doing so, I can

infer the influence of native and non-native contacts for the applied method and deduce a bias-

quality threshold for optimal REX performance. In another study, I investigate sigmoid potentials

with different parameter values to determine the optimal bias shape for a general use-case.

• Chapter 5 covers the topic of starting-structure generation in order to populate each individual

replica. I outline the general benefits of varying starting structures and present a MC-based de

novo folding algorithm that is capable to generate unique starting structures in a very short time.

Additionally, I investigate the quality of the obtained structures and analyze their energy levels.

Lastly, I present two methods on how to select the starting structures and compare them against

each other.

• Chapter 6 covers the selection of representative structures from a large pool of REX-generated

structures. I present four complex and robust algorithm chains that can reliably select the most

native-like conformations. I compare all four pipelines in great detail, discuss their pros and cons

and introduce a numerical rating to reflect each method’s performance.

• Chapter 7 introduces pyrexMD, which is a self-developed Python package to automate and facil-

itate REX projects. I give a brief overview of its module architecture, the provided functionality

and demonstrate some basic applications.

PART III: Conclusions
The final part draws a conclusion on my presented work.

• Chapter 8 briefly summarizes each critical topic of my work and discusses both strengths and

limitations of the applied method. I also mention what can be further improved and outline

possible future applications and study directions.
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BACKGROUND AND FUNDAMENTALS
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2
Proteins

This chapter covers the biological fundamentals of proteins. Section 2.1 introduces proteins as functional

biomolecules and provides additional information regarding their structural formation and properties.

Section 2.2 outlines the concept of protein folding based on the “energy landscape theory” and the principle

of minimal frustration. Lastly, section 2.3 covers the broad topic of contact derivation, which is required

for my work due to the integration of a contact-based bias potential. This section exemplarily highlights

three different techniques that are used to obtain contact information, each based on different approaches

(theoretical, experimental, data-driven).

9
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2.1 Protein Structure

Amino acids are organic compounds which consist of a carbon atom (Cα) linked to

- a carboxyl group (-COOH),

- an amine group (-NH2),

- and a side chain R, which determines the amino acid’s name and its properties.

Polypeptide chains of linearly linked amino acids are called proteins. During the linking process the

carboxyl group of amino acid n reacts with the amine group of amino acid n+1. This releases water and

the remaining atoms form a peptide bond. In the case of eucaryotes, proteins can be made up by a total

of 21 different amino acids. Their structures are summarized in Fig. 2.1 and categorized by side chain

properties. Amino acids can be electrically charged, hydrophobic, or polar uncharged. Additionally, four

specific amino acids are categorized as special cases, because their properties sets them apart from the

others. These amino acids are

- Glycine: smallest amino acids with only an H-atom as its side chain. It is hydrophilic, very flexible

and due to its size important for α-helix formation. It can also introduce kinks into α-helices.

- Proline: has a secondary amine instead of an amine group and thus a cyclic side chain. It is

unflexible, can introduce kinks into α-helices and often acts as a helix-breaker.

- Cysteine: has a thiol group (-SH) as its side chain. In an oxidizing environment two Cysteines

can form a disulfur bridge thus providing additional stability to the protein structure.

- Selenocysteine: identical to Cysteine but with selenium (Se) instead of sulfur (S). It is the only

proteinogenic amino acid of eukaryotes which is not directly encoded by the genome60.

In general, proteins are functional biomolecules and perform virtually all critical tasks in living organisms.

For example, they can regulate genes61, provide energy62 or structure63, cause biochemical reactions64,

perform cell signaling65, maintain fluid balance66, etc.

Although proteins are very flexible by nature, the majority of them have a classical structure-function

relation. Upon synthesis they undergo conformational changes and minimize their free energy until

they reach one stable fold (native conformation 67) which is representative for its specialized biological

function. Knowledge of a protein’s structure is therefore crucial for a detailed understanding of involved

interactions. Intrinsically disordered proteins (IDPs)68 pose an interesting exception to this rule, as they

do not have one single stable fold. Instead, they adapt many different conformations that are separated

by low-energy barriers. Frequent and fast transitions between their structure ensemble make studies of

IDPs and their functional interpretation much more difficult8,9. Due to the increased flexibility, some

IDPs can even take part in multiple interactions. For example, different signaling proteins can bind to

a given receptor or a given signaling protein can bind to different receptors69.

The structure of proteins can be categorized into different hierarchy levels. The so-called primary

structure corresponds to the amino acid sequence of a protein. Recurring structure motifs, such as

α-helix or β-sheet, are labeled as secondary structure. On a larger scale, the 3D structure of a single

polypeptide chain is called tertiary structure and can contain multiple secondary structures. Lastly, it is

also possible that multiple polypeptide chains form a complex together. Such a complex is then referred

to as quaternary structure. Overall, protein structures can be small or extremely large. Their size can

range from tens up to thousands of amino acids70.
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Figure 2.1. Structures of proteinogenic amino acids. Eukaryotic proteins are made up by 21
different amino acids, of which 20 are encoded in the standard genetic code (not encoded: Seleno-
cysteine) 60. Amino acids are sorted by side chain property. Abbreviations are denoted as 3-letter
or 1-letter code. Licensed by Arthur Voronin under CC BY-SA 4.0.

https://creativecommons.org/licenses/by-sa/4.0/
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Figure 2.2. Folding funnel of a protein with/without native-contact bias. The folding pathway
of a protein towards its native conformation can be illustrated by a folding funnel (black splines).
Integration of an energetic bias that favors native contacts can smoothen the relatively rugged
energy surface, as indicated by the red parabola. Adapted from “Folding funnel schematic” by
Thomas Splettstoesser under CC BY-SA 3.0. Licensed by Arthur Voronin under CC BY-SA 4.0.

2.2 Protein Folding

Proteins are complex biomolecules with many degrees of freedom f which makes them very flexible. The

total number of possible configurations can be calculated via n = fL, with L being the sequence length.

Levinthal’s paradox71 is a thought experiment from the year 1969 showing that proteins cannot fold

randomly. In case of a protein with L = 100 and only f = 3, this would correspond to n = 3100 ≈ 5.2·1047

possible conformations. Assuming that a conformational transition requires only τ = 10−15 s, then the

required time to find the energetic minimum by sampling all conformation would be approximately

1.6 · 1025 years (i.e. 1.2 · 1015× age of universe). However, it is known that proteins fold on time scales

between µs to s72–74. Levinthal himself mentioned that proteins undergo spontaneous folding. To achieve

this, they must be “guided by the rapid formation of local interactions which then determines the further

folding of the polypeptide.” 71 It was shown that the introduction of a weak energetic bias can reduce

Levinthal’s time scale down to biologically reasonable size75.

Among the many different models trying to explain protein folding, the energy landscape theory76–78 is

the most illustrative concept. The mapping of the Gibbs free energy G with any reaction coordinate q

creates an energy surface where each point represents one structure. During folding the protein follows

a path towards the global energy minimum which corresponds to the native state. In other words, this

is the protein’s most stable conformation where it is compact and functions properly. It was also shown

that multiple folding pathways exist79.

Note that random protein sequences imply frustration, i.e. energetic conflicts between different confor-

mations caused by kinetic traps which restrict protein movement. This would directly interfere with the

protein’s folding process and in the worst case lead to malfunction. Consequentially evolution would

naturally select amino acid sequences with a minimal frustration42,43, which corresponds to relatively

smooth energy landscapes with one distinct global minimum, thus favoring fast folding times.

https://commons.wikimedia.org/wiki/File:Folding_funnel_schematic.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/4.0/


Proteins 13

Under perfect conditions the energy landscape of such proteins would be funnel-shaped and lead towards

the native state. However, it is impossible to completely eliminate frustration of such complex molecules,

which is why the energy landscape of most proteins remains partially rugged. This can be observed in MD

simulations, where a proteins often get trapped in one of the many local minima. But various advanced

methods are capable to overcome such entrapment. For example, it is possible to apply enhanced

sampling techniques to overcome energetic barriers46,80,81. Alternatively it is possible to implement

an energetic bias, which can smoothen the initially rugged energy landscape82. Fig. 2.2 illustrates the

folding funnel of a protein and its smoothed variant after adding a native-contact bias.

2.3 Contact Derivation

Structural information of proteins, or more specifically contact information, can be obtained in many

ways. One such example is direct coupling analysis (DCA)49–52, which aims to predict native contacts

based on the co-evolution83,84 of spatially close protein residues. Because random amino acid mutations

can destabilize a protein or even lead to its malfunction, such mutations must be naturally compensated

with other mutations of spatially close residues85. The occurrence of such pairwise mutations can be

interpreted as an evolutionary fingerprint. It can also be statistically measured by analyzing different

proteins of the same family that occur in living organisms. DCA requires a multiple sequence alignment

(MSA)86–88 of a particular protein family and analyzes frequencies and correlations of occurring amino

acids. It is then possible to infer spatial proximity of residues using a mathematical model, which is

motivated by statistical mechanics. For instance, DCA approximates the probability of a given amino

acid sequence P (a1, ...aL) with length L using the generalized Potts model50,52

P (a1, ...aL) =
1

Z
exp

(
L∑

i<j

eij(ai, aj)

L∑
i

hi(ai)

)
, (2.1)

with the amino acids ai, the normalization factor Z (partition function), and the Lagrange multipliers

eij and hi. Note that eij (couplings) describe the interaction strengths and thus the compatibility of the

pairwise amino acids. hi (fields) on the other hand correspond to the local amino-acid biases resulting

from evolutionary pressure. The final goal of DCA is to generate a list of residue pairs and rank them

based on the calculated couplings to predict residual contacts.

Another example for contact derivation is given by nuclear magnetic resonance (NMR) spectroscopy89,

where chemical compounds are exposed to an external magnetic field and the resonance frequencies of

nuclei can be measured relative to the frequency of a standard compound. The obtained resonance

spectrum can be used to infer the chemical structure of the sample, because its chemical environment

affects the spin resonance and thus the measured signals. An NMR spectrum contains information based

on three underlying principles89,90.

1. Chemical Shift:
The chemical shift δ (resonance signal relative to the standard signal) contains information about

the chemical environment of a nucleus. Being close to a strong electronegative environment has a

deshielding effect and withdraws the electrons around the nucleus. This in turn affects its resonance,

such that it appears downfield (left side of the spectrum with higher ppm). In the opposite scenario

the nucleus is further away from electronegative elements, is more shielded, and the resonance appears

upfield (right side of the spectrum with lower ppm). The chemical shift δ is given by91

δ =
νsample − νref

νref
, (2.2)
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Figure 2.3. Splitting patterns for 1H-NRM spectroscopy. Hydrogen has a spin of 1/2, which
simplifies the splitting rule to m = n + 1. This figure exemplarily shows the expected signal
patterns for different combinations of neighboring hydrogen atoms. Adapted from “Summary-of-
signal-splitting-patterns-NMR-spectroscopy.png” with permission of Gevorg Sargsyan. Licensed by
Arthur Voronin under CC BY-SA 4.0.

with the resonance frequencies νi of the sample or the reference compound, and δ being normally

expressed in ppm (parts per million)91. Typical reference compounds92 are, e.g., Tetramethylsilane

(TMS)93 and Trimethylsilylpropanoic acid (TMSP or TSP)94.

2. Integration:
Chemical-equivalent nuclei (same environment) resonate at the same frequency, which enhances the

signal. Its intensity can be used to directly infer the number of resonating nuclei95.

3. Splitting:
Resonance signals of chemical-equivalent nuclei can have one peak or be split into multiple peaks.

This splitting pattern is based on the underlying multiplicity of the spin coupling. It is an important

feature for NRM structure determination, as it infers the number of neighboring nuclei according to

the splitting rule m = 2nI+189,95. Here the multiplicity is denoted as m, the magnetic spin number

as I, and the number of neighboring nuclei as n. Fig. 2.3 exemplarily shows such a splitting pattern

as seen in 1H-NMR spectroscopy.

As a final example, it is nowadays possible to obtain both structure or contact information using an

entirely data-driven approach. Large databases, such as PDB96, Uniprot12, or GenBank13, contain

thousands of experimentally determined protein and RNA structures. Having access to large amounts

of data allows the development of AI-based solutions. For instance, the residual deep neural network

ResTriplet97,98 is designed to predict contact maps for submitted protein sequences. On the other

hand, AlphaFold99,100 uses AI to predict distances, angles and then even folds the entire protein with

a high accuracy101. Besides, having more and more data available improves the overall performance

and prediction of AI-based solutions incrementally over time. That is because successful models can

be improved with relatively low effort, i.e. simply by using a newer and larger data set to retrain and

update model parameters.

https://www.chemistrysteps.com/splitting-multiplicity-n1-rule-nmr/
https://www.chemistrysteps.com/splitting-multiplicity-n1-rule-nmr/
https://creativecommons.org/licenses/by-sa/4.0/


3
Computational Methods

This chapter covers computational methods and algorithms that are required for my work. Section 3.1

introduces molecular dynamics (MD) as a simulation method to provide an atomic view of molecular

motions and interactions. This in-silico approach aids the understanding of protein folding and func-

tioning but can also be used to gain additional insight into complex biomolecular interactions. Section

3.2 introduces Replica Exchange (REX) as my preferred simulation method to generate large amounts

of protein models. I extend this method by integrating a sigmoid bias potential to support the generation

of native-like conformations, as explained in section 3.3. Sections 3.4 and 3.5 cover different structure

comparison methods and applied distance metrics, respectively. Next in section 3.6 I explain the gen-

eral benefits of dimension-reduction techniques and cover two specific methods which are applied during

my work, i.e t-distributed stochastic neighbor embedding (TSNE) and multidimensional scaling (MDS).

Similarly to this, section 3.7 introduces the general topic of data clustering and highlights two algorithms

that are important for my work as well, i.e. KMEANS and DBSCAN (density-based spatial clustering

of applications with noise).

15
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3.1 Molecular Dynamics

Molecular Dynamics (MD)102 is a computer simulation method for studying physical movements and

interactions of atoms and molecules. The simulations apply physics-based models to predict the dynamic

behaviour of a biomolecular system on timescales up to milliseconds. Obtained trajectories can be viewed

similar to a movie and analyzed in great detail, unveiling key mechanisms on both temporal and spatial

scale. This in silico method can therefore be viewed as a computational microscope allowing us to

observe complex interactions or it can be used to complement real experiments. Depending on the

simulation target, it is possible to get additional insights into, e.g., protein folding or ligand bonding.

MD simulations numerically solve Newton’s equations of motions for the simulated system particles.

Atomic interactions are based on empirical force fields, which were derived from conducted experiments

and can replicate the results with high accuracy. Given a system of N atoms, the forces acting on the

atoms i can be described via the physical potential V (r1, ..., rN ). Its relation is given by

Fi =
∂V

∂ri
i = 1, ..., N. (3.1)

Due to the large system sizes MD typically only applies classical/molecular-mechanical (MM) force

fields, since quantum-mechanical (QM) simulations are much more demanding and thus computation-

ally costly. However, computer technology evolved at an incredible pace and newer high performance

computers are capable to perform hybrid QM/MM simulations103,104. There are many different force

fields, such as AMBER105 or CHARMM106, that can be used for MD simulations. Each describes the

atomic interactions using their respective model, which is based on different energy terms, correction

terms, atom-dependant coupling parameters, etc. Once the forces are calculated, the simulation software

computes the next time step of the molecular trajectory by solving the equations of motions, i.e.

mi
∂2ri
∂t2

= Fi i = 1, ..., N. (3.2)

The time step is of great importance as it directly influences the accuracy of the simulation. Using very

small time steps makes the simulation computational costly. Using too large time steps, however, can

lead to catastrophic errors, such as exploding systems due to the sudden occurrence of extremely high

repulsive forces. Hence time steps are typically in the order of 1-2 femtoseconds generating trajectories

with smooth molecule movements, which can be later visualized or analyzed. During my studies I

explicitly used GROMACS107–109 to run my simulations, which is one of the most popular MD solutions

that are available.

AMBER Force Field

Force fields are computational models that describe the interacting forces between the simulated system

particles. The choice of the force field is very important because it strongly affects the prediction

accuracy of the MD simulation. Force field parameters are tuned in such a way that MD simulations

are capable to reproduce experimental results. In my work I primarily apply the AMBER99SB-ILDN110

force field during the simulations. Its potential is given by

V = Vbond + Vangle + Vdihedral︸ ︷︷ ︸
bonded interactions

+Velectrostatic + VVan-der-Waals︸ ︷︷ ︸
non-bonded interactions

. (3.3)
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Figure 3.1. Bonded interaction types. Interactions are described by Eqs. 3.4 to 3.6 via the
potentials Vbond, Vangle and Vdihedral. (A) Bond stretching (2-body). (B) Bond bending (3-body).
(C) Bond rotation/torsion (4-body).

Bonded interactions describe short-ranged intramolecular interactions. As shown in Fig. 3.1, they are

modelled by 2-body bond, 3-body angle or 4-body dihedral-angle potentials. Both bond and angle

potentials are described by harmonic oscillators according to Hooke’s law, i.e.109

Vbond(rij) =
1

2
kb
ij(rij − r0ij)

2, (3.4)

Vangle(θijk) =
1
2
ka
ijk(θijk − θ0ijk)

2. (3.5)

In these equations the spring constants are labelled as k, equilibrium bond distances as r0 and equilibrium

angles as θ0. On the other hand, 1-4 dihedral-angle interactions are designed as periodic potentials by109

Vdihedral(ϕijkl) =
∑
n

kd
ijkl(1 + cos(n(ϕijkl − ϕ0

ijkl))), (3.6)

with the spring constants k, the equilibrium dihedral angles ϕ0 and the multiplicity n. The last two terms

of the AMBER potential are describing the non-bonded interactions which occur over long distances.

To minimize computational costs the MD software typically applies user-defined distance cutoffs. The

electrostatics is given by the Coulomb potential

Velectrostatic(rij) =
1

4πε0εr
· qiqj
rij

, (3.7)

with the vacuum permittivity ε0, the relative permittivity εr, the atom charges qi or qj , and the atom

distances rij . Lastly, the Van-der-Waals interactions are provided by the Lennard-Jones potential. It

describes the interactions of non-charged, chemical non-bonded atoms via

VVan-der-Waals(rij) = kLJ

[(
σ0
ij

rij

)12

− 2 ·
(
σ0
ij

rij

)6
]
. (3.8)

Here, the constant kLJ corresponds to the bonding energy, i.e. the potentials well depth, which is nec-

essary to separate the molecule’s atoms. The volume-exclusion radius is denoted as σ0
ij and corresponds

to the potential’s minimum distance. The first part (exponent 12) of Eq. 3.8 reflects the Pauli principle

and states the repulsion at small distances rij , whereas the second part (exponent 6) is derived from QM

and describes attraction. Note that the Lennard-Jones potential can also be written differently. Using

the substitutions A = kσ12 and B = 2kσ6 it can be expressed in its original form111, which reads

V =
A

r12
− B

r6
. (3.9)
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MD integrator

The numerical solving of differential equations can be achieved with algorithms called integrators. The

default MD integrator of GROMACS uses the leap-frog algorithm109. It alternates the calculation of the

atom positions ri and their velocities vi, hence the naming leap-frog. Information taken from past time

steps is used to calculate future time steps according to

ri(t+∆t) = ri(t) + ∆t · vi(t+
1
2
∆t), (3.10)

vi(t+
1
2
∆t) = vi(t− 1

2
∆t) +

∆t

mi
· Fi(t). (3.11)

There are two possible options for the start of a new MD simulation:

1) Use saved velocities from an older run and continue the simulation.

2) Generate random initial velocities and start a new simulation.

The random velocities can be generated with the Maxwell-Boltzmann distribution. The momenta p(vi)

are given by

p(vi) =

√
mi

2πkBT
exp

(
−miv

2
i

2kBT

)
i = 1, ..., 3N, (3.12)

with the atomic masses mi, the Boltzmann constant kB and the system temperature T . After the

simulation is over, the MD trajectory then spans a time interval of

tMD = nMD ·∆t, (3.13)

with the number of performed MD steps nMD and the time step interval ∆t.

Temperature Coupling

The kinetic energy Ekin of a N-particle system is given by the equations

Ekin =
1

2

N∑
i=1

miv
2
i , (3.14)

Ekin =
f

2
kBT, (3.15)

with the masses mi, velocities vi, degrees of freedom f , Boltzmann constant kB and the system temper-

ature T . The degrees of freedom can be calculated via109

f = 3N −Nc − 3, (3.16)

where N is the number of particles and NC is the number of constraints that are imposed on the system.

Because the three center of mass velocities are constants of the motion, they can be set to zero which is

reflected by the -3 term.

Uncoupled MD simulations represent the microcanonical ensemble (NVE) where the number of particles

N , the system volume V and the system energy E are conserved. However, experiments are typically

performed by keeping either the temperature T or the pressure P constant. This corresponds to a

canonical ensemble (NVT) or an isothermal-isobaric ensemble (NPT). Such ensembles can be achieved

in MD by coupling the system to an external heat bath or pressure reservoir.
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A temperature coupling can be achieved with, e.g., the Berendsen thermostat. It applies a weak coupling

to an external heat bath at temperature T0, such that the system temperature T follows a first-order

kinetics with the coupling time constant τ. It is described by

dT

dt
=

T0 − T

τ
. (3.17)

The coupling strength can be varied based on the choice of τ. It is sufficient to use τ = 0.01ps for a

quick equilibration but more reliable equilibrations should use much larger coupling times, for example

τ = 0.5 ps109. One major issue of the Berendsen algorithm is that it suppresses the fluctuations of kinetic

energies and thus cannot generate a proper canonical ensemble. This can be fixed with a modification.

The improved variant is called velocity-rescaling thermostat, or just v-rescale in short. It is a Berendsen

algorithm that applies an additional stochastic term to correct the kinetic energy distribution. The

auxiliary dynamics is described by the equation112

dK = (K0 −K) · dt
τ0

+ 2

√
KK0

f

dW√
τ0

, (3.18)

with the kinetic energy K, the arbitrary time parameter τ0, the degrees of freedom f , and the Wiener

process dW . The parameters τ0 and τ typically have very close but unequal values and satisfy

τ

τ0
=

2CV

fkB
. (3.19)

Denoted parameters stand for the coupling time constant τ, arbitrary time parameter τ0, heat capacity

CV at constant volume V , degrees of freedom f , and the Boltzmann constant kB. New velocities are

rescaled to λv by this algorithm with the factor113

λ =

[
1 +

nTC∆t

τ0

(
T0

T (t− 1
2
∆t)

)]1/2
. (3.20)

In this case, nTC represents the number of temperature coupling steps, ∆t the integration time step,

while T and T0 denote the heat bath’s and system’s temperatures, respectively. The rescaling also affects

the kinetic energies according to

∆Ekin = (λ− 1)2Ekin. (3.21)

In order to conserve the system’s energy it is necessary to subtract the sum of these changes from the

total energy109.

Pressure Coupling

Analogously, the Berendsen barostat can achieve the desired pressure coupling by interacting with an

external pressure reservoir at constant pressure P0. The first-order kinetics for a system with pressure

P is given by the equation
dP

dt
=

P0 − P

τP
, (3.22)

with the pressure coupling time constant τP. The pressure scaling matrix µ109,114 is described by

µij = δij −
nPC∆t

3τP
βij(P

0
ij − Pij). (3.23)

nPC represents the number of pressure coupling steps, ∆t the integration time step, βij the isothermal

compressibility, while P 0 and P denote the reservoir’s and system’s pressures, respectively.
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Additionally, δij is the Kroneckar delta and stands for

δij =

{
1 for i = j,

0 otherwise.
(3.24)

The systems volume V is rescaled according to

V (t+∆t) = µV (t). (3.25)

It is also possible to perform isotropic coupling (scaling is equal in each direction) or semi-isotropic

coupling (scaling in x/y is different to z direction). The latter case is for example relevant for lipid

bilayers.

The drawback of the Berendsen barostat is that it suppresses pressure and volume fluctuations, which

leads to an incorrectly represented ensemble. However, slightly advanced algorithms are able to simulate

a proper NPT ensemble. For example, the Parrinello-Rahman barostat115,116 satisfies the equations of

motion described by
db2

dt2
= VW−1b

′−1(P − P0). (3.26)

This equation denotes the simulation box vectors as b, the box volume as V , whereas P and P0 are

the system’s and reservoir’s pressures, respectively. W−1 represents the inverse mass parameter matrix,

which determines the coupling strength and is calculated according to

(
W−1)

ij
=

4πβij

3τ2
PL

. (3.27)

βij denotes the isothermal compressibility, τP the pressure coupling time constant and L is the largest

box matrix element. Note that Parrinello-Rahman, which is an extended ensemble coupling, typically

requires a 4-5 times longer pressure coupling time constant τP as compared to the Berendsen barostat.

If the simulated system is far from equilibrium this can lead to a simulation crash due to the box

oscillations. In such cases, it is better to apply a Berendsen barostat until equilibration and then

switch back to Parrinello-Rahman. Using this algorithm also conserves the energy with the modified

Hamiltonian

Epot + Ekin +
∑
i

PiiV +
∑
i,j

1

2
Wij

(
dbij
dt

)2

. (3.28)

The derived equations of motions are given by

dr2
i

dt2
=

Fi

mi
−M

dri
dt

, (3.29)

M = b−1

[
b
db

′

dt
+

db

dt
b
′
]
b
′−1. (3.30)

In this case, atom positions are denoted as ri, their masses as mi, acting forces as Fi, and simulation

box vectors as b. Although the additional term is expressed like a friction, it is just the effect of the

Parrinello-Rahman equations of motion being defined with all particle coordinates represented relative

to the box vectors109.
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Water Model

Proteins typically appear in an aqueous environment. Cytosol, i.e. the cellular solvent, consists primarily

of water (≈ 70%), proteins (≈ 20−30%) and different types of dissolved ions117. This is also reflected in

MD simulations with the majority of a system consisting of water atoms, for instance 2000 protein atoms

vs. 50000 water atoms and a few counter ions to neutralize the system. Water molecules are relatively

small with diameters of approximately 2.8 Å118. They are dipolar due to the structural arrangement

of atoms with an angle of approximately 104.5◦ and interact with other substances via non-bonded

interactions. For this reason, water modelling cannot be neglected in MD simulations as it also impacts

the progression of the system’s trajectory. There are two main categories of water models: 1) explicit

water, where individual water atoms are embedded into the simulation and interact accordingly and

2) implicit water, which represents the water as a continuous medium throughout the system. The

majority of MD simulations rely on explicit water models since they tend to be more accurate and can

emulate real-world experiments. In certain scenarios, however, it is sufficient to apply implicit water,

which is computationally less demanding. One such example is the free-energy estimation of various

solute-solvent interactions.

Most MD simulations apply 3-site water models with rigid H2O molecules, which are computationally

efficient due to their simplicity. These explicit models cover non-bonded interactions via a Coulomb

potential for electrostatics and a Lennard-Jones potential for Van-der-Waals interactions. It reads

V =
∑
i,j

1

4πε0εr
· qiqj
rij︸ ︷︷ ︸

Coulomb

+
A

r12ij
− B

r6ij︸ ︷︷ ︸
Lennard-Jones

, (3.31)

with the vacuum permittivity ε0, relative permittivity εr, partial charges qi and qj , atom distances rij ,

and the Lennard-Jones parameters A and B. Table 3.1 compares different 3-site water models based on

their parameters. All of my MD simulations applied the explicit water model TIP3P (transferable inter-

molecular potential with three points)119,120. Note that more complex water models include partially

charged dummy atoms to improve the electrostatic distribution around the water molecule. Currently

available water models can reach even up to six sites121,122. Needless to say, the computational costs

scale proportionally to the number of distance calculations that are required for the different water mod-

els. Or more precisely, for each water molecule pair the 3-site models require 3 × 3 = 9, 4-site models

3× 3 + 1 = 10, 5-site models 4× 4 + 1 = 17, and 6-site models 5× 5 + 1 = 27 distance calculations.

Table 3.1. Comparison of different 3-site water model parameters. All models are explicit.
i.e. individual water atoms are simulated in MD. Non-bonded interactions are reflected by the
parameters listed in this table and the potential V according to Eq. 3.31. The most notable
difference is that SPC models use a tetrahedral angle of approximately 109.5◦ instead of the
experimentally measured angle of circa 104.5◦. Furthermore, SPC/E is the only water model that
additionally includes an average polarization correction. Due to the fixed charges this corresponds
to a total energy increase of approximately 1.25 kcal/mol or 5.22 kJ/mol.

parameter TIPS119 TIP3P120 SPC123 SPC/E124

rHO (Å) 0.9572 0.9572 1.0 1.0

αHOH (deg) 104.52 104.52 109.47 109.47

A (103 kcal Å12 mol−1) 580.0 582.0 629.4 629.4

B (kcal Å6 mol−1) 525.0 595.0 625.5 625.5

qH (e) +0.40 +0.417 +0.41 +0.4238

qO (e) −0.80 −0.834 −0.82 −0.8476
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Figure 3.2. Scheme of replica exchange molecular dynamics. This figure shows the core concept
of replica exchange. Four replicas (depicted in black, blue, green and red) start at different
temperatures T1 to T4. After n steps of MD, adjacent replica pairs have a probability to get
exchanged according to the Metropolis-Hastings criterion as defined by Eq. 3.32. After the next n
steps of MD considered replica pairs are shifted by ±1. This alternation allows replicas to perform
a random walk in temperature space, if the temperature distribution was chosen properly. Adapted
from “Schematic of a replica exchange molecular dynamics simulation” by Christopher Rowley
under CC BY-SA 4.0. Licensed by Arthur Voronin under CC BY-SA 4.0.

3.2 Replica Exchange

Proteins undergo conformational transitions on timescales of the order µs to s72–74. Since MD simulations

operate on fs time steps, observations of such large scale transitions are computationally very expensive.

Furthermore, protein energy surfaces tend to be rugged and typically have multiple local minima. Hence

MD simulations at low temperatures often get stuck in certain conformations as the provided thermal

energies are not sufficient to overcome local energy barriers. Replica exchange (REX)55–58, sometimes

referred to as parallel tempering59, is an enhanced sampling technique for MD that is capable to overcome

this protein entrapment problem.

REX simulates N non-interacting copies (replicas) of a system at different temperatures Ti. As shown in

Fig. 3.2, these replicas perform normal MD simulations in parallel. However, after a pre-defined amount

of MD steps the energies of adjacent replicas are compared and some replicas are switched. More

precisely, all atom positions and their momenta are exchanged between both systems. The acceptance

probability is given by the Metropolis criterion56,59, which is defined as

P (Xi → Xj) = min(1, e−∆) with ∆ = (βj − βi)(Ei − Ej). (3.32)

Adjacent replica states are denoted as Xi and Xj , the inverse temperature as βi =
1

kBTi
, the Boltzmann

constant as kB, the system’s temperature as Ti, and its energy as Ei. After the accepted replicas are

exchanged, the simulations continue and each replica undergoes normal MD simulations again. During

the next exchange attempt considered replica pairs are shifted by ±1, which allows individual replicas

to walk over the entire temperature range. A true random walk can be achieved if exchange rates

are constant for all temperatures. MD simulations typically generate ensembles where the probability

distribution of each microstate is proportional to the Boltzmann distribution, i.e. e−βE . Hence by

choosing an exponential temperature distribution (cf. appendix A.3) it is possible to obtain constant

exchange rates, as they are proportional to the overlapping area of two Boltzmann distributions. Note

that exchange rates are significantly lower for large temperature differences, as shown by ∆ in Eq. 3.32).

For this reason, only replicas that are direct neighbors are considered during exchange attempts.

https://commons.wikimedia.org/wiki/File:Schematic_of_a_replica_exchange_molecular_dynamics_simulation.svg
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
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The primary goal of REX is to generate large amounts of physically meaningful structures. High temper-

atures provide sufficient energy to overcome local barriers, which solves the protein entrapment problem

of regular MD. On the other hand, low temperatures lead to local searches of native-like conformations.

Combined, this enhanced sampling technique is capable to obtain highly native-like conformations within

relatively short runs. Desired exchange rates should be in the order of 20% to 30%. However, the time

intervals at which exchanges are attempted are also important. The best performances can be obtained

from simulations with many turnaround cycles over the entire temperature range. Some studies also

indicate that REX simulations should exchange as often as possible125,126. Nonetheless, it is still impor-

tant to stay long enough at a fixed temperature in order to properly probe the relevant conformations

for such energies. REX is a physics-driven enhanced sampling technique which excels in its straight

forward but diverse application. Based on the protein target and system size, it is possible to observe

native-like conformations within a single REX simulation.

3.3 Sigmoid Bias Potential

All of my performed studies rely on REX simulations to generate large biomolecular ensembles. However,

I additionally integrate an attractive potential which interacts only with selected bias contacts to guide

my simulations towards native-like conformations. Such contact information can be obtained from

various sources, e.g. theoretically-derived via DCA49–51 or experimentally-derived from (sparse) NMR

data41,127. It is generally unknown which residue atoms are the closest to each other. For this reason,

I apply a simplistic model and let the potential interact only with selected Cα-Cα atom pairs. The

selected shape of the integrated bias potential is of great importance, since it defines the strength and

distance dependency of the resulting force. For instance, a regular harmonic potential becomes stronger

over large pair distances. Hence it would primarily affect false-positive/non-native bias contacts which is

contrary to the intended application. In my case, I require a potential that is limited and self-regulating,

such that false-positive bias contacts are weakened and do not impact the simulation in a negative way.

This can be achieved with a sigmoid-shaped bias potential1, which is described by

V (r) = λσ(r), (3.33)

with the coupling strength λ and the sigmoid function

σ(r) =
A

1 + e−α(r−r0)
. (3.34)

A describes the upper limit of the sigmoid function and α its S shape (i.e. the transition from low to

high values), while r and r0 stand for the bias pair distance and its equilibrium distance, respectively.

Note that the value of r0 defines the inflation point which is crucial for differentiating between native

and non-native contacts, as it is also the distance with the strongest attractive force. On the other hand,

the choice of α defines the effective range of the force, where low α values correspond to a slow and

smooth transition, whereas high α values correspond to shapes similar to a step function.

By integrating this sigmoid bias potential into REX and coupling it with selected bias contacts, the

simulation becomes contact-guided and drives the structure sampling towards native-like conformations1.

The energetic penalty also reduces the search space, meaning that the wanted target structure can be

observed much sooner which in turn reduces the computational costs of REX. The sigmoid potential

depicted in Fig. 3.3 corresponds to the optimized bias potential for proteins (cf. study in section 4.2).

Its parameters are A = 1, α = 25Å−1 and r0 = 16Å. A = 1 was chosen for simplicity because the

attractive force is proportional to λA and is now solely defined by the coupling strength λ.
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Figure 3.3. Sigmoid bias potential used in contact-guided REX MD. The sigmoid bias potential
is defined by Eqs. 3.33 and 3.34. The illustrated shape corresponds to the optimized potential for
proteins (cf. study in section 4.2), with the parameters A = 1, α = 25Å−1, r0 = 16Å.

The synergy of α and r0 leads to a potential that is distance dependant but locally confined. The

resulting force (see green curve of Fig. 3.3) acts only locally up to a Cα-Cα threshold of approximately

32Å, with the highest attractive force at 16Å. This short-range limitation reduces the influence of

erroneously used non-native contact pairs. Interactions above 32Å distances are virtually neglected due

to the asymptotic behavior of the sigmoid potential. Generally, this sigmoid potential can be used for

proteins of any size as it will affect the selected contact pairs only in the mentioned region. This way,

local structure motifs can get improved while unphysical compaction of structures are prevented on a

larger scale. By choosing the coupling strength λ = 10 kJmol−1, the resulting force is equivalent to a

weak hydrogen bond at its maximum at r0 = 16Å. With this the resulting interaction between single

Cα-Cα pairs is of adequate strength. It drives the simulation towards native-like conformations but is

sufficiently weak that it does not impose conformations1. A detailed instruction on how to implement

the bias potential and bias contacts using GROMACS can be found in appendix A.2.

3.4 Structure Comparison

There are several methods to quantitatively measure protein structure similarity. These can be used to

assess the quality of a new protein model, especially if an experimentally-determined structure already

exists that can be used for reference.

Root-Mean-Square Deviation (RMSD)

The most popular structure comparison method is the root-mean-square-deviation (RMSD) of atomic

positions. It is calculated as an averaged sum of atom distances between the mobile model and the

reference model. Mathematically, this is described as

RMSD(mob, ref) =

√√√√ 1

N

N∑
i

||rmob
i − rref

i ||2 (3.35)
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with the total number of atoms N and the atom positions ri. Usually both structures are first superim-

posed via translations and rotations which minimizes the RMSD. Note that the RMSD of two structures

also depends on the atom selection, which is used for calculation. Typically, RMSDs are calculated using

either the protein’s backbone or solely the Cα atoms. Additionally, if a native conformation was used

for reference, it is possible to categorize the mobile structure as being folded or unfolded based on its

RMSD value. The main issue of RMSD-based structure comparison is that the RMSD value scales with

the largest atom displacement128. If the majority of two models are perfectly aligned except for a small

region (e.g. tail or loop region), then the RMSD can get disproportionally large indicating low similarity.

Global Distance Test (GDT)

An alternative method to quantitatively compare protein structures is the so-called global distance test

(GDT)129,130. Similar to RMSD, both mobile and reference structure are first superimposed while

considering translations and rotations. The structural similarity is then measured by calculating the

percentage of Cα atoms that are found within a certain distance cutoff. This is done for 20 consecutive

distances d = (0.5Å, 1.0Å, 1.5Å, ..., 10.0 Å). The resulting GDT curve (cf. Fig. 3.4A), which is

obtained by mapping of calculated percentages on the x-axis vs. the distance cutoffs on the y-axis,

visually captures the underlying structure similarity. Or more specifically, highly similar structures are

represented by flat GDT curves that appear on the far right side, since they yield the highest sum of

percentages. Furthermore, GDT curves can be used to calculate GDT scores, which numerically describe

similarity of two protein structures. The two most common scores are the total score (TS),

GDTTS =
1

4
(P1 + P2 + P4 + P8) ∈ [0, 100] (3.36)

and the high-accuracy (HA) score,

GDTHA =
1

4
(P0.5 + P1 + P2 + P4) ∈ [0, 100] (3.37)

where Px denote the percentage of residues with displacements below a distance cutoff of x Å. In simple

terms, these scores can be interpreted as the structural overlap of both protein models at different

accuracy scales. Note that RMSD- and GDT-based evaluations apply anti-proportional metrics, where

similar structures yield low RMSD values but high GDT scores. “A score above 90 is considered roughly

equivalent to the experimentally determined structure” 100. Since GDT-based structure comparison

can take local misalignments better into account, it is preferably used in the Critical Assessment of

Structure Prediction (CASP)28,29. This bi-annual event evaluates the performance of current state-of-

the-art techniques for protein structure prediction and protein structure refinement. I summarized the

latest CASP14 refinement results in Fig. 3.4B. This figure captures the performance of currently used

structure refinement protocols by focusing on the GDT range of the 10 best results and the corresponding

mean scores. Additionally, I highlighted the region that contains 95% of all depicted scores in yellow,

thus indicating the typical range of GDT TS scores.
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Figure 3.4. Global distance test results. (A) Exemplary GDT curves which can be used to compare
protein structures. Curves are colored according to the spectrum (blue, red, green) to indicate (low,
medium, high) structural similarity. (B) Top10 refinement results of CASP14 131. The results of
each protein target are indicated by a GDT score range (blue) and the corresponding mean score
(red). Additionally, the yellow region contains 95% of all depicted GDT scores and indicates the
region of typical GDT scores.

3.5 Distance Metric

Let X be an arbitrary set. A function d:X ×X → R is called metric, if all x, y, z ∈ X fulfill the

axioms132:

1) d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y (positive definiteness)

2) d(x, y) = d(y, x) (symmetry)

3) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

The two most common distance metrics in computer science are the Euclidean distance and the Man-

hattan distance, which is especially preferred for very large and high-dimensional data sets. For two

points p = (p1, ...pn) and q = (q1, ..qn) in n dimensions, the Euclidean distance is given by

d(p, q) =

√√√√ n∑
i

(pi − qi)2, (3.38)
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Figure 3.5. Most common distance metrics. Depicted are two points A and B and their distances.
The Euclidean distance (red) is d(A,B) =

√
42 + 32 = 5 according to Eq. 3.38. The Manhattan

distances (green and blue) are both d(A,B) = 7 according to Eq. 3.39. Note that the Euclidean
metric has exactly one possible path between A and B, whereas the Manhattan metric allows
multiple paths with the same distance. Licensed by Arthur Voronin under CC BY-SA 4.0

and the Manhattan distance is given by

d(p, q) =

n∑
i

|pi − qi|. (3.39)

The naming is derived from Manhattan’s street layout in form of a grid. Fig. 3.5 captures the difference

of both metrics in a 2D plane.

3.6 Dimension-Reduction Algorithms

Dimension(ality) reduction is the transformation of a higher-dimensional data set into lower dimensions.

Exploratory data analyses of feature-rich data can be quite difficult. Especially if variables/features

have different scales, mixed types (e.g. numerical or categorical), or are correlated with each other. Due

to the large input size such correlations can be hard to detect. To deal with this problems, it is possible

to systematically check all pairwise correlations, eliminate certain features or combine them into new

ones. However, such an approach is very cumbersome, time consuming and prone for errors. Instead,

it is also possible to perform a dimension reduction on the existing data set, which projects the given

information into a lower-dimensional embedded space, typically with just two of three dimensions. Each

algorithm is designed to maintain specific aspects (e.g. distance information) of the initial data, which

makes their application case-dependant. Existing dimension-reduction methods can be categorized into:

1) linear and nonlinear based on the underlying data transformations133,134.

2) feature selection and feature extraction based on the application purpose135.

Dimension reduction is especially useful for data visualization and data clustering. It can also reduce

noise or correlations during the transformation process, which can improve the classification accuracy136.

In some parts of my work I apply dimension-reduction techniques (TSNE and MDS), as I can use the

resulting representations and their associated features to my advantage.

https://creativecommons.org/licenses/by-sa/4.0/
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TSNE

T-distributed stochastic neighbor embedding (TSNE)137,138 is a nonlinear dimension-reduction method

which excels in the visualization of high-dimensional data. Using a statistical approach, it first captures

the mutual distances of high-dimensional data points via Gaussian probabilities. The original variant,

i.e. stochastic neighbor embedding (SNE)139, models the low-dimensional representation with Gaussian

probabilities as well. In TSNE, however, these are modelled with heavy-tailed t-distributions, which

allows a better separation of similar and dissimilar objects. It makes TSNE “much easier to optimize,

and produces significantly better visualizations by reducing the tendency to crowd points together in

the center of the map.” 137

During the algorithm, TSNE performs a stochastic gradient descent140 to optimize the Kullback-Leibler

divergence141,142, a cost function which measures the difference of two probability distributions. Finally,

data points are projected onto lower dimensions by being either pushed away or pulled together according

to their relative position on the t-distributions reflecting their (dis)similarity. This algorithm design is

the biggest strength of TSNE, since the resulting low-dimensional representations visually contain data

clusters which makes them easy to interpret. Adjacent data points of each native cluster are highly

similar, whereas distant clusters convey differences and can be spotted immediately. This intrinsic

property of TSNE representations is very convenient and can be utilized in combination with classification

or clustering techniques to further improve the results.

Although distance information is not conserved during TSNE it can still be interpreted to a certain

degree. For example, each native cluster has its own distance norm: Distances within a cluster can be

interpreted to a large extent as being proportional to the difference of containing data points. However,

distances between different clusters cannot be interpreted the same way because the final cluster position

is a consequence of the TSNE algorithm iterating over multiple and very different t-distributions.

TSNE is a very versatile dimension-reduction method. It was successfully used for bioinformatics143,

cancer research144, image classification145, natural language processing146, biomedical signal process-

ing147, music analysis148, and many other fields.

Detailed Algorithm Instructions

TSNE “starts by converting the high-dimensional Euclidean distances between datapoints into condi-

tional probabilities that represent similarities. The similarity of datapoint xj to datapoint xi is the

conditional probability, pij , that xi would pick xj as its neighbor if neighbors were picked in proportion

to their probability density under a Gaussian centered at xi. For nearby datapoints, pij is relatively high,

whereas for widely separated datapoints, pij will be almost infinitesimal.” 137 In the higher-dimensional

space this probability is defined as

pj|i =
exp(−||xi − xj ||/2σ2)∑
k ̸=l exp(−||xk − xl||/2σ2)

, (3.40)

with the Gaussian variance σ. As the conditional probabilities are symmetric, define the joint probabil-

ities pij as

pij =
pj|i + pi|j

2N
, (3.41)
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where N is the number of high-dimensional data points. Note that pij has the properties

∑
j

pij = 1, (3.42)

pij = pji, (3.43)

pii
!
= 0. (3.44)

pii is specifically set to zero because the motivation is to model pairwise similarities.

The same concepts are applied for the lower-dimensional mapping points yi. In TSNE, however, their

probability is modelled with a heavy-tailed t-distribution with one degree of freedom (which is the same

as a Cauchy distribution)137. The joint probabilities qij of lower-dimensional points yi are thus given

by

qij =
(1 + ||yi − yj ||2)−1∑
k ̸=l(1 + ||yk − yl||2)−1

. (3.45)

By minimizing the cost function C (here the Kullback–Leibler divergence between the distributions P

and Q), the positions of the mapping points yi are optimized to reflect the initial data (dis)similarity.

Mathematically, the cost function is given by

C = DKL(P ||Q) =
∑
i̸=j

pij log

(
pij
qij

)
, (3.46)

and its gradient by
δC

δyi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ||yi − yj)||2)−1. (3.47)

MDS

Multidimensional scaling (MDS)149,150 is a form of non-linear dimension reduction based on multivariate

analysis. Its main objective is to project high-dimensional data into lower dimensions for a better

interpretation, while preserving the pairwise dissimilarity of samples. To achieve this, MDS requires a

distance matrix reflecting the dissimilarity of all samples. There are many variations of MDS, such as

classical, metric and non-metric. Classical MDS aims to solve the dimension reduction via change of

basis using eigenvectors and eigenvalues. Metric MDS on the other hand applies numerical optimization

techniques to approximate the dissimilarity of samples which can be measured with a metric (see section

3.5). Non-metric MDS is an extended approach, where the dissimilarities are given by non-parametric

relationships (e.g. categorical relationship).

The distance preservation of MDS makes it a popular dimension-reduction method. It was successfully

used in archaeology151, biophysics/biochemistry152, nuclear physics153, marketing research154, political

science155, psychology156, etc. In my work I apply metric MDS on Euclidean distance matrices as input.

Detailed Algorithm Instructions

Metric Multidimensional Scaling (mMDS):

1. Given n objects and their dissimilarity represented by a n× n distance matrix using any metric,

assign n points in m < n dimensions at positions yi = (y1, ..ym). To obtain a representation that is

better suited for interpretations m is typically set to 2 or 3.

2. Calculate the Euclidean distances between all points yi in the low-dimensional space.
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3. Compare the pairwise dissimilarities between the high-dimensional and low-dimensional represen-

tations. So-called Stress functions (see Eq. 3.48) are suitable goodness-of-fit measures to capture the

difference between initial and projected distances.

4. Update the positions of points yi using an optimization algorithm.

Repeat steps 2-4 until the Stress function is minimized.

Metric MDS aims to minimize a cost function C, which is typically called Stress (STandardized REsidual

Sum of Squares). Mathematically it is given by

C = Stress =

(
n∑

i<j

(δij − dij)
2

)1/2

, (3.48)

with δij as the dissimilarity metric of the high-dimensional input data, dij = ||yi − yj || as the Euclidean

distance of the low-dimensional target data. A solution can be found with numerical optimization tech-

niques such as gradient descent157. Let yi be the low-dimensional vector that represents the coordinates

of object i in m < n dimensions. The gradient of C is then given by

∂C

∂yi
= −2

∑
j

δij − dij
dij

(yi − yj). (3.49)

Some MDS studies apply different Stress functions150,158,159, which are weighted variations of Eq. 3.48.

For instance, it is possible to give more weight to smaller distances than to larger distances, which

corresponds to a non-uniform distance preservation.

3.7 Clustering Algorithms

Clustering is an unsupervised technique which aims to group objects taken from a data set based on

similarity. Clustering does not transform the underlying data set. It just analyzes it and provides

additional information to the user by assigning a cluster label to each object, such that similar objects

share the same label. This can be useful for various applications. For example, data visualizations can

be improved by choosing colors based on the cluster labels. It is also possible to filter and select only

specific data objects (i.e. with pre-defined cluster labels) for further tasks during a complex algorithm.

As a final example, clustering can be useful for outlier detection160.

Clustering algorithms can be classified based on their approach161,162, such as

1) Partitional clustering: K-Means163,164, K-Medoids165,166, etc.

2) Density-based clustering: DBSCAN167,168, OPTICS169, etc.

3) Grid-based clustering: WaveCluster170, etc.

4) Model-based clustering: Gaussian mixture models171, etc.

5) Hierarchical clustering: There are two ways to generate a dendrogram, namely

- Agglomerative (bottom-up approach)

- Divisive (top-down approach)

In some parts of my work I apply K-Means (from now on written as KMEANS) or DBSCAN to cluster

my data.
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KMEANS

KMEANS163,164 is one of the most popular clustering methods. Its goal is to partition a given data

set into k clusters, which basically divides the sampling space into k Voronoi cells172,173. While the

general idea of KMEANS is very simple, there are many variations of the KMEANS algorithm164,174.

They can differ, e.g., in their initialization method175,176, optimization method, distance metric, etc.

The weakness of KMEANS is that the results heavily rely on the underlying data set and the used

initialization method. KMEANS has two important parameter specifications:

- k : Number of clusters.

- ninit : Number of KMEANS runs with independent initializations. Only the run with the lowest

sum of squared errors SSE (sometimes referred to as inertia or distortion) will be selected as final

KMEANS result.

Good KMEANS models have low values for k and SSE. A heuristic to determine the optimal value for

k is the so-called elbow method 177. By plotting k on the x-axis vs. SSE on the y-axis, an optimal k

value can be derived by the point where diminishing return is observed. This point is also called elbow

due to the shape of the curve. However, it is not always possible to clearly identify an elbow on the

resulting plot177.

In my work I apply Lloyd’s KMEANS algorithm164 with k-means++ seeding178,179. This initialization

method cleverly selects k random centroids as initial cluster centers and guarantees to find a KMEANS

solution that is “O(log k)-competitive with the optimal clustering.” 178

Detailed Algorithm Instructions

k-means++ initialization178:

1a. Select first cluster center M = {µ1} uniform at random from all data points X = {x1, .., xn}.
1b. For each point x ∈ X\M : calculate distance D(x) to its nearest cluster center.

1c. Select xi ∈ X\M as a new cluster center µi ∈ M according to the probability

p(xi) =
D(xi)

2∑
x∈X\M

D(x)2
. (3.50)

Repeat steps 1b and 1c until M = {µ1, ..., µk} has k members.

Lloyd’s KMEANS algorithm164,180:

1. Select k initial cluster centers M = {µ1, ..., µk} (in my case with k-means++).

2. Assign all d-dimensional data points X = {x1, .., xn} to their nearest cluster center µN :

N = argmin
k

||xi − µk||2 = argmin
k

d∑
j=1

(xij − µkj)
2 (3.51)

3. Recalculate each cluster center (centroid) µi based on the points x that belong to its cluster Ci:

µ new
i =

1

|Ci|
∑
x∈Ci

x, (3.52)

Repeat steps 2 and 3 until convergence of C.
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Result Selection180:
The results of each individual KMEANS run are analyzed with respect to the cluster variances. The

best clustering results yield the lowest sum of squared errors SSE, hence the objective is to minimize

SSE =

k∑
i=1

∑
x∈Ci

||x− µi||2, (3.53)

with the cluster centers M = {µ1, ..., µk}, and the points x that belong to each individual cluster Ci.

DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN)167,168 is a density-based clustering

method that can differentiate between meaningful cluster data and noise. DBSCAN can technically apply

any distance metric and its algorithm is deterministic, i.e. multiple iterations with the same parameters

yield the same results. Its main weakness is that the algorithm-defining parameters are typically case-

specific and thus require fine tuning. DBSCAN has two important parameter specifications:

- ε : neighborhood distance (search radius).

- minpts : density threshold. Specifies how many points within ε around sample X are required to

consider X as a core point and part of a cluster.

Note that both parameters are correlated with distance, which makes DBSCAN highly parameter de-

pendant. More precisely, the underlying data set (i.e. the density and distance between samples) define

a reasonable parameter range for meaningful clustering results. However, some DBSCAN variations can

automatically determine good parameters181.

Detailed Algorithm Instructions

Abstract DBSCAN algorithm168:

1. For each point: find neighbors within ε and identify core points based on minpts.

2. Join neighboring core points into clusters Ci.

3. For each non-core point:

- If point is neighbor of a core point, then assign it to its cluster Ci.

- Otherwise assign it to noise.

These instructions allow to identify a non-specified number of dense data clusters, which grows naturally

due to the connection of adjacent core points and their border points. Samples, which do not satisfy the

density threshold are filtered out as noise. This classification effectively reduces the sampling space of

each DBSCAN application because noise points are typically left out in further analyses.

Fig. 3.6 illustrates the concept of DBSCAN clustering and the classification of samples into core points,

border points and noise.



Computational Methods 33

Figure 3.6. Illustration of DBSCAN algorithm. Figure explains the classification of data points for
DBSCAN based on the parameters ε (neighborhood distance) and minpts = 4 (density threshold).
If a point has minpts samples within its radius ε, then this point is considered a core point (red).
Reachable neighbors within ε of core points are border points (blue). All other points are considered
noise (grey). Each cluster is defined by neighboring core points and their border points. Licensed
by Arthur Voronin under CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/
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4
Contact-Guided Replica Exchange

Molecular Dynamics

This chapter covers various aspects related to contact-guided REX MD and showcases it as a powerful

but yet easy-to-use tool for biomolecular studies. REX, as an enhanced sampling method, can generate

large amounts of physically meaningful structure ensembles while maintaining correct thermodynamic

properties. The additional integration of a contact-driven bias potential largely reduces the conformational

search space during REX. This speeds up the process of finding native-like conformations and lowers the

overall computational costs. Section 4.1 demonstrates the general benefits of contact-guided REX MD

in contrast to regular MD. Additionally, I compare different scenarios by varying the bias-quality of

considered contacts. By doing so, I learn how robust the method is against noisy bias data and what

the most influential factors are. In particular, I deduce conditions for selected bias contacts in order to

obtain optimal simulation results. Based on these findings I formulate bias guidelines which should be

considered before applying contact-guided REX MD for research studies. Section 4.2 focuses on a study

to determine optimal parameters for the applied sigmoid potential, resulting in a distance-dependant

attractive force between biased contact pairs. I investigate the potential’s conformation-guiding strength

for different parameters λ and r0 when applied on purely α-helical or β-sheet structures. By comparing

the resulting structure quality of each individual REX trajectory, I can infer an optimized bias potential.

37
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4.1 Bias-Quality Study

This section introduces contact-guided REX MD as a method to generate native-like protein structures.

The presented “prototype” study is used to demonstrate the benefits of contact-guided REX MD over

regular MD. A systematic analysis of over 28 REX simulations using different bias quality allows to

assess the bias influence and extract guidelines for an optimal performance. First, I outline the study

concept in 4.1.1 where I lead into the main motivation, explain the used bias-quality variations and

introduce the studied protein systems. Next, in 4.1.2 I provide a detailed overview of the generated

structure ensembles for Trp-Cage as my first test protein. Using two different metrics (root-mean-square-

deviation (RMSD) and global distance test (GDT)), I am comparing the individual REX simulations

against each other and identify the optimal combination of used bias contacts and true-positive rate.

Analogously, section 4.1.3 contains analyses for my second test system, the Villin Headpiece. At last I

conclude all my findings in 4.1.4 by reviewing the most influential effects when considering bias contacts

and present bias guidelines to obtain optimal performance during REX MD. This section is based on my

article named “Including residual contact information into replica-exchange MD simulations significantly

enriches native-like conformations” (2020)1, published by PLOS ONE.

4.1.1 Study Concept

It is often uncertain how error-prone available contact information actually is. For instance, theoretic

methods such as direct coupling analysis (DCA)49–51 can predict spatially close residue pairs and assign

them a confidence score. However, even the highest ranking of predicted adjacencies (from now on

referred to as contacts) can contain false-positive cases. Similar to this, contacts derived from, e.g., NMR

can have wrong assignments. For this reason, I investigated how exactly native contact information and

its bias quality affects the results of contact-guided REX MD. More precisely, I performed an extensive

study to analyze the influence of both native (“correct”) and non-native (“wrong”) contact information

with regard to structure refinement. To achieve this I randomly selected contact pairs of known test

structures and generated two lists, each containing only native or non-native contacts, respectively. In a

subsequent step, I constructed different study scenarios by choosing contacts from both lists and specified

the number of used contacts and the true-positive rate (TPR) of each scenario. To quantify the TPR of

selected contact pairs, I consider them as native if they fulfill the two following conditions1:

rij = |ri − rj | ≤ 6Å ≡ rnc, (4.1)

∆ij = |i− j| ≥ 4. (4.2)

Eq. 4.1 defines native contacts with a distance threshold for Cα distances rij being at 6Å for two residues

i and j. Eq. 4.2 on the other hand excludes short-range pairs relative to their sequence position. Such

contacts appear as the main diagonal on the contact map and often correspond to one revolution of a

α-helix, which makes them irrelevant as a bias. By comparing the different scenarios using purely-native

or mixed contacts, I am able to answer the central question: What is the required bias quality for an

improved REX performance?

Starting from an unfolded state, I used different sets of randomly selected contact pairs to enrich REX

MD simulations. I investigated 14 different cases of varying bias quality (cf. Table 4.1), which are

specified by the total number of selected contacts and their true-positive rate (TPR). In order to differ-

entiate the conformation-guiding strength relative to the selected bias contacts, I applied a fixed coupling

parameter of λ = 10 kJmol−1 (see Eq. 3.33) during all simulations.



Contact-Guided REX MD 39

Table 4.1. Variation of bias quality in performance study using contact-guided REX MD 1.
Overview of the 14 REX MD scenarios investigated in the performance study for both test proteins.
Listed are the true-positive rate (TPR) of used contact pairs (CP) in percent, number of restraining
CP used, number of native contacts, and number of non-native contacts. A visualization of the
used contacts can be looked up in appendix Figs. B.1 to B.6.

TPR (%) ref 100 100 100 100 100 75 75 75 75 50 50 50 50
# CP 0 6 12 24 36 48 12 24 36 48 12 24 36 48
# native 0 6 12 24 36 48 9 18 27 36 6 12 18 24
# non-native 0 0 0 0 0 0 3 6 9 12 6 12 18 24

To minimize deviation-effects even further all replicas start in the same unfolded state. Each simulation

generated 250 ns long REX trajectories over a wide temperature range from T0 = 300K to Tmax ≈ 625K.

The extremely large temperature range was chosen intentionally to guarantee sufficient energy and to

overcome any potential energetic barriers. It also encourages large-scale conformational transitions

during each turnaround cycle before cooling down again. However, I primarily focused on analyzing

the lowest-temperature replica because theoretically this is where the lowest-energy states are expected.

Additionally, by comparing all test cases to a reference simulation without any contact information, I

can estimate guidelines for an optimal bias, i.e. the number of required restraints and the resulting

bias strength. The comparison with the reference case also shows how significant contact information

is and to what extent it can guide proteins towards native-like conformations. Lastly, to quantify the

improvement of contact-guided REX MD over regular MD, I performed additional MD simulations with

and without bias.

The study involved two very small and fast-folding proteins, namely Trp-Cage (PDB id: 1l2y182) and

Villin Headpiece (VHP, PDB id: 1vii183). Trp-Cage has only a length of 20 residues and its tertiary

structure consists of an α-helix followed by a turn and a 3/10-helix. This designed mini-protein reaches

folding times of approximately 4µs 184 and is therefore among the fastest folding proteins. Its folding

temperatures are reported to be in the range of 311 to 317K185. Villin Headpiece has a sequence

length of 35 residues and consists of three α helices. Its folding times are in the order of µs186,187,

whereas the folding temperatures are between 339 and 342 K188. Fig. 4.1 illustrates the initial and

native conformations of the used proteins. Used replica temperatures can be found in appendix B.

Other study-related details, such system setup or used hardware, can be looked up in Ref.1.
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Figure 4.1. Protein structures of bias-quality study using contact-guided REX MD.
Initial (A) and native (B) conformation of Trp-Cage with a backbone RMSD difference of 8.8 Å.
Analogously, initial (C) and native (D) conformation of VHP with a difference of 16.2 Å. Initial
conformations were manually selected from short MD simulations at T = 500K due to their
minimal amount of secondary structure motifs. Visualized in pyMOL 189,190. Adapted from Ref. 1

under CC BY 4.0.

4.1.2 Trp-Cage Simulations

Using my modified REX temperature generator (see Eqs. A.5 and A.6), I was able to achieve nearly

constant exchange rates of 16% using 60 replicas over the wide temperature range of 300K to approx-

imately 625K. The difference between the starting conformation, which was used for all replicas, and

the native conformation has a backbone RMSD of 8.8 Å.

A starting point of the discussion can be achieved by comparing the performance of MD and REX MD,

especially under consideration of a bias integration. For this purpose, I looked at the following four

generalized cases:

- MD without bias (“MD ref”)

- MD with perfect bias at 100% TPR and 12 contact pairs (“MD 100% 12cp”)

- REX MD without bias (“REX MD ref”)

- REX MD with perfect bias at 100% TPR and 12 contact pairs (“REX MD 100% 12cp”)

Fig. 4.2 summarizes the comparison of these cases and shows the backbone RMSD time evolution at

the lowest-temperatures. The histograms on the right side of the figure display the RMSD range and

how often each RMSD value occurs. The figure evidently captures the tendencies of the four generalized

cases and indicates the benefits of both the integration of a contact bias and REX MD as an enhanced

sampling method. In the case of the 500 ns long unbiased MD simulation, the RMSD curve shows a

random behavior. As expected, the protein undergoes many conformational changes especially since the

system temperature is close to the reported folding temperature (311-317K185).

https://creativecommons.org/licenses/by/4.0/
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Figure 4.2. Comparison of Trp-Cage MD and REX MD simulations. Backbone RMSD time
evolution at lowest-temperature replica and corresponding histogram with logarithmic count axis.
Values were taken from 500 ns MD and 250 ns REX MD trajectories, respectively. (A) MD
reference simulation without additional bias. (B) MD simulation with 12 native contact restraints.
(C) REX MD reference simulation without additional bias. (D) REX MD simulation with 12 native
contact restraints. Adapted from Ref. 1 under CC BY 4.0.

Due to the histogram we can verify that the simulation contains conformations with RMSDs between 3

and 10.5Å. The highest observed frequency is approximately 7Å, which is just 1.8Å smaller than the

starting value. As soon as the contact bias gets turned on (“MD 100% 12cp” simulation), we can see

a drastic shift towards smaller RMSD conformations. However, due to the nature of MD we can see

that the simulation gets trapped in a conformational state with approximately 4Å for the majority of

the trajectory. When looking at the unbiased REX MD simulation, we can observe a wide ensemble

of structures. In contrast to MD, this simulation already shows many well-refined structures with

RMSDs below 2Å. Similar to before, as soon as the bias contacts are integrated (“REX MD 12% 12cp”

simulation), the distribution of observed conformations shifts towards smaller RMSDs and native-like

structures are significantly enriched. Even though the best observed structures are equally good among

both REX scenarios, we can clearly see that contact-guided REX MD generates trajectories with much

better RMSD statistics. The overall improvements over regular MD justifies the increased computational

costs of contact-guided REX MD resulting from simulating multiple replicas in parallel. Especially when

taking into account that REX MD should theoretically generate native structures in a single run, whereas

regular MD usually requires multiple runs and cannot guarantee good results.

https://creativecommons.org/licenses/by/4.0/
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Figure 4.3. ∆N histograms of Trp-Cage REX MD simulations. Histograms show the enrichment
and depletion of conformations with a particular backbone RMSD at T0 = 300K as compared to the
reference. Histogram bins are defined by the RMSD axis, while the logarithmic ∆N axis illustrates
the count difference between the tested REX MD cases and the REX MD reference simulation
with ∆N = Ncase −Nref . Positive (negative) values corresponding to enrichment (depletion) are
shown in green (red). (A-D) Simulations with 100% TPR and 12, 24, 36, 48 contact pairs. (E-H)
Simulations with 75% TPR and 12, 24, 36, 48 contact pairs. (I-L) Simulations with 50% TPR
and 12, 24, 36, 48 contact pairs. Reproduced from Ref. 1 under CC BY 4.0.

Until now the discussion only considered simulations with perfect bias which consisted only of native

contacts. Theoretically or experimentally derived contact information is however error-prone and the

TPR typically declines with increasing number of contacts (cf. Fig. 7.2). As previously mentioned, a

critical question of this study is: What is the required bias quality for an improved REX performance? A

quantitative and illustrative method to answer this can be achieved by so-called ∆N histograms. Such

histograms display the count difference of backbone RMSDs between all tested REX cases with respect

to the unbiased reference REX simulation, i.e.:

∆N = Ncase −Nref . (4.3)

This means that conformations are occurring more often if ∆N is positive, i.e. such conformations

get enriched. Vice versa, if ∆N is negative then corresponding conformations get depleted. Fig. 4.3

summarizes the performance of all Trp-Cage REX MD simulations by a grid of ∆N histograms, where

each sub-figure corresponds to one case comparison. As evidently shown in Fig. 4.3(A-D), integration of

a perfect bias with 100% TPR leads to a strong enrichment of low RMSD conformations between 1.6 and

https://creativecommons.org/licenses/by/4.0/
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3.0Å, indicated by the green-colored bins. At the same rate, conformations with RMSDs between 3 and

and 11 Å get depleted and appear less often. As expected, this enrichment-effect gets stronger when more

contacts are used. Please note that in case of Trp-Cage, there is almost no difference in simulations using

more than 24 native contacts, which is in the order of the protein length L. Besides, there is no large

gain of native-like folds when the bias exceeds 12 restraints, corresponding to approximately L/2 contact

pairs. The comparison of simulations using mixed bias contacts at 75% TPR shows similar results, as

portrayed by Fig. 4.3(E-H). The main difference to previously discussed cases is, that by integrating 12

or 24 mixed bias contacts we can also observe an enrichment of conformations with around 5Å RMSD.

This unwanted conformation-guiding effect apparently results from the first few non-native contacts used

for the REX simulations. As shown in Fig. B.2A, non-native contacts of the first two contact badges

(visualized by cyan and green squares without grey border) are located far away from the main diagonal.

Such long-range contacts typically are much more important and have a stronger effect for conformation-

guiding effects. Furthermore, here the randomly-selected non-native contacts can also be grouped to a

cluster of restraints. By design of my study, all bias contacts have the same coupling strength. However,

if contact pairs are so close to each other within the contact map, the energetic bias does add up which

increases the attractive force acting on the affected protein segments. In some cases this force can even

become so strong that it traps the protein in specific conformations. Finally, looking at the performance

of the last scenarios with bias restraints at only 50% TPR (cf. Fig. 4.3(I-L)), low-RMSD conformations

get depleted which is contrary to the intention. Simulations with such a bad bias quality show a far

worse RMSD statistics compared to the unbiased reference simulation. Therefore, it is safe to conclude

that contact information with such low quality is inappropriate for the general use-case of contact-guided

REX MD and should be avoided.

“A theoretical edge case occurs for equally contributing native and non-native contacts at 50% TPR.

While half of the contacts (true-positives) would lower the global minimum, the other half (false-

positives) would either lower existing local minima or introduce new unphysical ones. As the global

minimum remains global under these circumstances, obtaining the native state is still possible with the

help of enhanced sampling in REX MD. This edge case is, however, usually not met as the used contacts

are not equally contributing due to the distance dependency” 1 of the sigmoidal bias potential. Besides,

as previously mentioned, clusters of bias contacts can lead to protein structure entrapment in unfavor-

able conformations. To avoid such unwanted effects, it is necessary to analyze the locations of considered

bias contacts, identify potential clusters and adjust the coupling strength of such bias contacts according

to the cluster size.

So far the discussion and presented analyses were solely based on the RMSD metric. RMSD as a

measurement to quantify the similarity of two different protein structures is very popular by researchers

of this field. However, the disadvantage of RMSD-based evaluations is that it strongly correlates with

the largest displacement of the two compared structures. E.g., consider two protein models with a 95%

global alignment and 5% discrepancy resulting from the mobility of a short tail section. In such cases,

the measured RMSD can reach disproportionately large values of multiple Å. Thus by representing the

structure similarity as a single number, it is possible to get a false impression of the alignment quality

even if the majority of both protein structures fits perfectly. One solution to this problem is given by

the global distance test (GDT), which is another structure comparison method similar to RMSD. First,

both considered protein models are spatially aligned. In order to estimate the relation of the structures,

residual Cα atoms are mapped 1:1 and their calculated distances are compared to various cutoffs (0.5

Å, 1.0 Å, .., 10.0 Å). Finally, percentages of Cα distances below considered thresholds are calculated and

used to calculate GDT scores via Eqs. 3.36 or 3.37. These GDT scores range from 0 to 100 and are less

prone to local structural misalignments as compared to RMSD.
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Figure 4.4. Comparison of global distance test (GDT) distributions of Trp-Cage simulations.
Distributions are taken from REX MD and represent either the unbiased reference simulation
(grey) or the biased scenario with 12 contact pairs at 100% TPR (orange). Figure also shows a
selection of percentiles and their corresponding ∆x difference (see Eq. 4.5), visualized by vertical
or horizontal lines, respectively. (A) GDT total score (TS) distributions. (B) GDT high accuracy
(HA) distributions.

For this reason, GDT is often applied in CASP28,29 (Critical Assessment of Techniques for Protein

Structure Prediction), a bi-annual world-wide experiment to rank and compare the accuracy of currently-

applied methods for structure prediction and refinement. In most use-cases it is sufficient to apply the

total score (TS) variant for structure analyses. However, in my case I intend to assess a bias quality

threshold for an optimal performance using contact-guided REX MD. Therefore it is beneficial to con-

sider the high accuracy (HA) variant as well, which can provide additional insight and unveil the limits

of my method with regard to structure refinement precision. To answer this question, I analyzed the

GDTTS and GDTHA distributions for all performed REX simulations at the lowest-temperature replica.

Table 4.2 gives an overview of all performed Trp-Cage simulations and their individual structure refine-

ment performance. This can be achieved by comparing representative GDT percentiles corresponding

to native-like structures. To improve the readability of the table and capture its essence some table cells

are visually modified1. For example, shaded table cells represent improved percentiles Px compared to

the reference REX simulation Px|ref . Such cells satisfy the condition

Px ≥ Px|ref . (4.4)

Additionally, a bold font highlights a significant improvement, which is defined by

Px ≥ Px|ref + w · (P100|ref − Px|ref)︸ ︷︷ ︸
∆x

. (4.5)

Eq. 4.5 defines a relation of Px and a percentile-dependant threshold indicating how much the considered

percentile can improve relative to the reference simulation. The difference ∆x (cf. Fig. 4.4) specifies

the possible improvement range of the x-th percentile based on the reference simulation. Be choosing a

weight factor w, we can define by how much the respective percentiles must increase to be considered

significant. Here, I opted for w = 0.5 and defined a significant increase by 50%. Fig. 4.4 exemplarily

shows the GDT distribution shift of Trp-Cage by comparing a biased REX simulation with the reference

case. According to Table 4.2, observed GDT scores get drastically improved for REX simulations using

contact information with at least 75% TPR. “Here, the TS distribution is clearly shifted from 53.75 to

scores above 96 already at the 80th percentile. This means that 20% of the simulated structures in the

trajectory already adopted conformations which are almost identical to the native fold.
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Table 4.2. Total Score (TS) and High Accuracy (HA) percentiles of Trp-Cage simulations 1.
Overview of observed global distance test (GDT) percentiles. Statistics were taken from trajectories
at T = 300K over 250 ns for REX MD and 500 ns for MD, respectively. Listed are the simulation
method, the true-positive rate (TPR) in percent, used number of restraining contact pairs (CP),
GDT total score percentiles (PTS), and GDT high accuracy percentiles (PHA). Values equal to or
greater than the respective reference are shaded in gray. According to Eq. 4.5 significantly greater
values are bold.

Method TPR (%) # CP PTS
80 PTS

85 PTS
90 PTS

95 PTS
100 PHA

80 PHA
85 PHA

90 PHA
95 PHA

100

REX MD ref 0 53.75 88.75 93.75 96.25 100.00 30.00 67.50 76.25 81.25 98.75
REX MD 100 6 96.25 96.25 97.50 97.50 100.00 80.00 81.25 82.50 85.00 96.25
REX MD 100 12 96.25 97.50 97.50 98.75 100.00 81.25 82.50 83.75 86.25 97.50
REX MD 100 24 97.50 97.50 97.50 98.75 100.00 82.50 83.75 85.00 86.25 97.50
REX MD 100 36 97.50 97.50 97.50 98.75 100.00 82.50 83.75 85.00 86.25 97.50
REX MD 100 48 97.50 97.50 98.75 98.75 100.00 82.50 83.75 85.00 86.25 97.50
REX MD 75 12 95.00 96.25 97.50 97.50 100.00 78.75 80.00 82.50 85.00 98.75
REX MD 75 24 95.00 96.25 96.25 97.50 100.00 77.50 80.00 81.25 83.75 96.25
REX MD 75 36 96.25 96.25 97.50 97.50 100.00 80.00 81.25 82.50 85.00 96.25
REX MD 75 48 96.25 96.25 97.50 98.75 100.00 80.00 81.25 83.75 85.00 97.50
REX MD 50 12 41.25 47.50 85.00 95.00 100.00 16.25 23.75 62.50 77.50 96.25
REX MD 50 24 40.00 42.50 47.50 91.25 100.00 17.50 20.00 23.75 71.25 96.25
REX MD 50 36 36.25 38.75 41.25 43.75 95.00 15.00 17.50 20.00 22.50 82.50
REX MD 50 48 37.50 38.75 42.50 46.25 93.75 15.00 17.50 18.75 23.75 76.25

MD ref 0 33.75 36.25 40.00 43.75 56.25 11.25 13.75 16.25 20.00 32.50
MD 100 12 53.75 55.00 56.25 57.50 68.75 28.75 30.00 31.25 33.75 45.00

HA scores similarly show a significant improvement. It is particularly remarkable that the reference sim-

ulation yielded an exceptional HA score of 98.75.” 1 REX simulations with 50% TPR show much worse

GDT statistics compared to the reference simulations. In accordance with the previous RMSD-based

analyses, we can see that such low-quality bias has a very negative influence for structure refinement. In-

stead of enriching native-like conformations this highly error-prone contact information either populates

unfavorable conformations in a frustrated energy landscape or even traps the protein. All observations

are equally true for both TS and HA distributions. According to Table 4.2, the best observed scenario

was achieved with 12 contact pairs at 75% TPR when considering the HA percentiles. Note however,

that there is no meaningful difference between the simulations with 75% or 100% TPR bias. In the

case of Trp-Cage as a test system, these scenarios should be considered equally good as long as it is

possible to confidently select well-refined structures out of the REX-generated ensembles. Besides, these

simulations generated almost perfect native structures for more than 20% of the entire REX trajectory

making an additional investigation of their local accuracy unnecessary.

4.1.3 Villin Headpiece Simulations

Analogously to the previous simulations, REX temperature distributions were obtained via the modified

REX temperature generator according to Eqs. A.5 and A.6. However, due to the increased system size

more replicas were necessary to obtain nearly constant exchange rates across all replicas. Using the

distribution growth parameter k = 0.0065, it is able to generate a distribution ranging from 300 K to

625K over 100 replicas while maintaining equally-good exchange rates as for Trp-Cage. This time, the

backbone RMSD between initial and target structure was much higher at 16.2Å. Looking at the RMSD

time evolution of the regular MD simulation (cf. Fig. 4.5A), we can see that the structure quickly

collapses to approximately 8Å. Only minimal fluctuation around this value indicate that this protein

conformation is fairly stable for VHP.
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Figure 4.5. Comparison of VHP MD and REX MD simulations. Backbone RMSD time evolution
at lowest-temperature replica and corresponding histogram with logarithmic count axis. Values
were taken from 500 ns MD and 250 ns REX MD trajectories, respectively. (A) MD reference
simulation without additional bias. (B) MD simulation with 24 native contact restraints. (C) REX
MD reference simulation without additional bias. (D) REX MD simulation with 24 native contact
restraints. Adapted from Ref. 1 under CC BY 4.0.

As expected, short conformational transitions do happen before the protein falls back to 8Å. During the

last 50 ns of ths 500 ns long MD simulation, the protein succeeds to adapt a lower energy state at around

4-5Å. Next, to assess the importance of a contact-driven bias we can see that the MD simulation with 24

native contact pairs immediately guides the protein towards a 4Å RMSD configuration, as displayed in

Fig. 4.6B. One can observe that the protein gets trapped during the simulation and cannot overcome local

energetic barriers at a fixed temperature of 300K through the whole simulation. Here, the best observed

RMSD value was 3Å while the normal MD simulation only reached 4 Å. The comparison of both REX

cases shows yet again a significant improvement of the RMSD statistics, as confirmed by the histograms

of Fig. 4.5(C-D). Here, the first case corresponds to the REX simulation without bias. The application

purpose of REX as an enhanced sampling technique is shown clearly, the conformational search space

is broad but reaches conformations up to 2Å RMSD. During the last scenario, a purely-native bias

consisting of 24 contact pairs is effective and guides the protein as intended towards native-like folds.

Now the majority of occurring structures are between 2 and 4 Å. This observation shows yet again how

powerful REX is when coupled with a contact-driven bias potential. Similar to Trp-Cage, this great

performance improvement is justifying the additional computational costs resulting from the parallel

running replicas.

https://creativecommons.org/licenses/by/4.0/
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Figure 4.6. ∆N histograms of VHP REX MD simulations. Histograms show the enrichment and
depletion of conformations with a particular backbone RMSD at T0 = 300K as compared to the
reference. Histogram bins are defined by the RMSD axis, while the logarithmic ∆N axis illustrates
the count difference between the tested REX MD cases and the REX MD reference simulation
with ∆N = Ncase −Nref . Positive (negative) values corresponding to enrichment (depletion) are
shown in green (red). (A-D) Simulations with 100% TPR and 12, 24, 36, 48 contact pairs. (E-H)
Simulations with 75% TPR and 12, 24, 36, 48 contact pairs. (I-L) Simulations with 50% TPR
and 12, 24, 36, 48 contact pairs. Reproduced from Ref. 1 under CC BY 4.0.

Following the same discussion path as previously, Fig. 4.6 shows a comparison of all tested VHP REX MD

simulations via ∆N histograms. Test cases using perfect, i.e. purely native, contact bias are illustrated

in Fig. 4.6(A-D). Here, significant improvements are achieved for all simulations. Conformations between

approximately 2-4Å are primarily strongly enriched. In case of only 12 bias contacts, we can additionally

observe an increase of less-desired protein conformations at about 6-7Å RMSD. Note that scenarios with

at least 24 contact pairs show very similar results, meaning that additional restraints yield no benefit

to the simulation. This means also, that this is the optimal threshold for VHP REX simulations when

guided by a perfect bias at 100% TPR. Scenarios with mixed contacts at 75% TPR, indicate a good

performance increase as well but less distinct as compared to its Trp-Cage counterparts (cf. Fig. 4.3(E-H)

and Fig. 4.6(E-H)). Since VHP is larger and manifests into a more complicated native fold, the pathway

leading into such conformations is not as smooth and erroneous restraints seem to have a relatively

strong influence. Nevertheless, all mixed cases were able to enrich native-like conformations at a high

rate. Simulations with 12, 24 and 36 contact pairs show qualitative meaningful step-wise improvements

of the overall RMSD statistics.

https://creativecommons.org/licenses/by/4.0/
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Table 4.3. Total Score (TS) and High Accuracy (HA) percentiles of VHP simulations 1. Overview
of observed global distance test (GDT) percentiles. Statistics were taken from trajectories at
T = 300K over 250 ns for REX MD and 500 ns for MD, respectively. Listed are the simulation
method, the true-positive rate (TPR) in percent, used number of restraining contact pairs (CP),
GDT total score percentiles (PTS), and GDT high accuracy percentiles (PHA). Values equal to
or greater than the reference values are shaded in gray. According to Eq. 4.5 significantly greater
values are bold.

Method TPR (%) # CP P 80
TS P 85

TS P 90
TS P 95

TS P 100
TS P 80

HA P 85
HA P 90

HA P 95
HA P 100

HA

REX MD ref 0 50.00 53.47 57.64 63.89 79.17 27.08 30.56 34.72 40.98 58.34
REX MD 100 6 66.67 68.75 71.53 75.00 87.50 43.06 45.14 47.92 51.39 68.06
REX MD 100 12 61.11 63.19 65.97 69.44 86.11 37.50 39.58 42.36 45.84 65.28
REX MD 100 24 71.53 73.61 75.00 77.08 88.89 47.92 49.30 51.39 53.47 68.75
REX MD 100 36 71.53 73.61 75.00 77.08 88.89 47.92 50.00 51.39 54.16 70.83
REX MD 100 48 72.22 73.61 75.00 77.08 87.50 48.61 50.00 51.39 53.47 68.06
REX MD 75 12 47.92 50.70 54.17 59.02 87.50 24.30 27.08 30.56 34.72 65.97
REX MD 75 24 49.30 54.86 59.02 70.14 84.72 25.00 30.56 34.72 45.83 64.58
REX MD 75 36 68.06 71.53 74.31 77.08 88.89 43.75 47.22 50.00 53.47 70.83
REX MD 75 48 62.50 65.97 69.44 73.61 85.42 38.89 42.36 45.83 49.30 63.89
REX MD 50 12 34.03 38.89 44.44 50.70 79.17 13.20 17.36 21.53 27.08 55.56
REX MD 50 24 31.25 34.03 36.80 44.45 73.61 10.42 11.81 14.58 22.22 50.00
REX MD 50 36 28.47 31.94 36.11 40.28 70.83 9.03 11.11 14.58 18.06 49.30
REX MD 50 48 28.47 30.56 34.03 36.81 59.72 9.03 9.72 12.50 15.28 36.11

MD ref 0 25.70 27.08 28.47 35.42 50.00 9.03 9.72 11.11 13.19 26.39
MD 100 24 41.66 42.36 43.06 44.44 57.64 17.36 18.06 18.75 20.14 32.64

While the first case primarily enriches folds between approximately 5 and 8Å, instead the highest

enrichment is observed for conformations between 2 and 3.5Å when using 36 mixed restraints. By raising

the number of used restraints to 48, the enrichment of low-RMSD conformations is further improved.

This relative improvement however is negligible, meaning that the optimal number of considered bias

contacts with 75% TPR is around 36 for VHP. Lastly, REX simulations using low-quality bias at only

50% TPR are summarized in Fig. 4.6(I-L). Similar to the TPR-Cage simulations, the high ratio of non-

native contacts influences the conformation-guiding in a negative way. Here, both very low and very

high RMSD conformations are depleted while structure ensembles between approximately 6 and 8.5 Å

are enriched. This validates yet again that not all contacts are equally important and a 1:1 ratio of

correct and incorrect bias contacts is disadvantageous for general use.

An overview of the GDT-based analysis including TS and HA percentiles above 80% is given by Table 4.3.

While previously Trp-Cage managed to reach scores of GDTTS = 100 and GDTHA = 98.75 during the

reference REX simulation, VHP only gets up to GDTTS = 79.17 and GDTHA = 58.34. This is already

a drastic difference between the baseline performance of REX MD considering that both proteins are

quite small and VHPs structure basically contains only one additional α-helix. In case of VHP, the 80th

percentile starts with 50 for TS and 27.08 for HA. The indication of significantly improved values via

shading and using bold font (see Eqs. 4.4 and 4.5) clearly shows that REX MD benefits from a restraints

with 75% TPR or more. In such cases, the biased variant immensely outperforms the normal REX

simulation. In compliance with the previous RMSD-based evaluation, application of highly erroneous

restraints decreases the refinement probability which is undesired. Considering only realistic scenarios,

i.e. simulations with 75% TPR, then the best performance was achieved for 36 contact pairs which is in

the order of VHPs sequence length.
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Figure 4.7. Local accuracy of VHP REX MD simulations (Part 1). The 30 best structures
according to high accuracy (HA) score. Each matrix row represents one model and is color-coded
based on pairwise Cα distances between the model and native fold. This visualization allows to
clearly express the refinement-level of each individual protein section. Corresponding global distance
test values, i.e. total score (TS) and high accuracy (HA), are shown on the left. (A) Reference
simulation without additional bias. (C) Simulation with 36 contact pairs at 100% TPR. (B+D)
Tertiary structure of highest-ranking model visualized in the same colors as the local accuracy
matrix to the left. Reproduced from Ref. 1 under CC BY 4.0.

Finally, the investigation regarding the local accuracy of the best-refined VHP structures is depicted

in Figs. 4.7 and 4.8. Here, each high-scoring model is fitted against the native reference structure and

pairwise Cα distances are measured. By depicting the model as a color-coded row based on the distances,

it is possible to quickly assess how well refined each individual protein section is. Each local accuracy

figure consists of the 30 highest-scoring protein structures ranked by HA. As shown in Fig. 4.7A, we

can see that the reference REX simulation can generate VHP structures with HA scores up to 58.34.

These models are extremely well refined for the residues 55 to 65. Getting close to either terminus of the

protein makes the displacement deviate more. According to our expectations the local accuracy is very

poor for highly flexible regions, such as the protein tails. Nevertheless, this result should not be seen

negative in any way because a protein’s function is usually not related to its structural end sections. The

integration of 36 native restraints into REX generates the 30 best models according to Fig. 4.7C. The

highest observed HA value is now 70.83 and the majority of the protein is exceptionally well refined.

https://creativecommons.org/licenses/by/4.0/
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Figure 4.8. Local accuracy of VHP REX MD simulations (Part 2). The 30 best structures
according to high accuracy (HA) score. Each matrix row represents one model and is color-coded
based on pairwise Cα distances between the model and native fold. This visualization allows to
clearly express the refinement-level of each individual protein section. Corresponding global distance
test values, i.e. total score (TS) and high accuracy (HA), are shown on the left. (A) Simulation
with 36 contact pairs at 50% TPR. (C) Simulation with 36 contact pairs at 50% TPR. (B+D)
Tertiary structure of highest-ranking model visualized in the same colors as the local accuracy
matrix. Reproduced from Ref. 1 under CC BY 4.0.

This time only one of the two protein ends still indicates a local misalignment above 4Å, while the other

gets improved to values between 1-2Å. A lowered bias-quality of 36 restraints at 75% TPR does not affect

the general quality of the highest-scoring structures. The reviewed structures, as shown in Fig. 4.8A,

are as good as the structures with a 100% TPR bias. Lastly, Fig. 4.8C depicts the negative examples

of the comparison as the C-terminal end section gets distorted. In this case, non-native long-range bias

contacts are clustered within the contact map. Even though the sigmoid potential is designed in such

a way that it should minimize guiding-effects of incorrect bias signals, the occurring pair distances are

within the range where the energetic penalty results in a sufficiently large force. This combined with

the contact clustering makes the attractive force so strong that the corresponding α-helix gets partially

unwound.

https://creativecommons.org/licenses/by/4.0/
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4.1.4 Summary

To recap, contact information derived by theoretical or experimental methods is valuable for in-silico

structure prediction and refinement protocols. On its own, it does not contain enough information to

fully determine a protein’s 3D structure. However, when combined with other methods such as replica

exchange, it can drastically boost the overall performance under the right conditions. In this case,

contact information was integrated as a bias via a sigmoidal potential. The additional restraints are

applied only on Cα atoms of considered contacts and the resulting attractive force guides the protein

towards native-like structures. REX as an enhanced sampling technique can generate large ensembles

similar to a random walk in conformation space. The generated structures contain lots of valuable

information and can be used for all sorts of physically-meaningful analyses.

The main motivation of my applied method is generate native-like folds within a single run. The

integrated bias guides the folding process during REX cycles which reduces the sampling space, speeds

up the whole process and lowers computational costs. As a proof of concept I compared the performance

of four generalized cases, i.e. normal MD, biased MD, normal REX MD and biased REX MD. Contact-

guided REX MD drastically outperforms all other cases. Not only did the method generate near-native

structures in a shorter period of time, it also allowed the protein to occupy such states for the majority

of the trajectory. This significantly increases the chance of observing and selecting such structures.

Additionally, I compared different scenarios of varying bias-quality using up to 48 contacts at 100%,

75% and 50% true-positive rate. By additionally running one reference simulation, i.e. REX without

bias, I was able to compare the individual performance changes with respect to the reference case.

During the performance analyses I applied two different metrics, namely RMSD and GDT, to measure

structural similarity with the already known protein structures. To summarize, all REX scenarios with

100% TPR and 75% TPR outperformed the reference case by a large margin. For both tested proteins,

these simulations generated much more native-like structures during the same period of time. In case

of 50% TPR however, the comparisons show a significant performance loss which makes such low-bias

quality unsuitable for the applied use-case. This also proves that incorrect mapping of coevolutionary

contacts impacts the performance of contact-guided REX MD extremely negative. Furthermore, bias

contacts which are close located on the contact map can be considered as a cluster. Due to their spatial

proximity the energetic penalty does add up, increasing the attractive force between the contact pairs

and potentially leading to undesired protein trapping. By carefully comparing both RMSD and GDT

statistics of the realistic scenarios, i.e. cases with TPRs unequal to 100%, the best performance gain

was achieved for Trp-Cage with 12 contact pairs at 75% TPR, and for VHP with 24 contact pairs at

75% TPR, respectively. With a sequence length of L = 20 for Trp-Cage and L = 35 for VHP, I conclude

that the best performance can be achieved for N = L
2

to L contacts. Also note that in this study all

REX MD simulations outperformed the MD simulations regardless of the total number of used contacts

or their TPR (cf. Tables 4.2 and 4.3).

Overall, this method can be directly applied, does not require fine-tuning of numerous parameters and

yields high-quality results as long as the bias has a TPR ≥ 75%. Even with false contact information, this

method greatly enriches native-like conformations and can be used as a refinement tool while generating

large structural ensembles. Additionally, it is easy to combine different sources of contact information

into REX, enabling it as a hybrid tool for joint data interpretation.
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Figure 4.9. True-Positive Rate Analysis of two contact-deriving methods. Number of contacts
are scaled to protein length L, which facilitates the comparison. PDB ids of selected proteins are
shown in the legend box. Additionally, a 75% TPR threshold is visualized by a horizontal dashed
line. Contact information was derived from (A) Direct coupling analysis 49–52 or (B) ResTriplet 97,98.

4.1.5 Learned Lessons: Bias Guidelines

As a general rule of thumb, the following guidelines should be considered to achieve optimal results with

contact-guided REX MD:

1) Maximize the true-positive rate.
Use only contact information obtained by a reliable source or method. The true-positive rate is the

biggest impact factor. For methods such as DCA, the quality of predicted contact pairs is highly

correlated with the quality of the multiple sequence alignment, i.e. number of effective sequences50

or used alignment algorithm87,88.

2) For a safe approach apply N ≈ 3
4
L contacts.

If the contact-deriving method is very accurate then more contacts can be used. Fig. 4.9 exemplarily

compares the contact prediction of DCA (statistical method) vs. ResTriplet (ML method).

3) Illustrate considered bias contacts in a contact map.
Adjust the coupling strength of clustered bias contacts to prevent conformation trapping/enforcing.

4) Long-range contacts have a stronger influence than short-range contacts.
Sometimes the highest ranked bias contacts are primarily short-ranged. In such cases it may be

advantageous to split contact information into two sets: short-ranged and long-ranged. Considered

bias contacts can then be integrated with a specific ratio of short-ranged to long-ranged contacts.
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Figure 4.10. Comparison of contact predictions by DCA and ResTriplet (pdbid: 1a70, N = 1.5 L).
Depicted are native contacts (grey), true-positive predictions (green) and false-positive predictions
(red). DCA predictions are visualized on the upper left side and ResTriplet predictions on the lower
right side. Comparison is made for 1.5 L contacts (L: sequence length).

Figure 4.11. Comparison of contact predictions by DCA and ResTriplet (pdbid: 1f21, N = 1.5 L).
Depicted are native contacts (grey), true-positive predictions (green) and false-positive predictions
(red). DCA predictions are visualized on the upper left side and ResTriplet predictions on the lower
right side. Comparison is made for 1.5 L contacts (L: sequence length).
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Lastly, I want to point out that contact prediction methods also have certain tendencies in their prediction

pattern. To illustrate this I created contact maps containing both DCA and ResTriplet predictions

for eight different proteins. Resulting comparisons are visualized in Figs. 4.10 and 4.11 for a total

of 1.5 L contact predictions, with L being the protein’s sequence length. As shown in these contact

maps, DCA predictions tend to have a relatively high ratio of short-range contacts which are close to

the main diagonal. Predicted contacts also seem to be spread out relatively even among the contact

map. ResTriplet on the other hand seems to prioritize long-range contacts and manages to capture

them correctly with a high accuracy. However, these predictions are also typically clustered. Additional

comparison cases can be found in appendix Figs. B.9 to B.22. The application of either of these methods,

i.e. DCA or ResTriplet, would require a different handling according to the presented bias guidelines. For

example, the proposed safe approach is better suited for DCA-derived bias contacts, primarily because

the true-positive rate of DCA is typically lower than for ResTriplet (cf. Fig. 4.9). Furthermore, DCA

contacts can often be implemented with an equal coupling strength λ, since they are evenly spaced

out. The handling of ResTriplet contacts would look quite different: Here it is safe to apply many

more contacts to bias the simulation but it is absolutely necessary to reduce the coupling strength due

to contact clustering. Based on these two application examples, it is best to first study the applied

prediction method and its tendencies before following the presented guidelines for contact-guided REX

MD.
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4.2 Bias-Potential Optimization

This section covers a study to determine optimized parameters for the applied sigmoid bias potential,

resulting in a distance-dependant attractive force between biased contact pairs. Section 4.2.1 introduces

the five tested bias potentials and the used target structures, consisting of one α-helical and one β-sheet

protein. Next I assess the potential’s conformation-guiding effects of each scenario in section 4.2.2.

More precisely, I analyze the resulting GDT distributions based on the parameter choices of λ (coupling

strength) and r0 (maximum force distance). Lastly, I summarize my findings in section 4.2.3 and infer

optimal bias parameters that yield the best protein structures in contact-guided REX MD.

4.2.1 Study Concept

The shape of the underlying bias potential plays a major role in the performance of contact-guided

REX MD. In order to find an optimal parameter range I investigated multiple potentials by varying

either the coupling strength λ or the maximum force distance r0. According to Eqs. 3.33 and 3.34, the

sigmoid shape can also be adjusted by the α parameter. It affects the S-shape of the potential, i.e. how

fast it transitions from low values to high values. High α values correspond to shapes similar to a step

function, whereas low α values transform it into a linear ramp. However, according to my intention I

only applied α = 25Å−1, as it resembles a smooth bias activation. Fig. 4.12A gives an overview of all

tested potentials and Fig. 4.12B of their resulting forces. Note that λ defines the upper limit of the

sigmoid function and thus the overall bias strength. r0 on the other hand defines the position of the

potential’s inflection point, where the resulting force reaches its maximum strength. The choice of r0

also affects the effective range, where contact restraints can experience a pulling force.

These potentials were tested on two mid-sized proteins, which are depicted in Fig. 4.13. The first test

protein is Nanog homeodomain (PDB id: 2vi6191). It consists of three α-helices and has a length of

62 residues. The second test protein, Yes SH3 domain (PDB id: 2hda192), has a β-sheet structure and

a length of 64 residues. Starting structures were obtained via de novo folding using pyRosetta (cf.

chapter 5). To bias the simulations, I applied exactly 40 bias restraints at 80% TPR, which were derived

with direct coupling analysis49–51. Integrated bias contacts are visualized in appendix Figs. C.1 and

C.2. Each REX simulation yielded a trajectory of 500 ns.

Figure 4.12. Shape of investigated bias potentials and their resulting force. Sigmoid bias potential
for different coupling strengths λ (kJmol−1) and maximum force distances r0 (Å), as defined by
Eqs. 3.33 and 3.34. (A) Bias potential V(r). (B) Bias force dV(r)/dr.
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Figure 4.13. Protein structures used for bias-potential optimization. Initial (A) and native (B)
conformation of Nanog homeodomain (PDB id: 2vi6 191) with a difference of 7.5 Å. Analogously,
initial (C) and native (D) conformation of Yes SH3 domain (PDB id: 2hda 192) with a back-
bone RMSD difference of 6.7 Å. Initial conformations were folded de novo (cf. chapter 5) with
PyRosetta 193. Visualized in pyMOL 189,190.

4.2.2 GDT Distribution Analyses

In order to determine the best parameter choices, I decided to investigate the structure quality of each

REX trajectory measured by GDT. My evaluation is straight forward and simply compares the GDT

distributions that were obtained during the 500 ns long REX simulations. I primarily looked at the

highest scores by calculating GDT percentiles between 80% and 100% in steps of 5%. The comparison

of these values directly shows which distribution is more favorable, allowing me to infer optimized

potential parameters for a general use-case.

Fig. 4.14 compares the GDT TS distributions based on different λ parameters. Similar to this, GDT

HA distributions are shown in appendix Fig. C.3. As expected, it is very important to find an adequate

balance of bias strength and number of used bias contacts in order to obtain a high ratio of well-refined

structures. As exemplarily shown for Nanog homeodomain in Fig. 4.14A, a weak coupling strength

of λ = 6 kJmol−1 translates into few high-scoring GDT structures. Here, the 80th GDT percentile

corresponds to 61.8, the 90th percentile to 76.3 and the best achieved GDT score was 92.7. While the

obtainable structure quality is expected to increase in longer simulations, this is not optimal for the

intended use-case. Instead, increasing the coupling strength up to λ = 10 kJmol−1 (corresponds to a

weak hydrogen bond) greatly improves the performance. The corresponding GDT distribution yields

many more structures of high-quality which lowers the required computing costs of REX. In this case,

the 80th percentile raises to 80.0, the 90th percentile to 85.0 and the 100th percentile to 95.0. When

further increasing the coupling strength up to λ = 14 kJmol−1 (cf. Fig. 4.14B), we can observe a slight

drop in performance. The 80th, 90th and 100th percentiles are now 77.3, 82.7 and 96.4, respectively.
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Figure 4.14. GDT TS distributions based on λ parameters. Vertical lines represent the 80th and
90th percentile. (A+B) Nanog homeodomain (PDB id: 2vi6 191). (C+D) Yes SH3 domain (PDB
id: 2hda 192).

Note that the highest observed value got slightly improved but from a statistical point of view the

underlying GDT distribution got worse. This indicates that the effective bias strength reached a limit

where certain conformations get enforced. In other words, contact-guided REX is starting to impose

conformations and not just guide towards them. Since Nanog homeodomain is an all α-helical structure,

integrated bias contacts are typically spread out on the contact map, as shown in Fig. C.1. Therefore,

the observed protein entrapment is not as strong.

Similar tendencies are observed for the second protein, as depicted by Figs. 4.14(C+D). The REX

simulation with λ = 6 kJmol−1 yields an 80th percentile of 54.1 up to an 100th percentile of 80.9. In

this case, the best results were also achieved with λ = 10 kJmol−1, which reached a GDT TS of 87.2.

I want to emphasize that the distribution change from λ = 10 kJmol−1 to λ = 14 kJmol−1 indicates a

stronger protein entrapment resulting from the bias potential as compared to the other protein. Since

Yes SH3 domain is a β-sheet protein, integrated bias contacts are typically close to each other on the

contact map (cf. Fig.C.2). These can be viewed as a cluster, meaning that the bias potential adds up

which results in a stronger attractive force which in turn enforces protein conformations.

The r0 parameter variation and its effect on GDT distributions are shown in Figs. 4.15 and C.4 for the

TS and HA variant, respectively. Overall, the parameters r0 = 12Å and r0 = 16Å yield very similar

structures during REX. The observed GDT percentiles show a minor improvement with r0 = 16Å for

Nanog homeodomain (Fig. 4.15A) and a distinct improvement for Yes SH3 domain (Fig. 4.15C).

Increasing r0 up to 20Å significantly impacts the GDT distribution. As shown by Figs. 4.15(B+D), the

obtained structure quality drops for both proteins, with a bigger change observed for Yes SH3 domain.
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Figure 4.15. GDT TS distributions for different r0 parameters. Vertical lines represent the 80th
and 90th percentile. (A+B) Nanog homeodomain (PDB id: 2vi6 191). (C+D) Yes SH3 domain
(PDB id: 2hda 192).

The larger r0 parameter increases the range at which integrated bias contacts are pulled together as

well as the distance of maximum force. However, this mainly influences the interaction with false-

positive bias contacts. As previously shown in section 4.1, such contacts have a very negative impact on

contact-guided REX, which is reflected in the observed distribution shifts.

4.2.3 Summary

In this section I performed various contact-guided REX simulations using different bias potentials.

Meaningful GDT percentiles that were measured for each scenario are summarized by Table 4.4. Shaded

cells indicate the highest values with respect to the variation type and protein. Based on all tested

scenarios, the best results were achieved with the bias parameters λ = 10 kJmol−1 and r0 = 16Å. The

table also shows that it is important to perform a contact map analysis prior to the REX simulation.

Depending on the location of considered bias contacts, the coupling strength λ should be adjusted to

compensate clustered bias contacts. This was especially observed for the β-sheet protein, i.e. Yes SH3

domain. Furthermore, individual bias strengths should be in the order of a weak hydrogen bond, which

corresponds to approximately λ = 10 kJmol−1 for a single bias contact. Large r0 parameters should be

avoided, as they primarily influence the attractive force between false-positive bias contacts due to the

increased range. r0 parameters below r0 = 16Å yield very similar results but slightly favor r0 = 16Å,

as shown for both proteins. The statistical comparison of GDT percentiles also indicates that α-helical

structures yield better results as compared to β-sheet structures. Nevertheless, both systems could

achieve highly native-like conformations with GDT TS values above 80 in all cases, except for Yes SH3

domain during the bias application with r0 = 20Å.
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Table 4.4. GDT percentiles during study to optimize the sigmoidal bias potential. Upper-half
values correspond to λ-variation and lower-half values to r0-variation. Shaded cells correspond
to the highest values with respect to the variation type and protein. Listed are the PDB id,
coupling strength λ, s-turn distance r0, and selected GDT total score (TS) and high accuracy
(HA) percentiles.

PDB id λ (kJmol−1) r0 (Å) P 80
TS P 85

TS P 90
TS P 95

TS P 100
TS P 80

HA P 85
HA P 90

HA P 95
HA P 100

HA

2vi6 6 16 61.82 64.09 67.28 76.36 92.73 38.18 40.46 44.54 53.64 80.00

2vi6 10 16 80.00 81.82 85.00 88.64 95.00 57.73 60.46 64.09 69.09 84.09

2vi6 14 16 77.28 80.00 82.73 86.36 96.36 54.55 57.72 61.36 66.36 86.82

2hda 6 16 54.09 56.31 58.55 63.01 80.86 33.81 36.29 38.77 42.90 65.24

2hda 10 16 63.07 66.36 69.66 72.96 87.24 41.81 44.19 46.57 50.14 71.60

2hda 14 16 58.69 60.53 64.22 71.49 83.56 39.93 42.55 45.19 50.46 68.02

2vi6 10 12 79.54 81.36 83.64 86.36 94.54 56.82 59.54 62.72 66.82 82.73

2vi6 10 16 80.00 81.82 85.00 88.64 95.00 57.73 60.46 64.09 69.09 84.09

2vi6 10 20 75.46 78.18 80.46 83.64 91.82 52.73 55.91 59.09 62.27 78.18

2hda 10 12 58.00 60.95 65.20 68.84 84.62 38.21 40.44 43.77 47.10 64.90

2hda 10 16 63.07 66.36 69.66 72.96 87.24 41.81 44.19 46.57 50.14 71.60

2hda 10 20 49.07 51.46 54.40 58.61 76.53 33.52 35.83 38.86 42.78 60.51





5
Starting-Structure Generation

This chapter covers how to generate and optimize the starting conformations of each individual replica for

contact-guided REX MD. In section 5.1 I briefly discuss why replicas should start with different starting

conformations and how it provides additional pathways towards the native state. Furthermore, I show

a method to quickly generate a broad spectrum of unique starting structures (“decoys†”). In section 5.2

I investigate correlations between applied energy mappings and obtained refinement levels of generated

decoys. I compare the overall performance of the applied de novo folding algorithm and test how reliable

the energy mapping is based on a set of seven different protein models. In section 5.3 I explain what

should be considered during the final decoy selection and present two different approaches. Additionally,

I perform some detailed analyses on the resulting decoy selections and compare their quality with regard

to the intended use-case. Lastly, in section 5.4 I summarize my findings and draw a conclusion on the

entire topic of starting-structure generation.

5.1 De Novo Folding

The systematic REX study in section 4.1 used the same starting conformation for all replicas. I ob-

tained these conformations by heating up the proteins in normal MD simulations with explicit water at

500K. The final selection was made based on high RMSD values with respect to the native fold while

prioritizing minimal remains of secondary structure motifs. This choice was done intentionally, as I

wanted to assess the influence of used bias restraints and find an estimated bias-quality threshold for

optimal REX performance. However, it is reasonable that the performance of REX is dependant on the

starting conformations and their similarity with respect to the native state. Generally speaking, typical

applications of contact-guided REX MD should strongly benefit from varying starting conformations.

†decoy: lowest-energy structure of a MC trajectory194

61
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Figure 5.1. Concept of fragment insertion during de novo folding algorithm. The fragment library
consists of fragments, which correspond to tertiary structure segments of experimentally determined
structure models. Therefore, each fragment library depends on multiple sequence alignments and
knowledge of sequentially similar structures. During fragment insertion, according sections (red,
green and blue) of the newly generated protein model get transformed into the shape of library
fragments. Licensed by Arthur Voronin under CC BY-SA 4.0.

This diversification alleviates starting conditions and increases the accessible sampling space at the

beginning, which opens up additional pathways to the native fold. Otherwise it would require hundreds of

nanoseconds of trajectory time and multiple turnaround cycles to get access to the same broad spectrum

of protein structures. Additionally, starting-conformation bias gets reduced and false-positive contacts

do not affect each replica in the same way. This increases the chance that some replicas may adapt

conformations by partially negating erroneous bias restraints. In the end, best results will be achieved

for simulations which suppose a good balance of diversified starting conditions and a sufficiently strong

bias with a high true-positive rate.

One of the best methods to generate unique starting structures (decoys) is de novo folding, i.e. by starting

from sequence. MD simulations with linear protein models however are not reasonable, since these would

require a huge water box and the majority of calculations would be wasted on water interactions. This

would make such simulations computationally extremely demanding. Instead, it is better to perform

Monte-Carlo (MC) simulations. MD simulations rely on physical force fields and generate meaningful

trajectories with femtosecond time steps, which can be interpreted as a slow-motion movie capturing

the atomic movement. MC relies on random moves and allows very large conformational changes to

be condensed into one single move. To some extent, MC trajectories can still be physically meaningful

but this mainly depends on the used protocol and if movement restrictions are applied. MC algorithms

are mainly driven by the principle of energy minimization of biomolecular structures. Each iteration

compares assigned energy values of previous and new configuration and accepts the changes if they are

favored, according to the Metropolis criterion195. Nevertheless, many algorithms still apply movement

restrictions, e.g. by limiting dihedral angle changes to a specified threshold. One of the most famous

MC-based software is Rosetta196,197, which offers many algorithms for computational modeling and

analyses of proteins or RNAs.

During my studies I utilized PyRosetta193,194, which allows an interactive application of Rosetta via

Python-wrapper functions. To quickly generate unique starting structures of desired protein targets, I

designed a MC de novo folding algorithm with additional fragment insertion, which constructs a new

protein model within approximately 10 to 20 seconds (based on protein length) using a single CPU core†.

Fragment insertion198 is the process where entire pieces of experimentally determined structures, i.e.

the 3D atom locations and their bond orientations, are inserted into the model. Such fragments can be

obtained from different tools that construct a fragment library for the specific target protein.

†Intel Core i7-8700 (6 cores, 12 threads, 3.2GHz)

https://creativecommons.org/licenses/by-sa/4.0/
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Figure 5.2. Overview of the applied de novo folding algorithm during decoy creation with
PyRosetta 193,194. The algorithm can be classified by three stages based on the representation
type: I) FASTA representation (red), II) centroid representation (yellow), III) all-atom representa-
tion (green). Licensed by Arthur Voronin under CC BY-SA 4.0.

These tools heavily rely on multiple sequence alignments of the protein family and additionally consider

already resolved structures. In my case, I obtained fragments with the lengths L = 3 (3-mer) or L = 9

(9-mer) using the Robetta Fragment Server25,199 for my designed MC algorithm. Fig. 5.1 illustrates

the concept of fragment insertion and Fig. 5.2 summarizes the workflow of the de novo folding algorithm.

Starting with a straight protein model based on the FASTA200,201 sequence, the MC algorithm first

constructs the model with a lower resolution using the so-called centroid representation. In the following

steps, fragment insertions and roughly 10000 folding moves are applied. Afterwards the representation

is switched to a higher resolution, i.e. all-atom, and a fast relaxation protocol202 is applied. Finally, the

generated structures, which are usually referred to as decoys, are saved as .pdb files and additional log

files containing the high-resolution Rosetta scores (REF2015 )203,204 are created. As an extra feature, it

is possible to stream the decoys directly to an opened PyMOL189,190 interface during the execution of the

MC algorithm205, providing a first impression of the generated structure ensemble.

The applied de novo folding algorithm code is attached to appendix D. It performs by design very short

folding cycles. It is not supposed to generate highly native structures but instead should create as many

decoys as possible within a short period of time. The primary goal of its application is to quickly create

a sufficiently large ensemble of varying structures in order to select Nrex unique decoys to populate

each individual replica. By doing so, the contact-guided REX MD protocol should become much more

efficient because additional pathways towards the native fold are provided from the very beginning, as

illustrated in Fig. 5.3. In my case, I found it sufficient to generate approximately 5000 decoys with

Nc = 1000 folding cycles and Nr = 10 folding repeats.

https://creativecommons.org/licenses/by-sa/4.0/


Starting-Structure Generation 64

Figure 5.3. Concept of enhanced sampling with unique REX starting conformations. Exemplary
visualization of a protein’s conformation space. Protein conformations are represented in 2D via
dimension reduction of Cα distance matrices onto (X,Y) coordinates. Corresponding energies are
illustrated in different colors and contour levels. Unique starting conformations are depicted by
numbered circles and their possible sampling direction by black arrows. Additionally, low- and
high-energy states are indicated by the native and unfolded conformation, respectively. Licensed
by Arthur Voronin under CC BY-SA 4.0.

5.2 Decoy Analyses

In order to assess the performance of the de novo folding algorithm, I selected seven different test proteins

with varying structure complexity. These proteins were also used in two of my major studies, namely for

the bias-potential optimization discussed in section 4.2 and to evaluate the ensemble-selection algorithms

discussed later in chapter 6. A summary of the used proteins, including their size and the occurring

secondary structure motifs, is provided by Table 5.1. These proteins have sequence lengths between 39

and 92 residues. Four proteins have purely α-helical structures, two consist only of β-sheets and NTL9

is the only test protein with a mixed structure. I decided to order the proteins based on the secondary

structure motifs and also the protein size during the upcoming analysis evaluation. This makes it easier

to compare the different cases and to recognize structure-related patterns or performance differences.

Utilizing the MC folding algorithm, I created a data set of 5000 decoys for each protein target. Each

model was generated with exactly four fragment insertions (3x 3-mer, 1x 9-mer), followed by 10000

folding moves (Nc = 1000 folding cycles, Nr = 10 folding repeats). With these settings it requires

approximately 10 to 20 seconds, based on the sequence length, to generate exactly one decoy. A typical

modern desktop PC with 12 CPU cores and 2 threads per core requires therefore only between 0.6

and 1.2 hours for 5000 decoys if multithreading is utilized. The elapsed wall-time is relatively short

considering that the main intention is to select about 50 to 100 structures out of 5000 generated decoys

and to use them as starting conformations for individual replicas.

https://creativecommons.org/licenses/by-sa/4.0/
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Table 5.1. Overview of proteins used for decoy creation. Table contains the protein name, PDB
id, sequence length and occurring secondary structure (ss) motifs. Ordered by ss motifs and length.

name / description PDB id length ss motifs
BBL 2wxc 47 α

Albumin-binding domain 1prb 53 α

Nanog homeodomain 2vi6 62 α

Lambda repressor 1lmb 92 α

NTL9 (N-terminal of L9 protein) 2hba 52 α, β

WW domain of human Pin1 Fip mutant 2f21 39 β

Yes SH3 domain 2hda 64 β

I started by investigating the correlations between the Rosetta scoring functions and the achieved model

refinement, measured by the global distance test. More precisely, I wanted to validate how reliable

the Rosetta scores are and if this information alone is sufficient to pinpoint high-quality structures.

Furthermore, I was interested in learning if the results are somehow related with occurring secondary

structure motifs of the models. For example, if the applied Rosetta scoring works better for purely

α-helical structures. The correlation of two variables X,Y can be measured by the Pearson correlation

coefficient ρX,Y
206. It is defined by

ρX,Y =
cov(X,Y )

σXσY
∈ [−1, 1] (5.1)

where σX and σY are the standard deviations of X and Y , respectively, and with the covariance207

cov(X,Y ) =
1

n

n∑
i=1

(xi − x̄) · (yi − ȳ) (5.2)

=
1

2n2

n∑
i=1

n∑
j=1

(xi − xj)(yi − yj). (5.3)

This correlation coefficient indicates the linear relation of two variables and ranges between -1 and +1

based on the correlation strength, with the meaning of

ρ = 0: no linear correlation,

ρ = −1: negative correlation, i.e. if X increases then Y decreases,

ρ = +1: positive correlation, i.e. if X increases then Y increases.

Fig. 5.4 compares the GDT vs. Rosetta score correlations on the left side and GDT vs. RMSD correla-

tions on the right side for α-helical protein targets. As expected, we can see a strong negative correlation

between GDT and RMSD values. At first glance, their linear relation appears to get stronger with grow-

ing protein size. Starting with ρ = −0.91 for BBL (L = 47 residues) the correlation coefficient rises

according to amount up to ρ = −0.96 for Nanog homeodomain (L = 62 residues). The only exception

is given by Lambda repressor, which is 92 residues long and shows a correlation of only ρ = −0.89. The

main reason for this observation is that RMSD and GDT are both used to quantify the global alignment

of such a large protein. Here, the values deviate much more since GDT scales better with local misalign-

ments whereas RMSD can get disproportionately large, which affects the correlation. Nevertheless, the

highly linear relation between GDT and RMSD confirms that they are nearly equally good for structure

comparison, such that generalized observations based on one metric can be transferred to the other. Be-

cause GDT-based evaluations are more robust I solely focus on them to estimate the structure-quality

or refinement level of generated decoys.
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Figure 5.4. Correlation analyses of generated decoys (α-helical proteins). Scatter plots visu-
alize the relation of the GDT TS vs. Rosetta score or backbone RMSD. The linear dependency
of two variables is measured by the Pearson correlation coefficient ρ. (A+B) BBL (PDB id:
2wxc 208). (C+D) Albumin-binding domain (PDB id: 1prb 209). (E+F) Nanog homeodomain
(PDB id: 2vi6 191). (G+H) Lambda repressor (PDB id: 1lmb 210).
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Figure 5.5. Correlation analyses of generated decoys (β-sheet proteins). Scatter plots visualize
the relation of the GDT TS vs. Rosetta score or backbone RMSD. The linear dependency of two
variables is measured by the Pearson correlation coefficient ρ. (A+B) N-terminal of L9 protein
(PDB id: 2hba 211). (C+D) WW domain of human Pin1 Fip mutant (PDB id: 2f21 212). (E+F)
Yes SH3 domain (PDB id: 2hda 192).

Observed correlations between GDT and the used Rosetta scoring function (REF2015 )203,204 are less

significant. The scatter plots on the left side of Fig. 5.4 are very bloated, i.e. their correlations are

typically non-linear due to very high standard deviations. In case of Nanog homeodomain (cf. Fig. 5.4E)

we can observe a correlation of only ρ = −0.17. Such decoys are basically uncorrelated with regard to

GDT and the according Rosetta score mappings. However, one exception is given by the albumin-binding

domain, where the correlation is much stronger with ρ = −0.55. Most notably, GDT and Rosetta scores

are always negatively correlated for all tested proteins. This means that from a statistical point of view

low-scoring structures are more likely to have higher GDT values assigned and vice versa. Such behavior

is in accordance with a physical meaningful energy function, where a pathway of energetically favored

structures can be seen as protein folding leading into a global minimum representing the native fold.
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Correlation analyses of the decoys with β-sheet motifs yield very similar observations, as displayed in

Fig. 5.5. The right-sided scatter plots with GDT vs. RMSD show ρ values between -0.81 and -0.86. This

indicates that α-helical structures can be converted between GDT- and RMSD-based mappings more

accurately as compared to β-sheet structures. Additionally, Rosetta score correlations are comparably

low as previously observed for α-helical structures, which is shown on the left of Figs. 5.4 and 5.5. The

observed values range from ρ = −0.14 to ρ = −0.38. Based on this fact, we can conclude that Rosetta

scoring by itself does not provide sufficient information to reliably select high-quality structures out of

the entire structure ensemble. It can be used as an additional indicator to select structures, but on its

own it cannot be used with great confidence to estimate the refinement level of a protein model.

Next, I investigated how to classify the generated decoys and also how to better represent the (dis)-

agreement between decoy energies and their refinement levels. For this purpose, I decided to visualize

each feature via 2D surface plots, which makes it especially easy to compare them. Starting with the

atom positions taken from the decoys, I computed Cα-distance matrices to represent the individual

structures. In a following step I concatenated all matrices and applied a dimension reduction algorithm

called multidimensional scaling (MDS)149. This method converts the input coordinates, in my case the

L × L matrices with L being the sequence length, into (X,Y ) coordinates. Additionally, the algorithm

is designed to conserve distance information. In other words, the distance between two structures and

therefore the difference between Cα distance matrices will be represented as the distance between two

MDS points. This representation is well-suited for structure comparison and to grasp the overall variety

of the generated decoy ensemble. By additionally using either the Rosetta scores or GDT scores as

height information it is possible to generate the intended 2D surface plots. Note that Rosetta scores

do scale with protein length, which is why I intentionally kept their color-scale relative, i.e. it can vary

from figure to figure. GDT scores on the other hand are always mapped between 0 and 100. For this

reason, the applied color-scale for GDT values is fixed and therefore the same for all figures.

Fig. 5.6 shows the energy surface (left side) and the refinement levels (right side) for α-helical decoys.

The energy surfaces of all presented proteins are heterogeneous rugged with many little hills and valleys.

Given the MDS-representation of the decoy structures, I expected to see a much smoother energy surface

with clear separations of low- or high-energy areas. However, this is not the case and the energy

landscapes appear more or less random. As displayed in Fig. 5.6(A+G), BBL and Lambda repressor

have extremely small but distinct global minima located in the middle of the MDS plane. The best

separation of energy states is achieved for the albumin-binding domain (see Fig. 5.6C). Here, the energy

surface is much smoother as compared to the other cases and has a local valley positioned in the left

centered region. Keep in mind that native-like structures are supposed to be located within minima of

the energy surface. Besides, the absolute energy values are not that important for this kind of analysis

but rather if it is possible to locate a distinct local or global minimum.

The surface representing the refinement-quality of the decoys, which is displayed on the right side of

Fig. 5.6, is in line with my expectations. As mentioned previously, MDS conserves difference information

of two structures, i.e. the difference between two structures is proportional to their MDS distance. By

mapping the GDT values to the (X,Y ) coordinates representing the individual decoys, we obtain a

generally smooth landscape. According to this we can also clearly locate regions separating low- and

high-refined structures. The de novo folding algorithm was able to generate decoys with GDT values of

80 for albumin-binding domain, approx. 64 for BBL and Lambda repressor and approx. 48 for Nanog

homeodomain. The location of optimal structures can be precisely located for the first two proteins.

The opposite is observed for Nanog homeodomain, where the valley containing the best structures is

very broad and flat, as visualized in Fig. 5.6F. Here, the majority of structures reach GDTs of around 20
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to 30. Lastly, the GDT surface of Lambda repressor indicates an overall flat surface as well but contains

a few small and deep hot-spots where decoys reach GDTs between 48 and 64.

Note that both Rosetta scores and GDT scores use the same color schemes but with an inverse scaling.

This allows us to directly compare relative changes of both surfaces and comprehend how reliable the

applied Rosetta scoring function really is. A relatively good agreement can be observed for the albumin-

binding domain, as depicted in Fig.5.6(C+D). The energy surface does resemble the GDT surface to

some extent but not with the same level of detail. The local minimum region does overlap in both figures

but its boundaries are much clearer on the GDT surface. In case of BBL and Nanog homeodomain, we

can observe a mixed disagreement between the energy mappings and the according refinement levels.

The visualized color patterns do still resemble each other to some extent. However, the energy surface

is much more random as compared to the relatively smooth GDT surface. BBL’s energy surface also

shows multiple very small local minima, located in the centered and left centered regions. Since these

minima have the same depth, they cannot be used to infer the location of the best decoy structures.

The energy surface of Lambda repressor is also very rugged and random but does have a clear global

minimum at the center of the MDS plane. This position is in agreement with the GDT mapping. In

this case, it is possible to correctly locate the high-refined decoys with the Rosetta score function.

Following the same discussion for the β-sheet structures, Fig.5.7 summarizes the surface plots for NTL9,

WW domain of human Pin1 Fip mutant and Yes SH3 domain. Similar to before, the overall shapes

of the energy landscapes do not meet the expectations. The first protein contains many equally deep

local minima spread across a large portion of the MDS plane, making it impossible to pinpoint any good

structures. The WW domain shows an overall broad and flat valley with a few small spots going even

deeper. A similar-looking energy surface is also shown for Yes SH3 domain. Just looking at such energy

surfaces indicates that the Rosetta scoring function does not provide sufficient information to make a

decisive decoy selection for these proteins.

When looking at the GDT surfaces, we can see that the folding algorithm performs much worse for

β-structures as compared to α-helical structures. NTL9 and Yes SH3 decoys reached GDTs of 48 but

the majority of generated decoys have GDTs below 24. Contrary to that, WW domain decoys reached

extremely high GDT values up to 80 and the majority being at around 40 to 50. However, note that

WW domain is the smallest test protein with a size of only 39 residues. During the setup of this study

I did not adjust the number of fragment insertions, i.e. all proteins were constructed with exactly 3x

3-mer and 1x 9-mer insertions followed by the normal folding cycles. Consequently, WW domain should

be refined for about 50% of the entire structure due to the fragment insertions alone. This is reflected

in the high counts of well-refined decoy structures, as illustrated in Fig. 5.7D.

The agreement comparison between energy surface and refinement levels are especially interesting for

the β-sheet structures. Surfaces which belong to the same protein do actually have a relatively strong

resemblance, as long as only relative topology changes are compared to each other. The color patterns

of all three proteins are very similar but have naturally different color-mappings since GDT is fixed

and Rosetta scores are not. However, the general performance of the de novo folding algorithm for

β-sheet structures was rather poor. The performance for such proteins is mainly dependant on fragment

insertions and not on the folding cycles itself, as exemplary shown by WW domain. This makes sense

since α-helices can change in size with minimal conformational changes whereas β-sheets must undergo

large conformational changes. To compensate this it is necessary to either increase the number of

fragment insertions or the folding cycles according to the protein size.
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Figure 5.6. Surface plots of generated decoys (α-helical proteins). Figures visualize the interpo-
lated three-dimensional energy surface (Rosetta score) or refinement levels (GDT TS) of generated
decoys. Decoys are represented by (X,Y) coordinates, which were obtained via multidimensional
scaling of Cα distance matrices. (A+B) BBL (PDB id: 2wxc 208). (C+D) Albumin-binding domain
(PDB id: 1prb 209). (E+F) Nanog homeodomain (PDB id: 2vi6 191). (G+H) Lambda repressor
(PDB id: 1lmb 210).
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Figure 5.7. Surface plots of generated decoys (β-sheet proteins). Figures visualize the interpo-
lated three-dimensional energy surface (Rosetta score) or refinement levels (GDT TS) of generated
decoys. Decoys are represented by (X,Y) coordinates, which were obtained via multidimensional
scaling of Cα distance matrices. (A+B) N-terminal of L9 protein (PDB id: 2hba 211). (C+D)
WW domain of human Pin1 Fip mutant (PDB id: 2f21 212). (E+F) Yes SH3 domain (PDB id:
2hda 192).

5.3 Decoy Selection

After generating sufficient structures to populate replicas with unique starting conformations it is nec-

essary to discuss how to actually select them. The main motivation is to select different structures in

order to maximize the variety from the very beginning. This way, the REX simulation can probe a

wider conformation space and attempt multiple pathways towards the native state. At the same time,

the starting structure ensemble should not be spread out too much and have a high ratio of well-refined

structures. The primary goal is still to reach native-like conformations within a single REX run. The

smaller the distance between starting structures and native fold, the sooner the convergence due to the

integrated bias potential. In the following section i will discuss two straight forward decoy-selection

methods, i.e. the direct and the KMEANS method, and compare them to each other.
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The direct method consists of simply ranking the decoys in ascending order based on the Rosetta scores

and then select Nrex decoys. As previously discussed in section 5.2, Rosetta and GDT scores have been

shown to be always negative correlated to each other. In most cases the correlation is rather low but

it is still significant enough that more native structures tend to get mapped with lower Rosetta scores.

From this point of view, simply selecting the lowest-scoring decoys appears as a valid approach. But

the analysis also showed that the standard deviations are extremely high which is not ideal. A selection

solely based on Rosetta scores is very likely to contain many low-refined structures as well. The question

remains: How much variety can we expect from this method? Can we see any patterns, i.e. are selected

decoys primarily located within the high-refinement region or are they randomly distributed?

The other method is very similar but requires additional pre-analysis of the decoy data. Here, we

utilize the MDS representation and the fact that the distance between two data points is an important

source of information. After projecting all generated decoys onto the MDS plane, it is possible to

systematically select structures from different regions and thus guarantee a high variety of structures.

For example, one can split the decoys into groups organized as a grid or a tessellation. Without a

doubt the cell sizes must be adjusted based on the overall size or shape of the MDS plane made up

by the structure locations. This can be easily accomplished with algorithms such as natural neighbor

interpolation (Voronoi tessellation)172,173 or KMEANS clustering163,213. Whenever possible the natural

neighbor interpolation splits the data into regions with an equal member count. KMEANS can achieve

this too but typically does not. Instead, KMEANS initiates with k randomly positioned cluster centers.

During its execution the algorithm optimizes the cluster center locations and assigns data points towards

their closest centers. If the data is equally distributed this would result in equally sized clusters. Most

of the time, however, this is not the case and the data contains both dense and thin population regions

resulting in differently sized clusters. This property is advantageous for the intended use-case and can

be applied to increase the variety of selected decoys. Since dense regions on the MDS plane have very

similar structures it is sufficient to select only one of the corresponding decoys and obtain more structure

variety from other clusters. The KMEANS-selection method basically classifies decoys into clusters with

a radius of approximately

rcluster ≈
Ndecoys

Nclusters
, (5.4)

where Ndecoys is the total number of decoys and Nclusters = k is the number of KMEANS cluster centers.

This time the ranking is performed on entire clusters and their average Rosetta scores. However, the

final selection is still based on the lowest-scoring decoys but with the condition that only one decoy from

each cluster is allowed. This concept combines the positive aspects of MDS and the observed correlation

coefficients between Rosetta scores vs. GDT scores. The resulting decoy selection is therefore guaranteed

to be more diverse and has a statistically higher chance of containing well-refined structures.

Note that the performance of the KMEANS method is heavily dependant on the cluster radius defined

by Eq. 5.4. Given that the number of generated decoys is fixed, a proper selection of cluster centers

is essential. Fig. 5.8 exemplarily visualizes the final selection of 80 decoys for different cluster counts

k for BBL and Nanog homeodomain. As evidently shown, low values of k are associated with large

cluster radii, i.e. the selected decoys are spread out over the entire MDS plane. When k is increased the

cluster radii are reduced accordingly, which in turn shrinks the occupied decoy area and concentrates it

towards the high-refinement regions. This effect can be explained by the count ratio of selected decoys

with respect to the KMEANS clusters. For example, with k = 400 the MDS plane gets split up into 400

approximately evenly large regions. But with 80 selected decoys only a small fraction of the entire MDS

plane contributes towards the selection ensemble.
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Figure 5.8. KMEANS-selection method performance for different cluster radii. Figures visualize
the dependency of the final decoy selection in relation to different cluster radii which are defined
by the choice of cluster centers k (blue, green, red) according to Eq. 5.4. Decoys are represented
by (X,Y) coordinates which were obtained via multidimensional scaling of Cα distance matrices.
Additionally, the interpolated surface of refinement levels (GDT TS) is indicated by the gray scale.
(A) BBL (PDB id: 2wxc 208). (B) Nanog homeodomain (PDB id: 2vi6 191).

Since the selection order is based on average Rosetta score rankings of entire clusters, low-scoring decoys

from these regions are singled out and all others are ignored. This is clearly shown in Fig. 5.8, where

the area that is spanned by uniquely colored markers is inverse proportional to the cluster count k.

In order to compare the performance of the two presented selection methods, i.e. direct vs. KMEANS

method, I choose exactly 80 decoys from a set of 5000 generated decoys and apply k = 400 KMEANS

clusters. Fig. 5.9 gives an overview of the final decoy selections based on the applied method for α-

helical proteins. Starting the comparison with the direct method, we can observe that simply choosing

the lowest-scoring decoys results in a high variety of structures with respect to their GDT refinement.

As illustrated in blue in Figs. 5.9(A,D,G,J), measured GDT values range from 15 to 55 for BBL, 15

to 75 for albumin-binding domain, 5 to 35 for Nanog homeodomain and 0 to 55 for Lambda repressor.

According decoy mappings on the MDS plane are shown in Figs. 5.9(B,E,H,K). We can see that in three

cases the decoys represent a very large conformational space and are spread out over the majority of the

MDS plane. Contrary to that, selected decoys of the albumin-binding domain are primarily focused on

a very small MDS region representing high-quality structures. In this specific case, the decoy selection is

the result of an especially good mapping between Rosetta scores and GDT. The region is of high interest

for the intended application but unfortunately corresponding decoys do not cover a large conformational

space, offering only minimally different pathways towards the native state. For the albumin-binding

domain, we can observe a mixed spread of decoys, i.e. many decoys are clustered around the high-

refinement area while others are located very far away. Such unrefined structures are also sub-optimal

for contact-guided REX MD because they will most likely not fold within the relatively short simulation

times.

Investigation of the KMEANS method, which is illustrated in red in Fig. 5.9, indicates much more

promising results. The scatter plot analyses of Figs. 5.9(A,D,G,J) display a diverse spread of decoys

similar to the direct method. This time, however, the selections are mainly located in the scatter plot

regions corresponding to higher GDT values. The associated GDT values range from 24 to 55 for BBL,

from 36 to 76 for albumin-binding domain, from 24 to 36 for Nanog homeodomain, and lastly from 10

to 59 for Lambda repressor.
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Figure 5.9. Comparison of different selection methods (α-helical proteins). Overview of different
representations to display and compare the final decoy selections based on the applied method, i.e.
direct method highlighted in blue and KMEANS method highlighted in red. (left: A,D,G,J) Scatter
plots of Rosetta scores vs. GDT TS. (middle: B,E,H,K) Interpolated surfaces with refinement
levels. Decoys are represented by (X,Y) coordinates which were obtained via multidimensional
scaling of Cα distance matrices. (right: C,F,I,J) GDT distributions of selected decoys. (A-C) BBL
(PDB id: 2wxc 208). (D-F) Albumin-binding domain (PDB id: 1prb 209). (G-I) Nanog homeodomain
(PDB id: 2vi6 191). (J-L) Lambda repressor (PDB id: 1lmb 210).
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Figure 5.10. Comparison of different selection methods (β-sheet proteins). Overview of different
representations to display and compare the final decoy selections based on the applied method, i.e.
direct method highlighted in blue and KMEANS method highlighted in red. (left: A,D,G) Scatter
plots of Rosetta scores vs. GDT TS. (middle: B,E,H) Interpolated surfaces with refinement levels.
Decoys are represented by (X,Y) coordinates which were obtained via multidimensional scaling of
Cα distance matrices. (right: C,F,I) GDT distributions of selected decoys. (A-C) N-terminal of
L9 protein (PDB id: 2hba 211). (D-F) WW domain of human Pin1 Fip mutant (PDB id: 2f21 212).
(G-I) Yes SH3 domain (PDB id: 2hda 192).

Analogously, the MDS representations (with highlighted decoy selections) show a significant improvement

as well. As evident to Figs. 5.9(B,E,H,K), we can see that selected decoys yield structures with overall

good refinement quality while simultaneously providing sufficient structure variety. Due to the large

count difference between KMEANS clusters and selected decoys, the majority of unwanted structures

are filtered out, leaving only good candidates for the final selection. Within the cluster selections only

the lowest-scoring decoy of each cluster is selected, which in turn increases the conformation variety as

intended. Note that similar to before, all selected decoys of albumin-binding domain have extremely

high GDT refinements compared to the other tested proteins.
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But contrary to the direct method where the decoys were very dense located, the KMEANS method

achieves a much wider spread on the conformational space. Based on the observed patterns for α-helical

proteins, this method indicates a good balance between straightway structure refinement and variety,

which should improve the expected performance of contact-guided REX MD.

Analogous comparison figures related to β-sheet structures are summarized in Fig. 5.10. As mentioned

previously, the overall achieved refinement quality for the proteins NTL9 and Yes SH3 domain were

rather low. GDT values reached only up to 40, with the majority being below 30. Closely inspecting

the direct method selections, we can see that NTL9 contains decoys with GDTs between 6 and 40, WW

domain between 10 and 78, and Yes SH3 domain GDT values between 6 and 45. Note that WW domain

typically shows GDTs below 60. Only a single decoy out of 5000 was able to reach a GDT of almost 80 and

also got selected. Further inspecting the decoy locations within the MDS representation, as visualized

in Fig. 5.10(B,E,H), we can see that the direct method results in a wide spread of conformations for

NTL9 and Yes SH3 domain. Given that the refinement surfaces for these proteins have no definite high-

refinement regions, this wide spread of conformations is definitely useful to be applied as initiating REX

structures. Contrary to that, the selected decoys of the WW domain are more densely packed around

the left centered region on their according MDS plane, as shown in Fig. 5.10E. Their occupied MDS

area is rather small in comparison to the other two proteins. Further comparing with the full-colored

MDS representation of Fig. 5.7D, we can see that the majority of selected decoys are not located around

the high-refinement region which center has the MDS coordinates of approx. (100,0). The according

GDT distribution of Fig.5.10F verifies that as well, showing that most picked conformations have GDTs

slightly below 40.

In order to finalize the comparison, it is now time to investigate the results of the KMEANS method

for the same β-sheet structures. The scatter plots with Rosetta score vs. GDT of Figs. 5.10(A,D,G)

indicate the same patterns as previously observed for α-helical structures. The selected decoys indicate

a wide spread on the scatter plot, but unlike before they are not so strongly focused on the high GDT

regions. More precisely, only the WW domain of human Pin1 Fip mutant shows a strong tendency

towards higher quality structures. The other two cases are of comparable quality as during the direct

method but with slightly better GDT averages. A closer inspection of the decoy locations with respect to

their refinement levels, as visualized on the MDS planes of Figs. 5.10(B,E,H), reflect similar tendencies.

The expected structure variety for NTL9 is on par with the other methods selection. Their occupied

area is about equally large but the decoy structures belong to different MDS locations. Very similar

results are observed for Yes SH3 domain, but this time the KMEANS method spans a much wider area

over the MDS plane. Given that this highly increases the variety, it is still not optimal as it picks up

some structures which are basically on the edge of the MDS plane with GDTs close to zero. Such poor

quality structures are unlikely to be useful for contact-guided REX MD. Lastly, the decoy selections of

the WW domain look much more promising as compared to the direct method. Not only is the decoy

area larger than before containing more varying structures, now it is also shifted towards the optimum

around (100,0) as indicated in Fig. 5.7D.

To finalize the comparison between the two presented decoy-selection methods, I obtained the GDT

statistics corresponding to the final decoy selections and summarized them in Table 5.2. Additionally,

I computed an approximation of the area which is occupied by the clusters belonging to the selected

decoys. This allows me to estimate the structural variety of the decoy selection. More precisely, the

overlap between the selection area with the entire MDS plane can be used as a measure reflecting the

decoy variety. As shown in Table 5.2 and in Figs. 5.10(C,I,L), observed GDT statistics for the proteins

BBL, Nanog homeodomain and Lambda repressor indicate that the KMEANS method performs much

better.
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Table 5.2. Comparison of decoy-selection statistics based on selection method. Table contains
the protein’s PDB id and statistics of the corresponding decoy selections (cf. Figs. 5.9 and 5.10
for colored representations of selection methods). Listed are the mean (µ), standard deviation
(σ), minimum and maximum value of the method-based GDT distributions. Additionally, the
overlapping area, which is defined by the selected cluster regions in relation to the entire MDS
plane, is computationally approximated and listed in percent. Analogously to previous analyses,
the table is split up into α-helical proteins (BBL, albumin-binding domain, Nanog homeodomain,
Lambda repressor) and β-sheet proteins (NTL9, WW domain, Yes SH3 domain).

direct method (blue) KMEANS method (red)
PDB id area (%) GDTµ GDTσ GDTmin GDTmax area (%) GDTµ GDTσ GDTmin GDTmax

2wxc 36.4 34.1 11.4 12.8 53.7 19.1 41.9 6.5 25.5 53.7
1prb 12.9 57.7 10.9 9.9 74.5 15.8 54.2 8.4 36.8 74.5
2vi6 22.4 25.5 7.7 5.5 35.5 12.5 29.6 2.1 24.1 35.5
1lmb 33.0 22.6 11.2 0.5 53.0 21.6 27.7 9.6 10.9 58.2
2hba 29.1 17.8 5.4 7.2 39.4 30.9 20.8 5.6 11.1 35.1
2f21 19.4 38.8 8.5 11.8 77.0 28.6 43.7 7.7 28.9 77.0
2hda 34.2 19.5 7.8 5.1 42.4 39.0 20.5 8.1 3.8 42.4

The biggest impact is that extremely low GDT structures are filtered out, thus shifting the distribution

towards higher GDT values. The only exception is observed for albumin-binding domain. But as

mentioned previously, here the direct method yields only very little structure variety. On the other

hand, by using the KMEANS method the spanned area is enlarged. In this case, it is even concentrated

around the high-quality region indicating an overall better performance yet again. The comparison of

the occupied MDS area in relation to the entire MDS plane typically yields much higher values for the

direct method as compared to the KMEANS method. We observe, e.g., for BBL 36.4% vs. 19.1%,

for Nanog Homeo domain 22.4% vs. 12.5%, and for Lambda repressor 33.0% vs. 21.6%. As already

discussed, albumin-binding domain shows the opposite, namely 12.9% vs. 15.8%.

However, these numbers alone are not sufficient to reflect the expected structure variety. I want to

emphasize that it is also important to consider how dense the spanned area is and where it is located.

For example, the albumin-binding domain yields a smaller region with the direct method. At the same

time most of the decoys are located very close to each other, while others are separated very far away

(cf. Fig.5.10E). For the intended application as starting conformations, we do not obtain much structure

variety close to the region of interested but we also get a few decoys with low-quality refinement. Contrary

to that, the KMEANS method yields a decoy selection which is primarily focused around the region of

interest. At the same time it also provides good structure variety due to the spacing of adjacent decoys.

Therefore, the KMEANS method significantly outperforms the direct method, even though the GDT

statistics may indicate the opposite.

The comparison of β-sheet structures and their corresponding decoy selection areas shows an opposite

trend. This time, KMEANS-method derived decoys occupy a larger area. The approximated area

overlaps of direct method vs. KMEANS method are 29.1% vs. 30.9% for NTL9, 19.4% vs. 28.6% for

WW domain, and lastly 34.2% vs. 39.0% for Yes SH3 domain. The MDS representations displayed in

Figs. 5.10(B,E,H) indicate equally good structure variations for NTL9 and Yes Sh3 domain. Only the

WW domain can achieve slightly better results with the KMEANS method, mainly due to the distance

between selected decoys and the region of interest around (100,0). The analyses of the GDT distributions

clearly favor the KMEANS method over the direct method. In all cases the distributions are slightly

shifted towards higher GDT values, as reflected by the mean values and shown in Figs. 5.10(C,F,I).
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5.4 Summary

I introduced the concept of starting-structure generation based on its application purpose, i.e. to gen-

erate unique and diverse starting structures for contact-guided REX MD. In section 5.1 I explained the

theoretical background and how additional structure variety is beneficial for the overall REX performance

due to the introduction of new pathways towards the native fold. Additionally, starting-conformation

bias gets reduced and erroneous bias signals are not equally contributing to each replica. I also intro-

duced a method which can generate structure ensembles within short periods of time. More precisely, I

explained how fragment insertion works and how it is integrated into my de novo folding algorithm to

improve the decoy generation process.

In section 5.2 I followed up by systematically analyzing and comparing the generated decoy ensembles.

I investigated correlations such as Rosetta score vs. GDT TS and analyzed how reliable the energy

mappings are. It was shown that the correlations were negative for all test proteins, which does indeed

reflect a physically meaningful energy function where low energy states are expected to be more stable and

better refined. Furthermore, I obtained interpolated surfaces reflecting the energy and refinement levels

by projecting the generated decoy structures onto 2D via multidimensional scaling. The comparison of

both surfaces gave additional insights into how accurate Rosetta scores are. Overall the energy surfaces

were often heterogeneous rugged. However, for some proteins it was possible to obtain energy surfaces

which were relatively smooth and indicated clear separations between high- and low-energy states. The

observed patterns also showed that the scoring function performs much better for α-helical structures

as compared to β-sheet structures. A further investigation of the refinement levels in terms of GDT

mappings showed that the de novo folding algorithm performs really well for α-helical proteins and

could achieve high-quality conformations during the generation process. Although β-sheet proteins also

contained a few highly refined structures, the majority was of rather low quality with GDTs below 30.

Finally, in section 5.3 I presented two valid approaches, i.e direct method and KMEANS method, in

order to select decoys as starting conformations for contact-guided REX MD. I compared the methods

based on their resulting decoy selections while focusing on two aspects: 1) the structure quality and 2)

the structure variety of the obtained decoy selections. To recap, both methods are highly depending

on the underlying quality of the generated decoy ensemble, i.e. on the performance of the de novo

folding algorithm. Whenever clear separations between high- and low-refinement regions are available,

the KMEANS method drastically outperforms the direct method, as shown for e.g. α-helical structures.

When this is not the case, both methods are about equally good but KMEANS is still slightly favored.

The main reason for this is that KMEANS method does enforce a structural variance as a consequence

of the cluster radii and the condition that only one decoy is allowed from each cluster. Additionally, the

discrepancy between the number of selected decoys and the number of KMEANS clusters does affect the

area belonging to selected clusters. By finding a good ratio it is possible to focus the decoy selection onto

regions related to higher refined structures while maintaining sufficient structure variety. This shows

that the KMEANS method is in general a much better approach for the intended use-case.



6
Ensemble Selection

This chapter covers one of the most critical topics, namely how to select a representative ensemble

out of the vast number of computationally generated structures with REX MD. Section 6.1 describes

my ensemble-selection study, where I investigate various methods to make such a selection. I give an

overview of the used protein systems and introduce four very robust ensemble-selection methods. In

section 6.2 I briefly discuss the achieved model accuracy of the structures which I obtained via REX

simulations. In the following section 6.3 I outline the steps of my investigated ensemble-selection methods

and introduce relevant techniques. I then continue with a detailed comparison of the different selection

methods and state their strengths and weaknesses in section 6.4. Furthermore I introduce a numerical

rating to objectively compare each method’s performance and to indicate their reliability to select high-

quality structures. Lastly in section 6.5 I conclude my findings and recap the most important aspects of

the performed study. This Chapter is based on my article named “Selection of representative structures

from large biomolecular ensembles” (2022)3, published by the Journal of Chemical Physics.

6.1 Study Concept

There are many different in-silico approaches to obtain highly accurate protein structure models, be it

either de novo or, e.g., via refinement in a physical force field. As previously shown in chapter 4, contact-

guided REX MD is a suitable method to generate large structure ensembles which is also capable to

enrich native-like conformations. One of the most challenging tasks is to select a representative member

out of the vast variety of generated structures. Mimicking a blind-prediction scenario, I present here a

combination of different techniques to reliably select highly native-like structures. All eligible structures

were generated in contact-guided REX MD over 500 ns using five mid-sized proteins.

79
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Figure 6.1. Native structures of proteins used for ensemble-selection study. (A) Lambda repressor
(PDB id: 1lmb 210). (B) Albumin-binding domain (PDB id: 1prb 209). (C) WW domain of human
Pin1 Fip mutant (PDB id: 2f21 212). (D) N-terminal of L9 protein (PDB id: 2hba 211). (E) BBL
(PDB id: 2wxc 208). Visualized in PyMol 189,190. Adapted from Ref. 3 under CC BY 4.0.

To minimize the correlation between initial replica structures and the generated REX ensembles, I

populated each replica with unique conformations as described in chapter 5. Appendix tables E.1

and E.2 give an overview of the starting decoy accuracy measured by GDT and RMSD, respectively.

Integrated REX bias contacts were obtained from a deep residual neural network called ResTriplet97,98.

Following the bias guidelines of section 4.1.4, I selected approximately 3
4
L contact pairs and adjusted

individual coupling strengths for bias contacts that were clustered within the contact map. A detailed

listing of the used bias contacts is given in appendix table E.3, and visualized in Figs. E.1-E.5 as contact

maps. Note that the 500 ns long REX trajectories can also be used to assess the accuracy and limitations

of REX and the underlying AMBER99SB-ILDN110 force field when applied to very large protein systems.

The tested proteins have lengths between 39 and 92 residues and cover multiple unique folds with varying

structure complexity and secondary structure motifs. The largest test protein is the Lambda repressor

(PDB id: 1lmb210). In this case I only used the second dimer chain, which is composed of six α-helices

in different orientations and has a folding time of approximately 49µs. The second test protein is given

by the albumin-binding domain (PDB id: 1prb209) with an extremely short folding time in the order

of 3.9µs. Its structure is 53 residues long and consists of three α-helices orientated as a helical bundle.

Table 6.1. Overview of proteins used for ensemble-selection study 3. Left side of the table
contains structure-related information. The right side lists the number of used bias contacts during
contact-guided REX MD and the corresponding true-positive rate (TPR).

name / description PDB id folding time length bias contacts bias TPR (%)
Lambda repressor 1lmb 49 µs 92 70 87
Albumin-binding domain 1prb 3.9 µs 53 40 82
WW domain of human Pin1 Fip mutant 2f21 21 µs 39 30 96
NTL9 (N-terminal of L9 protein) 2hba 29 µs 52 40 95
BBL 2wxc 49 µs 47 35 91

https://creativecommons.org/licenses/by/4.0/
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Figure 6.2. Overview of investigated ensemble-selection methods. Flowchart shows all steps
which were performed during the study to investigate different ensemble-selection methods. Each
stage is highlighted in another color: I) data generation (gray), II) pre-selection of structures
(red), III) ensemble-selection algorithm chains (yellow), IV) comparison and evaluation (green) of
algorithm chains. Reproduced from Ref. 3 under CC BY 4.0.

The third test structure is represented by a small segment of an entire protein, more precisely the WW

domain of human Pin1 Fip mutant (PDB id: 2f21212). This β-sheet structure is only 39 residues long

and has a folding time of 21µs. The test system representing a mixed structure of α-helices and β-sheets

is given by the N-terminal of L9 protein (NTL9, PDB id: 2hba211). Its protein size is 52 with a folding

time around 29µs. Lastly is BBL (PDB id: 2wxc208), which α-helical structure is 47 residues long and

has a folding time of approximately 49µs. Fig. 6.1 displays the native conformations of the simulated

proteins, which also correspond to the target structures of the ensemble selections investigated during

this study. Table 6.1 gives an overview of the performed REX simulations by listing the mentioned

proteins including their sizes, folding times and the number of used bias contacts. Reported folding

times were obtained as average lifetime in the unfolded state observed in MD simulations34.

The main objective of this study was to obtain a method to reliably select highly native-like conforma-

tions from the generated REX trajectory. For this purpose I investigated a total of four ensemble-selection

methods and compared their performance in achieving this task. Each method applies a combination of

different algorithms and techniques, such as dimension reduction or clustering. To get a better overview

of the investigated methods, I divided them into meaningful stages based on their application pur-

pose. As summarized in Fig. 6.2, the stages are I) data generation, II) pre-selection of structures, III)

ensemble-selection algorithm chain, and IV) comparison and evaluation. Note that the four investigated

ensemble-selection methods only deviate at stage III), where I apply different methods for dimension

reduction or clustering. A detailed explanation of the four possible pipelines, i.e.

1) TSNE → KMEANS,

2) MDS → KMEANS,

3) TSNE → DBSCAN,

3) MDS → DBSCAN,

will be done later in section 6.3.

https://creativecommons.org/licenses/by/4.0/
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Figure 6.3. Flexibility of protein segments measured by root-mean-square fluctuation (RMSF).
(A) Albumin-binding domain (PDB id: 1prb 209). (B) BBL (PDB id: 2wxc 208).

6.2 Achieved Model Accuracy

As previously mentioned, my intention is to select a few representative structures out of the entire REX

simulation. However, it is necessary to first assess the similarity of generated REX structures to their

native fold. Note that the best achieved model accuracy during REX does technically correspond to

the upper limit of each ensemble selection. Table 6.2 summarizes the highest-quality structures that

were achieved for each test protein. All REX simulations of this study were capable to generate highly

native-like structures. GDTs reached two times values around 80, two times around 90 and one time a

nearly perfect score of 97. Surprisingly, the best results were achieved for the largest test protein, i.e.

the Lambda repressor with a length of 92 residues. Its best achieved structure model measures a GDT

score of 97, which corresponds to a backbone RMSD of approximately 1.0 Å. The high similarity with

the native fold might be resulting from the high count of α-helices within the structure, since helices

tend to be very stabilizing during MD. The worst results were achieved for Albumin-binding domain and

BBL, with GDTS up to 78 and 81, respectively. I want to emphasize that in both cases the “relatively

low” GDT scores yield from highly flexible tail segments, as shown in Fig. 6.3. If they are ignored during

the GDT calculation then the new GDT scores reach values of approx. 90. But I kept using the entire

protein model in order to maintain a global measurement, as intended by the global distance test.

Table 6.2. Best achieved model accuracy during study using contact-guided REX MD 3. Table
contains the protein’s PDB id, the occurring secondary structure (ss) motifs, the system size
(approx. atom count), the global distance test total score (GDT TS), and the backbone root-
mean-square-deviation (RMSD) relative to the known protein structure.

PDB id ss motifs system size GDT TS RMSD (Å)
1lmb α 54 · 103 97 1.0
1prb α 47 · 103 78 1.9
2f21 β 36 · 103 89 1.8
2hba α, β 41 · 103 88 1.8
2wxc α 34 · 103 81 1.9



Ensemble Selection 83

6.3 Method Introduction

All structures generated during REX were considered as valid candidates for the ensemble selection,

which should include only highly native-like structures. Starting with the entire REX trajectory of the

lowest-temperature replica, the first important step is to reduce the data set by pre-selecting structures

using a meaningful quantity. Staying close to the origin of my data set I decided to use QBias, i.e.

the fraction of realized bias contacts in a structural model, as a metric to filter the REX structures.

Mathematically, this is described by

QBias(t) =
NBias(r(t) ≤ rnc)

NBias
∈ [0, 1], (6.1)

with the number of integrated bias contacts NBias and the native contact distance rnc = 6Å. Note

that QBias does not differentiate between true-positive or false-positive bias contacts. It may even be

impossible to achieve QBias =1, especially if this is structurally impossible for example due to competing

bias contacts. Typically observed correlations between QBias and GDT are highly positive making it

a good measurement for the intended structure reduction, as exemplarily shown by Fig. 6.4A. The

REX simulation with WW domain (c.f. appendix Fig. E.8A.) was the only exception, in which case

no correlation was observed. I decided to pre-select exactly 2000 structures with the highest QBias

values, which corresponds to 4% of the entire REX trajectory composed of 50000 structures. These

pre-selected structures are highlighted in blue in the corresponding scatter plots such as Fig. 6.4A. Next,

I calculated the Cα distance matrices of the pre-selected structures which are intended for a structural

representation. More precisely, these matrices are used as input for the following dimension reduction

(cf. yellow section of Fig. 6.2) which projects the LxL matrices onto (X,Y ) coordinates indicating the

different structures. This dimension reduction step also marks the first possible deviation between the

four investigated ensemble-selection methods.

During this study I investigated two different methods for dimension reduction: t-distributed stochastic

neighbor embedding137 (TSNE) and multidimensional scaling149 (MDS). Using either of these methods,

it is possible to visualize all 2000 pre-selected structures and comprehend their structural (dis)similarities,

as exemplified in Figs. 6.5A or 6.6A. It is important to understand that locally adjacent points correspond

to structures of high similarity. However based on the applied dimension reduction algorithm the distance

interpretation is slightly different. For example, “TSNE can visualize small structural differences better

by creating many separated point clusters due to the t-distributed push-pull moves of samples during the

algorithm. In other words, this algorithm aims to separate different structures from each other. MDS

on the other hand visualizes structural differences better. That is because the distance between MDS

points is always proportional to the difference of the corresponding distance matrices.” 3 The projection

onto lower dimensions puts a focus on structural differences and illustrates them human-readable. This

allows me to directly compare the final selections that result from the different pipelines and to evaluate

each method’s performance. Additionally, by using less dimensions in the upcoming clustering step, the

entire algorithm chain becomes much more robust as it reduces deviations between separate clustering

executions (mainly relevant for KMEANS).

I also investigated two different clustering algorithms: KMEANS163 and DBSCAN167,168 (density-based

spatial clustering of applications with noise). Note that KMEANS, which is the most famous clustering

algorithm, has multiple variations that differ, e.g., in their initialization process or the used objective

function to assign cluster labels164,175. In my work I only applied Lloyd’s KMEANS algorithm with

k-means++ initialization178,179. This method requires two important parameter specifications: 1) the

number of cluster centers k and 2) the number of KMEANS runs with independent initializations ninit.
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Figure 6.4. Correlations of NTL9 (PDB id: 2hba 211) simulation. (A) Relation between QBias

(fraction of realized bias contacts) and GDT TS. Gray and blue colored dots represent the entire
REX MD trajectory composed of 50000 structures. Blue dots highlight the 2000 structures with
the highest QBias values, which were pre-selected for the ensemble selection. (B) Relation between
Rosetta score and GDT TS of the 2000 pre-selected structures. Figure also depicts the mean score
µ (red dashed line) and µ ± 2σ (red solid lines) which were used as thresholds to filter outliers
during the cluster score calculations. Reproduced from Ref. 3 under CC BY 4.0.

“In each run, initial cluster centers are randomly chosen from the data set and data points are assigned

to the nearest cluster center. Next, cluster centers are shifted to the mean of all points belonging to a

cluster and previous steps are repeated until convergence where no further changes occur. After ninit

independent runs, KMEANS selects the best result based on the smallest sum of cluster variances.” 3

Due to the random selection of initial cluster centers independent executions do typically not produce

identical clustering results. The difference primarily depends on the underlying data, or more precisely

on the density of data points. A large amount of randomness can be eliminated, however, if a dimension

reduction is performed prior to the clustering. The combination of these techniques make the whole

ensemble-selection method in general more robust and reliable. The other investigated clustering method,

DBSCAN, is density-based and can automatically differentiate between cluster points and noise. This

algorithm also requires two important parameter specifications: 1) the neighborhood distance ε and 2)

the core density minpts. “ε describes the maximum distance between two samples, which are considered

in the neighborhood. minpts specifies how many data points within ε around sample X are required

to consider X as a core sample and part of a cluster. If a core sample is identified, the cluster grows

by including points within the ε neighborhood, which can also be core points or just simply reachable

https://creativecommons.org/licenses/by/4.0/
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neighbors. Lastly, all points which are not within the neighborhood of core points are considered noise.” 3

This density-based algorithm makes DBSCAN deterministic, meaning that individual executions yield

the same results for the same parameters. For comparison reasons, I decided to keep the total cluster

count fixed based on the applied clustering method. Hence all pipelines using KMEANS generated

exactly k=30 clusters, whereas DBSCAN parameters were tweaked until I obtained exactly 21 clusters

(i.e. 20 cluster labels and 1 noise label).

After the clustering process is over it is finally time to select the wanted target structures. Since my goal

is to select highly native-like structures, I aim to maximize the GDT. My selection criterion is based on

Rosetta scores because this energy function is always accessible and requires solely the atom positions

and their type for its calculation. After obtaining the Rosetta scores of the 2000 pre-selected structures

I map them onto the corresponding TSNE/MDS representations. These can now be interpreted as an

energy landscape of protein structures where native-like folds should be located in the deepest valleys. I

want to emphasize that Rosetta scores alone are usually not accurate enough to discriminate native from

native-like or even non-native folds. This was already shown during the decoy analyses in section 5.2 (cf.

Figs. 5.4+5.5) and can also be seen here. As exemplified in Fig. 6.4, the 2000 pre-selected structures of

NTL9 have low Rosetta scores for structures with GDT scores primarily between 70-90 but also between

40-50. Similar scatter plots for the other proteins can be found in appendix E. Performing a selection

only based on Rosetta scores is therefore not ideal, as it cannot guarantee high-quality structures. But

similar to the observations in section 5.2, correlations of Rosetta score vs. GDT are always negative.

Hence, low Rosetta scores are statistically favored to represent high GDT structures. For this reason,

instead of making a selection based on individual structures, it is more reliable to select a bunch of

similar structures and take their collective Rosetta scores into account. In my case, this means that

I can obtain high-quality structures by identifying four clusters with the lowest mean scores and pick

them in increasing order.

Finally, the comparison and evaluation regarding the performance of the four presented algorithm chains

can be achieved by looking at the cluster accuracy statistics. Analogously to the energy landscape, I

am able to assign GDT scores to the TSNE/MDS representations and obtain a landscape indicating

the structure’s refinement levels. To assess each cluster’s accuracy I assigned each cluster their cor-

responding mean GDT value. Afterwards I relabeled the clusters based on their GDT ranking which

makes the interpretation of the selected clusters much easier and allows to quickly assess each method’s

performance. The valid cluster indices are 0-29 (0: best, 29: worst) for KMEANS or 0-20 (0: best, 19:

worst, 20: noise) for DBSCAN. Please note that the calculation of GDT scores as well as the ranking

of cluster labels are only possible as I have access to the experimentally determined native structures of

the used proteins. However, this information is only used for evaluation purposes and is not required to

select the structure ensembles themselves.
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6.4 Method Comparison

From now on each time cluster labels are mentioned they have been already sorted according to their

GDT accuracy. Tables 6.3 and 6.4 give a performance overview by listing the selected clusters of each

algorithm chain using KMEANS or DBSCAN, respectively. “Additionally, the tables state a performance

rating, which indicates the importance of selected clusters. The rating is given by the weighted sum of

selected clusters. However, meaningful weights are only assigned to clusters with labels 0-3 representing

the highest GDT ensembles. Mathematically, this is provided by

rating =
∑
i

wi(cluster), (6.2)

with the weights w0 = 4, w1 = 3, w2 = 2, w3 = 1, wi>3 = 0.

In general, all compared algorithm chains yield very good results regarding the final ensemble selections.

Note that it was always possible to select the two highest GDT ensembles (labels 0 and 1) and in some

cases even up to the four highest GDT ensembles. Algorithms using TSNE for dimension reduction

were exceptional stable and produced ratings with 9/10 or higher for TNSE → KMEANS and 8/10 or

higher for TNSE → DBSCAN. The direct rating comparison slightly favors the TNSE → KMEANS

algorithm. Additionally, this procedure is very straight forward and does not require any case-specific

parameter tuning, as compared to the TSNE → DBSCAN pipeline. The selected ensembles resulting

from algorithms using MDS are promising as well. MDS → KMEANS tends to produce ratings with

approximately 9/10. However, the test case with NTL9 (PDB id: 2hba) yielded a rating of only 7/10.

MDS → DBSCAN pipelines produced ratings between 8/10 and 10/10.” 3 Please refer to appendix tables

E.4 and E.5 for a detailed listing of the selected clusters and their accuracy.

Table 6.3. Performance of algorithm chains with KMEANS clustering 3. Selection order of clusters
is based on mean Rosetta scores, while cluster labels are ranked by accuracy (mean GDT scores,
0: best cluster). Rating is calculated according to Eq. 6.2 and indicates the importance of selected
clusters by weighing only clusters 0-3.

TSNE → KMEANS MDS → KMEANS
PDB id selected clusters rating selected clusters rating

1lmb 1-0-6-2 9/10 2-0-1-6 9/10
1prb 2-0-1-3 10/10 0-2-1-10 9/10
2f21 1-0-2-3 10/10 1-0-3-2 10/10
2hba 3-2-0-1 10/10 0-1-7-8 7/10
2wxc 5-0-2-1 9/10 1-10-0-2 9/10

Table 6.4. Performance of algorithm chains with DBSCAN clustering 3. Selection order of clusters
is based on mean Rosetta scores, while cluster labels are ranked by accuracy (mean GDT scores,
0: best cluster). Rating is calculated according to Eq. 6.2 and indicates the importance of selected
clusters by weighing only clusters 0-3.

TSNE → DBSCAN MDS → DBSCAN
PDB id selected clusters rating selected clusters rating

1lmb 1-0-2-4 9/10 2-0-3-1 10/10
1prb 1-0-2-14 9/10 2-0-1-12 9/10
2f21 0-1-6-2 9/10 0-1-8-2 9/10
2hba 3-0-1-7 8/10 1-4-0-3 8/10
2wxc 1-0-3-9 8/10 2-3-0-1 10/10
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Figure 6.5. TSNE representation of selected Lambda repressor (PDB id: 1lmb 210) structures.
(A) Relation with refinement levels (GDT TS). (B) Relation with energy function (Rosetta scores).
(C) Relation with KMEANS cluster mapping. Cluster indices are ranked by average cluster accuracy
(0: best, 29: worst). Cluster centers are visualized as black squares (k=30) or red squares
(k=10). (D) Relation with DBSCAN cluster mapping. Cluster indices are ranked by average
cluster accuracy (0: best, 19: worst, 20: noise). Cluster centers are visualized as black squares
(ε = 2.55, minpts = 20). Adapted from Ref. 3 under CC BY 4.0.

Next I want to discuss the different ensemble-selection methods in great detail, pointing out their indi-

vidual strengths and weaknesses. By doing so I will highlight specific aspects that should be considered

when evaluating each method’s performance. The rating, which was introduced in Eq. 6.2, indicates

the achieved performance of each algorithm pipeline. Nonetheless, to fully understand the differences

between the selection methods, it is important to investigate the location of selected clusters or why

exactly they were selected. For example, Fig. 6.5 illustrates many different relations which can be in-

ferred by comparing the respective energy, GDT, or cluster mappings. In this case, Fig. 6.5A shows the

TSNE representation of the 2000 pre-selected Lambda repressor structures and displays their structure

quality measured by GDT. It can be interpreted as the ground truth in terms of the similarity of indi-

vidual structures compared to the native fold, which is not always accessible. Fig. 6.5B on the other

hand shows the Rosetta score mapping instead, which is always accessible as it requires only the atom

position and their type for calculation. A high similarity between Figs. 6.5A and 6.5B means that the

underlying Rosetta score mapping is accurate and can be used to reliably deduce high-quality structures.

Note, that GDT scores and Rosetta scores have inverse scaling, i.e. high-quality structures have high

GDT scores but statistically low Rosetta scores.

https://creativecommons.org/licenses/by/4.0/
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To facilitate the direct comparison I adjusted the applied color-schemes accordingly. I want to point

out again that Rosetta scores alone are usually not sufficient to accurately infer the structure quality,

as shown in Figs. 6.4A or Figs. E.7A to E.9A. In all these cases, low Rosetta scores are mapped to both

low- and high-quality structures. Lastly, Figs. 6.5(C+D) show the final cluster mapping for KMEANS

or DBSCAN, respectively. Depicted cluster labels are already sorted by accuracy, where cluster 0

has the highest mean GDT scores and corresponds to the best selection. To fully comprehend each

methods performance, it is necessary to compare the Figs. 6.5(A-D) while focusing on the location of

the four selected clusters (cf. Tables 6.3 and 6.4). A comparison of all test proteins shows that Lambda

repressor has the most accurate energy landscape, which is why Figs. 6.5(A+B) look almost identical.

Of course the same similarity is observed for the MDS representation, as shown in Fig. 6.6, due to

the fixed structure-to-score mapping while their (X,Y ) positions differ based on the dimension-reduced

representation. Note that the derived energy landscapes of other test proteins are generally bad at

inferring low-quality structures, which can be seen in Figs. E.11(A+B) for albumin-binding domain or

Figs. E.15(A+B) for NTL9. In these cases structural regions that contain the lowest GDT scores are

not mapped to the lowest Rosetta scores.

“When comparing Figs. 6.5 with 6.6 we can observe the main difference between TSNE and MDS repre-

sentations. TSNE plots tend to have more distinct sample groups which results from the t-distributed

push-pull projection. In both representations, highly similar structures are located very close to each

other. However, in TSNE the distance information is not conserved to the same degree as for MDS.

This means, that both GDT and Rosetta score landscapes are much easier to understand for MDS,

as compared to TSNE. E.g., Fig. 6.6A has exactly one distinct local minimum (left centered region),

whereas Fig. 6.5A has multiple local minima spread around. This feature can be utilized to guess bad

ensemble selections for algorithms using MDS. For example, if three out of four clusters are close to

each other but one is far away during MDS → KMEANS, the one isolated cluster has a high probability

to be a bad choice due to inaccurate Rosetta score mappings. Although TSNE does not have such a

reliable way to tell false-positives, I found a realizable workaround. As seen in Fig. 6.5C, KMEANS

cluster centers for k=30 and k=10 are shown additionally as black and red squares, respectively. By

clustering all samples with a high and low number of cluster centers, we can probe the associated cluster

scores on different scales.” 3 By carefully interpreting the positions and distances of all cluster centers,

it is possible to obtain some sort of confidence boost and apply this information to deduce an estimated

cluster ranking. In my case it was helpful to identify the three nearest k=30 clusters to the lowest

scoring k=10 cluster center. Most of the time at least two of these three clusters had cluster labels 0-2

and were part of the best selections based on their associated GDT accuracy.

Another important aspect of the evaluation is the robustness of each investigated algorithm chain. In

general, using TSNE for dimension reduction makes the ensemble selection very robust. Application

of either KMEANS or DBSCAN on a TSNE representation yield very similar results. Additionally,

independent executions of KMEANS reproduce almost identical results. This means that TSNE greatly

reduces the variance related to KMEANS’ random initialization. MDS on the other hand cannot elim-

inate the stochasticity of KMEANS, which is mainly observed if the MDS representation contains very

dense regions. This is however a typical feature of MDS, since the distance conservation leads to an accu-

mulation of structures into few but dense regions. In some extreme cases structures can even accumulate

mainly into a single stack, as exemplarily shown for WW domain in Fig. E.13 or for BBL in Fig. E.17.

Here the structural differences are not large enough to indicate a clear separation of structures. When

KMEANS is applied on such 2D representations, independent runs do generate slightly varying results

which can be observed by minor movement of cluster borders. Consequently this can influence the final

ensemble selection which depends on the cluster ranking determined by mean Rosetta scores.
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Figure 6.6. MDS representation of selected Lambda repressor (PDB id: 1lmb 210) structures.
(A) Relation with refinement levels (GDT TS). (B) Relation with energy function (Rosetta scores).
(C) Relation with KMEANS cluster mapping. Cluster indices are ranked by average cluster accuracy
(0: best, 29: worst). Cluster centers are visualized as black squares (k=30) or red squares
(k=10). (D) Relation with DBSCAN cluster mapping. Cluster indices are ranked by average
cluster accuracy (0: best, 19: worst, 20: noise). Cluster centers are visualized as black squares
(ε = 8.31, minpts = 5). Adapted from Ref. 3 under CC BY 4.0.

I want to emphasize that these variations can also be observed with different KMEANS initialization

methods (e.g. Forgy175,176), since it primarily depends on the density of data points. To further analyze

the robustness of this pipeline, I performed 100 independent MDS → KMEANS executions and calculated

the individual ratings according to Eq.6.2. In the course of this the rating stayed nearly constant and

observed changes were in the order of ±1.

Lastly, when comparing the fourth pipeline, namely MDS → DBSCAN, we can observe one negative

aspect that stands out. As previously mentioned, this density-based clustering method is deterministic

and its outcome depends on two things: 1) the parameter choices of ε and minpts and 2) the 2D

representation of the underlying data set. Note that both parameters have a correlation with distance,

whereas ε is clearly dominating and affects the results of DBSCAN the most. With this in mind,

MDS → DBSCAN becomes very case-specific and can be seen as unreliable, especially because different

parameters may lead to very different cluster sizes and also ensemble selections. Negative examples can

be given by, e.g., WW domain and BBL as illustrated in Figs. E.13D and E.17D, respectively. However,

during this study I forced a fixed cluster count for algorithm chains using DBSCAN, which allowed me

to objectively compare the results of different proteins.

https://creativecommons.org/licenses/by/4.0/
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To fulfill this condition, I had to manually tweak the parameters until I got exactly 21 clusters, highlight-

ing the case-dependency of DBSCAN. The resulting ensemble selections and the overall performance were

comparable to the other investigated alternatives. The biggest difference compared to other pipelines is

that MDS → DBSCAN manages to select very small ensembles with extremely high structure accuracy.

For example, the final selection for Lambda repressor contained an ensemble with only 5 structures and

a maximum GDT of 94.64 (cf. Table E.4). Similar to this, the final selection for NTL9 yielded an

ensemble with 8 structures and a maximum GDT of 85.71 (cf. Table E.5).

6.5 Summary

As shown at the beginning of this chapter, contact-guided REX MD is capable to achieve relatively good

structure refinement for medium-sized proteins up to approximately 90 residues. Generated structures

reached GDT values above 80 in all 500 ns long simulations. In case of WW domain and NTL9 it

was possible to obtain highly native-like structures with GDTs close to 90. However the best structure

accuracy was observed for Lambda repressor, which was the largest test protein with a size of 92 residues.

Its best model had an outstanding GDT score of 97 and was acquired after only 250 ns using REX. The

observed performance and best-achieved model precision was more dependent on the true-positive rate

of the bias contacts as compared to the secondary structure motifs or size of the protein. High-quality

structures of α-helical proteins were obtained even after very short simulation times. Larger proteins

or β-sheet proteins generally required more time before achieving good results. Based on the size and

complexity of the used protein, REX trajectories above 1µs might be required to reach the best-possible

refinement results due to additional replica turnarounds.

My main objective of this study was to find a robust and reliable solution to select a few representative

structures out of the large pool generated by REX. In this case, I targeted to reproduce the native

state and validated the selection method by mimicking a blind-prediction scenario with unknown target

structure. In general, such a task is very challenging. There exist many different measurements or scoring

formulas, which can be used to assess the quality of a protein structure. However, each on their own

is typically not sufficient enough to guarantee outstanding structure selections. This was exemplarily

shown for the Rosetta scoring function, which was applied to estimate the structure’s quality. However,

this energy function could not reliably differentiate between individual low- and high-quality structures

as shown for four out of five proteins. Nevertheless, the underlying correlation of Rosetta score vs. GDT

was always negative. Utilizing this statistic feature to my advantage, I showed that I can successfully

obtain highly native-like structures when executing a specific order of algorithms. I introduced the

design of the applied ensemble-selection method and explained the four different algorithm pipelines.

In the course of my study, I investigated each pipeline in great detail and objectively compared their

performance.

Starting with the structures taken from the simulation, each chain requires a pre-selection of trajectory

frames to reduce the frame count to a manageable amount. I showed that the fraction of realized bias

contacts QBias is a suitable quantity to reduce the frame count due to the primarily positive correlation

with GDT scores. The next important step is the dimension reduction of pre-selected structures and their

Cα distance matrices. The projection of structural features onto lower dimensions improves the overall

robustness of the algorithm chain and minimizes cluster-related stochasticity. It also provides human-

readable 2D representations of structures which can be extended via Rosetta and GDT score mappings

to evaluate the algorithm performance. I compared two variants of dimension-reduction (TSNE vs.

MDS) and two variants of clustering (KMEANS vs. DBSCAN).
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The four possible algorithm chains were

1) TSNE → KMEANS,

2) MDS → KMEANS,

3) TSNE → DBSCAN,

3) MDS → DBSCAN.

I showed that I can successfully extract high-quality structure when taking many similar structures and

their collective Rosetta scores into account. Hence I calculated mean Rosetta scores for each cluster and

selected the four lowest-scoring clusters as final picks. Note that while REX leads to thermodynamically

correct ensembles, the clustering does not maintain this property. As I explicitly used proteins with an

already determined native structure, I was able to evaluate the performance of each algorithm chain

by comparing the selected ensembles with their corresponding cluster accuracy. For this purpose, I

introduced a numerical rating which makes it easier to compare the performance by weighing only the

four ensembles corresponding to the most-refined structures. Lastly, I compared each algorithm chain in

great detail by talking about differences of TNSE/MDS representations and highlighting relevant pipeline

features. A comparison of the different methods including their pros and cons given by Table 6.5. On

the other hand, Fig. 6.7 gives an overview of selected representative structures.

The presented algorithmic workflows performed very well in all test cases. I want to emphasize that I

was always able to obtain the two most native-like structure ensembles (i.e. clusters with label 0 and

1). However, it is still not possible to perfectly rank the selected ensembles based on accuracy if the

target structure is truly unknown. The final ensemble selections primarily depend on the accuracy of

the underlying energy function. As shown for four of the five test proteins, Rosetta scores alone are not

accurate enough to reliably distinguish between low and high GDT conformations. Still, it is possible to

apply small tricks to differentiate between particular good and bad picks. For instance, it is possible to

use the distance preservation of MDS to eliminate bad picks, if one of the selections is located far away

from the others. Another example was given by performing KMEANS on two separate scales, e.g. with

k=10 and k=30. By changing the number of cluster centers k, comparing of individual distances of

cluster centers and their energy rankings, one can deduce the real accuracy ranking in some cases.

Although I exemplarily aimed for native-like ensemble selections during this study, the key aspects of this

methodology should be applicable to other ensemble-selection objectives as well. This would require an

alteration of only two steps, namely the pre-selection (here: filter structures by QBias) and the scoring

function during the final ensemble selection (here: mean Rosetta scores of clusters). By doing so, one

should achieve similar results for other ensemble targets. For example, the application of an energy

function that favors β-sheets could detect and select structure ensembles with high amounts of β-sheets.

Table 6.5. Comparison overview of the four investigated algorithm chains 3. Clusters were selected
by calculating mean Rosetta scores and picking the four lowest-scoring clusters. The total cluster
count varies based on the used clustering method (KMEANS or DBSCAN). Average rating was
calculated using Eq. 6.2 and normalized across all five test proteins.

algorithm chain cluster selection average rating positive features negative features

TSNE → KMEANS top 4/30 9.6/10 straight forward / selection can include noise data
no parameter tuning

MDS → KMEANS top 4/30 8.8/10 distance preservation allows dense sample regions increase
to guess false-positives randomness of cluster borders

TSNE → DBSCAN top 4/21 8.6/10 reduced noise slightly parameter dependent

MDS → DBSCAN top 4/21 9.2/10 possible to identify small DBSCAN parameters correlate with
ensembles with extremely distance, i.e. heavily depend on
high structure accuracy case-specific MDS representation
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Figure 6.7. Representative structures obtained via TNSE→KMEANS algorithm chain. Best
structures of each selected cluster. Cluster labels are ranked according to GDT mean statistics.
Color-coding highlights the Cα displacement with respect to the reference structure. (A) Lambda
repressor (PDB id: 1lmb 210). (B) Albumin-binding domain (PDB id: 1prb 209). (C) WW domain
of human Pin1 Fip mutant (PDB id: 2f21 212). (D) N-terminal of L9 protein (PDB id: 2hba 211).
(E) BBL (PDB id: 2wxc 208). Visualized in PyMol 189,190.



7
pyrexMD: Workflow-Orientated

Python Package

This chapter covers pyrexMD, which is the Python package I developed during the course of my work.

Section 7.1 outlines both motivation and intention of the software. By combining the experience and

insights from my conducted REX studies, I provide a solution to automate and facilitate (contact-guided)

REX MD. pyrexMD offers an interactive “all-purpose” environment and combines critical aspects of each

biomolecular study, i.e. design, simulation, analysis and visualization. Section 7.2 provides a brief

overview of pyrexMD’s functionality based on the module architecture. Finally, section 7.3 acts as a

quick guide to pyrexMD and contains multiple short code examples for different use-cases. Some parts

of this chapter are reproduced from my article called “pyrexMD: Workflow-Orientated Python Package”

(2021)2, published by the Journal of Open Source Software.

7.1 Motivation

Molecular dynamics (MD) is already a well-established method for in-silico studies of biomolecular

systems. There exist various software solutions which are specialized for specific tasks, such as:

- simulation software: GROMACS107–109, NAMD214,215, LAMMPS216, etc.

- molecule/trajectory viewer: PyMOL189,190, VMD217, Chimera218,219, etc.

- data analysis and visualization: MDAnalysis220,221, MDTraj222, etc.

Researchers often have to select and mix different software solutions to conduct their work. Initially,

it requires an intensive time investment just to learn the unique cmd-line syntaxes, get familiar with

provided functions, etc. Besides, each software uses input and output files with specific data formats,

such that mixing of different software can become quite arduous when setting up a newly developed

workflow.

93
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My own studies primarily utilize the replica exchange (REX) method during MD simulations to generate

physically-meaningful structure ensembles. Each REX simulation can generate terabytes of data and

thus requires a well-organized file system and streamlined workflow operations to successfully analyze

and visualize the simulated data. Additionally, each REX setup consists of various small and system-

specific tasks, since I apply contact-based bias potentials to guide my simulated systems towards specific

conformations. Manually performing these steps is not only very time consuming but also a source for

errors, which could drastically change the outcome of any REX study and should therefore be eliminated.

For this purpose, I decided to develop a Python package named pyrexMD2 to automate many REX-

related tasks and make the setup of (contact-guided) REX MD simulations as easy as possible. Gained

insights from my conducted studies are integrated in provided functions and used to optimize workflows

or protocols. Additionally, I wanted to create an interactive “all-purpose” environment, which combines

the three critical aspects of each biomolecular study: simulation, analysis and visualization.

pyrexMD efficiently integrates and extends the following popular MD-related Python packages:

- GromacsWrapper223: used for interactions with GROMACS to setup and run MD simulations

- MDAnalysis220,221: used to parse MD-related data and provides most-basic analysis functions

- nglview224: used as trajectory viewer.

My software package was build around the use of GROMACS, one of the most popular and efficient MD

simulation software packages available. This open-source solution provides many different force fields

such as AMBER105, CHARMM106, GROMOS225, or OPLS226. The core functionality of GROMACS

can be further extended with plug-ins such as PLUMED227,228 or SSAGES229. These plug-ins implement

additional algorithms and enhanced-sampling methods which interact during the MD simulation itself

or can give access to user-defined collective variables for new types of analyses.

“pyrexMD on the other hand focuses on facilitating, assisting, and automating the simulation setup and

post-simulation analyses. It provides efficient and robust methods for setting up optimized (contact-

guided) REX MD or MD simulations. Furthermore, it offers many intuitive and user-friendly structure

analyses and comparison functions to explore the large I/O sets generated by REX.” 2

During the software development, I focused on providing functions with a consistent but easy-to-use

syntax. Note that some functions offer interactive features which can only be utilized when used in

jupyter notebooks230,231. The application within jupyter provides even more benefits. Most notably,

it allows the user to execute pyrexMD remotely via ssh on any browser to utilize other hardware systems

providing more resources and storage. For example, it is possible to access an office computer (or even

HPC) with better specs and more local storage as compared to a home office PC/laptop. Results can

be inspected and new analyses started, while the software runs with full speed on the remote machine.

7.2 Package Overview

“pyrexMD is a self-developed Python package that is mainly designed for research projects which:

- use (contact-guided) Replica Exchange Molecular Dynamics or (contact-guided) Molecular Dynamics

- or focus on structure analyses and comparison.
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It has three main goals:

1) Interactive ‘all-purpose’ environment:
By including various modified GROMACS and MDAnalysis Python bindings, this package provides a

comprehensive Jupyter notebooks based environment to design, run, and analyze entire MD projects.

2) Data visualization is important:
Most analysis functions for calculating useful quantities, such as RMSD, Q values, contact distances,

etc., can generate specialized figures in the same step by passing the keyword argument plot=True.

3) User-friendly and simple application:
Where possible, the provided functions combine individual steps into comprehensive workflows with

additional automation features. It is possible to rapidly create whole setup or structure-analysis

workflows within a few commands, thereby significantly enhancing productivity and reducing the

time spent on various stages of the project.

pyrexMD makes it straightforward to create, share, and reproduce research results or transfer the work to

other biomolecular structures of interest. Furthermore, it lowers the technical barrier for non-specialists

who want to use Replica Exchange for enhanced sampling. pyrexMD should be used with Jupyter

notebooks and requires GROMACS to run MD simulations.” 2

Provided functions are combined into modules based on their application purpose. A short overview

of the module content is given in Table 7.1. Additional information such as install instructions, quick

guide, or detailed API documentations are accessible via https://kit-mbs.github.io/pyrexMD/.

Table 7.1. Module overview of pyrexMD.

module name module content

pyrexMD.core functions enabling interactive analyses. Its main parts are the
iPlayer and iPlot classes, which allow the use of a trajectory
viewer or a dynamic linking of the trajectory viewer and any
2D graph.

pyrexMD.gmx modified GromacsWrapper functions for streamlining the in-
teraction with GROMACS for system setups etc.

pyrexMD.rex functions related to (contact-guided) Replica Exchange Molec-
ular Dynamics, mainly for automating and speeding up the
simulation setup.

pyrexMD.topology functions for modifying universe topologies, e.g., align atoms
/residues of two universes, get matching selection strings, in-
clude bias contacts.

pyrexMD.analysis.analyze various functions for basic trajectory analyses, e.g., calculating
RMSDs, distances, etc.

pyrexMD.analysis.cluster functions for decoy clustering and post-REX cluster analyses.
pyrexMD.analysis.contacts functions for native-contact and bias-contact analyses.
pyrexMD.analysis.dihedrals functions for dihedral-angle analyses.
pyrexMD.analysis.gdt functions for global distance test (GDT) analyses.
pyrexMD.misc Consists of pyrexMD.misc.classes, pyrexMD.misc.func, and

pyrexMD.misc.plot. This sub-package is a collection of mis-
cellaneous and frequently used functions and classes. These
functions may contain modified versions of small existing func-
tions to extend their default behavior in order to streamline
pyrexMD.

https://kit-mbs.github.io/pyrexMD/
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7.3 Application Overview

7.3.1 Setup of Normal MD Simulation

Using GROMACS in pyrexMD is very similar to the known command-line syntax. Commands such as

gmx function -p parameter

simply become

gmx.function(p=parameter)

Additionally to the expected GROMACS behavior, each gmx module function creates by default a unique

log file with a meaningful name which is stored in the logs folder. The code example below shows a

complete setup of a normal MD simulation.

import pyrexMD.gmx as gmx

import pyrexMD.misc as misc

# create ref pdb:

pdb = "path/to/pdb"

ref = gmx.get_ref_structure(pdb, ff='amber99sb-ildn', water='tip3p', ignh=True)

# generate topology & box

gmx.pdb2gmx(f=ref, o="protein.gro", ff='amber99sb-ildn', water='tip3p', ignh=True)

gmx.editconf(f="protein.gro", o="box.gro", d=2.0, c=True, bt="cubic")

# copy mdp files (ions.mdp, min.mdp, nvt.mdp, npt.mdp, md.mdp) into working directory

misc.cp("path/to/mdp/files", ".")

# generate solvent & ions

gmx.solvate(cp="box.gro", o="solvent.gro")

gmx.grompp(f="ions.mdp", o="ions.tpr",c="solvent.gro")

gmx.genion(s="ions.tpr", o="ions.gro", neutral=True, input="SOL")

# minimize

gmx.grompp(f="min.mdp", o="min.tpr", c="ions.gro")

gmx.mdrun(deffnm="min")

# NVT equilibration

gmx.grompp(f="nvt.mdp", o="nvt.tpr", c="min.gro", r="min.gro")

gmx.mdrun(deffnm="nvt")

# NPT equilibration

gmx.grompp(f="npt.mdp", o="npt.tpr", c="nvt.gro", r="nvt.gro", t="nvt.cpt")

gmx.mdrun(deffnm="npt")

# MD run

gmx.grompp(f="md.mdp", o="traj.tpr", c="npt.gro", t="npt.cpt")

gmx.mdrun(deffn="traj")
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7.3.2 Setup of Contact-Guided REX MD Simulation

The code example below shows a complete setup of a contact-guided REX MD simulation using different

starting conformations (decoys) for each individual replica. It automates many system-specific and

arduous tasks to eliminate possible application errors, such as mismatching system sizes across replicas,

incorrect mapping of bias contacts, etc.

import pyrexMD.misc as misc

import pyrexMD.rex as rex

import pyrexMD.topology as top

decoy_dir = "path/to/decoy/directory"

# create rex_i directories and assign decoys

rex.assign_best_decoys(decoy_dir)

rex_dirs = rex.get_REX_DIRS()

# check for consistent topology

rex.check_REX_PDBS(decoy_dir)

# copy mdp files (ions.mdp, min.mdp, nvt.mdp, npt.mdp, rex.mdp) into working directory

misc.cp("path/to/mdp/files", ".")

# get parameters for fixed box size and solvent molecules

boxsize, maxsol = rex.WF_get_system_parameters(wdir="./rex_0_get_system_parameters/")

# create systems for each replica and minimize them

rex.WF_REX_setup(rex_dirs=rex_dirs, boxsize=boxsize, maxsol=maxsol)

rex.WF_REX_setup_energy_minimization(rex_dirs=rex_dirs, verbose=False)

# add bias contacts (RES pairs defined in DCA_fin)

top.DCA_res2atom_mapping(ref_pdb=<ref_pdb>, DCA_fin=<file_path>, n_DCA=50, usecols=(0,1))

top.DCA_modify_topology(top_fin="topol.top", DCA_used_fin=<file_path>,

k=10, save_as="topol_mod.top")

# prepare temperature distribution

rex.prep_REX_temps(T_0=280, n_REX=len(rex_dirs), k=0.006)

# create mdp and tpr files

rex.prep_REX_mdp(main_dir="./", n_REX=len(rex_dirs))

rex.prep_REX_tpr(main_dir="./", n_REX=len(rex_dirs))

# next: upload REX MD run files on HPC and execute production run
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7.3.3 Interactive Plots

pyrexMD can generate interactive plots by linking a 2D graph to the trajectory viewer of a specific

universe. It allows to quickly inspect conformations at specific values by interacting with the graph

itself (e.g. via ctrl-click). In this way, additional valuable information becomes accessible through the

trajectory viewer, as shown in Fig. 7.1. All typical interactions, such as rotation, translation, changing

of molecule representation or inspection of atom names and distances, are possible.

import MDAnalysis as mda

import pyrexMD.misc as misc

import pyrexMD.core as core

import pyrexMD.topology as top

import pyrexMD.analysis.analyze as ana

# set up universe

ref = mda.Universe(<pdb_file>)

mobile = mda.Universe(<tpr_file>, <xtc_file>)

# calculate RMSD

FRAMES, TIME, RMSD = ana.get_RMSD(mobile, ref=ref, sel1="protein", sel2="protein")

# create interactive plot

IP = core.iPlot(mobile, xdata=TIME, ydata=RMSD, ylabel=r"RMSD (A)")

IP()

Figure 7.1. pyrexMD’s interactive trajectory viewer. Trajectory viewer (top) which is linked to an
interactive plot (here RMSD, bottom). Conformations at specific values can be quickly inspected
by interacting with the graph itself (e.g. via ctrl-click), thus making additional valuable information
accessible through the trajectory viewer. Reproduced from Ref. 2 under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
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7.3.4 Contact and Bias Analyses

REX is a very powerful and versatile enhanced sampling method. It improves sampling by running

many replicas in parallel over a wide temperature range and allows switches of replicas between different

temperatures while maintaining thermodynamic ensembles. By integrating (theoretical, experimental, or

mixed) bias contacts via bias potentials, one can narrow down the search space and guide the simulations

towards specific conformations. This speeds up the process and lowers the computational costs. pyrexMD

covers many different forms of contact and bias analyses. It distinguishes mainly between two types of

Q values, i.e., QNative (fraction of native contacts) and QBias (fraction of realized bias contacts). Both

types can be used for structure analyses. However, when simulating unknown target structures QNative

becomes inaccessible due to the missing reference structure.

The code example below exemplarily shows the true-positive rate (TPR) analysis of considered bias

contacts for a REX MD study. Predicted bias contacts are initially ranked and then compared with a

reference structure. Based on the occurring distances of the residue pairs, contacts are considered true

or false using a distance threshold. The code automatically suggests how many bias contacts should be

picked for contact-guided REX, using guidelines from one of my studies1. E.g., the TPR analysis of

Fig. 7.2 suggests to use 25 bias contacts with a TPR of 88% for optimal results.

import MDAnalysis as mda

import pyrexMD.topology as top

import pyrexMD.analysis.contacts as con

# set up universe

native = mda.Universe(<pdb_file>)

top.norm_universe(native)

# check True Positive Rate (TPR) of predicted bias contacts

con.plot_DCA_TPR(native, DCA_fin=<path_to_predicted_contacts>, n_DCA=80, d_cutoff=8.0)

Figure 7.2. True positive rate (TPR) analysis of bias contacts with pyrexMD. The figure exem-
plarily shows the TPR (blue) of the considered bias contacts together with other relevant value
guidelines for contact-guided REX MD 1, such as a minimal TPR threshold of 75% (red) and a sug-
gested optimal number of contacts (orange) between L/2 and L, where L denotes the biomolecular
sequence length. Here, the plot-function suggests to use 25 bias contacts with a TPR of 88% for
optimal results. Reproduced from Ref. 2 under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
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Figure 7.3. Possible contact map analysis variants of pyrexMD. (A) Visualization of native contacts
(gray) and bias contacts (green: true-positive, red: false-positive). This variant can also be used to
compare two different protein configurations and visualize if residue pairs either form new contacts
or brake up. (B) Visualization of native contact distances to infer how strong and important each
contact is with regard to structure stability.

Contact maps are also well suited for contact analyses, as they can be used to display different kinds

of valuable information. pyrexMD offers two contact map analysis methods. Fig. 7.3A shows the first

variant, where the native contacts of a reference structure are shown as gray squares. Additionally, a

file containing residue pairs (bias contacts) can be passed, which displays smaller squares color in green

or red, in case they are native or non-native contacts, respectively. This enables a very detailed yet

compact overview of a protein structure containing all important residue contacts. Alternatively, this

contact map variant can also be used to compare two different protein configurations. In this case, it

can show which residues form new contacts or brake up. The second contact map variant, as seen in

Fig. 7.3B, simply visualizes the native contacts of a protein structure based on their residue pair distance.

This information can be used to deduce how strong and important the individual native contacts are

with regard to structure stability.

7.3.5 Global Distance Test and Local Alignment Analyses

The so-called global distance test (GDT)129,130 is a method for structure evaluation similar to the root-

mean-square deviation (RMSD). However, RMSD is a sub-optimal measure of structural similarity as

it strongly correlates with the largest displacement between mobile and target structure. If the mobile

structure globally fits the target to a large extent and only one small segment is misaligned locally,

the RMSD becomes disproportionately large. For the GDT, the mobile structure is first aligned to the

target structure analogously to an RMSD analysis. To estimate how similar the two structures are, the

displacement of each residual Cα atom is calculated and compared to various cutoffs. In a last step,

percentages of residues with displacements below a considered threshold are used to calculate scores.

The two most common scores are the total score (TS),

GDTTS =
1

4
(P1 + P2 + P4 + P8) ∈ [0, 100] (7.1)
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and the high-accuracy (HA) score,

GDTHA =
1

4
(P0.5 + P1 + P2 + P4) ∈ [0, 100] (7.2)

where Px denote the percentage of residues with displacements below a distance cutoff of x Å.

While the GDT score can be used to quantify a structure, its value does not contain information about

how good each region of a model fits to the reference structure. In such cases, it is better to apply

local accuracy (LA) representations, as shown in Fig. 7.4. Such figures display a matrix, where each

line corresponds to one structure model and each entry is color-coded based on the Cα-Cα distance

between the mobile and reference structure. Therefore, it is possible to quickly check how good the

local segments align compared to a reference structure. The code example below shows how generate

LA plots (cf. Fig. 7.4) in pyrexMD.

import MDAnalysis as mda

import pyrexMD.misc as misc

import pyrexMD.core as core

import pyrexMD.topology as top

import pyrexMD.analysis.analyze as ana

import pyrexMD.analysis.gdt as gdt

# set up universes

ref = mda.Universe("<pdb_file>")

mobile = mda.Universe("<tpr_file>", "<xtc_file>")

top.norm_and_align_universe(mobile, ref)

# perform GDT (Global Distance Test)

GDT = gdt.GDT(mobile, ref)

GDT_percent, GDT_resids, GDT_cutoff, RMSD, FRAME = GDT

# calculate GDT scores

GDT_TS = gdt.get_GDT_TS(GDT_percent)

GDT_HA = gdt.get_GDT_HA(GDT_percent)

# rank scores

SCORES = gdt.GDT_rank_scores(GDT_percent, ranking_order="GDT_TS", verbose=False)

GDT_TS_ranked, GDT_HA_ranked, GDT_ndx_ranked = SCORES

# generate plots

ana.PLOT(xdata=frames, ydata=GDT_TS, xlabel="Frame", ylabel="GDT TS")

ana.plot_hist(GDT_TS, n_bins=20, xlabel="GDT TS", ylabel="Counts")

# Local Accuracy plot

gdt.plot_LA(mobile, ref, GDT_TS_ranked, GDT_HA_ranked, GDT_ndx_ranked)



pyrexMD 102

Figure 7.4. Local accuracy analysis of REX-generated protein models using pyrexMD. Figure
indicates how good each model section is refined compared to a reference structure. Residues
are color-coded to represent the CA-CA distance between the model and reference structure after
fitting. Book-keeping information such as GDT TS, GDT HA, and frame index, are shown on the
left side and can be disabled individually. Reproduced from Ref. 2 under CC BY 4.0.

7.3.6 Cluster Analyses

REX MD simulations generate large amounts of data. Depending on the project goal, filtering and

clustering of structural ensembles will be necessary. pyrexMD integrates different methods related to

cluster analyses. It offers, e.g., multidimensional scaling (MDS)149,150 or t-distributed stochastic neigh-

bor embedding (TNSE)137,138 for dimension reduction. Clustering itself can be performed with, e.g.,

KMEANS163,164 or DBSCAN167,168 (density-based spatial clustering of applications with noise).

The code example below applies TSNE for dimension reduction of distance matrices (DM). Afterwards,

a ‘fine’ and ‘coarse’ KMeans clustering is performed with 10 and 20 cluster centers, respectively. The

results are visualized in Fig. 7.5.

import pyrexMD.misc as misc

import pyrexMD.analysis.cluster as clu

# load data of pre-filtered frames

QDATA = misc.pickle_load("./data/QDATA.pickle")

RMSD = misc.pickle_load("./data/RMSD.pickle")

GDT_TS = misc.pickle_load("./data/GDT_TS.pickle")

score_file = "./data/energies.log"

ENERGY = misc.read_file(score_file, usecols=1, skiprows=1)

DM = clu.read_h5("./data/DM.h5")

https://creativecommons.org/licenses/by/4.0/
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# apply TSNE for dimension reduction

tsne = clu.apply_TSNE(DM, n_components=2, perplexity=50)

### apply KMeans on TSNE-transformed data (two variants with low and high cluster number)

cluster10 = clu.apply_KMEANS(tsne, n_clusters=10)

cluster20 = clu.apply_KMEANS(tsne, n_clusters=20)

### plot cluster data

# here: TSNE-transformed data with n_clusters = 20

# also: plot cluster centers with different colors

clu.plot_cluster_data(cluster20, tsne)

clu.plot_cluster_center(cluster10, marker="o", color="red", ms=20)

clu.plot_cluster_center(cluster20, marker="o", color="black")

Figure 7.5. Exemplary application of dimension-reduction and clustering. TSNE representation of
KMEANS-clustered (k = 20) protein structures according to the given code example. Additionally,
cluster centers are visualized by black and red dots.
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Furthermore, it is possible to link both scores data (energies) and accuracy data (GDT and RMSD) to

clusters. This information can then be used to compare, sort and select the individual cluster ensembles.

The code example below shows how to apply this feature.

### map scores (energies) and accuracy (GDT, RMSD) to clusters

cluster10_scores = clu.map_cluster_scores(cluster_data=cluster10, score_data=score_file)

cluster10_accuracy = clu.map_cluster_accuracy(cluster_data=cluster10, GDT=GDT_TS, RMSD=RMSD)

cluster20_scores = clu.map_cluster_scores(cluster_data=cluster20, score_data=score_file)

cluster20_accuracy = clu.map_cluster_accuracy(cluster_data=cluster20, GDT=GDT_TS, RMSD=RMSD)

### print table with cluster scores stats

clu.WF_print_cluster_scores(cluster_data=cluster10, cluster_scores=cluster10_scores)

### print table with cluster accuracy stats

clu.WF_print_cluster_accuracy(cluster_data=cluster10, cluster_accuracy=cluster10_accuracy)

The last commands are used to print a summary of the cluster scores and accuracy, which can also be

saved to a log file if the save_as parameter is specified. The resulting output will look similar to:

cluster n10 scores (ranked by Emean)

ndx size compact | Emean Estd Emin Emax DELTA

6 77 6.695 |-230.652 6.975 -246.249 -211.738 -7.67

1 61 5.78 |-226.274 8.08 -241.86 -209.002 -3.292

8 43 3.098 |-225.174 7.679 -242.951 -206.42 -2.192

2 52 2.807 |-224.486 7.592 -240.913 -202.431 -1.504

7 41 9.439 |-223.741 17.481 -249.136 -190.634 -0.759

5 53 3.441 |-223.03 6.056 -237.002 -209.372 -0.048

9 25 2.172 |-220.319 7.431 -231.002 -203.796 2.663

0 80 9.121 |-216.962 7.09 -235.155 -200.969 6.02

3 25 0.798 |-214.371 6.688 -228.33 -201.657 8.611

4 43 1.91 |-194.022 2.585 -198.461 -190.412 28.96

-------------------------------------------------------------------

cluster n10 accuracy (ranked by GDT mean)

| GDT GDT GDT GDT | RMSD RMSD RMSD RMSD

ndx size compact | mean std min max | mean std min max

2 52 2.807 | 77.296 1.815 73.81 80.953 | 2.555 0.154 2.182 3.076

6 77 6.695 | 77.003 2.451 63.69 82.44 | 2.804 0.096 2.62 3.154

1 61 5.78 | 75.943 2.325 71.728 82.142 | 2.85 0.096 2.567 3.03

8 43 3.098 | 74.821 2.017 70.538 79.763 | 2.895 0.096 2.696 3.19

7 41 9.439 | 73.374 14.68 41.37 94.94 | 2.873 1.192 0.996 6.501

9 25 2.172 | 68.941 2.312 65.177 74.407 | 3.091 0.104 2.796 3.221

0 80 9.121 | 64.695 3.943 55.057 74.703 | 3.444 0.238 2.719 3.896

5 53 3.441 | 63.235 1.766 58.927 66.668 | 3.498 0.132 3.079 3.721

3 25 0.798 | 60.012 2.289 56.248 63.69 | 3.804 0.087 3.684 4.043

4 43 1.91 | 55.621 2.013 51.785 60.715 | 4.312 0.17 3.794 4.798

---------------------------------------------------------------------------------
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8
Summary

In the following chapter I will summarize and highlight the results of my work regarding the application

and optimization of contact-guided REX MD. Similarly to the outline of this thesis, I will shift the focus

on smaller aspects and discuss their significance with respect to the general performance and utilization

of this method. I will state the strengths and limitations of REX MD and highlight my contributions

to elevate the expected outcome. Lastly, I will suggest further improvements and discuss possible future

applications or research directions.

Proteins are complex and flexible macromolecules that act as nanosized workers in living organisms where

they fulfill literally all critical tasks. Their biological function is closely related to their three dimensional

structure as its shape and surface properties both define and limit environmental interactions. Many

degenerative diseases, such as Alzheimer’s or Parkinson’s, are not caused by bacteria or viruses but

instead by the misfolding and aggregation of certain proteins232. In general, protein misfolding can have

severe consequences based on the importance of the protein’s task and its relation to other biochemical

interactions. Protein studies can therefore give valuable insight into associated mechanisms, which can

also be used to improve drug design in order to prevent or weaken ailments.

Nowadays there exist many different methods and approaches to determine a protein’s structure and

function. However, to fully understand a protein and its dynamic interactions it is necessary to combine

multiple sources. This also includes the mixing of both experimental and computational techniques.

Each individual method is usually limited to specific aspects and cannot provide the complete picture

on their own. For example, NMR spectroscopy89 provides mainly information about the chemical

environment which can be used to infer structural features. Cryo-EM233 can only capture random

planes/orientations of occurring protein conformations but cannot be used to study dynamics. On the

other hand, computational methods can provide a detailed and atomic view of dynamic interactions using

either MC- or MD-based approaches. These can be used to, e.g, aid the interpretation of experimental

109



Summary 110

data and bridge the gap between a static and dynamic viewpoint. However, the problem with such

computational methods is that results are not measuring natural properties but can vary based on the

applied model. More precisely, the outcome highly depends on the used simulation method, parameter

choices, applied constraints, etc. For this reason, results should be carefully interpreted and ideally

compared to experimental data.

Besides, each computational method has distinct strengths but also weaknesses. For example, normal

MD simulations often struggle to reach physiologically meaningful timescales that are required for folding

to the native state of a protein. Besides, simulations can get trapped in specific conformations due to

potential energetic barriers that prevent the protein from further folding. Obtaining a native fold can

thus become quite challenging. But is possible to overcome conformational entrapment at the cost of

additional computing resources by using advanced sampling techniques such as REX. The primary goal

of REX is to generate large amounts of physically meaningful structures. High temperatures provide

sufficient energy to overcome local barriers while low temperatures lead to local searches of native-like

conformations. Another positive feature of REX is that it can still generate thermodynamically correct

ensembles despite the walk in temperature space. Its main weakness is that the computational costs are

typically high since REX can be seen as running N MD simulations in parallel.

In the course of my work I extended the normal REX protocol with the goal to minimize the compu-

tational costs while increasing the chances of observing native-like conformations. The integration of a

contact-based bias potential reduces the search space of REX and drives the simulation towards specific

conformations. In my case, I apply an attractive potential that interacts only with presumably native

contacts. A sigmoid shape was chosen as it can naturally reduce the negative influence of false-positive

predictions.

In one of my studies I demonstrated the enrichment of native-like conformations by comparing contact-

guided REX MD to regular and biased MD simulations1. Furthermore, I investigated the influence

of native and non-native contacts by systematically testing many scenarios of varying bias quality and

number of bias contacts. This allowed me to infer bias-quality thresholds that are necessary to obtain

a significantly improved outcome as compared to regular REX. The most notable observations are 1)

the true-positive rate should not fall below approximately 75% and 2) long-range contacts have a much

stronger influence than short-range contacts. I concluded the findings by formulating bias guidelines and

exemplarily discussed their application based on two contact-deriving methods, i.e. DCA and ResTriplet.

I also conducted a short study to optimize the sigmoid shape of my applied potential using one α-helical

and one β-sheet structure. Here, I tested different values for the coupling strength λ and the equilibrium

distance r0. The direct comparison of resulting GDT distributions allowed me to identify good parameter

ranges and to define an optimized potential for the general use-case.

Another important part of my work dealt with the optimization of starting structures that are used

to populate each individual replica. The motivation is to provide additional pathways towards the

native fold by maximizing the diversity of initial structures. At the same time, these structures should

not deviate too much from the native fold, which would lead to diminishing returns in the saving of

computational costs. I presented a de novo MC folding algorithm that is capable to quickly generate large

amounts of starting structures by utilizing fragment insertion to speed up the process. Furthermore, I

analyzed the generated structures of seven different proteins regarding their energy surface and structure

accuracy (measured by GDT). I then presented two approaches on how to select among these structures

and compared them against each other. I showed that it is generally better if structures are first clustered

and then selected, instead of choosing them directly.
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The potentially most critical aspect of my work was to find a solution on how to select native-like

structure ensembles from REX simulations3. As previously mentioned, REX can generate large amounts

of physically meaningful structures. But in my case I am only interested in a small subset, i.e. the highly

native-like conformations. Using the entire REX trajectories of five different proteins as a basis to choose

from, I presented four complex and robust algorithm chains that are capable to extract the wanted

structure ensembles with high certainty. Furthermore, I introduced a numerical rating to objectively

measure the selection performance of each pipeline. I investigated each variant in great detail and

compared their overall performance against each other. Additionally, I discussed the pros and cons of

each variant and tested if they are robust or lead to deviations in independent executions.

Lastly, I presented pyrexMD2, a self-developed Python package that provides an interactive “all-purpose”

environment to design, run, and analyze entire REX projects. It facilitates and automates many REX-

related tasks and can greatly enhance the productivity. It also specializes in the visualization of data

and offers a great variety of structure analysis and comparison functions.

In summary, the work presented in this thesis covers various critical aspects of contact-guided REX

MD with the goal to optimize the end-to-end process and minimize the computational demands. This

method excels in being easy-to-use as it does not require intensive parameter tuning. Besides, this

method is extremely flexible and allows the integration of any kind of contact source or even a mixing

of different sources. Nevertheless, REX MD still remains computationally demanding even with the

presented improvements.

In 2009, it was shown that physical force fields are accurate to reversibly fold proteins on millisecond-

scale MD simulations35,36. For example, multiple folding and unfolding events were observed for the viral

protein gpW, which has a mixed structure of two α-helices and two β-sheets. In 2020, highly accurate

structure prediction was achieved with a data-driven approach, i.e. with AlphaFold 2100. It was capable

to reliably predict protein structures with an average GDT TS of almost 90, which is considered roughly

equivalent to experimentally determined structures100. However, AlphaFold cannot provide additional

insight about other meaningful events or the physical processes driving structure adoption. In the course

of my work I showed that it is possible to obtain native or near-native protein structures with the physical

approach of contact-guided REX MD. Physical force fields are sufficiently accurate to generate native-like

conformations in biased simulations for small and mid-sized proteins. My simulations yielded structural

models with GDT scores above 80 and in most cases around 90. Additionally, I demonstrated that I

can reliably select native-like ensembles from 500 ns long REX simulations using my ensemble-selection

algorithms.

I want to emphasize that REX simulations can be used for more than just the generation or refinement

of native-like structures. My work primarily focuses on the lower-temperature data, but the remaining

structural data at higher temperatures can also be used for many other analyses. For instance, it

is possible to shift the perspective and instead of looking at fixed temperatures follow the individual

turnaround cycles instead. This allows the exploration of many different folding paths in great detail.

Additionally, since the integrated bias is known it can retrospectively be balanced out for all replicas. By

doing so, one can deduce the free energy landscape of the simulated protein with statistical techniques

such as the weighted histogram analysis method (WHAM)234.

In its current state, I suggest two further improvements to contact-guided REX MD. First is to extend

my study regarding the bias-potential optimization. My study provides some initial insights based on

only two different structures. Additional testing is therefore required using other proteins and also

with varying protein sizes. Besides, it would be beneficial to decrease the parameter step size and test

more values, especially for r0. My other suggestion is to modify the REX MD simulation in such a
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way, that the simulation monitors which contacts are realized and which are not. These could then

be dynamically switched on or off, with the intention to detect false-positive bias contacts and further

negate their negative influence.

Lastly, I want to point out that the presented simulation method can also be successfully applied on

RNA targets, which are studied more rarely than proteins. So far I only performed some initial tests and

compared unbiased MD simulations with unbiased and biased REX MD at 100% TPR for three RNA

targets. Initial results (cf. appendix F) indicate a high potential for this method, especially once the bias

potential has been optimized for RNA targets. The achieved structure accuracy was sometimes better

or on par with other methods, such as SimRNA with bias derived by mean field DCA or CoCoNet235.

In general, it should be expected that the required simulation times are slightly longer than with protein

targets. The main reasons are that 1) RNAs are typically elongated and loosely packed which makes

them more flexible by nature236 and 2) most RNA force fields are not as reliable and well-tested as

protein force fields. However, recent improvements report a comparable performance to current state-of-

the-art protein force fields after reparameterizating an AMBER RNA force field237. It may be of great

interest to first optimize the parameters defining the sigmoid potential specifically for RNA targets.

Afterwards, one can perform extensive testing on the general performance of contact-guided REX MD,

similar to my bias-quality study1.
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A
Supplementary Information: Basics

The following content provides additional information to fully understand my work. The featured basics

cover mainly technical details regarding my implementation of contact-guided REX MD. Appendix A.1

states my definition of native contacts and the mathematical conditions they have to fulfil. Appendix

A.2 explains the technical integration of my sigmoid bias potential into MD simulations using GROMACS.

Appendix A.3 contains information regarding REX temperature distributions and their importance for an

optimal simulation performance. Furthermore, I present my modified REX temperature generator and

the motivation for the applied changes. Lastly, appendix A.4 exemplarily shows .mdp settings to perform

REX simulations in GROMACS.

A.1 Native Contacts

The definition of native contacts typically depends on the used representations during MD simulations.

As I only perform all-atom simulations, I define native contacts via the conditions:

rij = ||ri − rj || ≤ 6Å ≡ rnc, (A.1)

∆ij = |i− j| ≥ 4. (A.2)

Eq. A.1 sets a distance threshold for Cα distances rij at 6Å between two residues i an j. Eq. A.2 on the

other hand excludes short-range pairs measured by their relative sequence distance, which correspond

to the main diagonal of a contact map. Besides such contacts are irrelevant for my studies because their

integration would have no significant effect due to the design of my sigmoid bias potential.
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A.2 Bias Implementation

The implementation of a contact-based bias potential can be achieved via tabulated bonded interac-

tions109. In GROMACS such interactions must be specified for bonds, angles and dihedrals separately,

which offers maximum flexibility to the user. My intention is to apply an attractive force on selected

Cα pairs that is distance dependant in order to guide protein folding while being less sensitive towards

false-positive bias contacts. The potential for such bonded interactions is given by109

Vb(rij) = kfb
n(rij), (A.3)

with the potential V , distance rij between atoms i and j, force constant k, a lookup table fn, and

the index b representing bond interactions. Note the similarity between Eq. A.3 and Eq. 3.33, where k

corresponds to the coupling strength λ and fn is the sigmoidal potential σ(r).

The lookup table describes the potential’s shape and must be formatted with the three columns109

r, f(r), -f’(r)

where the first column represents the pair distance r in nm, the second column describes the potential’s

shape and the last column its negative derivative. When designing the lookup table it is important to

keep the spacing of ∆r uniform. A single-precision build of GROMACS requires a spacing of ∆r = 0.002 nm,

whereas a double-precision build requires ∆r = 0.0005nm109. It is also necessary to provide a table of

sufficient length. GROMACS does interpolate both potential and force based on the provided lookup table

but stops the simulation if atom distances exceed the table’s range. I want to emphasize that the table

names are hardcoded into GROMACS and must be named according to the convention “table_bn.xvg” with

n ∈ {0, 1, 2, ...}.

To specify which atoms are affected by the tabulated bonded interactions, the user has to modify the

bonds section of the topology file before running GROMACS’ pre-processor to create relevant MD files. A

valid modification is given by the following topolgy code:

[ bonds ]

; ai aj funct c0 c1

612 739 9 0 10

596 739 9 0 10

553 739 9 0 10

612 704 9 0 10

296 772 9 0 10

315 791 9 0 10

Here, atom numbers are represented by ai and aj, whereas funct 9 defines the application of tabulated

bonded interactions. The last two parameters, i.e. c0 and c1, stand for the hardcoded table number

and the force constant k in kJmol−1, respectively. pyrexMD2 offers build-in functions to design sigmoid-

shaped lookup tables and to automatically modify topology files during the MD setup, which facilitates

the integration of contact-based bias potentials. Finally, to include the lookup table into the simulation,

the gmx mdrun command must be extended by

-tableb table_b0.xvg
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A.3 REX Temperature Generator

In order to maximize the turnaround cycles of a REX simulation, exchange rates must be uniformly

constant across the entire temperature range. The microstates of each replica typically correspond to a

Boltzmann distribution, i.e e−βE , with the inverse temperature β = 1
kBT

and the energy E. According

to Eq. 3.32 exchange rates are proportional to the overlap of adjacent Boltzmann distributions. There-

fore, by choosing an exponential temperature distribution for REX it is possible to maintain a nearly

equivalent distribution overlap for all replicas. The simplest temperature model is given by

Ti = T0 · eki, (A.4)

where Ti is the temperature of replica i and k specifies the distribution’s growth speed. The problem of

this simple model is that exchange rates are typically non-uniform and increase at higher temperatures.

However, this can be easily fixed by modifying the temperature spacing of higher replicas. My modified

REX temperature generator is given by

Ti = Ti−1 + ai ·∆, (A.5)

∆ = T0 ·
(
eki − ek(i−1)

)
. (A.6)

In this case, ∆ denotes the temperature difference of two adjacent replicas, Ti the temperature of replica

i, and ai is a parameter to modify the temperature step size. Choosing ai = 1 for all i would result in

the same temperature distribution as the simple model from Eq. A.4. In contrast, by setting ai > 1 the

temperature spacing of adjacent replicas gets slightly increased. This in turn reduces the overlapping

area of the respective Boltzmann distributions and makes the exchange rates more uniform. Based on

my experience with this modified REX temperature generator, it is possible to obtain constant exchange

rates across the entire temperature range when ai is increased by approximately 2-5% every ten replicas.

The drawback of this method is that each new system requires short REX runs (∼ 5 runs) to screen

occurring exchange rates before finding a good temperature distribution. Note that the literature offers

other REX temperature generators that aim to predict ideal temperature distributions238.
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A.4 REX Settings for GROMACS

The settings below can be used in GROMACS for REX studies. Each replica requires its own .mdp file with

a temperature distribution according to a REX temperature generator, as defined by Eqs. A.5 and A.6.

; Run parameters

integrator = md ; leap-frog integrator

dt = 0.002 ; 2 fs

nsteps = 250000000 ; nsteps * dt = 500 ns

; Output control

nstxout = 50000 ; save coordinates every 100 ps (.trr size)

nstvout = 50000 ; save velocities every 100 ps (.trr size)

nstenergy = 50000 ; save energies every 100 ps (.edr size)

nstlog = 5000 ; save log file every 10 ps (.log size)

nstxout-compressed = 5000 ; save compr.coord every 10 ps (.xtc size)

compressed-x-grps = Protein ; replaces xtc-grps

; Bond parameters

continuation = no ; first dynamics run

constraint_algorithm= lincs ; holonomic constraints

constraints = all-bonds ; all bonds (even heavy atom-H bonds) constrained

lincs_iter = 1 ; accuracy of LINCS

lincs_order = 4 ; also related to accuracy

; Neighborsearching

cutoff-scheme = Verlet

ns_type = grid ; search neighboring grid cells

nstlist = 10 ; 20 fs, largely irrelevant with Verlet

rcoulomb = 1.0 ; short-range electrostatic cutoff (in nm)

rvdw = 1.0 ; short-range van der Waals cutoff (in nm)

; Electrostatics

coulombtype = PME ; Particle Mesh Ewald for long-range electrostatics

pme_order = 4 ; cubic interpolation

fourierspacing = 0.16 ; grid spacing for FFT

; Temperature coupling is on

tcoupl = V-rescale ; modified Berendsen thermostat

tc-grps = Protein Non-Protein ; two coupling groups - more accurate

tau_t = 0.1 0.1 ; time constant, in ps

ref_t = 280.00 280.00 ; reference temperature, one for each group, in K

; Pressure coupling is off

pcoupl = no ; no pressure coupling in NVT

; Periodic boundary conditions

pbc = xyz ; 3-D PBC

; Dispersion correction

DispCorr = EnerPres ; account for cut-off vdW scheme

; Velocity generation

gen_vel = yes ; assign velocities from Maxwell distribution

gen_temp = 280.00 ; temperature for Maxwell distribution

gen_seed = -1 ; generate a random seed



B
Supplementary Information:

Bias-Quality Study

The following content provides additional information that is relevant for the bias-quality study presented

in section 4.1. Appendix B.1 gives a detailed summary of the applied REX temperature distributions

during the Trp-Cage and Villin Headpiece simulations. It states the applied distribution function, the

chosen parameters and the resulting temperatures for each replica. Appendix B.2 contains contact map

figures highlighting the order of selected contact pairs and if they are native. Additionally, selected contact

pairs are visualized in a 3D protein model. Lastly, in appendix B.3 I investigate two different methods

of contact derivation (DCA and ResTriplet) and compare their contact predictions against each other

using a contact map representation. Such information is relevant for section 4.1.4, where I formulate

bias guidelines for contact-guided REX MD.
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B.1 Used Temperature Distributions

Used Trp-Cage Temperatures

REX Temperature Distribution:

T_0 = 300 K ; DELTA = T_0 * (exp(k*i)-exp(k*(i-1)))

T_i = T_(i-1) + a_i * DELTA

Chosen Parameter:

k =0.0115

a0=1.00 for i = 0..9

a1=1.04 for i = 10..19

a2=1.08 for i = 20..29

a3=1.12 for i = 30..39

a4=1.16 for i = 40..49

a5=1.20 for i = 50..59

Temperatures:

300.00, 303.47, 306.98, 310.53, 314.12, 317.76, 321.43, 325.15, 328.91, 332.71,

336.72, 340.76, 344.86, 349.00, 353.19, 357.43, 361.72, 366.06, 370.45, 374.88,

379.55, 384.26, 389.04, 393.86, 398.74, 403.68, 408.68, 413.73, 418.84, 424.01,

429.44, 434.93, 440.48, 446.09, 451.77, 457.52, 463.33, 469.21, 475.16, 481.17,

487.48, 493.85, 500.30, 506.83, 513.43, 520.10, 526.86, 533.69, 540.60, 547.59,

554.90, 562.30, 569.79, 577.36, 585.02, 592.77, 600.61, 608.54, 616.56, 624.67

Used VHP Temperatures

REX Temperature Distribution:

T_0 = 300 K ; DELTA = T_0 * (exp(k*i)-exp(k*(i-1)))

T_i = T_(i-1) + a_i * DELTA

Chosen Parameter:

k =0.0065

a0=1.00 for i = 0..9

a1=1.04 for i = 10..19

a2=1.08 for i = 20..29

a3=1.12 for i = 30..39

a4=1.16 for i = 40..49

a5=1.20 for i = 50..59

a6=1.24 for i = 60..69

a7=1.28 for i = 70..79

a8=1.32 for i = 80..89

a9=1.36 for i = 90..99

Temperatures:

300.00, 301.96, 303.93, 305.91, 307.90, 309.91, 311.93, 313.97, 316.01, 318.07,

320.23, 322.40, 324.59, 326.79, 329.00, 331.23, 333.47, 335.73, 338.00, 340.29,

342.68, 345.09, 347.51, 349.95, 352.40, 354.87, 357.35, 359.86, 362.37, 364.91,

367.55, 370.22, 372.90, 375.60, 378.31, 381.04, 383.79, 386.56, 389.35, 392.16,

395.08, 398.02, 400.99, 403.97, 406.97, 409.99, 413.03, 416.09, 419.17, 422.27,

425.50, 428.75, 432.02, 435.31, 438.62, 441.96, 445.31, 448.69, 452.09, 455.52,

459.08, 462.66, 466.26, 469.89, 473.55, 477.23, 480.93, 484.65, 488.40, 492.18,

496.10, 500.04, 504.02, 508.02, 512.04, 516.09, 520.17, 524.27, 528.40, 532.56,

536.88, 541.22, 545.59, 549.99, 554.42, 558.88, 563.37, 567.88, 572.43, 577.00,

581.75, 586.53, 591.33, 596.17, 601.04, 605.94, 610.88, 615.84, 620.84, 625.87
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B.2 Contact Maps

Figure B.1. Restraints used in Trp-Cage REX MD simulations at 100% TPR. (A) Contact map
displaying native contacts as gray squares. Randomly selected contact pairs which were used as
restraints are colored based on their batch. (B) Tertiary structure of Trp-Cage showing the contact
pairs in the same color as in the contact map. Reproduced from Ref. 1 under CC BY 4.0.

Figure B.2. Restraints used in Trp-Cage REX MD simulations at 75% TPR. (A) Contact map
displaying native contacts as gray squares. Randomly selected contact pairs which were used as
restraints are colored based on their batch. (B) Tertiary structure of Trp-Cage showing the contact
pairs in the same color as in the contact map. Reproduced from Ref. 1 under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Figure B.3. Restraints used in Trp-Cage REX MD simulations at 50% TPR. (A) Contact map
displaying native contacts as gray squares. Randomly selected contact pairs which were used as
restraints are colored based on their batch. (B) Tertiary structure of Trp-Cage showing the contact
pairs in the same color as in the contact map. Reproduced from Ref. 1 under CC BY 4.0.

Figure B.4. Restraints used in VHP REX MD simulations at 100% TPR. (A) Contact map
displaying native contacts as gray squares. Randomly selected contact pairs which were used as
restraints are colored based on their batch. (B) Tertiary structure of VHP showing the contact
pairs in the same color as in the contact map. Reproduced from Ref. 1 under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Figure B.5. Restraints used in VHP REX MD simulations at 75% TPR. (A) Contact map
displaying native contacts as gray squares. Randomly selected contact pairs which were used as
restraints are colored based on their batch. (B) Tertiary structure of VHP showing the contact
pairs in the same color as in the contact map. Reproduced from Ref. 1 under CC BY 4.0.

Figure B.6. Restraints used in VHP REX MD simulations at 50% TPR. (A) Contact map
displaying native contacts as gray squares. Randomly selected contact pairs which were used as
restraints are colored based on their batch. (B) Tertiary structure of VHP showing the contact
pairs in the same color as in the contact map. Reproduced from Ref. 1 under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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B.3 Bias Guidelines: DCA vs. ResTriplet

Figure B.7. Comparison of contact predictions by DCA and ResTriplet (pdbid: 1a70, N = 0.75 L).
Depicted are native contacts (gray), true-positive predictions (green) and false-positive predictions
(red). DCA predictions are visualized on the upper left side and ResTriplet predictions on the lower
right side. Comparison is made for 0.75 L contacts (L: sequence length).

Figure B.8. Comparison of contact predictions by DCA and ResTriplet (pdbid: 1a70, N = 1.5 L).
Depicted are native contacts (gray), true-positive predictions (green) and false-positive predictions
(red). DCA predictions are visualized on the upper left side and ResTriplet predictions on the lower
right side. Comparison is made for 1.5 L contacts (L: sequence length).



Appendix 127

Figure B.9. Comparison of contact predictions by DCA and ResTriplet (pdbid: 1atz, N =0.75 L).
Depicted are native contacts (gray), true-positive predictions (green) and false-positive predictions
(red). DCA predictions are visualized on the upper left side and ResTriplet predictions on the lower
right side. Comparison is made for 0.75 L contacts (L: sequence length).

Figure B.10. Comparison of contact predictions by DCA and ResTriplet (pdbid: 1atz, N =1.5 L).
Depicted are native contacts (gray), true-positive predictions (green) and false-positive predictions
(red). DCA predictions are visualized on the upper left side and ResTriplet predictions on the lower
right side. Comparison is made for 1.5 L contacts (L: sequence length).
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Figure B.11. Comparison of contact predictions by DCA and ResTriplet (pdbid: 1f21,
N = 0.75 L). Depicted are native contacts (gray), true-positive predictions (green) and false-positive
predictions (red). DCA predictions are visualized on the upper left side and ResTriplet predictions
on the lower right side. Comparison is made for 0.75 L contacts (L: sequence length).

Figure B.12. Comparison of contact predictions by DCA and ResTriplet (pdbid: 1f21, N = 1.5 L).
Depicted are native contacts (gray), true-positive predictions (green) and false-positive predictions
(red). DCA predictions are visualized on the upper left side and ResTriplet predictions on the lower
right side. Comparison is made for 1.5 L contacts (L: sequence length).
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Figure B.13. Comparison of contact predictions by DCA and ResTriplet (pdbid: 2hda,
N = 0.75 L). Depicted are native contacts (gray), true-positive predictions (green) and false-positive
predictions (red). DCA predictions are visualized on the upper left side and ResTriplet predictions
on the lower right side. Comparison is made for 0.75 L contacts (L: sequence length).

Figure B.14. Comparison of contact predictions by DCA and ResTriplet (pdbid: 2hda, N = 1.5 L).
Depicted are native contacts (gray), true-positive predictions (green) and false-positive predictions
(red). DCA predictions are visualized on the upper left side and ResTriplet predictions on the lower
right side. Comparison is made for 1.5 L contacts (L: sequence length).
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Figure B.15. Comparison of contact predictions by DCA and ResTriplet (pdbid: 2o72,
N = 0.75 L). Depicted are native contacts (gray), true-positive predictions (green) and false-positive
predictions (red). DCA predictions are visualized on the upper left side and ResTriplet predictions
on the lower right side. Comparison is made for 0.75 L contacts (L: sequence length).

Figure B.16. Comparison of contact predictions by DCA and ResTriplet (pdbid: 2o72, N = 1.5 L).
Depicted are native contacts (gray), true-positive predictions (green) and false-positive predictions
(red). DCA predictions are visualized on the upper left side and ResTriplet predictions on the lower
right side. Comparison is made for 1.5 L contacts (L: sequence length).
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Figure B.17. Comparison of contact predictions by DCA and ResTriplet (pdbid: 2vi6, N = 0.75 L).
Depicted are native contacts (gray), true-positive predictions (green) and false-positive predictions
(red). DCA predictions are visualized on the upper left side and ResTriplet predictions on the lower
right side. Comparison is made for 0.75 L contacts (L: sequence length).

Figure B.18. Comparison of contact predictions by DCA and ResTriplet (pdbid: 2vi6, N = 1.5 L).
Depicted are native contacts (gray), true-positive predictions (green) and false-positive predictions
(red). DCA predictions are visualized on the upper left side and ResTriplet predictions on the lower
right side. Comparison is made for 1.5 L contacts (L: sequence length).
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Figure B.19. Comparison of contact predictions by DCA and ResTriplet (pdbid: 3fhi, N = 0.75 L).
Depicted are native contacts (gray), true-positive predictions (green) and false-positive predictions
(red). DCA predictions are visualized on the upper left side and ResTriplet predictions on the lower
right side. Comparison is made for 0.75 L contacts (L: sequence length).

Figure B.20. Comparison of contact predictions by DCA and ResTriplet (pdbid: 3fhi, N = 1.5 L).
Depicted are native contacts (gray), true-positive predictions (green) and false-positive predictions
(red). DCA predictions are visualized on the upper left side and ResTriplet predictions on the lower
right side. Comparison is made for 1.5 L contacts (L: sequence length).
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Figure B.21. Comparison of contact predictions by DCA and ResTriplet (pdbid: 3gnj, N = 0.75 L).
Depicted are native contacts (gray), true-positive predictions (green) and false-positive predictions
(red). DCA predictions are visualized on the upper left side and ResTriplet predictions on the lower
right side. Comparison is made for 0.75 L contacts (L: sequence length).

Figure B.22. Comparison of contact predictions by DCA and ResTriplet (pdbid: 3gnj, N = 1.5 L).
Depicted are native contacts (gray), true-positive predictions (green) and false-positive predictions
(red). DCA predictions are visualized on the upper left side and ResTriplet predictions on the lower
right side. Comparison is made for 1.5 L contacts (L: sequence length).



C
Supplementary Information:

Bias-Optimization Study

The following content provides additional information that is relevant for the bias-potential optimization

presented in section 4.2. Appendix C.1 contains contact maps of both test proteins to visualize the applied

bias contacts and to classify their type (i.e. native, true-positive, false-positive). Appendix C.2 gives a

statistical overview of the structures obtained from the simulations. The featured histograms display GDT

distributions for investigated cases similar to section 4.2 but focus on HA distributions instead.
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C.1 Contact Maps

Figure C.1. Contact map of Nanog homeodomain (PDB id: 2vi6 191).
Displayed are the native contacts (gray), true-positive bias contacts (green) and false-positive bias
contacts (red). Integrated bias consisted of 40 contact pairs at 80% TPR.

Figure C.2. Contact map of Yes SH3 domain (PDB id: 2hda 192).
Displayed are the native contacts (gray), true-positive bias contacts (green) and false-positive bias
contacts (red). Integrated bias consisted of 40 contact pairs at 80% TPR.
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C.2 Histograms

Figure C.3. GDT HA distributions based on λ parameter. Vertical lines represent the 80th and
90th percentile. (A+B) Nanog homeodomain (PDB id: 2vi6 191). (C+D) Yes SH3 domain (PDB
id: 2hda 192).

Figure C.4. GDT HA distributions based on r0 parameter. Vertical lines represent the 80th and
90th percentile. (A+B) Nanog homeodomain (PDB id: 2vi6 191). (C+D) Yes SH3 domain (PDB
id: 2hda 192).
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Supplementary Information:

Starting-Structure Generation

The following Python code was used to generate unique starting structures (“decoys”) with PyRosetta193.

In a later step the starting structures were classified via multidimensional scaling and KMEANS cluster-

ing with Nclusters = Nreplicas. During the setup of contact-guided REX MD in pyrexMD2 it is possible to

populate individual replicas with the lowest-scoring structures of each cluster. As explained in chapter 5,

this diversification allows to maximize the sampling space and enables additional pathways towards the

native state from the very beginning.

D.1 De Novo Folding Algorithm (CODE)

# filename: denovo.py

# author: Arthur Voronin

import os

import pyrexMD.misc as _misc

import pyrosetta

from pyrosetta.rosetta import protocols
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def setup_denovo_cfg(pdbid, fasta_seq, frag3mer, frag9mer, **kwargs):

"""

Setup config file for ab initio folding algorithm.

Args:

pdbid (str): pdb id / pdb name

fasta_seq (str): fasta sequence

frag3mer (str): 3mer file path

frag9mer (str): 9mer file path

Keyword Args:

fasta_seq_len (int): fasta sequence length

frag3inserts (int): number of frag3 inserts

frag9inserts (int): number of frag9 inserts

folding_cycles (int): folding move cycles

folding_repeats (int): folding move repeats

job_name (str)

n_decoys (int): total number of decoys

n_cores (int): -np option for multiprocessing

decoy_ndx_shift (int):

| shift decoy index (output filename) by this value

| required for multiprocessing to fix names of decoys

kT (float): kT parameter during Monte-Carlo simulation

Returns:

denovo_cfg (CONFIG class)

configs used as input for denovo.create_decoys()

"""

default = {"pdbid": pdbid,

"fasta_seq": fasta_seq,

"fasta_seq_len": None,

"frag3mer": frag3mer,

"frag9mer": frag9mer,

"frag3inserts": 3,

"frag9inserts": 1,

"folding_cycles": 1000,

"folding_repeats": 10,

"job_name": pdbid,

"n_decoys": 10,

"n_cores": 1,

"decoy_ndx_shift": 0,

"kT": 1.0}

denovo_cfg = _misc.CONFIG(default)

denovo_cfg.update_config(fasta_seq_len=len(denovo_cfg.fasta_seq))

denovo_cfg.update_config(**kwargs)

return denovo_cfg



Appendix 139

def _create_decoys(denovo_cfg, output_dir="./output", fastrelax=True,

stream2pymol=True, save_log=True, **kwargs):

"""

Create decoys within PyRosetta.

Args:

denovo_cfg (CONFIG class): output of denovo.setup_denovo_cfg()

output_dir (str): output directory for decoys

fastrelax (bool): apply fastrelax on decoys before dumping them as pdb

stream2pymol (bool): stream decoys to PyMOL

save_log (bool): save scores to logfile at <output_dir/scores.txt>

Keyword Args:

cprint_color (None, str): colored print color

Returns:

SCORES_low (list)

centroid scores ~ score 3

SCORES_high (list)

fa scores ~ ref2015

"""

default = {"cprint_color": "blue"}

default_cfg = _misc.CONFIG(default, **kwargs)

cfg = _misc.CONFIG(denovo_cfg, **default_cfg)

# create output directory

if output_dir[-1] == "/":

output_dir = output_dir[:-1]

if os.path.exists(output_dir) and cfg.n_cores == 1:

msg = f"""Output directory '{output_dir}' already exists.

Creating decoys will overwrite existing decoys in this directory.

Proceed? [y/n]"""

answer = input(msg).lower()

if (answer == "y" or answer == "yes"):

pass

if (answer == "n" or answer == "no"):

return

_misc.mkdir(output_dir)

# create decoys code

# conversion movers

to_centroid = pyrosetta.SwitchResidueTypeSetMover('centroid')

to_fullatom = pyrosetta.SwitchResidueTypeSetMover('fa_standard')

# score function and score array

scorefxn_low = pyrosetta.create_score_function('score3')

scorefxn_high = pyrosetta.create_score_function('ref2015')
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# pose objects

# linear pose

pose_0 = pyrosetta.pose_from_sequence(cfg.fasta_seq)

pose_0.pdb_info().name(f"{cfg.pdbid} (linear)")

# test pose

pose = pyrosetta.Pose()

pose.assign(pose_0)

pose.pdb_info().name(cfg.pdbid)

# switch to centroid

to_centroid.apply(pose_0)

to_centroid.apply(pose)

# mover and fragset objects

movemap = pyrosetta.MoveMap()

movemap.set_bb(True)

fragset_3mer = pyrosetta.rosetta.core.fragment.ConstantLengthFragSet(3,

cfg.frag3mer)↪→

fragset_9mer = pyrosetta.rosetta.core.fragment.ConstantLengthFragSet(9,

cfg.frag9mer)↪→

mover_frag3 = protocols.simple_moves.ClassicFragmentMover(fragset_3mer, movemap)

mover_frag9 = protocols.simple_moves.ClassicFragmentMover(fragset_9mer, movemap)

insert_frag3 = protocols.moves.RepeatMover(mover_frag3, cfg.frag3inserts)

insert_frag9 = protocols.moves.RepeatMover(mover_frag9, cfg.frag9inserts)

folding_mover = protocols.moves.SequenceMover()

folding_mover.add_mover(insert_frag9)

folding_mover.add_mover(insert_frag3)

# MC stuff

mc = pyrosetta.MonteCarlo(pose, scorefxn_low, cfg.kT)

trial = pyrosetta.TrialMover(folding_mover, mc)

folding = protocols.moves.RepeatMover(trial, cfg.folding_cycles)

#jd = PyJobDistributor(cfg.job_name, cfg.n_decoys, scorefxn_high)

if stream2pymol:

pmm = pyrosetta.PyMOLMover()

pmm.keep_history(True)

# job distributor stuff

worker_jobs = int(cfg.n_decoys/cfg.n_cores)

# SCORES_low = [0]*(worker_jobs) # scores array

# SCORES_high = [0]*(worker_jobs) # scores array

DECOYS = []
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SCORES_low = []

SCORES_high = []

for i in range(1, worker_jobs+1):

_misc.cprint(f">>> Working on decoy:

{output_dir}/{cfg.job_name}_{cfg.decoy_ndx_shift+i}.pdb",

cfg.cprint_color)

↪→

↪→

DECOYS.append(f"{cfg.job_name}_{cfg.decoy_ndx_shift+i}")

pose.assign(pose_0)

pose.pdb_info().name(f"{cfg.job_name}_{cfg.decoy_ndx_shift+i}")

mc.reset(pose)

for j in range(cfg.folding_repeats):

folding.apply(pose)

mc.recover_low(pose)

#SCORES_low[i] = scorefxn_low(pose)

SCORES_low.append(scorefxn_low(pose))

to_fullatom.apply(pose)

if fastrelax:

relax = protocols.relax.FastRelax()

relax.set_scorefxn(scorefxn_high)

relax.apply(pose)

#SCORES_high[i] = scorefxn_high(pose)

SCORES_high.append(scorefxn_high(pose))

pose.dump_pdb(f"{output_dir}/{cfg.job_name}_{cfg.decoy_ndx_shift+i}.pdb")

if stream2pymol:

pmm.apply(pose)

if save_log:

logfile = f"{output_dir}/scores.txt"

if not os.path.exists(logfile):

with open(logfile, "w") as log:

log.write(f"{'decoy'}\t{'score3'}\t{'ref2015'}\n") # write header

with open(logfile, "a") as log:

#DECOYS = [f"{cfg.job_name}_{cfg.decoy_ndx_shift+i}" for i in

range(worker_jobs)]↪→

table_str = _misc.print_table([DECOYS, SCORES_low, SCORES_high])

log.write(table_str)

return SCORES_low, SCORES_high
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Supplementary Information:

Ensemble Selection

The following content provides additional information that is relevant for the selection of representative

ensemble as presented in chapter 6. Appendix E.1 gives a detailed summary of the applied REX temper-

ature distributions during the REX simulations. It states the applied distribution function, the chosen

parameters and the resulting temperatures for each replica. Appendix E.2 contains various supplementary

figures, such as contact maps and correlation scatter plots. Furthermore, the MDS and TSNE represen-

tations can be used for a detailed comparison of the four presented algorithm chains from sections 6.3

and 6.4. Lastly, appendix E.3 provides additional tables, which state the starting decoy accuracy (mea-

sured by RMSD and GDT) and the used bias contacts during REX. However, most notably is the detailed

summary of selected ensemble clusters and their structural accuracy relative to the protein’s native state.
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E.1 Used Temperature Distribution

REX Temperature Distribution:

T_0 = 280 K ; DELTA = T_0 * (exp(k*i)-exp(k*(i-1)))

T_i = T_(i-1) + a_j * DELTA

Chosen Parameter:

k = 0.006

a_0 = 1.00 for i = 0..9

a_1 = 1.04 for i = 10..19

a_2 = 1.08 for i = 20..29

a_3 = 1.12 for i = 30..39

a_4 = 1.16 for i = 40..49

a_5 = 1.20 for i = 50..59

a_6 = 1.24 for i = 60..69

a_7 = 1.28 for i = 70..79

Temperatures:

280.00, 281.69, 283.38, 285.09, 286.80, 288.53, 290.26, 292.01, 293.77, 295.54,

297.39, 299.25, 301.12, 303.00, 304.90, 306.80, 308.72, 310.65, 312.59, 314.54,

316.58, 318.63, 320.70, 322.77, 324.86, 326.96, 329.08, 331.21, 333.35, 335.50,

337.74, 340.00, 342.28, 344.56, 346.86, 349.18, 351.51, 353.85, 356.21, 358.58,

361.05, 363.53, 366.03, 368.55, 371.08, 373.62, 376.18, 378.76, 381.35, 383.96,

386.67, 389.40, 392.14, 394.91, 397.69, 400.48, 403.29, 406.12, 408.97, 411.83,

414.81, 417.81, 420.82, 423.85, 426.90, 429.97, 433.05, 436.16, 439.28, 442.42,

445.69, 448.97, 452.27, 455.59, 458.94, 462.30, 465.68, 469.08, 472.51, 475.95,

E.2 Supplementary Figures

Figure E.1. Contact map of Lambda repressor (PDB id: 1lmb 210). Displayed are the native con-
tacts (gray), true-positive bias contacts (green) and false-positive bias contacts (red). Reproduced
from Ref. 3 under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
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Figure E.2. Contact map of Albumin-binding domain (PDB id: 1prb 209). Displayed are the
native contacts (gray), true-positive bias contacts (green) and false-positive bias contacts (red).
Reproduced from Ref. 3 under CC BY 4.0.

Figure E.3. Contact map of WW domain (PDB id: 2f21 212). Displayed are the native contacts
(gray), true-positive bias contacts (green) and false-positive bias contacts (red). Reproduced from
Ref. 3 under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Figure E.4. Contact map of NTL9 (PDB id: 2hba 211). Displayed are the native contacts (gray),
true-positive bias contacts (green) and false-positive bias contacts (red). Reproduced from Ref. 3

under CC BY 4.0.

Figure E.5. Contact map of BBL (PDB id: 2wxc 208). Displayed are the native contacts (gray),
true-positive bias contacts (green) and false-positive bias contacts (red). Reproduced from Ref. 3

under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Figure E.6. Correlations of Lambda repressor (PDB id: 1lmb 210) simulation. (A) Relation between
QBias (fraction of realized bias contacts) and GDT TS. Gray and blue colored dots represent the
entire REX MD trajectory composed of 50000 structures. Blue dots highlight the 2000 structures
with the highest QBias values, which were pre-selected for the ensemble selection. (B) Relation
between Rosetta score and GDT TS of the 2000 pre-selected structures. Figure also depicts the
mean score µ (red dashed line) and µ± 2σ (red solid lines) which were used as thresholds to filter
outliers during the cluster score calculations. Reproduced from Ref. 3 under CC BY 4.0.

Figure E.7. Correlations of Albumin-binding domain (PDB id: 1prb 209) simulation. (A) Relation
between QBias (fraction of realized bias contacts) and GDT TS. Gray and blue colored dots
represent the entire REX MD trajectory composed of 50000 structures. Blue dots highlight the
2000 structures with the highest QBias values, which were pre-selected for the ensemble selection.
(B) Relation between Rosetta score and GDT TS of the 2000 pre-selected structures. Figure also
depicts the mean score µ (red dashed line) and µ±2σ (red solid lines) which were used as thresholds
to filter outliers during the cluster score calculations. Reproduced from Ref. 3 under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Figure E.8. Correlations of WW domain (PDB id: 2f21 212) simulation. (A) Relation between
QBias (fraction of realized bias contacts) and GDT TS. Gray and blue colored dots represent the
entire REX MD trajectory composed of 50000 structures. Blue dots highlight the 2000 structures
with the highest QBias values, which were pre-selected for the ensemble selection. (B) Relation
between Rosetta score and GDT TS of the 2000 pre-selected structures. Figure also depicts the
mean score µ (red dashed line) and µ± 2σ (red solid lines) which were used as thresholds to filter
outliers during the cluster score calculations. Reproduced from Ref. 3 under CC BY 4.0.

Figure E.9. Correlations of BBL (PDB id: 2wxc 208) simulation. (A) Relation between QBias

(fraction of realized bias contacts) and GDT TS. Gray and blue colored dots represent the entire
REX MD trajectory composed of 50000 structures. Blue dots highlight the 2000 structures with
the highest QBias values, which were pre-selected for the ensemble selection. (B) Relation between
Rosetta score and GDT TS of the 2000 pre-selected structures. Figure also depicts the mean score
µ (red dashed line) and µ ± 2σ (red solid lines) which were used as thresholds to filter outliers
during the cluster score calculations. Reproduced from Ref. 3 under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Figure E.10. TSNE representation of selected Albumin-binding domain (PDB id: 1prb 209 struc-
tures. (A) Relation with refinement levels (GDT TS). (B) Relation with energy function (Rosetta
scores). (C) Relation with KMEANS cluster mapping. Cluster indices are ranked by average clus-
ter accuracy (0: best, 29: worst). Cluster centers are visualized as black squares (k=30) or red
squares (k=10). (D) Relation with DBSCAN cluster mapping. Cluster indices are ranked by
average cluster accuracy (0: best, 19: worst, 20: noise). Cluster centers are visualized as black
squares (ε = 3.5, minpts = 20). Adapted from Ref. 3 under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
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Figure E.11. MDS representation of selected Albumin-binding domain (PDB id: 1prb 209 struc-
tures. (A) Relation with refinement levels (GDT TS). (B) Relation with energy function (Rosetta
scores). (C) Relation with KMEANS cluster mapping. Cluster indices are ranked by average clus-
ter accuracy (0: best, 29: worst). Cluster centers are visualized as black squares (k=30) or red
squares (k=10). (D) Relation with DBSCAN cluster mapping. Cluster indices are ranked by
average cluster accuracy (0: best, 19: worst, 20: noise). Cluster centers are visualized as black
squares (ε = 4.8, minpts = 7). Adapted from Ref. 3 under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
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Figure E.12. TSNE representation of selected WW domain (PDB id: 2f21 212) structures. (A)
Relation with refinement levels (GDT TS). (B) Relation with energy function (Rosetta scores). (C)
Relation with KMEANS cluster mapping. Cluster indices are ranked by average cluster accuracy
(0: best, 29: worst). Cluster centers are visualized as black squares (k=30) or red squares
(k=10). (D) Relation with DBSCAN cluster mapping. Cluster indices are ranked by average
cluster accuracy (0: best, 19: worst, 20: noise). Cluster centers are visualized as black squares
(ε = 2.65, minpts = 20). Adapted from Ref. 3 under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
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Figure E.13. MDS representation of selected WW domain (PDB id: 2f21 212) structures. (A)
Relation with refinement levels (GDT TS). (B) Relation with energy function (Rosetta scores). (C)
Relation with KMEANS cluster mapping. Cluster indices are ranked by average cluster accuracy
(0: best, 29: worst). Cluster centers are visualized as black squares (k=30) or red squares
(k=10). (D) Relation with DBSCAN cluster mapping. Cluster indices are ranked by average
cluster accuracy (0: best, 19: worst, 20: noise). Cluster centers are visualized as black squares
(ε = 4.85, minpts = 6). Adapted from Ref. 3 under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
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Figure E.14. TSNE representation of selected NTL9 (PDB id: 2hba 211) structures. (A) Relation
with refinement levels (GDT TS). (B) Relation with energy function (Rosetta scores). (C) Relation
with KMEANS cluster mapping. Cluster indices are ranked by average cluster accuracy (0: best,
29: worst). Cluster centers are visualized as black squares (k=30) or red squares (k=10). (D)
Relation with DBSCAN cluster mapping. Cluster indices are ranked by average cluster accuracy
(0: best, 19: worst, 20: noise). Cluster centers are visualized as black squares (ε = 2.615,
minpts = 20). Adapted from Ref. 3 under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
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Figure E.15. MDS representation of selected NTL9 (PDB id: 2hba 211) structures. (A) Relation
with refinement levels (GDT TS). (B) Relation with energy function (Rosetta scores). (C) Relation
with KMEANS cluster mapping. Cluster indices are ranked by average cluster accuracy (0: best,
29: worst). Cluster centers are visualized as black squares (k=30) or red squares (k=10). (D)
Relation with DBSCAN cluster mapping. Cluster indices are ranked by average cluster accuracy (0:
best, 19: worst, 20: noise). Cluster centers are visualized as black squares (ε = 8.35, minpts = 5).
Adapted from Ref. 3 under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
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Figure E.16. TSNE representation of selected BBL (PDB id: 2wxc 208) structures. (A) Relation
with refinement levels (GDT TS). (B) Relation with energy function (Rosetta scores). (C) Relation
with KMEANS cluster mapping. Cluster indices are ranked by average cluster accuracy (0: best,
29: worst). Cluster centers are visualized as black squares (k=30) or red squares (k=10). (D)
Relation with DBSCAN cluster mapping. Cluster indices are ranked by average cluster accuracy
(0: best, 19: worst, 20: noise). Cluster centers are visualized as black squares (ε = 3.835,
minpts = 20). Adapted from Ref. 3 under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
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Figure E.17. MDS representation of selected BBL (PDB id: 2wxc 208) structures. (A) Relation
with refinement levels (GDT TS). (B) Relation with energy function (Rosetta scores). (C) Relation
with KMEANS cluster mapping. Cluster indices are ranked by average cluster accuracy (0: best,
29: worst). Cluster centers are visualized as black squares (k=30) or red squares (k=10). (D)
Relation with DBSCAN cluster mapping. Cluster indices are ranked by average cluster accuracy (0:
best, 19: worst, 20: noise). Cluster centers are visualized as black squares (ε = 7.2, minpts = 6).
Adapted from Ref. 3 under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/


Appendix 156

E.3 Supplementary Tables

Table E.1. Starting decoy accuracy of performed REX MD simulations 3. Table shows the
corresponding replica numbers, PDB ids of protein targets and global distance test total scores
(GDT TS) before the simulation started.

Decoy GDT TS of protein target Decoy GDT TS of protein target
replica 1lmb 1prb 2f21 2hba 2wxc replica 1lmb 1prb 2f21 2hba 2wxc

1 32.22 63.74 39.57 30.44 52.94 37 24.12 52.72 31.29 14.98 14.97
2 31.47 51.66 38.91 17.27 35.03 38 19.00 59.84 33.94 14.61 35.29
3 34.54 65.17 39.90 25.00 25.14 39 32.36 39.22 36.75 26.69 12.30
4 19.68 67.77 38.91 19.44 35.70 40 16.56 30.92 37.92 7.85 17.24
5 14.64 67.06 47.18 17.88 41.31 41 18.05 27.02 36.76 19.57 16.44
6 9.81 55.69 39.40 17.88 50.67 42 22.82 47.28 47.68 8.94 6.15
7 10.90 61.73 50.83 21.74 17.65 43 11.78 42.54 41.56 16.06 34.22
8 22.68 59.72 33.94 26.57 52.00 44 21.87 34.83 13.74 17.87 29.01
9 53.88 63.86 39.07 17.76 48.66 45 15.33 21.09 40.40 15.70 37.03
10 5.72 56.99 51.16 13.41 22.86 46 15.87 63.39 35.43 12.32 31.15
11 15.60 52.73 35.76 14.25 11.76 47 18.80 44.20 32.12 13.16 18.05
12 15.67 26.66 33.77 17.15 43.58 48 29.63 42.65 20.70 19.20 16.04
13 25.75 39.46 38.74 13.16 20.19 49 31.81 55.33 35.93 15.34 23.26
14 38.22 45.14 30.63 21.38 40.24 50 16.83 60.9 32.78 13.28 38.24
15 10.15 46.56 50.83 17.51 35.70 51 12.94 22.63 45.03 12.08 19.25
16 15.33 67.89 77.98 14.01 39.31 52 5.38 55.21 35.76 14.01 39.17
17 11.99 51.89 39.90 18.72 53.61 53 25.68 43.01 36.59 17.88 39.97
18 14.03 65.29 37.58 13.53 42.64 54 5.04 33.65 28.64 15.34 21.39
19 11.65 36.38 35.10 29.59 29.68 55 20.50 45.50 35.92 11.96 27.27
20 6.95 52.72 32.12 14.50 33.56 56 8.93 52.02 49.83 22.70 44.12
21 43.94 10.43 34.44 22.22 25.40 57 5.66 46.33 33.61 11.60 45.19
22 21.32 60.19 40.56 14.01 43.98 58 13.76 60.78 32.45 11.47 27.14
23 30.45 63.86 41.72 13.28 39.57 59 32.15 39.10 34.94 16.55 14.04
24 10.96 44.67 60.27 19.80 13.37 60 24.86 60.90 41.06 15.22 32.22
25 19.76 44.31 36.42 16.79 25.67 61 21.05 61.85 42.05 33.58 17.11
26 26.50 62.80 32.28 20.89 25.54 62 17.85 44.19 45.53 16.79 48.80
27 12.94 56.99 35.93 14.25 47.46 63 11.31 45.50 42.38 19.20 41.98
28 26.36 58.88 43.38 12.92 39.17 64 15.32 36.49 44.70 22.34 25.80
29 0.27 27.96 35.43 39.85 30.88 65 17.64 10.31 28.64 11.36 13.37
30 14.24 52.84 45.04 17.51 34.49 66 11.31 50.36 37.25 9.06 23.53
31 11.24 38.51 37.58 24.04 23.53 67 24.38 8.65 42.38 31.88 24.20
32 24.45 53.67 12.08 23.91 47.73 68 10.63 35.78 36.92 19.32 33.83
33 11.31 16.71 48.18 19.68 39.70 69 20.78 51.54 33.11 27.66 9.49
34 26.98 68.72 41.06 13.28 39.70 70 15.12 25.36 38.08 8.21 35.16
35 16.28 49.17 38.91 27.06 33.29 71 5.31 27.84 42.05 26.69 24.33
36 11.58 37.44 36.76 13.89 35.16 72 10.42 14.93 31.79 16.30 39.04
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Table E.2. Starting decoy accuracy of performed REX MD simulations 3. Table shows the cor-
responding replica numbers, PDB ids of protein targets and backbone root-mean-square-deviation
(RMSD) before the simulation started.

Decoy RMSD (Å) of protein target Decoy RMSD (Å) of protein target
replica 1lmb 1prb 2f21 2hba 2wxc replica 1lmb 1prb 2f21 2hba 2wxc

1 7.08 2.95 5.84 7.68 4.03 37 8.09 4.33 8.20 9.82 9.48
2 9.96 3.67 6.48 8.02 5.56 38 7.87 2.73 6.80 11.26 5.43
3 5.86 2.70 6.27 9.22 7.05 39 7.23 5.61 6.14 7.14 11.58
4 10.23 2.59 6.34 8.27 5.43 40 11.17 6.66 5.61 11.82 9.13
5 10.68 2.62 4.90 9.04 5.21 41 11.55 8.27 7.34 7.73 8.39
6 12.31 3.60 5.85 8.87 4.21 42 10.62 4.29 5.36 11.05 11.91
7 12.26 3.10 4.99 8.86 9.14 43 11.96 4.41 5.07 8.64 6.30
8 8.85 2.75 6.70 8.28 4.06 44 8.50 7.04 10.34 8.73 6.46
9 3.51 2.59 6.01 8.24 4.45 45 11.07 7.62 4.95 9.70 5.67
10 13.86 3.23 5.18 9.61 10.62 46 10.84 2.62 5.48 9.78 5.51
11 12.97 3.63 6.84 9.65 10.27 47 9.62 5.71 6.85 11.24 9.27
12 12.76 7.00 6.95 10.58 4.53 48 9.04 5.59 7.44 10.20 9.08
13 8.60 6.45 6.63 9.74 7.91 49 7.83 3.42 5.79 9.57 7.41
14 5.25 4.22 7.95 8.51 5.23 50 11.49 3.18 7.18 10.83 5.32
15 11.38 4.03 4.41 9.35 5.15 51 12.98 7.89 5.95 9.63 8.05
16 10.39 2.55 2.15 9.73 5.02 52 12.83 3.49 7.49 10.20 6.07
17 11.62 3.41 6.75 10.18 4.41 53 11.55 4.52 6.61 8.43 4.88
18 10.55 2.61 6.28 10.46 4.43 54 14.19 6.23 7.36 9.19 8.19
19 12.54 5.43 7.50 7.34 6.40 55 10.89 4.44 6.30 10.62 7.04
20 13.03 3.94 6.64 9.49 6.16 56 13.55 3.98 4.32 8.92 5.42
21 4.89 11.07 6.29 8.10 7.10 57 14.09 3.79 5.75 10.69 4.85
22 9.32 2.80 5.91 11.02 4.95 58 14.03 3.02 6.75 10.15 6.70
23 7.22 2.71 5.12 9.10 5.88 59 6.89 5.69 6.28 8.55 9.75
24 12.96 4.14 3.07 9.60 10.30 60 11.25 2.99 6.43 10.71 6.51
25 11.84 4.09 5.70 8.90 6.72 61 9.04 3.05 5.06 6.74 8.70
26 7.60 2.93 7.07 8.02 6.89 62 10.66 5.74 5.47 9.90 4.10
27 11.26 3.31 6.32 9.20 3.89 63 12.30 4.95 5.60 9.62 5.18
28 7.78 2.81 4.63 10.06 5.03 64 11.88 5.17 4.36 8.49 6.76
29 17.37 5.74 6.12 4.67 6.00 65 8.98 10.29 7.62 9.37 10.42
30 12.32 4.01 5.49 8.90 5.64 66 12.49 4.64 5.64 10.97 6.89
31 12.24 5.17 5.30 9.98 7.42 67 10.02 9.96 6.12 8.68 7.66
32 10.98 3.86 10.14 7.27 4.70 68 13.54 6.58 6.20 7.50 5.35
33 12.23 10.42 5.24 8.79 4.94 69 8.90 3.65 7.39 7.46 11.19
34 10.54 2.61 4.82 10.64 4.61 70 10.19 8.69 5.61 10.34 5.46
35 9.35 3.81 5.53 7.10 5.76 71 12.94 5.80 6.11 8.06 8.15
36 13.43 6.59 7.11 9.86 6.45 72 12.49 10.25 7.69 9.05 5.43
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Table E.3. Used bias contacts during REX MD simulations 3. Table contains the corresponding
contact numbers, PDB ids of protein targets and residue pairs (resi, resj).

contact 1lmb 1prb 2f21 2hba 2wxc contact 1lmb

number resi resj resi resj resi resj resi resj resi resj number resi resj

1 37 47 15 32 11 23 5 36 15 40 41 57 65
2 36 47 35 41 13 23 4 37 12 40 42 25 71
3 33 47 14 32 15 21 3 36 16 40 43 29 69
4 37 44 11 32 12 24 4 36 19 44 44 46 55
5 18 50 32 41 11 25 3 19 26 43 45 18 62
6 19 51 18 28 14 22 2 18 12 35 46 15 57
7 39 68 15 29 10 26 3 37 28 35 47 40 61
8 34 44 32 44 13 21 4 18 12 37 48 18 65
9 40 68 18 32 11 24 2 20 29 36 49 31 39
10 15 50 11 35 24 31 4 39 15 37 50 17 76
11 37 43 35 44 12 26 3 38 21 43 51 26 32
12 66 73 18 29 14 21 6 35 29 39 52 50 56
13 15 53 11 41 12 23 2 39 16 23 53 22 69
14 40 65 23 29 14 24 3 18 8 23 54 26 33
15 50 57 15 33 13 22 3 21 11 37 55 11 56
16 33 44 31 44 23 31 1 21 26 39 56 41 64
17 40 64 28 48 22 33 5 35 29 35 57 21 69
18 49 55 11 33 22 31 30 36 21 44 58 18 57
19 25 69 14 41 11 26 6 37 26 35 59 11 57
20 66 72 23 48 10 25 6 36 8 35 60 22 33
21 66 76 7 38 24 30 2 19 12 36 61 12 53
22 15 51 7 35 16 22 7 35 21 40 62 21 75
23 62 73 18 48 10 27 3 26 26 40 63 19 50
24 33 48 11 36 25 31 3 39 25 43 64 14 50
25 63 73 14 45 22 32 8 14 28 39 65 14 62
26 18 51 7 41 23 32 5 13 6 23 66 36 65
27 22 51 10 41 14 31 2 38 8 16 67 15 55
28 37 46 7 36 15 22 1 20 16 22 68 42 50
29 62 76 32 45 23 33 5 17 20 46 69 16 53
30 26 36 7 37 14 23 4 17 28 34 70 19 52
31 40 47 28 44 5 16 19 40
32 36 68 14 44 5 19 30 36
33 42 61 18 45 1 26 9 35
34 14 57 19 29 16 47 9 34
35 21 76 23 52 8 15 16 26
36 18 76 21 52 9 35
37 21 71 10 38 21 30
38 15 52 11 38 2 21
39 22 36 22 52 4 16
40 33 51 8 36 18 47
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Table E.4. Cluster accuracy of selected clusters during different algorithm chains 3. Table contains
the PDB id, applied algorithm chain, cluster labels, cluster size, as well as GDT (global distance
test) and RMSD (root-mean-square-deviation) statistics. The four selected clusters are listed in
picking order based on mean Rosetta scores. Cluster labels are ranked by accuracy (0: best).

PDB id algorithm chain cluster size GDTmean GDTmin GDTmax RMSDmean RMSDmin RMSDmax

1lmb TSNE → KMEANS 1 95 82.52 76.49 87.80 2.76 2.35 3.06
0 123 88.71 71.73 97.62 1.39 0.83 2.46
6 86 76.52 71.13 80.36 2.79 2.54 3.00
2 18 81.40 73.81 86.02 2.38 2.09 2.66

1lmb MDS → KMEANS 2 74 82.74 76.19 87.80 2.66 2.09 3.06
0 66 89.05 43.16 96.43 1.41 0.83 5.95
1 61 85.43 60.42 97.62 1.60 0.93 3.69
6 115 76.28 71.13 80.66 2.80 2.62 2.99

1lmb TSNE → DBSCAN 1 98 82.45 73.81 87.80 2.75 2.23 3.06
0 123 88.71 71.73 97.62 1.39 0.83 2.46
2 230 77.15 71.13 82.44 2.78 2.54 3.04
4 31 76.70 72.92 80.66 2.90 2.78 3.08

1lmb MDS → DBSCAN 2 90 81.93 64.88 87.80 2.71 2.09 3.21
0 81 89.59 71.73 97.62 1.30 0.83 2.32
3 7 77.59 70.24 83.93 2.88 2.63 3.02
1 5 87.80 81.85 94.64 1.44 1.21 1.85

1prb TSNE → KMEANS 2 60 67.63 62.73 72.17 2.41 2.18 2.84
0 98 69.56 61.79 74.53 2.29 2.02 2.94
1 81 69.05 64.62 73.59 2.28 1.95 2.60
3 77 65.60 57.08 73.58 2.65 2.20 3.59

1prb MDS → KMEANS 0 183 68.89 61.79 74.53 2.32 2.02 2.62
2 72 65.30 55.66 73.58 2.68 2.20 3.50
1 93 68.13 57.55 73.11 2.39 1.95 3.38
10 135 61.31 56.13 66.98 2.84 2.47 3.38

1prb TSNE → DBSCAN 1 23 67.51 60.85 73.58 2.49 2.19 3.20
0 271 68.76 61.32 74.53 2.35 1.95 3.03
2 59 64.99 57.08 71.22 2.69 2.2 3.59
14 21 48.61 45.28 50.95 4.98 4.75 5.24

1prb MDS → DBSCAN 2 34 66.80 58.02 71.22 2.51 2.20 2.86
0 275 68.82 59.91 74.53 2.33 1.95 3.14
1 7 67.25 62.73 69.81 2.42 2.24 2.69
12 10 50.47 48.58 52.36 4.25 4.09 4.38
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Table E.5. Cluster accuracy of selected clusters during different algorithm chains 3. Table contains
the PDB id, applied algorithm chain, cluster labels, cluster size, as well as GDT (global distance
test) and RMSD (root-mean-square-deviation) statistics. The four selected clusters are listed in
picking order based on mean Rosetta scores. Cluster labels are ranked by accuracy (0: best).

PDB id algorithm chain cluster size GDTmean GDTmin GDTmax RMSDmean RMSDmin RMSDmax

2f21 TSNE → KMEANS 1 69 73.97 42.1 82.90 2.71 1.96 4.95
0 85 74.85 56.58 87.50 2.76 1.88 3.67
2 34 73.10 48.68 82.24 2.85 2.07 5.11
3 47 68.02 42.77 80.26 3.25 2.33 4.28

2f21 MDS → KMEANS 1 38 74.57 50.66 82.89 2.58 1.96 4.26
0 62 75.49 61.84 87.50 2.67 1.88 3.46
3 28 68.19 42.77 80.26 3.21 2.44 4.28
2 63 71.83 47.37 82.89 2.87 2.07 4.56

2f21 TSNE → DBSCAN 0 41 76.52 66.44 82.24 2.56 2.10 3.04
1 61 75.67 61.84 87.50 2.72 1.88 3.39
6 108 63.29 51.97 77.63 3.55 2.69 4.35
2 48 67.71 55.26 75.00 3.50 3.03 4.31

2f21 MDS → DBSCAN 0 9 76.53 71.71 78.95 2.51 2.07 2.89
1 6 76.42 73.68 81.58 2.49 2.29 2.71
8 12 58.88 43.42 82.90 4.11 2.44 5.50
2 32 72.76 48.68 82.89 2.77 2.07 4.45

2hba TSNE → KMEANS 3 56 80.28 73.81 87.50 1.92 1.58 2.23
2 79 81.34 74.41 85.12 1.81 1.65 2.06
0 107 82.40 76.78 86.91 1.76 1.55 1.95
1 54 82.34 77.98 86.31 1.74 1.56 1.96

2hba MDS → KMEANS 0 170 81.63 75.59 86.31 1.79 1.52 2.11
1 175 81.01 72.62 86.91 1.83 1.57 2.49
7 52 77.33 66.67 84.52 2.04 1.63 2.95
8 72 76.75 67.86 84.52 2.09 1.75 2.65

2hba TSNE → DBSCAN 3 56 80.28 73.81 87.50 1.92 1.58 2.23
0 19 82.36 64.29 86.91 1.67 1.49 2.28
1 21 81.26 77.38 85.12 1.79 1.55 2.03
7 169 75.74 61.31 83.33 2.17 1.58 3.20

2hba MDS → DBSCAN 1 31 80.57 73.22 85.71 1.77 1.61 2.03
4 823 77.00 58.93 87.50 2.03 1.52 3.32
0 8 82.51 78.57 85.71 1.69 1.49 1.88
3 305 77.55 64.28 87.50 2.00 1.45 2.81

2wxc TSNE → KMEANS 5 92 58.27 51.59 64.36 4.31 4.02 4.76
0 67 67.86 56.91 76.59 2.55 1.74 3.34
2 77 62.43 46.81 73.94 3.09 2.06 4.98
1 78 64.72 44.15 80.85 2.81 1.75 4.54

2wxc MDS → KMEANS 1 62 65.63 44.15 78.19 2.71 1.75 4.54
10 96 57.53 47.34 64.36 4.36 4.02 4.92
0 45 68.16 51.06 76.59 2.50 1.74 4.24
2 22 62.65 47.87 80.85 3.10 2.00 4.20

2wxc TSNE → DBSCAN 1 16 64.59 61.17 69.15 2.77 2.58 3.17
0 206 64.90 44.15 80.85 2.83 1.74 4.98
3 42 58.45 51.59 68.08 3.41 2.92 4.05
9 126 54.51 45.22 58.51 5.08 4.53 6.02

2wxc MDS → DBSCAN 2 10 66.54 56.91 73.40 2.57 2.03 3.38
3 12 64.50 59.58 69.15 2.78 2.32 3.37
0 17 70.09 53.73 78.19 2.32 1.75 4.11
1 27 69.96 57.98 76.59 2.33 1.74 3.40
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Supplementary Information:

Outlook to RNA REX

The following content shows the results of my initial testings using contact-guided REX MD with RNA

targets. It serves as an outlook to possible future applications for RNA targets. The conducted study

is very similar to the comparison of MD vs. REX MD, as shown in my bias-quality study1 in section

4.1. However, note that the applied bias potential was not optimized for RNA targets. Thus it should be

expected that the general performance and results can be improved even further.

Supplementary figures are provided in appendix F.1, supplementary tables in appendix F.2, and the used

temperature distribution in appendix F.3
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Each REX simulation had 60 replicas and a total of 20 unique starting conformations, which were

assigned via cyclic permutation. Time steps were set to 2 fs and exchange attempts each 500 MD steps.

Exchange rates were in the order of 10− 15%. The all-atom simulations of this study utilized the OL15

nucleic force field239,240 and TIP3P119,120 explicit water model.

Tested RNA targets were the TPP riboswitch (PDB id: 3d2g241), Adenine riboswitch (PDB id: 4tzx242),

and the 3’,3’-cGAMP riboswitch (PDB id: 4yaz243). Table F.1 summarizes the lowest observed RMSD

values with respect to the native fold. Figs. F.1 to F.3 show a comparison of MD and REX MD

simulations. Biased REX simulations applied a total of approx. L native contacts (L: sequence length),

as depicted in the contact maps of Figs. F.4 to F.6.

In the case of TPP riboswitch (cf. Fig. F.1) RMSD values reached approx. 5 Å during my simulations.

Contact-guided REX MD heavily outperformed all other methods, whereas normal REX reached values

of 7.4 Å and biased SimRNA with mean field DCA only 8.5 Å. In the case of the second RNA target, i.e.

Adenine riboswitch (cf. Fig. F.2), normal REX achieved 3.6 Å and performed slightly better than the

biased variant with 4.0Å. SimRNA+mean field DCA yielded the best results with an RMSD of 3.0Å.

I want to emphasize that the applied force field seems to be reasonably accurate and reliable, which is

reflected in the good RMSD statistics of the performed MD simulations for both TPP riboswitch and

Adenine riboswitch. Furthermore, the Adenine riboswitch seems to be very flexible by nature. The

attractive force resulting from my applied bias potential was too strong and resulted in a slight bending

of the RNA structure, which is reflected in the higher RMSD values as compared to the unbiased case.

Lastly, the comparison of the 3’,3’-cGAMP riboswitch simulations are shown in Fig. F.3. My performed

simulations yield the best results for the biased REX case, yet again. I want to stress that the overall

“poor” performance is probably related to the fact that the 3’,3’-cGAMP riboswitch is a dimer but the

simulations used only one molecule chain. Due to the missing counterpart and their physical interactions,

the simulations are likely to adopt other structures than the native one. For this reason, all methods

achieved relatively high RMSD values. While the biased REX simulations yielded values of 15.8 Å,

SimRNA+CoCoNet was capable to achieve 14.0Å.

Overall, the application of contact-guided REX MD seems to have high potential and should be studied

further. Note that my simulations applied a bias potential which was optimized for proteins and not

RNAs. Hence, this method should yield even better results once the bias potential has been adjusted.

I strongly suggest to perform studies similar to sections 4.1 and 4.2 and fine tune the bias potential

specifically for RNA targets. Nevertheless, contact-guided REX MD produced already good results

which are on par with the best performances of the other mentioned methods, as shown in Table F.1.

Table F.1. Lowest observed RMSD values of performed RNA simulations. Listed are the method,
PDB ids and backbone RMSDs with respect to the native fold. Values are obtained via own
simulations (upper half) or other methods (lower half, obtained from SI of Ref. 235). Best cases are
highlighted for each RNA target. †: Cases with L bias contacts (L: sequence length).

method Backbone RMSD (Å)
3d2g 4tzx 4yaz

MD ref 7.6 3.8 20.4
REX ref 7.4 3.6 20.3
REX biased† 5.0 4.0 15.8
SimRNA 15.7 7.5 16.1
SimRNA+mfDCA† 8.5 3.0 20.1
SimRNA+CoCoNet† 16.2 7.8 14.0
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F.1 Supplementary Figures

Figure F.1. RMSD comparison of simulations with TPP riboswitch (PDB id: 3d2g 241). Backbone
RMSD of MD trajectories at 280K. MD simulations were performed with five unique starting
conformations (decoys). (A) MD without bias. (B) REX MD without bias. (C) REX MD with
bias.
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Figure F.2. RMSD comparison of simulations with Adenine riboswitch (PDB id: 4tzx 242). Back-
bone RMSD of MD trajectories at 280K. MD simulations were performed with five unique starting
conformations (decoys). (A) MD without bias. (B) REX MD without bias. (C) REX MD with
bias.
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Figure F.3. RMSD comparison of simulations with 3’,3’-cGAMP riboswitch (PDB id: 4yaz 243).
Backbone RMSD of MD trajectories at 280K. MD simulations were performed with five unique
starting conformations (decoys). (A) MD without bias. (B) REX MD without bias. (C) REX MD
with bias.



Appendix 166

Figure F.4. Contact map of TPP riboswitch (PDB id: 3d2g 241). Displayed are the native contacts
(gray) and 75 randomly selected true-positive bias contacts (green).

Figure F.5. Contact map of Adenine riboswitch (PDB id: 4tzx 242). Displayed are the native
contacts (gray) and 70 randomly selected true-positive bias contacts (green).
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Figure F.6. Contact map of 3’,3’-cGAMP riboswitch (PDB id: 4yaz 243). Displayed are the native
contacts (gray) and 80 randomly selected true-positive bias contacts (green).

F.2 Supplementary Tables

Table F.2. Starting decoy accuracy of performed REX MD simulations. Table shows the cor-
responding replica numbers, PDB ids of RNA targets and backbone root-mean-square-deviation
(RMSD) before the simulation started.

replica Decoy RMSD (Å) replica Decoy RMSD (Å)
number 3d2g 4tzx 4yaz number 3d2g 4tzx 4yaz

1/21/41 10.96 9.37 21.45 11/31/51 12.64 7.67 23.35
2/22/42 13.55 7.49 23.31 12/32/52 14.13 6.57 22.89
3/23/43 12.41 6.23 23.28 13/33/53 12.60 7.88 22.58
4/24/44 13.95 9.68 21.56 14/34/54 13.20 8.65 21.54
5/25/45 12.45 7.47 22.48 15/35/55 14.32 9.37 23.57
6/26/46 13.03 11.24 24.68 16/36/56 11.15 7.78 22.53
7/27/47 13.08 8.49 20.86 17/37/57 10.97 7.78 24.90
8/28/48 10.94 8.90 24.58 18/38/58 12.58 10.57 24.35
9/29/49 13.21 9.41 22.35 19/39/59 13.58 9.19 21.29

10/30/50 11.85 10.30 21.80 20/40/60 12.79 9.19 21.45
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F.3 Used Temperature Distribution

REX Temperature Distribution:

T_0 = 280 K ; DELTA = T_0 * (exp(k*i)-exp(k*(i-1)))

T_i = T_(i-1) + a_j * DELTA

Chosen Parameter:

k = 0.0043

a_0 = 1.00 for i = 0..9

a_1 = 1.04 for i = 10..19

a_2 = 1.08 for i = 20..29

a_3 = 1.12 for i = 30..39

a_4 = 1.16 for i = 40..49

a_5 = 1.20 for i = 50..59

Temperatures:

280.00, 281.21, 282.42, 283.64, 284.86, 286.09, 287.32, 288.56, 289.80, 291.05,

292.35, 293.66, 294.98, 296.30, 297.63, 298.96, 300.30, 301.64, 302.99, 304.35,

305.76, 307.18, 308.61, 310.04, 311.48, 312.92, 314.38, 315.83, 317.30, 318.77,

320.30, 321.83, 323.38, 324.93, 326.49, 328.05, 329.62, 331.20, 332.78, 334.37,

336.03, 337.69, 339.36, 341.04, 342.72, 344.41, 346.11, 347.82, 349.53, 351.25,

353.04, 354.83, 356.64, 358.45, 360.27, 362.09, 363.93, 365.77, 367.62, 369.48,
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