
  

 

Abstract— An Intelligent Autopilot System (IAS) that can 

learn piloting skills by observing and imitating expert human 

pilots is proposed. IAS is a potential solution to the current 

problem of Automatic Flight Control Systems of being unable to 

handle flight uncertainties, and the need to construct control 

models manually. A robust Learning by Imitation approach is 

proposed which uses human pilots to demonstrate the task to be 

learned in a flight simulator while training datasets are captured 

from these demonstrations. The datasets are then used by 

Artificial Neural Networks to generate control models 

automatically. The control models imitate the skills of the 

human pilot when performing piloting tasks including handling 

flight uncertainties such as severe weather conditions. 

Experiments show that IAS performs learned take-off, climb, 

and slow ascent tasks with high accuracy even after being 

presented with limited examples, as measured by Mean Absolute 

Error and Mean Absolute Deviation. The results demonstrate 

that the IAS is capable of imitating low-level sub-cognitive skills 

such as rapid and continuous stabilization attempts in stormy 

weather conditions, and high-level strategic skills such as the 

sequence of sub-tasks necessary to pilot an aircraft starting from 

the stationary position on the runway, and ending with a steady 

cruise.  

I. INTRODUCTION 

Human pilots are trained to handle flight uncertainties or 

emergency situations such as severe weather conditions or 

system failure. In contrast, Automatic Flight Control Systems 

(AFCS/Autopilot) are highly limited, capable of performing 

minimal piloting tasks in non-emergency conditions. Strong 

turbulence, for example, can cause the autopilot to disengage 

or even attempt an undesired action which could jeopardise 

flight safety. The limitations of autopilots require constant 

monitoring of the system and the flight status by the flight 

crew to react quickly to any undesired situation or 

emergencies. On the other hand, trying to anticipate 

everything that could go wrong with a flight, and 

incorporating that into the set of rules or control models 

“hardcoded” in an AFCS is infeasible. There have been 

reports either discussing the limitations of current autopilots 

[1] [2] such as the inability to handle severe weather 

conditions, or blaming autopilots for a number of aviation 

catastrophes. One such example was Air France flight AF447 

on June 1st 2009 where the aircraft entered a severe turbulence 

 
 

zone forcing it to climb steeply and stall. Shortly after that, 

the autopilot disengaged causing the aircraft to lose altitude 

dramatically. Unfortunately, it was too late for the flight crew 

to rectify the situation [3] [4]. 

This work aims to address this problem by creating an 

Intelligent Autopilot System (IAS) that can learn from human 

pilots by applying the Learning by Imitation concept with 

Artificial Neural Networks. By using this approach we aim to 

extend the capabilities of modern autopilots and enable them 

to autonomously adapt their piloting to suit multiple scenarios 

ranging from normal to emergency situations. 

This paper is structured as follows: part (II) covers the 

autopilot problem in more details, and related work on 

utilizing Learning by Imitation in autonomous aviation. Part 

(III) explains the proposed Intelligent Autopilot System (IAS) 

prototype. Part (IV) describes the experiments, Part (V) 

describes the results by comparing the behaviour of the 

human pilot with the behaviour of the Intelligent Autopilot, 

and part (VI) provides an analysis of the results. Finally, we 

provide conclusions and future work. 

II. BACKGROUND 

A.  Automatic Flight Control Systems 

Current operational autopilots fall under the domain of 

Control Theory. Classic and modern autopilots rely on 

controllers such as Proportional Integral Derivative controller 

(PID controller), and Finite-State automation [5]. Many 

recent research efforts focus on enhancing flight controllers, 

through the introduction of various methods such as a non-

adaptive Backstepping approach [6], Dynamical Inversion 

flight control approach based on Artificial Neural Network 

Disturbance Observer to handle the dynamical inversion error 

factor [7], an L1 adaptive controller which is based on 

piecewise constant adaptive laws [8], a multi-layered hybrid 

linear/non-linear controller for biologically inspired 

Unmanned Aerial Vehicles [9], and a fault-tolerant control 

based on Gain-Scheduled PID [10]. However, manually 

designing and developing all the necessary controllers to 

handle the complete spectrum of flight scenarios and 

uncertainties ranging from normal to emergency situations 

might not be the ideal method due to feasibility limitations 

such as the difficulty in covering all possible eventualities.   
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A. Artificial Neural Networks 

Artificial Neural Networks (ANNs) are popular learning 

methods due to their ability to handle highly dynamic real-

time large volumes of data. They are a highly interconnected 

system capable of processing data through their dynamic state 

response to external inputs. [11] Although Artificial Neural 

Networks are sometimes referred to as slow learners, as soon 

as the learning model is generated, ANNs are very fast 

classification and regression techniques that are suitable for 

applications running in dynamic and high-speed 

environments [12] such as high frequency trading [13], and 

electrical circuits management and analysis [14]. ANNs are 

also used in robotics applications due to their capability of 

handling large amounts of real-time noisy sensor data [15]. 

The latter resemble the Intelligent Autopilot System (IAS) 

which should be able to receive real-time flight status data 

from multiple sensors, process the data, and apply the 

appropriate command control actions given the current flight 

state. 

 

B. Learning by Imitation for Autonomous Flight Control 

Learning by Imitation can be applied to machines just as 

it can be applied to humans. Michie et al [16] demonstrated 

this concept with the attempt to balance a pole by a simulated 

system. Learning by Imitation is split into two main parts each 

with its own objectives: 1. learning a policy or a low-level 

task which could represent a direct mapping between states 

and relative actions, and 2. learning a reward function or a 

high-level task which could represent a specific goal to be 

achieved.  

While Behavioural Cloning [17] has been applied to 

capture the high-level decision making process of a human 

pilot, Apprenticeship Leaning [18] has been applied to 

capture low-level highly dynamic tasks. Sammut [17] 

presented an early attempt to develop an autopilot that can 

learn by imitation. In [17], the Decision Tree induction 

program C4.5 was used to capture the set of rules or high-

level tasks required to fly an aircraft in a flight simulator. The 

rules were transformed into a collection of If-Statements that 

govern the control commands sent by the autopilot. In [17], 

the main challenge was the need to capture low-level sub-

cognitive actions that a human pilot performs rapidly.  

Apprenticeship Learning using Inverse Reinforcement 

Learning, either by considering a Markov decision process 

[19], or by considering Gradient methods [20] focus on 

capturing low-level highly dynamic and rapid actions of a 

human demonstrator. These methods in general do not depend 

on receiving a Reward Function in advance, which is how 

classic Reinforcement Learning works, instead, the proposed 

approach attempts to find a reward function by observing how 

an expert human demonstrates the task to be learned by the 

system. Abbeel et al [21] applied Apprenticeship Learning to 

a dynamic control system performing acrobatic manoeuvres 

using a helicopter. Applying Apprenticeship Learning proved 

to be an efficient learning technique to capture the expert 

demonstrator’s skills. In [21], multiple demonstrations by an 

expert were gathered. The goal was to consider observations 

as noisy attempts from the expert while performing the 

desired manoeuvre successfully. The main reported challenge 

was the difficulty to capture high-level dynamic models 

present in complex manoeuvres where successful 

performance of manoeuvres require a careful transition 

among multiple sub-actions.  

Recently, and in the same context, Matsumoto et al [22] 

proposed a similar learning approach that depends on 

Learning from Demonstration (LFD) to capture the human 

pilot’s skills and apply them in an autonomous Unmanned 

Aerial System (UAS) to achieve the same level of safety 

observed in civil aviation.   

III. THE INTELLIGENT AUTOPILOT SYSTEM 

The proposed Intelligent Autopilot System (IAS) in this 

paper can be viewed as an apprentice that observes the 

demonstration of a new task by the experienced teacher, and 

then performs the same task autonomously. In the IAS we 

bridge the gap between Behavioural Cloning and 

Apprenticeship Learning. A successful generalization of 

Learning by Imitation should take into consideration the 

capturing of low-level models and high-level models, which 

can be viewed as rapid and dynamic sub-actions that occur in 

fractions of a second, and actions governing the whole process 

and how it should be performed strategically. It is important 

to capture and imitate both levels in order to handle flight 

uncertainties successfully. 

The IAS is made of the following components: a flight 

simulator, an interface, a database, and Artificial Neural 

Networks. The IAS implementation method has three steps: 

A. pilot data collection, B. training, and C. autonomous 

control. In each step, different IAS components are used. The 

following sections describe each step and the components 

used in turn. 

A. Pilot Data Collection 

Fig. 1 illustrates the IAS components used during the pilot 

data collection step. 

 

1) Flight Simulator 

Before the IAS can be trained or can take control, we must 

collect data from a pilot. This is performed using X-Plane 

which is an advanced flight simulator that has been used as 

the simulator of choice in many research papers such as [23] 

[24] [25]. 

 
 

Fig.  1. Block diagram illustrating IAS components used during the pilot 

data collection step. 



  

X-Plane is used by multiple organizations and industries 

such as NASA, Boeing, Cirrus, Cessna, Piper, Precession 

Flight Controls Incorporated, Japan Airlines, and the 

American Federal Aviation Administration.1 X-Plane can 

communicate with external applications by sending and 

receiving flight status and control commands data over a 

network through User Datagram Protocol (UDP) packets. For 

this work, the simulator is set up to send and receive packets 

comprising desired data every 0.1 second.   

 

2) IAS Interface   

The IAS Interface is responsible for data flow between the 

flight simulator and the system in both directions. The 

Interface contains control command buttons that provide a 

simplified yet sufficient aircraft control interface including 

throttle, brakes, gear, elevator, aileron, and rudder, which can 

be used to perform basic tasks of piloting an aircraft such as 

take-off and landing in the simulator. It also displays flight 

data received from the simulator.  

Data collection is started immediately before 

demonstration, then; the pilot uses the Interface to perform the 

piloting task to be learned. The Interface collects flight data 

from X-Plane over the network using UDP packets, and 

collects the pilot’s actions while performing the task, which 

are also sent back to the simulator as manual control 

commands. The Interface organizes the collected flight data 

received from the simulator (inputs), and the pilot’s actions 

(outputs) into vectors of inputs and outputs, which are sent to 

the database every 1 second. 

 

3) Database   

An SQL Server database stores all data captured from the 

pilot demonstrator and X-Plane, which are received from the 

Interface. The database contains tables designed to store: 1. 

continuous flight data as inputs, and 2. pilot’s actions as 

outputs. These tables are then used as training datasets to train 

the Artificial Neural Networks of IAS.    

 

A. Training 

1) Artificial Neural Networks 

After the human pilot data collection step is completed, 

Artificial Neural Networks are used to generate learning 

models from the captured datasets through offline training. 

Fig. 2 illustrates the training step.  

 

 

 
 

 

Fig.  2. Block diagram illustrating IAS components used during training. 
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Four feedforward Artificial Neural Networks represent the 

core of IAS. Each ANN is designed and trained to handle 

specific controls. The inputs of ANN 1 are: speed and altitude 

values, and the outputs are: throttle, gear, and brakes values. 

The inputs of ANN 2 are: speed, altitude, and pitch values, 

and the output is: elevator value. The input of ANN 3 is: roll 

value, and the output is: aileron value. The input of ANN 4 is: 

heading value, and the output is: rudder value. 

The topologies of the four ANNs are illustrated in Fig. 3.  

The method for choosing ANN topologies in this work is 

based on a rule-of-thumb [26] which indicates that problems 

requiring more than one hidden layer are rarely encountered.   

This rule follows an approach that tries to avoid under-fitting 

caused by too few neurons in the hidden layer, or over-fitting 

caused by too many neurons, by having the number of hidden 

neurons less than or equal to twice the size of the input layer. 

During training, the datasets are normalized, and retrieved 

from the database. Then, the datasets are fed to the ANNs. 

Next, Sigmoid (1) [26] and Hyperbolic Tangent (Tanh) (2) 

[26] functions are applied for the neuron activation step, 

where 𝑓(𝑥) is the activation value for each neuron, and 𝑥 is 

the relevant target value: 

                                                                                                    

         𝑓(𝑥) =  
1

1+ 𝑒−𝑥                                         (1) 

 

                     𝑓(𝑥) =  
𝑒2𝑥 − 1

𝑒2𝑥 + 1
                                 (2) 

    
The Sigmoid activation function (1) is used by ANN 1 

since all input and output values are positive, while Tanh is 

used by ANN 2, 3, and 4 since the datasets contain few 

negative values: pitch (ANN 2), rudder (ANN 3), roll, and 

aileron (ANN 4). 

 

 
 
Fig.  3. Topology of ANN 1 trained to handle throttle, gear and brakes (top 

left), topology of ANN 2 trained to handle elevator control (top right), 

topology of ANN 3 trained to handle aileron control (bottom left), and 

topology of ANN 4 trained to handle rudder control (bottom right). 

 

ANN 1 ANN 2 

ANN 3 ANN 4 



  

Next, Backpropagation is applied. Based on the activation 

function, (3) [27], or (4) [27] are applied to calculate the error 

signal (𝛿) for each neuron where 𝑡𝑛 is the desired target value 

and 𝑎𝑛 is the actual activation value:    

 

δ𝑛 = (𝑡𝑛 −  𝑎𝑛)𝑎𝑛(1 − 𝑎𝑛)                             (3) 

                                                                                                                       

δ𝑛 = (𝑡𝑛 − 𝑎𝑛)(1 − 𝑎𝑛)(1 +  𝑎𝑛)                        (4) 

 

Finally, coefficients of models (weights and biases) are 

updated using (5) [28] where δ𝑤𝑖,𝑗 is the change in the weight 

between nodes j and k.  

 

              𝑤𝑖,𝑗 =  𝑤𝑖,𝑗 +  δ𝑤𝑖,𝑗                                   (5) 

 

When training is completed, the learning models are 

generated, and the free parameters or coefficients represented 

by weights and biases of the models are stored in the database.  

B. Autonomous Control  

Once trained, the IAS can now be used for autonomous 

control. Fig. 4 illustrates the components used during the 

autonomous control step.  

 

1) IAS Interface 

Here, the Interface retrieves the coefficients of the models 

from the database for each trained ANN, and receives flight 

data from the flight simulator every 0.1 second. The Interface 

organizes the coefficients into sets of weights and biases, and 

organizes data received from the simulator into sets of inputs 

for each ANN. The relevant coefficients, and flight data input 

sets are then fed to the ANNs of the IAS to produce outputs. 

The outputs of the ANNs are sent to the Interface which sends 

them to the flight simulator as autonomous control commands 

using UDP packets every 0.1 second. 

 

2) Artificial Neural Networks 

The relevant set of flight data inputs received through the 

Interface is used by each ANN input neurons along with the 

relevant coefficients to predict and output the appropriate 

control commands given the flight status by applying (1) and 

(2). The values of the output layer are continuously sent to the 

Interface which sends them to the flight simulator as 

autonomous control commands. 

IV. EXPERIMENTS 

In order to assess the effectiveness of the proposed 

approach, the Intelligent Autopilot System was tested in two 

experiments: A. autonomous flying under calm weather, and 

B. autonomous flying under stormy weather. Each experiment 

is composed of 10 attempts by the IAS to fly autonomously 

under the given weather conditions.  

At this point of our work, the scope only covers the ability 

of the proposed system to imitate the behaviour of the human 

pilot while performing basic piloting tasks. We do not focus 

on maintaining a strict velocity and attitude during the flight, 

which is among the tasks to be taught to the IAS in our next 

work.      

 
 
Fig.  4. Block diagram illustrating IAS components used during autonomous 

control. 

 

Fig. 5 illustrates a break-down of the piloting task to be 

learned, to four sub-tasks based on time. Each attempt lasted 

for 182 seconds. The human pilot who provided the 

demonstrations is the first Author. The simulated aircraft used 

for the experiments is Cirrus Vision SF50. Since it is a light 

single- engine jet aircraft, it is relatively simpler to control, 

and responds quickly to pilot input. The experiments are as 

follows:  

A. Autonomous Flying under Calm Weather  

The purpose of this experiment is to assess the behaviour 

of the IAS compared to the behaviour of the human pilot 

under calm weather conditions.  

 

 

1) Data Collection  

In this experiment, the human pilot used the IAS Interface 

to perform the following in the flight simulator: take off, 

gaining altitude, and maintaining a slower climb rate with a 

fixed vector, under calm weather with null readings of wind 

gusts and turbulence. The performed tasks lasted for 182 

seconds as Fig. 5 shows. While the pilot performed the 

demonstration, the Interface collected speed and altitude as 

simulator inputs, throttle, gear, and brakes as pilot outputs, 

and elevator control data (speed, altitude, pitch as simulator 

inputs, and elevator as pilot output). The Interface stored 

collected data as two training datasets in the database. Only 

one demonstration was presented to the system under calm 

weather.  

 
Fig.  5. Piloting tasks over time. 

 



  

An additional data collection process was initiated to 

capture and compare the aircraft’s Automatic Flight Control 

(AFC)/Autopilot performance with the IAS under calm 

weather conditions. Due to the AFC’s inability to take-off, it 

was engaged at an altitude of 1600 ftmsl. The AFC was set to 

climb to an altitude of 6000 ftmsl at a rate of 1500 ftmsl per 

minute. 

 

2) Training 

For this experiment, ANN 1 (throttle, gear, and brakes 

control), and ANN 2 (elevator control) were trained until low 

Mean Squared Error (MSE) values were achieved (below 

0.1).  

 

3) Control 

After training the ANNs on the relevant training datasets, 

the aircraft was reset to the runway in the flight simulator, 

calm weather conditions were chosen, and the IAS was 

engaged. ANN 1 (throttle, gear, and brakes control), and ANN 

2 (elevator control) operate simultaneously to control the 

aircraft autonomously. Through the Interface, they receive: 1. 

continuous flight data from the flight simulator as inputs, and 

2. coefficients of models from the database (calm weather 

throttle, gear, brakes, and elevator control models) to predict 

and output command controls that are sent to the flight 

simulator. This process allows the IAS to perform learned 

tasks: take off, gaining altitude, and maintaining a slow climb 

rate with a fixed vector autonomously. This was repeated 10 

times to assess performance consistency.    

B. Autonomous Flying under Stormy Weather  

The purpose of this experiment is to assess the behaviour 

of the Intelligent Autopilot compared to the behaviour of the 

human pilot under stormy weather conditions. 

 

1) Data Collection  

 In this experiment, the human pilot used the IAS Interface 

to perform the following in the flight simulator: take off, 

gaining altitude, and maintaining a slower climb rate with a 

fixed vector, under stormy weather. The weather conditions 

included: wind gusts reaching up to 33 knots, wind directions 

flowing from all directions (0 to 360 degrees clockwise 

deviation from north), local turbulence up to 0.19, and rain 

and hail perception up to 68 mm. 

While the pilot performed the demonstration, the Interface 

collected rudder control and aileron control data only, and 

stored them as two training datasets in the database.  

Two demonstrations were required to capture the skill 

needed to keep the light aircraft on the runway during strong 

crosswinds using rudders, and only one demonstration of roll 

stabilization using ailerons was presented to the system. To 

test the system’s ability to generalize well in unseen 

conditions, no new throttle, gear, brakes, and elevator control 

data was collected under stormy weather conditions; instead, 

the data collected for these controls in Experiment 1 were 

reused. This aims to test the ability of the models generated 

under calm weather conditions to generalize in the unseen 

stormy weather conditions.    

During taxi speed gain on the runway, the human pilot 

attempted multiple heading corrections using the rudder to 

stay on the runway while strong crosswinds pushed the 

aircraft right and left. After take-off, the human pilot 

constantly corrected the roll deviation by controlling the 

ailerons. The collected data was cleaned by removal of 

outliers. These were caused by noise represented by values 

that fall within transition phases (e.g. aggressive correction of 

heading), human error, or signal error.  

An additional data collection process was initiated to 

capture and compare the aircraft’s AFC performance with the 

IAS under stormy weather conditions with the same settings 

used in experiment 1. It should be mentioned that the AFC 

disengaged itself multiple times while flying through the 

storm which made it difficult to capture a complete 

demonstration, especially when the strong winds affected the 

aircraft’s stability and caused it to stall. 

 

2) Training 

For this experiment, ANN 3 (rudder control), and ANN 4 

(aileron control) were trained until low Mean Squared Error 

(MSE) values were achieved (below 0.1).  

 

3) Control 

After training the ANNs on the relevant training datasets, 

the aircraft was reset to the runway in the flight simulator, 

stormy weather conditions were chosen, and the IAS was 

engaged. ANN 1 (throttle, gear, and brakes control), ANN 2 

(elevator control), ANN 3 (aileron control), and ANN 4 

(rudder control) operate simultaneously to control the aircraft 

autonomously. Through the Interface, they receive: 1. 

continuous flight data from the flight simulator as inputs, and 

2. coefficients of models from the database (calm weather 

throttle, gear, brakes, and elevator control models, and stormy 

weather rudder and aileron control models) to predict and 

output command controls that are sent to the flight simulator. 

This process allows the IAS to perform learned tasks: take off, 

gaining altitude, and maintaining a slow climb rate with a 

fixed vector autonomously, while continuously correcting the 

aircraft’s heading and roll. This was repeated 10 times to 

assess performance consistency.    

V. RESULTS 

The following section describes the results of the 

conducted tests. The 10 attempts by IAS to fly autonomously 

in each experiment (calm and stormy weather) were averaged 

and compared with the performance of the human pilot, and 

the aircraft’s AFC using Mean Absolute Error (MAE), Mean 

Absolute Deviation (MAD), and illustrated by Behaviour 

Charts.  

A. Experiment 1 (Calm Weather Condition) 

Two models were generated with the following MSE 

values as table I shows. 

Table II lists the accuracy assessment results by 

comparing the behaviour of IAS with the behaviour of the 

human pilot in the calm weather experiment.  



  

Table III lists the accuracy assessment results by 

comparing the behaviour of IAS with the behaviour of the 

aircraft’s AFC in the calm weather experiment.  

Fig. 6, 7, and 8 illustrate the Intelligent Autopilot’s control 

commands compared to the human pilot. Fig. 9 and 10 

illustrate altitude and speed over time comparisons between 

the human pilot, the Intelligent Autopilot System, and the 

aircraft’s AFC. 

B. Experiment 2 (Stormy Weather Condition) 

Two models were generated with MSE values as table IV 

shows. 

Table V lists the accuracy assessment results by 

comparing the behaviour of IAS with the behaviour of the 

human pilot in the stormy weather experiment. 

Table VI lists the accuracy assessment results by 

comparing the behaviour of IAS with the behaviour of the 

aircraft’s AFC in the stormy weather experiment.  

 
TABLE I 

MSE VALUES OF THE MODELS GENERATED UNDER CALM 

WEATHER 

 
 

TABLE II 

IAS ACCURACY ASSESSMENT RESULTS COMPARED WITH THE 

HUMAN PILOT. ACCURACY IS MEASURED USING MEAN 
ABSOLUTE ERROR (MAE) AND MEAN ABSOLUTE DEVIATION 

(MAD) – CALM WEATHER. 

 
 

TABLE III 
IAS COMPARED WITH THE AIRCRAFT’S AFC. ACCURACY IS 

MEASURED USING MAE AND MAD – CALM WEATHER. 

 
 

 

 

 
 

Fig.  6. (Exp. 1) A comparison between the human pilot and the 

Intelligent Autopilot’s average, maximum, and minimum throttle 

commands over time during the four phases –separated by dotted 
lines- as illustrated in Fig. 4. 

 

Fig. 11, 12, and 13 illustrate the IAS control commands 

compared to the human pilot in the stormy weather 

experiment. Fig. 14 and 15 illustrate altitude and speed over 

time comparisons between the human pilot, the IAS, and the 

aircraft’s AFC in the stormy weather experiment. 

Fig. 16 generated from sample heading/rudder data, 

illustrates a comparison between the human pilot and IAS 

heading correction attempts using the rudder. Fig. 17 

generated from sample roll/aileron data illustrates the 

comparison between the human pilot and the IAS roll 

correction attempts using the ailerons. 

 
TABLE IV 

MSE VALUES OF THE MODELS GENERATED UNDER STORMY 

WEATHER 

 
 

TABLE V 

IAS ACCURACY ASSESSMENT RESULTS COMPARED WITH THE 
HUMAN PILOT. ACCURACY IS MEASURED USING MEAN 

ABSOLUTE ERROR (MAE) AND MEAN ABSOLUTE DEVIATION 

(MAD) – STORMY WEATHER. 

 
 
 

TABLE VI 

IAS COMPARED WITH THE AIRCRAFT’S AFC. ACCURACY IS 
MEASURED USING MEAN ABSOLUTE ERROR (MAE) AND MEAN 

ABSOLUTE DEVIATION (MAD) – STORMY WEATHER. 

 
 

 

 

 

 

 
 

Fig.  7. (Exp. 1) A comparison between the human pilot and the 
Intelligent Autopilot’s average, maximum, and minimum gear 

commands over time. 

 



  

 
Fig.  8. (Exp. 1) A comparison between the human pilot and the 

Intelligent Autopilot’s average, maximum, and minimum elevator 

commands over time. 
 

 

 
Fig.  10. (Exp. 1) A comparison between the human pilot, the 

aircraft’s    AFC/Autopilot, and the Intelligent Autopilot’s average, 
maximum, and minimum speed over time. 

 

 
Fig.  12. (Exp. 2) A comparison between the human pilot and the 

Intelligent Autopilot’s average, maximum, and minimum gear 

commands over time. 

 

 

 
 

Fig.  14. (Exp. 2) A comparison between the human pilot, the aircraft’s 

AFC/Autopilot, and the Intelligent Autopilot’s average, maximum, and 

minimum altitude over time. 

 
Fig.  9. (Exp. 1) A comparison between the human pilot, the 

aircraft’s AFC/Autopilot, and the Intelligent Autopilot’s average, 

maximum, and minimum altitude over time. 

 
 

 
Fig.  11. (Exp. 2) A comparison between the human pilot and the 
Intelligent Autopilot’s average, maximum, and minimum throttle 

commands over time during the four phases –separated by dotted lines- 

as illustrated in Fig. 4. 
 

 
Fig.  13. (Exp. 2) A comparison between the human pilot and the 

Intelligent Autopilot’s average, maximum, and minimum elevator 

commands over time. 
 

 

 
 

Fig.  15. (Exp. 2) A comparison between the human pilot, the 

aircraft’s AFC/Autopilot, and the Intelligent Autopilot’s average, 

maximum, and minimum speed over time. 



  

 
 

Fig.  16. (Exp. 2) A comparison between the human pilot and the 

Intelligent Autopilot’s average, maximum, and minimum heading 
correction attempts. The middle part between the two dotted lines is 

the area where no corrections are required (based on a heading of 187 

degrees). The right part illustrates a deviation in heading towards the 

right, while the left part illustrates a deviation in heading towards the 

left. 

VI. ANALYSIS 

As can be seen in Figs 6 to 10, experiment 1 (calm weather 

condition) presented very desirable results. The IAS was 

capable of imitating the human pilot’s actions and behaviour 

with remarkable accuracy, and strong consistency.  

As can be seen in Figs 11 to 17, experiment 2 (stormy 

weather condition) showed the ability of IAS to imitate rapid 

stabilization actions, and generalize well in unseen 

conditions. The system used the calm weather models to fly 

in stormy conditions gracefully.  

The system was able to imitate multiple human pilot’s 

skills and behaviour after being presented with very limited 

examples (1 example for throttle, gear, and brakes, 1 example 

for elevator control, 1 example for aileron control, and 2 

examples for rudder control). The results show that the 

Intelligent Autopilot continued to stabilize the aircraft in 

difficult weather condition, while the AFC of the simulated 

aircraft disengaged itself multiple times.  

It should be mentioned that the human pilot found it 

difficult to regulate the speed of the aircraft as shown by the 

oscillations, but despite receiving this data as training, the 

IAS learned to fly smoothly - indeed smoother than the human 

pilot as can be seen in Figs 10 and 15. 

The complete learning process starting from the 

demonstration of the specific task by the human pilot, and 

ending with the automatic generation of the learning model 

takes less than 20 minutes. 

Informal trials were also performed with the IAS in which 

the aircraft was put into a variety of situations that it had not 

been trained to handle (e.g., a stall, inversion, etc.). In all cases 

the IAS was able to stabilize the aircraft safely on its own.  

  
 

 
 

 

Fig.  17. (Exp. 2) A comparison between the human pilot and the 

Intelligent Autopilot’s average, maximum, and minimum roll 
correction attempts. The middle part between the two dotted lines is 

the area where no corrections are required. The right part illustrates a 

deviation in roll towards the right, while the left part illustrates a 

deviation in roll towards the left. 

VII. CONCLUSION & FUTURE WORK 

The aviation industry is currently working on solutions 

which should lead to decreasing the dependence on crew 

members. The reason behind this is to lower workload, human 

error, and stress faced by crew members, by developing 

autopilots capable of handling multiple scenarios without 

human intervention. In this work, a robust approach is 

proposed to “teach” autopilots how to handle uncertainties 

and emergencies with minimum effort by exploiting Learning 

by Imitation.  

The experiments were strong indicators towards the 

ability of Supervised Learning with Artificial Neural 

Networks to capture low-level piloting tasks such as the rapid 

corrections of heading and roll deviations in stormy weather 

conditions. The experiments showed the ability of the IAS to 

capture high-level tasks and rules such as applying elevator 

only after a certain speed is achieved, retracting gear at a 

certain altitude, and also levelling the aircraft and shifting 

from the climb to the smooth ascent and cruise phase at a 

certain altitude. 

Future effort will focus on a further and extended break-

down of the piloting tasks. More Artificial Neural Networks 

should be added to the Intelligent Autopilot System to 

enhance performance and accuracy, and to cover a wider 

spectrum of sub-tasks. The learning by Imitation approach in 

this context should be extended to cover new tasks and 

scenarios that have not been presented yet to the system. The 

new tasks and scenarios could cover emergency situations 

such as handling urgent take-off abortion, engine fire, etc. We 

anticipate that future Autopilot systems which make of 

methods proposed here could improve safety and save lives. 
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