16,898 research outputs found

    Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors

    Get PDF
    We investigated the timing jitter of superconducting nanowire avalanche photodetectors (SNAPs, also referred to as cascade switching superconducting single photon detectors) based on 30-nm-wide nanowires. At bias currents (IB) near the switching current, SNAPs showed sub 35 ps FWHM Gaussian jitter similar to standard 100 nm wide superconducting nanowire single-photon detectors. At lower values of IB, the instrument response function (IRF) of the detectors became wider, more asymmetric, and shifted to longer time delays. We could reproduce the experimentally observed IRF time-shift in simulations based on an electrothermal model, and explain the effect with a simple physical picture

    A Search for Exozodiacal Clouds with Kepler

    Get PDF
    Planets embedded within dust disks may drive the formation of large scale clumpy dust structures by trapping dust into resonant orbits. Detection and subsequent modeling of the dust structures would help constrain the mass and orbit of the planet and the disk architecture, give clues to the history of the planetary system, and provide a statistical estimate of disk asymmetry for future exoEarth-imaging missions. Here we present the first search for these resonant structures in the inner regions of planetary systems by analyzing the light curves of hot Jupiter planetary candidates identified by the Kepler mission. We detect only one candidate disk structure associated with KOI 838.01 at the 3-sigma confidence level, but subsequent radial velocity measurements reveal that KOI 838.01 is a grazing eclipsing binary and the candidate disk structure is a false positive. Using our null result, we place an upper limit on the frequency of dense exozodi structures created by hot Jupiters. We find that at the 90% confidence level, less than 21% of Kepler hot Jupiters create resonant dust clumps that lead and trail the planet by ~90 degrees with optical depths >~5*10^-6, which corresponds to the resonant structure expected for a lone hot Jupiter perturbing a dynamically cold dust disk 50 times as dense as the zodiacal cloud.Comment: 22 pages, 6 figures, Accepted for publication in Ap

    A new method to detect event-related potentials based on Pearson\u2019s correlation

    Get PDF
    Event-related potentials (ERPs) are widely used in brain-computer interface applications and in neuroscience. Normal EEG activity is rich in background noise, and therefore, in order to detect ERPs, it is usually necessary to take the average from multiple trials to reduce the effects of this noise. The noise produced by EEG activity itself is not correlated with the ERP waveform and so, by calculating the average, the noise is decreased by a factor inversely proportional to the square root of N, where N is the number of averaged epochs. This is the easiest strategy currently used to detect ERPs, which is based on calculating the average of all ERP\u2019s waveform, these waveforms being time- and phase-locked. In this paper, a new method called GW6 is proposed, which calculates the ERP using a mathematical method based only on Pearson\u2019s correlation. The result is a graph with the same time resolution as the classical ERP and which shows only positive peaks representing the increase\u2014in consonance with the stimuli\u2014in EEG signal correlation over all channels. This new method is also useful for selectively identifying and highlighting some hidden components of the ERP response that are not phase-locked, and that are usually hidden in the standard and simple method based on the averaging of all the epochs. These hidden components seem to be caused by variations (between each successive stimulus) of the ERP\u2019s inherent phase latency period (jitter), although the same stimulus across all EEG channels produces a reasonably constant phase. For this reason, this new method could be very helpful to investigate these hidden components of the ERP response and to develop applications for scientific and medical purposes. Moreover, this new method is more resistant to EEG artifacts than the standard calculations of the average and could be very useful in research and neurology. The method we are proposing can be directly used in the form of a process written in the well-known Matlab programming language and can be easily and quickly written in any other software language

    Numerical investigation of a feed-forward linewidth reduction scheme using a mode-locked laser model of reduced complexity

    Get PDF
    We provide numerical verification of a feed-forward, heterodyne-based phase noise reduction scheme using single-sideband modulation that obviates the need for optical filtering at the output. The main benefit of a feed-forward heterodyne linewidth reduction scheme is the simultaneous reduction of the linewidth of all modes of a mode-locked laser (MLL) to that of a narrow-linewidth single-wavelength laser. At the heart of our simulator is an MLL model of reduced complexity. Importantly, the main issue being treated is the jitter of MLLs and we show how to create numerical waveforms that mimic the random-walk nature of timing jitter of pulses from MLLs. Thus, the model does not need to solve stochastic differential equations that describe the MLL dynamics, and the model calculates self-consistently the line-broadening of the modes of the MLL and shows good agreement with both the optical linewidth and jitter. The linewidth broadening of the MLL modes are calculated after the phase noise reduction scheme and we confirm that the phase noise contribution from the timing jitter still remains. Finally, we use the MLL model and phase noise reduction simulator within an optical communications system simulator and show that the phase noise reduction technique could enable MLLs as optical carriers for higher-order modulation formats, such as 16-state and 64-state quadrature amplitude modulation
    • 

    corecore