16 research outputs found

    Noise Canceling in Volatility Forecasting using an Adaptive Neural Network Filter

    Get PDF
    Volatility forecasting models are becoming more accurate, but noise looks to be an inseparable part of these forecasts. Nonetheless, using adaptive filters to cancel the noise should help improve the performance of the forecasting models. Adaptive filters have the advantage of changing based on the environment. This feature is vital when they are used along with a model for volatility forecasting and error cancellation in the financial markets. Nonlinear Autoregressive (NAR) neural networks have simple structures, but they are efficient tools in error cancelation systems when working with non-stationary and random walk noise processes. For this research, an adaptive threshold filter is designed to respond to changes in its environment when a GARCH(1,1) model makes errors in its volatility forecast. It is shown that this filter can forecast the noise (errors) in the GARCH(1,1) outputs when there is a non-stationary time series of errors. The model reduces the mean squared errors by 42.9%. A sample portfolio of five stocks from the S&P 500 index from 4/2007 to 12/2010 is studied to illustrate the performance of the model

    Using Recurrent Neural Networks To Forecasting of Forex

    Full text link
    This paper reports empirical evidence that a neural networks model is applicable to the statistically reliable prediction of foreign exchange rates. Time series data and technical indicators such as moving average, are fed to neural nets to capture the underlying "rules" of the movement in currency exchange rates. The trained recurrent neural networks forecast the exchange rates between American Dollar and four other major currencies, Japanese Yen, Swiss Frank, British Pound and EURO. Various statistical estimates of forecast quality have been carried out. Obtained results show, that neural networks are able to give forecast with coefficient of multiple determination not worse then 0.65. Linear and nonlinear statistical data preprocessing, such as Kolmogorov-Smirnov test and Hurst exponents for each currency were calculated and analyzed.Comment: 23 pages, 13 figure

    An Intelligent Autopilot System that learns piloting skills from human pilots by imitation

    Get PDF
    An Intelligent Autopilot System (IAS) that can learn piloting skills by observing and imitating expert human pilots is proposed. IAS is a potential solution to the current problem of Automatic Flight Control Systems of being unable to handle flight uncertainties, and the need to construct control models manually. A robust Learning by Imitation approach is proposed which uses human pilots to demonstrate the task to be learned in a flight simulator while training datasets are captured from these demonstrations. The datasets are then used by Artificial Neural Networks to generate control models automatically. The control models imitate the skills of the human pilot when performing piloting tasks including handling flight uncertainties such as severe weather conditions. Experiments show that IAS performs learned take-off, climb, and slow ascent tasks with high accuracy even after being presented with limited examples, as measured by Mean Absolute Error and Mean Absolute Deviation. The results demonstrate that the IAS is capable of imitating low-level sub-cognitive skills such as rapid and continuous stabilization attempts in stormy weather conditions, and high-level strategic skills such as the sequence of sub-tasks necessary to pilot an aircraft starting from the stationary position on the runway, and ending with a steady cruise

    Neural network methods for one-to-many multi-valued mapping problems

    Get PDF
    An investigation of the applicability of neural network-based methods in predicting the values of multiple parameters, given the value of a single parameter within a particular problem domain is presented. In this context, the input parameter may be an important source of variation that is related with a complex mapping function to the remaining sources of variation within a multivariate distribution. The definition of the relationship between the variables of a multivariate distribution and a single source of variation allows the estimation of the values of multiple variables given the value of the single variable, addressing in that way an ill-conditioned one-to-many mapping problem. As part of our investigation, two problem domains are considered: predicting the values of individual stock shares, given the value of the general index, and predicting the grades received by high school pupils, given the grade for a single course or the average grade. With our work, the performance of standard neural network-based methods and in particular multilayer perceptrons (MLPs), radial basis functions (RBFs), mixture density networks (MDNs) and a latent variable method, the general topographic mapping (GTM), is compared. According to the results, MLPs and RBFs outperform MDNs and the GTM for these one-to-many mapping problems

    Modeling Markov Switching ARMA-GARCH Neural Networks Models and an Application to Forecasting Stock Returns

    Get PDF
    The study has two aims. The first aim is to propose a family of nonlinear GARCH models that incorporate fractional integration and asymmetric power properties to MS-GARCH processes. The second purpose of the study is to augment the MS-GARCH type models with artificial neural networks to benefit from the universal approximation properties to achieve improved forecasting accuracy. Therefore, the proposed Markov-switching MS-ARMA-FIGARCH, APGARCH, and FIAPGARCH processes are further augmented with MLP, Recurrent NN, and Hybrid NN type neural networks. The MS-ARMA-GARCH family and MS-ARMA-GARCH-NN family are utilized for modeling the daily stock returns in an emerging market, the Istanbul Stock Index (ISE100). Forecast accuracy is evaluated in terms of MAE, MSE, and RMSE error criteria and Diebold-Mariano equal forecast accuracy tests. The results suggest that the fractionally integrated and asymmetric power counterparts of Gray’s MS-GARCH model provided promising results, while the best results are obtained for their neural network based counterparts. Further, among the models analyzed, the models based on the Hybrid-MLP and Recurrent-NN, the MS-ARMA-FIAPGARCH-HybridMLP, and MS-ARMA-FIAPGARCH-RNN provided the best forecast performances over the baseline single regime GARCH models and further, over the Gray’s MS-GARCH model. Therefore, the models are promising for various economic applications

    Realized Volatility Forecasting with Neural Networks

    Get PDF
    In the last few decades, a broad strand of literature in finance has implemented artificial neural networks as forecasting method. The major advantage of this approach is the possibility to approximate any linear and nonlinear behaviors without knowing the structure of the data generating process. This makes it suitable for forecasting time series which exhibit long memory and nonlinear dependencies, like conditional volatility. In this paper, I compare the predictive performance of feed-forward and recurrent neural networks (RNN), particularly focusing on the recently developed Long short-term memory (LSTM) network and NARX network, with traditional econometric approaches. The results show that recurrent neural networks are able to outperform all the traditional econometric methods. Additionally, capturing long-range dependence through Long short-term memory and NARX models seems to improve the forecasting accuracy also in a highly volatile framework

    Nonlinear volatility models in economics: smooth transition and neural network augmented GARCH, APGARCH, FIGARCH and FIAPGARCH models

    Get PDF
    Recently, Donaldson and Kamstra (1997) proposed a class of NN-GARCH models which are extended to a class of NN-GARCH family by Bildirici and Ersin (2009). The study aims to analyze the nonlinear behavior and leptokurtic distribution in petrol prices by utilizing a newly developed family of econometric models that deal with these concepts by benefiting from both LSTAR type and ANN based nonlinearity. With this purpose, the study proposed several LSTAR-GARCH-NN family models. It is noted that the multilayer perceptron (MLP) neural network and LSTAR models have significant architectural similarities. Accordingly, linear GARCH, fractionally integrated FI-GARCH, asymmetric power APGARCH and fractionally integrated asymmetric power APGARCH models are augmented with a family of Neural Network models. The study has following contributions: i. STAR-GARCH and LSTAR-GARCH are extended to their fractionally integrated asymmetric power versions and STAR-ST-FIGARCH and STAR-ST-APGARCH, STAR-ST-FIAPGARCH models are developed and evaluated. ii. By extending these models with neural networks, LSTAR-LST-GARCH-MLP family models are developed and investigated. These models benefit from LSTAR type nonlinearity and NN based nonlinear NN-GARCH models to capture time varying volatility and nonlinearity in petrol prices. ANN augmented versions of LSTAR-LST-GARCH models are as follows: LSTAR-LST-GARCH-MLP, LSTAR-LST-FIGARCH-MLP, LSTAR-LST-APGARCH-MLP and LSTAR-LST-FIAPGARCH-MLP. Empirical findings are collected as follows. i. To model petrol prices, fractionally integrated and asymmetric power versions provided improvements among the GARCH family models in terms of forecasting. ii. LSTAR-LST-GARCH model family is promising and show significant gains in out-of-sample forecasting. iii. MLP-GARCH family provided similar results with the LSTAR-LST-GARCH family models, except for the MLP-FIGARCH and MLP-FIAPGARCH models. iv. Volatility clustering, asymmetry and nonlinearity characteristics of petrol prices are captured most efficiently with the LSTAR-LST-GARCH-MLP models benefiting from forecasting capabilities of neural network techniques, whereas, among the newly developed models, LSTAR-LST-APGARCH-MLP model provided the best performance overall

    Nonlinear volatility models in economics: smooth transition and neural network augmented GARCH, APGARCH, FIGARCH and FIAPGARCH models

    Get PDF
    Recently, Donaldson and Kamstra (1997) proposed a class of NN-GARCH models which are extended to a class of NN-GARCH family by Bildirici and Ersin (2009). The study aims to analyze the nonlinear behavior and leptokurtic distribution in petrol prices by utilizing a newly developed family of econometric models that deal with these concepts by benefiting from both LSTAR type and ANN based nonlinearity. With this purpose, the study proposed several LSTAR-GARCH-NN family models. It is noted that the multilayer perceptron (MLP) neural network and LSTAR models have significant architectural similarities. Accordingly, linear GARCH, fractionally integrated FI-GARCH, asymmetric power APGARCH and fractionally integrated asymmetric power APGARCH models are augmented with a family of Neural Network models. The study has following contributions: i. STAR-GARCH and LSTAR-GARCH are extended to their fractionally integrated asymmetric power versions and STAR-ST-FIGARCH and STAR-ST-APGARCH, STAR-ST-FIAPGARCH models are developed and evaluated. ii. By extending these models with neural networks, LSTAR-LST-GARCH-MLP family models are developed and investigated. These models benefit from LSTAR type nonlinearity and NN based nonlinear NN-GARCH models to capture time varying volatility and nonlinearity in petrol prices. ANN augmented versions of LSTAR-LST-GARCH models are as follows: LSTAR-LST-GARCH-MLP, LSTAR-LST-FIGARCH-MLP, LSTAR-LST-APGARCH-MLP and LSTAR-LST-FIAPGARCH-MLP. Empirical findings are collected as follows. i. To model petrol prices, fractionally integrated and asymmetric power versions provided improvements among the GARCH family models in terms of forecasting. ii. LSTAR-LST-GARCH model family is promising and show significant gains in out-of-sample forecasting. iii. MLP-GARCH family provided similar results with the LSTAR-LST-GARCH family models, except for the MLP-FIGARCH and MLP-FIAPGARCH models. iv. Volatility clustering, asymmetry and nonlinearity characteristics of petrol prices are captured most efficiently with the LSTAR-LST-GARCH-MLP models benefiting from forecasting capabilities of neural network techniques, whereas, among the newly developed models, LSTAR-LST-APGARCH-MLP model provided the best performance overall

    Robust estimation of statistical temporal networks for financial time series modeling: theoretical formulation and temporal patterns typology

    Get PDF
    Although the idea of using Neural Networks technology for Financial Time Series prediction is an old one, the abundance and availability of stock-price data, including high-frequency (intra-minute) data has given an additional impetus to this fledgling field of study. Nevertheless, the study and applications have focused on the hedge-funds and brokerage operations of investments banks and very little academic attention has been devoted to the day-trading activity aiming at the accumulation of short-term incremental gains – still considered as a retail activity, similar to betting. The purpose of this research is precisely to investigate the possibility to use the sound time series smoothing techniques of feedforward Neural Networks along with elementary but powerful Classification Neural Networks techniques to produce a decision-aid system for intraday trading decisions. The basic design of the study consisted in presenting a new typology of intraday patterns and apply it to the 126 trading days of the first half of 2020 for the SP500 index, using intraday, minute-by-minute prices. While applying this methodology generated questions for further research, the major finding of this study was that when a price trend was soundly established during the first half of a trading day session, more often than not (in 57 cases versus 31) the trend continued till the end of the trading day. This result, which translates into the possibility for the trader to engage in short-term profitable trades, is non-trivial, though needs more past data to be consolidated. Further research into the conditions prevailing in other markets, before a trading day begins, could also prove useful
    corecore