
Modelling and Trading the English and German Stock Market with Novelty Optimization 

Techniques. 

 

 

 

 

 

 

Abstract.   
The motivation for this paper is to introduce novel short term models to trade the FTSE100 

and DAX30 Exchange traded funds (ETF) indices. There are major contributions in this paper 

which include the introduction of an input selection criteria when utilising an expansive 

universe of inputs, a hybrid combination of Partial Swarm Optimizer (PSO) with Radial Basis 

Functions Neural Networks (RBFNN), the application of a PSO algorithm to a traditional 

Autoregressive Moving model (ARMA) the application of a PSO algorithm to a Higher Order 

Neural Network and finally the introduction of a multi-objective algorithm to optimise 

statistical and trading performance when trading an index.  All the machine learning based 

methodologies and the conventional models are adapted and optimized to model the index. A 

PSO algorithm is used to optimise the weights in a traditional RBF neural network, in a Higher 

Order Neural Network (HONN) and the AR and MA terms of an ARMA model. In terms of 

checking the statistical and empirical accuracy of the novel models we benchmark them with a 

traditional Higher Order Neural Network, with an autoregressive moving average model 

(ARMA), with a moving average convergence/divergence model (MACD) and with a naïve 

strategy. More specifically, the trading and statistical performance of all models is investigated 

in a forecast simulation of the FTSE100 and DAX30 ETFs time series over the period January 

2004 to December 2015 using the last 3 years for out-of-sample testing. Finally the empirical 

and statistical results indicate that the PSO RBF model outperforms all other examined models 

in terms of trading accuracy and profitability even with mixed inputs even with only 

autoregressive inputs. 

Keywords: Particle Swarm Optimisation, Radial Basis Function, Confirmation Filters, 

FTSE100, DAX30 Day Trading.  

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80777341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

 

INTRODUCTION   

         Modelling and trading financial indices remains a challenging and demanding task for market 

participants. Forecasting financial time series can be extremely difficult because they are 

influenced by a large number of variables. Much of the analysed data displays periods of 

erratic behaviour and as a result drastic declines and spikes in the data series are experienced. 

Existing linear methods are limited as they only focus on one time series. Some of the older 

machine learning models also have trouble producing accurate and profitable forecasts due to 

their rigid architectures. In this paper the proposed models improve on these inefficiencies to 

make the models more dynamic similar to the time series they are tasked with forecasting.  

This is particularly important in times of crises as the correlations between different asset 

classes and time series increase. These inadequacies have been studied in great depth by the 

scientific community and many methodologies have been proposed to overcome the 

disadvantages of previous models (Li and Ma, 2010).  The main disadvantage of existing non-

linear financial forecasting and trading methodologies is that most of them search for global 

optimal estimators. The problem with this approach is that most of the time global estimators 

do not exist due to the dynamic nature of financial time-series. Moreover, the algorithms 

which are used for modelling financial time-series have a lot of algorithms which need to be 

tuned and if this procedure is performed without careful consideration the accuracy of 

extracted prediction models will suffer and in some cases result in data-snooping effect. 

Finally, most of the times the training of a prediction model is performed separately from the 

construction viable trading signals and thus the overall performance is reduced. In specific, 

most machine learning algorithms which are designed for forecasting financial time-series 

deploy only statistical metrics for the optimization steps of their training phase and do not 

apply any optimization step for improving their trading performances. Here a multi-objective 

algorithm is employed to optimise both statistical properties and trading performance. 

        The motivation for this paper is to introduce in a hybrid Neural Network architecture of 

Particle Swarm Optimization combined with Radial Basis Function (RBF-PSO), which try to 

overcome some of these limitations. More specifically our proposed architecture is fully 

adaptive something that decreases the numbers of parameters that the practitioner needs to 

experiment while on the other hand it increases the forecasting ability of the network. The 

proposed methodology is superior in comparison to the application of meta-heuristic methods 

(PSO, Genetic Algorithms, Swarm Fish Algorithm) that have been already presented in the 

literature (Nekoukar and Beheshti (2010) and Shen et al. (2011)) because it eradicates the risk 

of getting trapped into local optima and the final solution is assured to be optimal for a subset 

of the training set. 

         The machine learning model which was used was a hybrid combination of an adaptive version 

of the Particle Swarm Optimisation (PSO) algorithm (Kennedy and Eberhart, 1995). 

Numerous existing papers utilize PSO RBF neural networks to model financial time series 



however many of these are limited in their application as they do not optimize the number of 

hidden neurons nor do they have a selection criteria for the input series. The Partial Swarm 

Optimizer applied by Ding et al.(2005) was used for selecting the optimal feature subset and 

optimizing the structure of Radial Basis Function Neural Networks. Moreover, a multi-

objective approach was used to account for both statistical and trading performance. In 

particular two fitness functions are combined to minimize error and maximize annualized 

returns. This approach was first successfully applied to the modelling and trading of foreign 

exchange rates (Karathanasopoulos et al.,  (2012a), (2012c), (2013a), (2013c) and (2015a). 

Another important limitation of existing methodologies for modelling and trading financial 

time series is that only a small set of autoregressive inputs and technical indicators are used as 

inputs. In this investigation, a FTSE100 and DAX30 ETFs specific superset of 50 inputs are 

evaluated. To the best of our knowledge this is the first time that this adaptive PSO algorithm 

is combined with an RBF neural network to model and forecast equity indices. Moreover, our 

proposed machine learning method also applies the PSO algorithm to select the more relevant 

inputs at each time step. This is different from many other existing non-linear models as most 

neural networks provide a prediction in the form of a weighted computation of all inputs 

which are fed into the network during the training process. Therefore, the proposed model has 

an ability to locate the optimal feature subset which should be used as inputs. This enables the 

practitioner to introduce a more expansive universe of inputs without having to worry about a 

noticeable reduction in training times or a redundancy of features. Moreover, the feature 

selection is a dynamic procedure and not a static one with different feature subsets being 

selected in different time steps. This also helps remove the risk of survivorship bias when 

back testing older data as all major equities can be included as inputs. During the back test 

and for trading the algorithm records the number of times an input is selected which indicates 

which variables were more influential than others over the examined time period.  

         The performance of the proposed methodology is compared with numerous linear and non 

linear methodologies. To allow for a fair comparison we benchmark our proposed algorithm 

with a Higher Order Neural Network, (HONN) a hybrid HONN-PSO, an autoregressive 

moving average model (ARMA), an ARMA-PSO, a moving average convergence/divergence 

model (MACD) plus a naïve strategy in a forecasting and trading simulation of the  FTSE100 

and DAX30. 

         The rest of the paper is organized as follows: Section 2 presents a review of literature which is 

focused on forecasting methodologies and in particular neural networks. Section 3 describes 

the dataset used for the experiments and the descriptive statistics. Section 4 describes all the 

models in this paper. Section 5 is the penultimate chapter which presents the empirical results 

and an overview of the benchmark models. The final chapter presents concluding remarks and 

future objectives and research. 

LITERATURE REVIEW 

Developing high accuracy techniques for predicting time series is a very crucial problem for 

scientists and decision makers. The traditional statistical methods seem to fail to capture the 

discontinuities, the nonlinearities and the high complexity of datasets such as financial time 

series. Complex machine learning techniques like Artificial Neural Networks (NNs) provide 

enough learning capacity and are more likely to capture the complex non-linear models which 

are dominant in the financial markets but their parameter tuning remains difficult and 

generalization problems exist (Donaldson and Kamstra (1996) and Lisboa and Vellido 

(2000)). 

The main objective of this paper is to introduce a novel hybrid method which is able to 

overcome the difficulties in tuning the parameters of artificial neural networks. For this 

purpose among the various neural network techniques, we use the Radial Basis Function 



Neural Networks (RBF) which has proven experimentally to outperform the more classical 

NNs architectures (Broomhead and Lowe (1988)). The hybrid method combines the RBF with 

Particle Swarm Optimization (PSO) algorithm, a state-of-the art heuristic optimization 

technique (Kennedy and Eberhart (1995)) in a way that optimizes the neural networks 

parameters, structure and training procedure. Our proposed methodology is an extension of the 

algorithm proposed by Ding et. al. (2005) for forecasting purposes. 

The proposed methodology has not been significantly applied in science yet. However, some 

approaches have been recently proposed for the optimization of RBF Neural Networks and 

their application in financial time-series forecasting. Nekoukar and Beheshti (2010) propose 

the application of a modified PSO (using hunter particles to increase diversity) for training 

Radial Basis Functions. This methodology was applied for the prediction of the price of 

Iranian stock time-series. Despite the high prediction accuracy of the derived model, this 

hybrid technique does not provide any method for optimizing the structure of the RBF 

network. Moreover, the applied PSO algorithm uses constant parameters, which requires an 

extra time-consuming optimization step. Shen et al. (2011) introduce a novel hybrid technique 

which applies an Artificial Fish Swarm algorithm to train Radial Basis Function Neural 

Networks for modeling the Shanghai Composite Indices. The prediction results are extremely 

good, but the artificial fish swarm algorithm is not used for the optimization of the RBF 

network’s structure and it requires some parameters to be tuned via a time consuming trial and 

error approach. Compared to a simple genetic algorithm and a simple PSO method which are 

also used to train Radial Basis Function Neural Networks, the Artificial Fish Swarm algorithm 

produces a slightly higher prediction error but the authors believe that being a new intelligent 

algorithm it has room for improvement and development.  Both of these methods use Mean 

Square Error as a fitness function and they are not specialized for the prediction of financial 

time series contrary to our proposed methodology.  

 

More recent research conducted by Lee and Ko (2009) focuses on Radial Basis Function 

(RBF) NNs. Lee and Ko (2009) proposed a NTVE-PSO method which compares existing PSO 

methods, in terms of prediction the different practical load types of Taiwan power system 

(Taipower) in terms of predicting one-day ahead and five-days ahead. Yan et al. (2005) 

contributes to the applications of RBF NN by experiments with real-world data sets. 

Experimental results reveal that the prediction performance of RBF NN is significantly better 

than a traditional back propagation neural network models. Marcek et al. (2009) estimate and 

apply ARCH-GARCH models for the forecasting bond price series provided by VUB bank. 

Following the estimation of these models Marcek et al. (2009) then forecast the price of the 

bond using an RBF NN. Cao and Tay (2003) compare a support vector machine model with an 

RBF and a generic Back Propagation Neural Network model. In their methodology Cao and 

Tay (2003) analyse five futures contracts which are trade on the CME. Empirical results from 

this analysis conclude that the RBF NN outperforms the BP NN while producing similar 

results to the SVR NN. As an overall summary the predictive ability of an RBF is significantly 

stronger when compared to any of the aforementioned benchmark models. In some cases the 

performance is almost double that of other comparable models. 

 

With the emergence of newer technology and faster processing power finance has seen 

numerous advancements in the area of artificial intelligence. As a result, the accuracy and 

practicality of such models has led to AI being applied to different asset classes and trading 

strategies. Enke and Thawornwong (2005) suggest that machine learning methodologies 

provide higher returns when compared to a buy and hold strategy. De Freitas et al. (2000) 

propose a novel strategy for training NNs using sequential Monte Carlo algorithms with a 

new hybrid gradient descent / sampling importance resampling algorithm (HySIR). The 



effectiveness of this model was validated following an application to forecasting FTSE100 

closing prices. The HySIR model outperformed all the other benchmarks in terms of trading 

performance. Their novel technique was fixed from values with weights that generate a 200 

input-output data test. The input test data was then used to train the model using the weights 

estimated at the 200th time step.  Tino P., et al. (2001), Jasic and Wood (2004), 

karathanasopoulos et al (2012b) and Bennell and Sutcliffe (2005) , show results which 

indicate that for all markets the improvement in the forecast by non-linear models is 

significant and highly accurate. Moreover, Edelman (2008) presented a hybrid Calman filter - 

Radial Basis Function model used in forecasting one day ahead the FTSE100 and ISEQ. This 

study used lagged returns from previous days as inputs. The results produced by Eldeman are 

favourable towards the RBF model as it outperformed the buy and hold strategy, a moving 

average model and even traditional recurrent neural network. 

 

The last few years of AI research has been continued with Ling Bing Tang et al. (2009) which 

analyses the application and validity of wavelet support vector machine for volatility 

forecasting. Results from their computer simulations and experiments on stock data reveal 

that kernel functions in support vector machines are unable to accurately predict the cluster 

feature of volatility. Miazhynskaia et al. (2006) attempt to forecast volatility with numerous 

models. Their conclusion shows that statistical models account for non-normality and explain 

most of the fat tails in the conditional distribution. As a result, they believe that there is less of 

a need for complex non-linear models. In their empirical analysis, the return series of the Dow 

Jones Industrial Average index, FTSE 100 and NIKKEI 225 indices over a period of 16 years 

are studied. The results are varied across each of the markets. 

 

More recently Nair et al. (2011) propose a hybrid GA neural network which, when compared 

with benchmark models, outperforms displaying superior accuracy and overall performance. 

Nair et al. (2011) forecasts one day ahead and uses closing prices from the FTSE100, BSE 

Sensex, Nikkei 225, NSE-Nifty and DJIA as inputs for his models. Karathanasopoulos et al 

(2012a) and (2014) have used for first time another genetic algorithm named gene expression 

programming. Gene expression programming comparing to other artificial intelligence 

models gave better performance in forecasting the Greek main stock index and the 

EURO/USD exchange rate. Karathansopoulos et al. (2013b), (2013d) and (2015b) have 

forecasted successfully a huge range of time series with combination of support vector 

machines. In their analysis nonlinear models outperform all the others.  Lastly, 

Karathanasopoulos et al. (201) have used a sliding window approach which combines 

adaptive differential evolution and support vector regression for forecasting and trading the 

ftse100.  

RELATED FINANCIAL DATA  

A robust back test was conducted taking the largest stocks by market capitalization to be 

included in the training of the networks as a representation of the FTSE100’s and DAX30s  

most heavily weighted stocks over the examined time period. The FTSE 100 and DAX30 are 

weighted indices according to market capitalization which currently comprise of 100 and 30  

large cap constituents listed on the London Stock Exchange and German Stock Exchange. For 

the purpose of the trading simulation, the FTSE100 and DAX30 exchange traded fund are 

traded to capture daily movements of the FTSE100 and DAX30 main index accordingly. 

Trading signals are generated based on the forecast produced by each of the models. When the 

model forecasts a negative return then a short position (sale) is assumed at the close of each 

day and when the model forecasts a positive return a long position (purchase) is executed. 



Profit / loss is determined by daily positions and in circumstances were consecutive negative 

or positive changes are forecasted the position is held as a trading decision for the following 

day. In terms of calculating the daily returns of both data series, we convert them to arithmetic 

returns by estimating equation 1. Given the price level P1, P2,…,Pt, the arithmetic return at 

time t is formed by: 
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After using the summary statistics of daily returns series we reveal positive skewness and high 

kurtosis. The Jarque-Bera statistic confirms again that the two return series are non-normal at 

the 99% confidence level. These two return series will be forecasted from our models Further 

to that in order to train our neural networks we further divide our dataset as in table 1: 

 

Name of Period Trading 

Days 

Beginning End 

Total Dataset 2800 01/01/ 2004 31/12/2015 

Training Dataset 2050 01/01/2004 31/12/2012 

Validation Set 750 01/01/2012 31/12/2015 

Table 1: Full Dataset for FTSE100 and DAX30 

In the absence of any formal theory behind the selection of the inputs of a neural network, we 

conduct neural networks experiments and a sensitivity analysis on a pool of potential inputs in 

the training dataset in order to help our decision. Based on these experiments and the 

sensitivity analysis we select as inputs the sets of variables that provide the higher trading 

performance for each network in the in-sample period. Some inputs in our algorithms are 

combination of autoregressive returns, moving averages, fixed income returns, commodity 

returns, equity returns, equity index returns and a volatility time. In details the approach to 

selecting credible inputs is that for all the stochastic models we use 50 autoregressive returns 

of the main forecasting index with lags from 1-50 and for the RBF-PSO model for first time 

we create a pool of 50 mixed inputs which allows the model to select the best inputs for each 

run. Hence the RBF-PSO runs twice with only autoregressive returns of the main forecasted 

index and secondly with mixed inputs. The inputs for all the models are presented in 

table….(All of the data was extracted from FactSet (2015)). 

BENCHMARK MODELS 



Naïve strategy 
 

The naïve strategy simply takes the most recent period change as the best prediction of the 

future change. The model is defined by: 
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Where            tY        is the actual rate of return at period t 

  
1

ˆ
tY  is the forecast rate of return for the next period 

The performance of the strategy is evaluated in terms of trading performance via a simulated 

trading strategy. 

 

Moving Average 

 
The moving average model is defined as: 
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Where           tM  is the moving average at time t 

 n is the number of terms in the moving average 

tY  is the actual rate of return at period t 

The MACD strategy used is quite simple. Two moving average series are created with 

different moving average lengths. The decision rule for taking positions in the market is 

straightforward. Positions are taken if the moving averages intersect. If the short-term moving 

average intersects the long-term moving average from below a ‘long’ position is taken. 

Conversely, if the long-term moving average is intersected from above a ‘short’ position is 

taken1. 

The forecaster must use judgement when determining the number of periods n on which to 

                                            
1A ‘long’ position means buying the index at the current price, while a ‘short’ position means selling the 
index at the current price. 



base the moving averages. The combination that performed best over the in-sample sub-period 

was retained for out-of-sample evaluation. The models selected for FTSE100 and DAX30 

ETFs are FTSE100 (1,8) and DAX30 (1,9)  moving averages. 

ARMA Model 

Autoregressive moving average models (ARMA) assume that the value of a time series 

depends on its previous values (the autoregressive component) and on previous residual values 

(the moving average component)2.   

The ARMA model takes the form: 

 
qtqtttptpttt wwwYYYY    ...... 221122110  (4) 

where            tY                              is the dependent variable at time t 

1tY , 2tY , and ptY   are the lagged dependent variable 

0 , 
1 , 

2 , and p  are regression coefficients 

t    is the residual term 

1t , 2t , and pt  are previous values of the residual 

 
1w , 

2w , and qw  are weights. 

Using as a guide the correlogram in the training and the test sub periods we have chosen a 

restricted ARMA (1,8) model for FTSE100 and ARMA (1,6) for DAX30. All of its 

coefficients are significant at the 99% confidence interval. The null hypothesis that all 

coefficients (except the constant) are not significantly different from zero is rejected at the 

99% confidence interval  

                        

The model selected was retained for out-of-sample estimation. The performance of the strategy 

                                            
2 For a full discussion on the procedure, refer to Box et al. (1994)  



is evaluated in terms of traditional forecasting accuracy and in terms of trading performance3. 

ARMA  PSO 

The PSO ARMA is optimized by a PSO algorithm to find the optimal combination of AR and 

MA terms. More explanation on PSO can be found in the next chapter. 

Higher Order Neural Networks 

 

Higher Order Neural Networks (HONNs) were first introduced by Giles and Maxwell (1987) 

and were called “Tensor Networks”. For Zhang et al. (2002), a significant advantage of 

HONNs is that “HONN models are able to provide some rationale for the simulations they 

produce and thus can be regarded as “open box” rather then “black box”. Moreover, HONNs 

are able to simulate higher frequency, higher order non-linear data, and consequently provide 

superior simulations compared to those produced by ANNs (Artificial Neural Networks)” (p. 

188). While they have already experienced some success in the field of pattern recognition and 

associative recall4, HONNs have not yet been widely used in finance. The architecture of a 

three input second order HONN is shown below: 

 
Fig. 3: Left, MLP with three inputs and two hidden nodes; right, second order   HONN with 

three inputs 

 

where: 

                                            
3 Statistical measures are given in section 4.3 below. 
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The error function to be minimised is: 
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HONNs use joint activation functions; this technique reduces the need to establish the 

relationship between inputs when training. Furthermore this reduces the number of free 

weights and means that HONNs can be faster to train than MLPs. However, because the 

number of inputs can be very large for higher order architectures, orders of 4 and over are 

rarely used. Another advantage of the reduction of free weights means that the problems of 

overfitting and local optima affecting the results can be largely avoided, Knowles et. al. 

(2009). For a complete description of HONNs see Giles and Maxwell (1987). 

HONN-PSO. 

The HONN model is estimated using a traditional back propagation algorithm to adjust the 

weights when forecasting next day returns. The HONN-PSO model uses the PSO to optimized 

weights while also maximizing the returns of the model through the equation ….. 

Radial Basis Function Neural Networks (RBFNN) 



A radial basis function neural network (RBFNN) is a feedforward neural network where 

hidden units do not implement an activation function, but a radial basis function. An RBFNN 

approximates a desired function by superposition of nonorthogonal, radially symmetric 

functions. They have been proposed by Broomhead and Lowe (1988) as an approach to 

improve accuracy of artificial neural networks while decreasing training time complexity. 

Their architecture is depicted in Figure 2. 

   
Fig. 2: A RBF Neural Network with N inputs and 2 hidden nodes 

tx   1,,2,1  Nn   are the model inputs (including the input bias node)  

ty~                                  is the RBFNN output 
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where Ci is a vector indicating the centre of the Gaussian Function and σi is a value indicating 

its width. Ci, σi and the weights wi are parameters which should be optimized through a 

learning phase in order to train the RBFNN. 

         is the linear output function:      
i

iF ][                                               [9] 

The error function to be minimised is: 
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with ty  being the target value and T the number of iterations. 

Proposed Method RBF-PSO 

In this algorithm the adaptive Particle Swarm Optimization (PSO) methodology was used to 

locate the parameters Ci of the RBF NN while in parallel locating the optimal number for the 

hidden layers of the network. The selected candidates are then used as inputs in the proposed 
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model with the adaptive PSO methodology and to reduce the algorithms complexity by using a 

standard simple neural network topology which is able to improve the generalization 

properties of the model. The PSO algorithm, proposed by Kennedy and Eberhart (1995), is a 

population based heuristic search algorithm based on the simulation of the social behaviour of 

birds within a flock. In PSO, individuals which are referred to as particles are placed initially 

randomly within the hyper dimensional search space. Changes to the position of particles 

within the search space are based on the social-psychological tendency of individuals to 

emulate the success of other individuals. The outcome of modelling this social behaviour is 

that the search process is such that particles stochastically return towards previously successful 

regions in the search space. The performance of an RBF NN highly depends on its structure 

and on the effective calculation of the RBF function’s centres Ci and widths σ and the 

network’s weights. If the centres of the RBF are properly estimated then their widths and the 

networks weights can be computed accurately with existing heuristic and analytical 

methodologies which are described below in this paper. In this approach the PSO searches 

only for optimal values of the parameters Ci and the optimal feature subset which should be 

used as inputs.. For the number of hidden neurons (the RBF NN structure) no further 

optimization procedure was followed but simple 10 node architecture was selected. This 

simple topology enables us to alleviate the computational cost of the optimization procedure 

and to maintain the simplicity in the derived models to achieve better generalization 

performance. 

Each particle i is initialized randomly to have 10 hidden neurons (within a predefined interval 

starting from the number of inputs until 100 which is the maximum hidden layer size that we 

applied) and is represented as shown in equation [11]: 
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Where: N is a large number to point that it does not represent an RBF centre. The variables 

Input1 to Inputd takes values from -1 to 1 with values larger than o indicating that this feature 

should be utilized as input.In our PSO variation, initially we create a random population of 

particles, with candidate solutions represented as showed in equation [2], each one having an 

initially random velocity matrix to move within the search space. It is this velocity matrix that 

drives the optimization process, and reflects both the experiential knowledge of the particle 

and socially exchanged information from the particles neighbourhood. The form of the 

velocity matrix for every particle is described in the equation below: From the centres of its 

particle described in equation [11] using the Moody-Darken (1989) approach we compute the 

RBF widths using equation [12]. 
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where 
i

kc
 is the nearest neighbour of the centres 

i

jc
. For the estimation of the nearest 

neighbours we apply the Euclidean distance which is computed for every pair of centres. 

At this point of the algorithm the centres and the widths of the RBFNN have been 

computed. The computation of its optimal weights wi is accomplished by solving equation 

[13].  
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 where n1 is the number of training samples. 

The calculation of 
1)(  i

T

i HH
 is computationally intensive when the rows of Ηi are highly 

dependent. In order to solve this problem the in-sample dataset is filtered and when the mean 

absolute distance of two training samples is less than 10-3 (from the mean values of their input 

values) then one of them is selected at random to be included in the final training set. As a 

result, the algorithm becomes faster while maintaining its accuracy. This analytical approach 

for the estimation of the RBFNN weights is superior in comparison with the application of 

meta-heuristic methods (PSO, Genetic Algorithms, Swarm Fish algorithm) that have been 

already presented in the literature because it eradicates the risk of getting trapped into local 

optima and the final solution is assured to be optimal for a subset of the training set. The 

algorithm is a multi-objective algorithm which addresses two main elements. The first is an 

error minimisation algorithm as displayed in equation [14]. The second is employed to 

optimise and improve the trading performance. Equation [15] optimises annualised returns as 

first introduced by Karathanasopoulos et al. (2013). 
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with ty  being the target value and T the number of trading days. 

 

RA - MSE – (n*10 -2) [15] 

 

where:  RA = annualised return 

 MSE = mean square error.  

 n = number of inputs  

 

Iteratively, the position of each particle is changed by adding in it its velocity vector and the 

velocity matrix for each particle is changed using the equation below: 

Vi+1 = w * Vi + c1 * r1 * (
i

pbestC
 - Ci) + c2 * r2 * (

i

gbestC
- Ci)     [16] 

where w is a positive-valued parameter showing the ability of each particle to maintain its 

own velocity, 
i

pbestC
  is the best solution found by this specific particle so far, 

i

gbestC
 is the best 

solution found by every particle so far, c1 and c2 are used to balance the impact of the best 



solution found so far for a specific particle and the best solution found by every particle so far 

in the velocity of a particle. Finally, r1, r2 are random values in the range of [0,1] sampled 

from a uniform distribution.  

Ideally, PSO should explore the search space thoroughly in the first iterations and so the 

values for the variables w and c1 should be kept high. For the final iterations the swarm should 

converge to an optimal solution and the area around the best solution should be explored 

thoroughly. Thus, c2 should be valued with a relatively high value and w, c1 with low values. 

In order to achieve the described behaviour for our PSO implementation and to avoid getting 

trapped in local optima when being in an early stage of the algorithm’s execution we 

developed a PSO implementation using adaptive values for the parameters w, c1 and c2.  

Equations [15], [16] and [17] mathematically describe how the values for these parameters are 

changed through PSO’s iterations helping us to endow the desired behaviour in our 

methodology. 

w(t)= (0.4/n2) * (t-n)2 + 0.4                   

 [7] 

c1(t)= -2 * t/n +2.5          [16] 

c2(t)= 2 * t/n + 0.5           [17] 

where t is the present iteration and n is the total number of iterations. 

For the initial population of particles a small value of 30 particles (number of articles found 

with back testing experiments) is used and the number of iterations used was 200 combined 

with a convergence criterion. Using this termination criterion the algorithm stops when the 

population of the particles is deemed as converged. The population of the particles is deemed 

as converged when the average fitness across the current population is less than 5% away from 

the best fitness of the current population. Specifically, when the average fitness across the 

current population is less than 5% away from the best fitness of the population, the diversity of 

the population is very low and evolving it for more generations is unlikely to produce different 

and better individuals than the existing ones or the ones already examined by the algorithm in 

previous generations. In summary, the novelty of the algorithm lies in the following points. 

First of all the feature selection optimizations step allows the utilization of a large number of 

candidate inputs and enable the final model to only use the most significant variables in order 

to model an trade the FTSE100 and DAX30 ETFS. Moreover, the adaptive estimation of the 

models parameters with a single run helps traders to avoid over fitting and data snooping 

effects. Finally the problem specific fitness function allows for the extraction of models which 

present high statistical and trading performance 

TRADING PERFORMANCE 

Statistical Performance 

The statistical and trading performance for all the models is presented in tables 1-3. The 

trading strategy for all of the models is to trade based on the forecast produced by each of the 

models. If the model forecasts a positive return then the trader buys the FTSE100 ETF or 

DAX30 ETF and if the model predicts a negative return then the trader sells the FTSE100 ETF 

or DAX30 ETF. For consecutive positive or negative signals the trader holds the previous 

day’s trade to minimise transaction costs. As the proposed model is trained using a multi-

objective algorithm the second objective focuses on optimising annualised returns. As a result, 

table 3 displays results from a filtered trading simulation. These models only trade when the 



strength of each model’s forecast is greater than 30 basis points. This enables the trader to 

capitalise on more significant moves in the index while avoiding trading during less significant 

periods. The confirmation filter restricts the model for trading when the forecasted value is less 

than the optimal confirmation threshold for its out of sample period. Finally, as the non-linear 

methodologies are stochastic by nature a single forecast is not sufficient enough to represent a 

credible forecast. For this reason, an average of 1000 estimations where executed to minimise 

variance. Furthermore in tables 6,7, and 8 the statistical performance in the out-of-sample 

period of all models is presented. For the Root Mean Squared Error (RMSE), the Mean 

Absolute Error (MAE) and the mean absolute percentage error (MAPE). Interpretation of 

results is such that, the lower the output, the better the forecasting accuracy of the model 

concerned. The Pesaran-Timmermann (1992) (PT) test examines whether the directional 

movements of the real and forecast values are in step with one another. Moreover, it checks 

how well rises and falls in the forecasted value follow the actual rises and falls of the time 

series. The null hypothesis is such that the model under study has ‘no predictive power’ when 

forecasting the ETF return series. The Diebold-Mariano (1995) DM statistic for predictive 

accuracy statistic tests the null hypothesis of equal predictive accuracy. Both the DM and the 

PT tests follow the standard normal distribution.  

 

Forecast 

NAIVE 
MACD ARMA ARMA-PSO HONN HONN-PSO 

RBF-PSO 
Autoregressive 
inputs 

RBF-PSO 
mixed inputs 

MAE 0.0145 0.0143 0.0134 0.0110 0.0121 0.0108 0.0104 0.0100 

MAPE 421.55% 387.45% 321.33% 300.32% 250.67% 245.32% 236.12% 150.33% 

RMSE 0.0241 0.0230 0.0210 0.0209 0.0201 0.0195 0.0187 0.0167 

PT-Statisticks 10.78 11.08 12.76 12.89 10.76 12.65 13.89 14.78 

DM -5.78 -5.89 -5.45 -4.78 -5.05 -4.08 -3.56 -3.12 

Correct Directional 

Change 
50.89% 51.98% 54.87% 56.98% 53.87% 60.87% 

62.98% 64.00% 

Table 2: Statistical performance of FTSE100 (out of sample period) 

Forecast 

NAIVE 
MACD ARMA 

ARMA-
PSO 

HONN 
HONN-
PSO 

RBF-PSO 
Autoregressive 
inputs 

RBF-PSO mixed 
inputs 

MAE 0.0140 0.0139 0.0130 0.0109 0.0120 0.0106 0.0100 0.0090 

MAPE 332.55% 300.45% 231.21% 210.22% 200.00% 189.23% 180.88% 123.67% 

RMSE 0.0321 0.0290 0.0223 0.0200 0.0245 0.0189 0.0156 0.0110 

PT-Statisticks 11.92 11.09 11.56 12.55 11.45 12.89 13.87 15.78 

DM -4.45 -5.89 -5.04 -4.89 -5.98 -4.01 -3.98 -3.78 

Corerct Directional 

Change 
50.07% 50.67% 51.54% 52.23% 50.23% 54.17% 

55.98% 59.87% 

Table 3: Statistical performance of DAX30 (out of sample period) 

By observation, it can be seen that the proposed mixed input PSO RBF model is the strongest 

statistically. It also predicts the highest number of correct directional changes.  

Empirical Trading Results 

In this section we present the results of all the methodologies applied to trading the DAX30 

ETFs and the FTSE100 ETFs. These results are compared with the results of the retained 

benchmark models. The trading performance of all the models considered in the out-of-sample 

subset is presented in the table below. Our trading strategy as we mentioned before is go or 

stay long if the forecasts have a positive movement and go or stay short when a negative 

direction is forecast.  

unfiltered strategy results: 
 NAIVE 

MACD ARMA 
ARMA-
PSO 

HONN 
HONN-
PSO 

RBF-PSO 
Autoregres
sive inputs 

RBF-PSO 
mixed 
inputs 

Information 
Ratio  0.59 0.53 0.90 1.27 1.11 2.09 2.58 2.70 



(including 
costs) 

Annualised 
Volatility 
(including 
costs) 

12.98% 14.98% 

10.87% 

11.65% 12.54% 10.54% 10.00% 

10.23% 

Annualised 
Return 
(including 
costs) 

7.65% 7.98% 

9.75% 

14.78% 13.98% 21.98% 25.78% 

27.65% 

Maximum 
Drawdown           
(including 
costs) 

-14.78% -14.98% 

-12.89% 

-16.78% -15.87% -12.89% -13.76% 

-13.24% 

Table 4 : Out of sample trading performance results for the ftse100 Unfiltered 
 

 NAIVE 
MACD ARMA 

ARMA-
PSO 

HONN 
HONN-
PSO 

RBF-PSO 
Autoregres
sive inputs 

RBF-PSO 
mixed 
inputs 

Information 
Ratio  
(including 
costs) 0.42 0.41 0.82 0.96 0.70 0.90 1.62 2.04 
Annualised 
Volatility 
(including 
costs) 

11.53% 11.75% 

12.98% 

12.37% 13.89% 14.45% 12.87% 

11.52% 

Annualised 
Return 
(including 
costs) 

4.89% 4.87% 

10.65% 

11.87% 9.76% 12.98% 20.87% 

23.53% 

Maximum 
Drawdown           
(including 
costs) 

-14.89% -15.87% 

-12.98% 

-14.66% -14.35% -15.87% -14.73% 

-15.83% 

Table 5 : Out of sample trading performance results for the DAX30 Unfiltered 
 

filtered strategy results: 
 NAIVE 

MACD ARMA 
ARMA-
PSO 

HONN 
HONN-
PSO 

RBF-PSO 
Autoregres
sive inputs 

RBF-PSO 
mixed 
inputs 

BASE 
POINTS 

34 40 35 43 40 46 60 49 

Information 
Ratio  
(including 
costs) 1.22 1.39 1.46 1.72 1.53 2.04 2.50 2.57 
Annualised 
Volatility 
(including 
costs) 

10.67% 10.07% 

10.23% 

9.87% 9.71% 9.89% 9.12% 

9.25% 

Annualised 
Return 
(including 
costs) 

12.98% 13.98% 

14.89% 

16.98% 14.89% 20.22% 22.78% 

23.76% 

Maximum 
Drawdown           
(including 
costs) 

-10.67% -10.78% 

-11.87% 

-12.87% 12.34% --12.90% -11.93% 

-10.12% 

Table 6 : Out of sample trading performance results for the ftse100 Filtered 

 

 



 NAIVE 
MACD ARMA 

ARMA-
PSO 

HONN 
HONN-
PSO 

RBF-PSO 
Autoregres
sive inputs 

RBF-PSO 
mixed 
inputs 

BASE 
POINTS 

31 35 40 43 44 50 55 50 

Information 
Ratio  
(including 
costs) 0.59 0.70 0.76 204.29 1.76 2.13 1.92 2.86 
Annualised 
Volatility 
(including 
costs) 

9.54% 8.76% 

8.45% 

8.98% 9.45% 9.25% 10.78% 

9.99% 

Annualised 
Return 
(including 
costs) 

5.67% 6.12% 

6.45% 

18.345 16.66% 19.67% 20.67% 

28.54% 

Maximum 
Drawdown           
(including 
costs) 

-10.56% -11.03% 

-10.99% 

-11.01% -11.23% -11.24% -11.67% 

-10.23% 

Table 7: Out of sample trading performance results for the DAX30 Filtered 

 

As it was expected the proposed methodology clearly outperformed the existing models with 

leading results across all the examined metrics. Another interesting observation is made when 

comparing the proposed PSO RBF model with autoregressive inputs with the PSO RBF model 

with mixed inputs. It’s clear the performance of the RBF PSO with mixed inputs. Furthermore, 

we are quite impressed from the filtered strategy which improves volatility and maximum 

drawdowns. Lastly the example of HONN PSO and ARMA PSO give us a clear message that 

partial swarm optimizer when combined with linear or linear models can improve the results 

CONCLUSION 

This paper introduces a novel methodology for acquiring profitable and accurate trading 

results when modelling and trading the FTSE100 and DAX30 etfs indices. The proposed PSO 

RBF methodology is a combination of a PSO algorithm with a RBF neural network. It not 

only addresses the limitations of existing non-linear models but it also displays the benefits of 

using an adaptive hybrid approach to utilizing two algorithms. Furthermore, this investigation 

also fills a gap in current financial forecasting and trading literature by imposing input 

selection criteria as a pre-selection system before training each of the neural networks. At the 

same time we have a novel application of a PSO algorithm to a traditional ARMA model and 

to a HONN model. Lastly, we use for first time a multi-objective approach to optimising 

statistical and trading performance.  

 

Experimental results proved that the proposed technique clearly outperformed the examined 

linear and machine learning techniques in terms of an information ratio and net annualized 

return. This technique is now a proven and profitable technique when applied to forecasting 

major ETF indices. Future applications will focus on other equity indices to test the robustness 

of the PSO RBF model as well as other asset classes. In addition, the lag structure of the inputs 

will be of more focus in future applications as traders could also benefit from the 

‘optimisation’ of such parameters. The universe of explanatory variables could be enriched 

further to include more technical time series such as the VWAP (Volume Weighted Average 

Price), High, Low and Opening prices. Other models outputs could also be included in the 

input dataset to benefit from the informational content of both existing conventional models 

and other non-linear methodologies.   
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APENDIX 

 

 

Explanatory Variable Lag(s) 
Percentage Selected During Backtest 

PSO RBF 

Autoregressive Returns 1 Selected 

Autoregressive Returns 2 Selected 

Autoregressive Returns 3 Selected 

Autoregressive Returns 4 NO Selected 

Autoregressive Returns 5 NO Selected 

Autoregressive Returns 6 NO Selected 

HSBC Holdings plc 1 NO Selected 

Vodafone Group Plc 1 Selected 

BP p.l.c. 1 Selected 

Royal Dutch Shell Plc Class A 1 Selected 

GlaxoSmithKline plc 1 Selected 

British American Tobacco p.l.c. 1 Selected 

Royal Dutch Shell Plc Class B 1 Selected 

BG Group plc 1 NO Selected 

Diageo plc 1 NO Selected 

BHP Billiton Plc 1 NO Selected 

Rio Tinto plc 1 Selected 

AstraZeneca PLC 1 Selected 

Gold (NYM $/ozt) Continuous 1 Selected 

Silver (NYM $/ozt) Continuous 1 Selected 

British Pound (CME) Continuous 1 Selected 

British Pounds per Euro 1 Selected 

Euro per British Pounds 1 Selected 

British Pounds per Swiss Franc 1 Selected 

Swiss Franc per British Pounds 1 Selected 

Japanese Yen per British Pounds 1 Selected 

British Pounds per Japanese Yen 1 Selected 

U.S. Dollar per British Pounds 1 Selected 

British Pounds per U.S. Dollar 1 Selected 

Euro STOXX 50 1 Selected 

S&P 500 1 Selected 

MSCI EAFE 1 Selected 

http://link.springer.com/book/10.1007/978-3-642-20573-6


MSCI The World Index 1 Selected 

MSCI AC World 1 Selected 

CBOE Market Volatility Index 1 NO Selected 

Crude Oil (NYM $/bbl) Continuous 1 NO Selected 

Brent Crude (ICE $/bbl) Continuous 1 NO Selected 

US Benchmark Bond - 6 Month 1 NO Selected 

US Benchmark Bond - 5 Year 1 NO Selected 

US Benchmark Bond - 30 Year 1 NO Selected 

US Benchmark Bond - 3 Month 1 Selected 

US Benchmark Bond - 2 Year 1 Selected 
US Benchmark Bond - 10 Year 

 
1 
 

Selected 

US Benchmark Bond - 1 Month 1 Selected 

21 Day MA 21 Selected 

50 Day MA 50 Selected 

100 Day MA 100 Selected 

150 Day MA 150 Selected 

200 Day MA 200 Selected 

250 Day MA 250 Selected 

Table 8.   Input Selection PSO for FTSE100 ETFs 
 

 

 

 

 

 

Explanatory Variable Lag(s) 
Percentage Selected During Backtest 

PSO RBF 

Autoregressive Returns 1 Selected 

Autoregressive Returns 2 Selected 

Autoregressive Returns 3 Selected 

Autoregressive Returns 4 NO Selected 

Autoregressive Returns 5 NO Selected 

Autoregressive Returns 6 NO Selected 

HSBC Holdings plc 1 NO Selected 

Vodafone Group Plc 1 NO Selected 

BP p.l.c. 1 NO Selected 

Royal Dutch Shell Plc Class A 1 NO Selected 

GlaxoSmithKline plc 1 NO Selected 

British American Tobacco p.l.c. 1 Selected 

Royal Dutch Shell Plc Class B 1 Selected 

BG Group plc 1 Selected 

Diageo plc 1 Selected 

BHP Billiton Plc 1 Selected 

Rio Tinto plc 1 Selected 

AstraZeneca PLC 1 Selected 

Gold (NYM $/ozt) Continuous 1 Selected 

Silver (NYM $/ozt) Continuous 1 Selected 



British Pound (CME) Continuous 1 Selected 

British Pounds per Euro 1 Selected 

Euro per British Pounds 1 Selected 

British Pounds per Swiss Franc 1 Selected 

Swiss Franc per British Pounds 1 Selected 

Japanese Yen per British Pounds 1 Selected 

British Pounds per Japanese Yen 1 Selected 

U.S. Dollar per British Pounds 1 Selected 

British Pounds per U.S. Dollar 1 Selected 

Euro STOXX 50 1 Selected 

S&P 500 1 Selected 

MSCI EAFE 1 Selected 

MSCI The World Index 1 Selected 

MSCI AC World 1 Selected 

CBOE Market Volatility Index 1 NO Selected 

Crude Oil (NYM $/bbl) Continuous 1 NO Selected 

Brent Crude (ICE $/bbl) Continuous 1 NO Selected 

US Benchmark Bond - 6 Month 1 NO Selected 

US Benchmark Bond - 5 Year 1 NO Selected 

US Benchmark Bond - 30 Year 1 NO Selected 

US Benchmark Bond - 3 Month 1 NO Selected 

US Benchmark Bond - 2 Year 1 NO Selected 
US Benchmark Bond - 10 Year 

 

1 

 
Selected 

US Benchmark Bond - 1 Month 1 Selected 

21 Day MA 21 Selected 

50 Day MA 50 Selected 

100 Day MA 100 Selected 

150 Day MA 150 Selected 

200 Day MA 200 Selected 

250 Day MA 250 Selected 

Table 9.   Input Selection PSO for DAX30 ETFs 


