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A new method to detect event-related
potentials based on Pearson’s correlation
William Giroldini1, Luciano Pederzoli1, Marco Bilucaglia1, Simone Melloni1 and Patrizio Tressoldi2*

Abstract

Event-related potentials (ERPs) are widely used in brain-computer interface applications and in neuroscience.
Normal EEG activity is rich in background noise, and therefore, in order to detect ERPs, it is usually necessary to take
the average from multiple trials to reduce the effects of this noise. The noise produced by EEG activity itself is not
correlated with the ERP waveform and so, by calculating the average, the noise is decreased by a factor inversely
proportional to the square root of N, where N is the number of averaged epochs. This is the easiest strategy
currently used to detect ERPs, which is based on calculating the average of all ERP’s waveform, these waveforms
being time- and phase-locked. In this paper, a new method called GW6 is proposed, which calculates the ERP
using a mathematical method based only on Pearson’s correlation. The result is a graph with the same time
resolution as the classical ERP and which shows only positive peaks representing the increase—in consonance with
the stimuli—in EEG signal correlation over all channels. This new method is also useful for selectively identifying
and highlighting some hidden components of the ERP response that are not phase-locked, and that are usually
hidden in the standard and simple method based on the averaging of all the epochs. These hidden components
seem to be caused by variations (between each successive stimulus) of the ERP’s inherent phase latency period
(jitter), although the same stimulus across all EEG channels produces a reasonably constant phase. For this reason,
this new method could be very helpful to investigate these hidden components of the ERP response and to
develop applications for scientific and medical purposes. Moreover, this new method is more resistant to EEG
artifacts than the standard calculations of the average and could be very useful in research and neurology. The
method we are proposing can be directly used in the form of a process written in the well-known Matlab
programming language and can be easily and quickly written in any other software language.

Keywords: Event-related potentials, Brain-computer interfaces, Pearson’s correlation

1 Introduction
The event-related potential (ERP) is an electroencepha-
lographic (EEG) signal recorded from multiple brain
areas, in response to a single short visual or auditory
stimulus or muscle movement [25, 27].
ERPs are widely used in brain-computer interface

(BCI) applications and in neurology and psychology for
the study of cognitive processes, mental disorders, atten-
tion deficit, schizophrenia, autism, etc. [2, 15, 18].
ERPs are weak signals compared to spontaneous EEG

activity, with very low signal-to-noise ratio (SNR) [12],
and are typically comprised of two to four waves of low

amplitude (4–10 μV) with a characteristic positive wave
called P300, which has a latency period of about 300 ms
in response to the stimulus [17]. The detection of ERPs
is an important problem, and several methods exist to
distinguish these weak signals. Indeed, ERP analysis has
become a major part of brain research today, especially
in the design and development of BCIs [26].
In this paper, the definition and description of the ERP

is focused mainly on the P300 because it is the simplest
way to present our new ERP detection method.
We will not be considering fast evoked potentials

(EVP), such as the brainstem auditory EVP, because they
require a fast sampling rate (around 1000 Hz), an aver-
aging of perhaps 1000 responses, and an upper fre-
quency filtering of about 100 to 1000 Hz.
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Since the ERP is considered a reproducible response
to a stimulus, with relatively stable amplitude, waveform
and latency, the standard method to extract ERPs is
based on the repeated presentation of the stimulus about
100 times, with a random inter-stimulus time of a few
seconds. This strategy allows calculating the ERPs by
averaging several epochs that are time-locked and
phase-locked.
Each epoch is constituted generally by a pre-stimulus,

stimulus, and post-stimulus interval.
The averaging method is based on the assumption that

the noisy EEG activity is uncorrelated with the ERP
waveform, and consequently calculating the average de-
creases the noise by a factor of 1/√ N (inverse of square
root of N), where N is the number of averaged epochs.
Since the background EEG activity has a higher ampli-
tude than the ERP waveform, the technique of averaging
highlights the ERPs and reduces the noise. This is the
easiest strategy currently used to detect ERPs, also used
in this paper as a reference method to be compared with
our new method to calculate ERPs.
In general, to calculate ERPs by the method of aver-

aging, essentially three conditions or hypotheses must
be satisfied [27]:

1) The signal is time-locked and waveform-locked.
2) The noise is uncorrelated with the signal.
3) The latency is relatively stable (low jitter).

The epochs’ time-locking depends only on a simple
technical procedure, whereas stability of the waveform,
latency, and noise are intrinsic properties of the ERP. In-
tuitively, the averaging can capture only the ERP compo-
nents that repeats consistently in latency and phase with
respect to an event (the stimulus). Otherwise, the differ-
ences in phase could cause the partial cancellation of the
averaged ERP.
The new method also requires these three conditions,

but it is less restrictive about the stability of the phase
and latency, and it is also less sensitive to residual arti-
facts present in the EEG signals.
The averaging of epochs is nevertheless only the last

step in the calculation of the ERP.
Several pre-processing stages are usually necessary be-

cause the EEG signals are prone effects from important
artifacts such as eye movements, heartbeat (ECG arti-
facts), head movements, bad electrode-skin contacts, line
noise, fluorescent lamps, etc. All these artifacts can be
several times larger (up to 10–20 times or more) than
the underlying ERPs; therefore, they are able to alter cal-
culated averages with random waves and peaks which
can hide the true ERP waveform.
The first most used pre-processing step includes a

band-pass filter in the range of 0.5 to 30 Hz obtained

with a digital filter, which must not change the signal
phase [4]. The reverse Fourier transform is suitable for
this purpose, among other methods. Many researchers
have suggested that the P300 component is primarily
formed by transient oscillatory events in the range which
includes delta, theta, and alpha, and therefore, a 1 to
20 Hz band-pass could be sufficient [11, 30].
The successive step includes a variety of methods:

among the most used is the independent component
analysis (ICA) algorithm [19, 28] which allows separating
the true EEG signal from its undesirable components
(twitches, heartbeat, etc.). In general, this method re-
quires a decision on which signal component (after sep-
aration) is to be chosen.
One of the most common problems is the removal of

ocular artifacts from the EEG signals, for which purpose
several techniques were developed based on the subtrac-
tion of the averaged electro-oculograms and also on
autoregressive modeling or adaptive methods [9, 10, 14].
Blind source separation [16] is a technique based on

the hypothesis that the observed signals from a multi-
channel recording are generated by a mixture of several
distinct source signals. Using this method, it is possible
to isolate the original source signal by applying some
kind of transformation to the set of observed signals.
Discrete wavelet transform (DWT) is another method

that can be used to analyze the temporal and spectral
properties of non-stationary signals [13, 21, 29]. Features
in both time and frequency as well as time-frequency
domain can be extracted using DWT, which has already
been recognized as a very good linear technique for ana-
lysis of non-stationary signals such as EEG signals [12].
The artificial neural network, known as adaptive

neuro-fuzzy inference system, was described as useful
for P300 detection [23]. Moreover, the adaptive noise
canceller and adaptive filter can also detect ERPs [1, 3].
A good description of the ERP technique and wave

components is made by Steven J. Luck [27].

1.1 Synchronization in EEG signals
The synchronization of neural assemblies has been
widely utilized mainly in human EEG studies of brain
function and disease [20, 22]. The synchronization phe-
nomena have been increasingly recognized as a funda-
mental feature for the communication between different
regions of the brain [7].
In this paper, the concept of EEG correlations between

the EEG channels was proposed as alternative method
to calculate the ERPs. Several methods were developed
for quantifying relationship between time series, for ex-
ample: Pearson product-moment correlation, Spearman
rank-order correlation, Kendall rank-order correlation,
mutual information [7], cross correlation, coherence,
and wavelet correlation [20].
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In our method, we use the Pearson correlation, defined
as:

r ¼ COV A;Bð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Að Þ � var Bð Þp ð1Þ

where A(t) and B(t) are two time serie, COV(A, B) is the
sample covariance, and var(A) and var(B) are the re-
spective sample variance. Correlation can take any value
in the range (−1, 1) and in particular a value near +1
means that the two time series (i.e., two EEG channels)
are strongly in phase, a value −1 means that the two sig-
nals are in opposition of phase, and a near-zero value
indicates no relationship. The Pearson correlation was
selected because the calculation of r is simple, fast, and
fully independent from the absolute amplitude of the
EEG signals, and then it represents only the variations of
phase-correlation between two or more EEG channels.

2 Materials and methods
2.1 EEG instrument
The EEG signals were recorded using a low-cost EEG
device, the Emotiv EPOC® EEG neuroheadset. This is a
wireless headset and consists of 14 active electrodes and
2 reference electrodes, located and labeled according to
the international 10–20 system. Channel names are AF3,
F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and
AF4. The acquired EEG signals are transmitted wire-
lessly to the computer by means of weak radio signals in
the 2.4 GHz band. The Emotiv’s output sampling fre-
quency is 128 Hz for every channel, and the signals are
encoded with a 14-bit precision.
Moreover, the Emotiv hardware operates preliminarily

on signals at higher sampling frequency with a digital
signal processor (DSP) and performing a band-pass fil-
tration from 0.1 to 43 Hz; consequently, the output sig-
nals are relatively free from the 50/60 Hz power-line
frequency; however, they are often rich in artifacts.
The Emotiv EPOC® headset was successfully used to

record ERPs [5] although it is not considered a medical-
grade device. Emotiv EPOC® was moreover widely used
for several researches in the field of brain-computer
interface (BCI) [8, 18].
We collected and recorded the raw signals from the

Emotiv EPOC® headset using software we created our-
selves and saved in the .CSV format. The same software
we created was used to give the necessary auditory and/
or visual stimuli to the subject.

2.2 Participants
Subjects were ten healthy volunteers, ranging in age
from 28 to 69 years, informed in advance about the ex-
perimentation’s purpose. Each participant gave written
consent, with Institutional Review Board (IRB) approval.

Participants had normal vision and no history of hearing-
related problems; they were resting in a comfortable pos-
ition during the tests.

2.3 Experimental protocol
Firstly, using a proprietary Emotiv EPOC® software, the
impedance of the skin-electrode contact was kept lower
than 10 kΩ in order to record better EEG signal.
The ERPs were induced by an auditory stimulus (pure

500 Hz sine wave) with a simultaneous light flash using
an array of 16 red high-efficiency LEDs. The stimulus
length was 1 s, and the stimuli were repeated 128 times
with an inter-stimulus interval ranging randomly from 4
to 6 s.
Using the original EEG reference electrode of the

Emotiv EPOC® headset (mastoidal), we recorded a first
group of experimental data on 14 channels. Another
group of better quality EEG files were recorded with the
reference electrodes connected to the earlobes, a vari-
ation that assures better quality of the signals, rather
than in the standard configuration of the Emotiv EPOC®
headset where the reference electrodes are placed on an
active area of the head.

3 The new algorithm
In this paper, the GW6 method is described step-by-
step, as well as using a procedure written in Matlab pro-
gramming language (see Additional file 1: Appendix).
With our software, we pre-processed the EEG files

using digital data-filtering in the 1 to 20 Hz band
followed by a method we called normalization.
The filtering was performed using the reverse Fourier

transform which does not change the signal phase. The
conservation of the original phase of signals is very im-
portant for the application of our method. On the other
hand, the conservation of the information about the
phase pattern of the signals, rather than the simple
power of the signals, was found important also in the
representation of semantic categories of objects, espe-
cially in the low-frequency band (1 to 4 Hz) [6].
The second step in pre-processing was signal

normalization: the raw signal from each channel, i.e., S(x)
where x is the sampling index along 4 or 5 s epochs, was
normalized as:

S0 xð Þ K � S xð Þ−S½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N �
XN
x¼1

S xð Þ−�Sð Þ2
 !vuut

where S is the mean of S(x) in the epoch.
The signal z-score is then multiplied by a factor K,

where K is an experimental constant which restores the
averaged optimized amplitude of the EEG signal. The K
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factor is the standard deviation of a good quality EEG
signal, found experimentally using this specific instru-
ment. This number was calculated as K = 20, and this
normalization step created an epoch with a shape identi-
cal to that of the original EEG signal, but transferred
into a uniform scale, with comparable amplitude for
every epoch. Moreover, this normalization step do not
changes the phase correlation among all the EEG chan-
nels. The entire file fully processed as such was saved as
new file in .CSV format, containing all the information
about the start and the end of each stimulus.
Note that it is also possible to pre-process only time-

locked epochs, for example, 3 s long, corresponding to each
stimulus [pre-stimulus + stimulus (1 s) + post-stimulus],
and in general, this procedure gives non-identical results
although very similar to the previous method based on the
filtering and saving of the entire file.
Another common way to pre-process the data for the

ERP calculation is the exclusion of every epoch with an
amplitude above a fixed threshold, for example, 80 μV.
A disadvantage of this technique is that a large number
of epochs could be discarded and consequently the aver-
age could be calculated on insufficient data. In our soft-
ware, we also used this procedure to eliminate epochs
with strong artifacts above 100 μV still present after the
digital filtration.
In this paper, we will illustrate a new method which is

useful for detecting ERPs even among particularly noisy
signals and with significant latency variations, known as
“latency jitter”.
Our method, called GW6, is less restrictive regarding

the issue of jitter, and allows ERP detection when the
standard approach, based on the average, fails or gives
unsatisfactory results due to several artifacts. However,
the new method does not reproduce the typical biphasic
waveform of the ERP but rather an always positive wave-
form. For this reason, this new procedure is useful if
used together with the classic technique of averaging, ra-
ther as an alternative to the latter.
The new method uses Pearson’s correlation extensively

for all EEG signals recorded by a multichannel EEG

device. By using the method of averaging, it is possible
to work with a single EEG channel too, whereas the
GW6 method works only with a multichannel EEG de-
vice, starting from a minimum of about six channels.
Nevertheless, it is also possible to calculate the ERP for
each channel as in the standard method.
In many papers describing a mathematical method to

analyze something, formulas are usually given, which
must be subsequently translated into a computer-
language, for example C, C++, Visual Basic, Java, Python,
Matlab, or other. This step could be difficult and limit
the release and application of some useful methods. In
this paper, we will describe this new algorithm as a step-
by-step procedure and also in the simple and well-
known Matlab programming language, in order to ease
its application (see Additional file 1: Appendix).
We describe the basic idea of this new method in

Figs. 1 and 2.
Let us now consider the Fig. 2 and the double data-

window lasting L (about 270 ms, 34 samples) centered
at point X of the signal. We can calculate the linear
Pearson’s correlation between these two data segments,
and the result will be a number r represented by the vec-
tor R(x), which can be calculated for every point X sim-
ply by progressively moving the windows along by one
sample unit at a time (sliding windows). In general, the
averaged value of R(x) will vary from the pre-stimulus
zone to the stimulus zone because the (auditory or/and
visual) stimulus changes the correlation between the two
EEG signals, which represent the activity of different
parts of the brain. An interval about 270 ms long was se-
lected because it represents the typical amount of time
required for a conscious response corresponding to the
P300 wave, but different intervals could be selected for
fast Evoked potentials, or other types of stimulus.
This change of correlation can appear either as an

increase or a decrease with respect to the baseline
(i.e., the zone preceding the stimulus). Let us consider
a real example, based on the Emotiv EPOC®, where
the number of channels is NC = 14, the sampling fre-
quency is 128 samples/s, the stimulus length is 1 s,

Fig. 1 The two upper tracks represent the raw signals of two EEG channels in time-locked epochs, whereas the lower track is the average of a
sufficient number (about 100) of epochs for each channel (ERP is not to scale). The figure shows a positive peak about 300 ms after the stimulus’s
onset (P300 wave). The ERP’s typical duration is about 300–500 ms, depending on the kind of stimulus and band-pass filtering of the signal

Giroldini et al. EURASIP Journal on Bioinformatics and Systems Biology  (2016) 2016:11 Page 4 of 13



and the epoch length is 3 s. In this case, it is possible
to calculate the vector R(x) in a number of pair combi-
nations Nt = NC*(NC − 1)/2 = 91 for each stimulus
(epoch).
The result could be expressed using a new array R(I, X)

where I = 1… 91, and X = 1… 384.
This last number arises from a 3-s length epoch and

128 samples/s, with the stimulus given at sample num-
ber 128, and stopped at sample number 256, after an
extra second.
Each value of R(I, X) comes from the Pearson correl-

ation between two data-windows of duration L (i.e., 34
samples) centered on point X, and for any pair combin-
ation of the NC channels.
Moreover, the array R(I, X) is averaged along all the Ns

stimuli given to the subjects.
In general, we can represent the raw signals as a time-

locked array of V(C, X, J) type, where C = 1… 14 are the
EEG channels, X = 1… 384 are the samples along 3 s,
and J = 1… Ns is the number of stimuli given to the
subject, usually about 100 or more. The entire GW6
procedure is better described in the Matlab method
(see Additional file 1: Appendix).
The following are the processing stages based on the

14-channel Emotiv EPOC® device, but not limited to this
specific device (the numbers here described are only
examples):
Stage 1: filtration of the .CSV file in the frequency

band 1–20 Hz, normalization, and new saving of the en-
tire file. It is however possible to omit this stage and go
directly to filtration and normalization on the time-locked
epoch of each stimulus of the file.
Stage 2: from the raw EEG data, or from the pre-

processed file, calculate all the time-locked epochs and
storage of the data in the array V(C, X, J), where C =
1… 14 are the channels, X = 1… 384 are the samples,
and J = 1… Ns is the stimulus index. However, due to
the presence of the L windows, we need a longer array
for processing, for example, the length could be in-
creased by two tails of length L = 34, giving a total
number of L + 384 + L = 452 samples, with the stimulus

starting at X = 162 and stopping at X = 290. Now the
array V(C, X, J), filtered and normalized, is renamed as
the new array W(C, X, J).

V C; X; Jð Þ þ filtration þ normalization→W C; X; Jð Þ:
It is very important that any pre-processing method

modifying the correlation among the signals must be
excluded.
Stage 3: calculation of the simple average of W(C, X, J)

among all Ns epochs (number of stimuli), giving the
final array Ev(C, X), which is the simple and classic ERP
of each channel.

Ev C;Xð Þ ¼ 1
Ns

�
XJ¼Ns

J¼1

W C;X; Jð Þ

A detail to note: when processing has finished, the X
index is easily recalculated in order to cut off the tail
lengths L at the beginning and end, giving the final array
Ev(C, X) where X = 1…384 and C = 1…14.
This array Ev(C, X) is used in this paper as a comparison

with the result of our method and to show the differences
in the waveform of the resulting ERP.
Stage 4: calculation of all the Pearson’s correlation

combinations using a sliding-window 270 ms long, as
described in Fig. 2. The result is the array R(I, X), where
I is the index of pair combinations, which is finally cal-
culated as the average of all the stimuli. Here too, at the
end of this stage, the index X is recalculated in order to
cut off the initial and final L tails, giving the final array
R(I, X) where I = 1… 91 and X = 1… 384 (see Additional
file 1: Appendix). This array is the average from all the
Ns stimuli.
According to Eq. 1, we can describe this stage also using

this formal expression:

R I;Xð Þ ¼ 1
Ns

�
Xj¼Ns

J¼1

Pearson I;Xð Þ

where Pearson(X, I) is the r Pearson value calculated
from X = 1 to N (1..384); t from (X-L/2) to (X + L/2) is

Fig. 2 The double data-window lasting L is shifted progressively along the two tracks S1(x) and S2(x), and the corresponding Pearson’s correlation
between the two windows is calculated and stored in the vector R(x), where x is the sampling data index of the tracks
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the time series, and A(t) W(Ca, X, J); B(t) W(Cb, X, J); I
any pair combination Ca and Cb of the C channels.
Stage 5: Calculation of the baseline Bs(I) mean value for

each combination, described by the I index of the array
R(I, X); I = 1…91 (Nt = 91). The best baseline is calculated
as a balanced average of pre-stimulus plus post-stimulus
of each combination:

Bs Ið Þ ¼ 1
N þ b1−b2ð Þ �

Xb1
x¼1

R I;Xð Þ þ
XN
x¼b2

R I;Xð Þ
 !

where b1 is the stimulus start temporal index, and b2 is
the stimulus end, then subtracting this baseline from the
array R(I, X), and taking the absolute value:

R0 I;Xð Þ ¼ R I;Xð Þ−Bs Ið Þð Þj j
The absolute value is calculated because it allows the

simple average among all the Nt combinations (see Stage

6). In fact, the variation of correlation during the stimu-
lus can give both positive or negative changes of R(I, X)
for each I, and only taking the absolute value the average
(Stage 6) is always positive.
Stage 6: average along all the Nt combinations (and all

the stimuli), giving the final array
Sync1(X):

Sync1 Xð Þ ¼ 1
Nt

�
XI¼Nt

I¼1

R0 I;Xð Þ

which represents the global variation of the EEG correla-
tions during a 3-s epoch.
For the reason described at Stage 5, this variation ap-

pears always as positive peak.
It is also possible to calculate an equivalent array

Sync2(C, X) for each channel C (see Additional file 1:
Appendix).

Fig. 3 In these pictures, shown as examples, the left presents the classic ERP (amplitude in microvolts). On the right is shown the corresponding
GW6 graph; the result is expressed as the R-Pearson value multiplied by 100. All these graphics are the global average of 14 EEG channels and
about 120 stimuli; the EEG data were filtered in the 1–20 Hz band and submitted to the normalization routine. In all cases, a positive peak is observed
coinciding with the P300 maximum peak, but in the majority of cases, the positive peak of the GW6 graph is larger than the corresponding classic ERP
(see, for example, cases B, C, and D)
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Sync2 C;Xð Þ ¼ 1
NC−1ð Þ �

X
I¼ C;Kð Þ

R0 I;Xð Þ

where I is the index of all the channel C pair combina-
tions with any other K channel. The number of these
combinations is (NC-1) for every channel.
The global array Sync1(X) and Sync2(C, X) will show

one or more positive peaks in the ERP zone, as shown in
Fig. 3, and these peaks represent the variations of correl-
ation among the different brain zones (electrodes) dur-
ing the stimulus.

4 Experimental results
These graphs are examples of the typical results pro-
vided by this method:
In order to better investigate the properties of the

GW6 method, we wrote an emulation software. In this
software, a simple artificial ERP waveform was added to
a random noise and suitably filtered (low-pass filter) in
order to reproduce the typical frequency distribution of
the EEG signal. The artificial ERP signal was mixed with
a variable amount of this random signal, and the result
was submitted both to the classic average and to the
GW6 routine (Fig. 4).

Fig. 4 Artificial ERP signal mixed with a variable amount of a random signal and submitted both to the classic average and to the GW6 routine

Fig. 5 Example of the ERP + random signal emulation for four levels of noise-to-signal ratio
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Figure 5 shows the results of the classic average
method and of the GW6 method for a progressive in-
crease of the noise-to-signal ratio, as an average of 100
ERPs on a single channel. While the final amplitude of
the ERP waveform does not change, but instead becomes
progressively noisier, the GW6 graph’s amplitude (red
curve) progressively drops, but with a stable residual
noise.
Moreover, the width of the red curve is approximately

equal to the width of the classic ERP (all peaks in-
cluded). Not only the waveform of GW6 graph change
little using a L windows of about 150 ms rather than
270 ms as described in the previous section. In general,
the larger the amplitude from classic ERP is, the larger
correlation would be observed using our new method.
But the relation is not linear and is depending from the
noise of the EEG signal.
Of particular interest is the emulation of these two

methods in the presence of the so-called latency jitter,
which is an unstable ERP time latency that in some cases
could affect the ERPs.
When the ERP latency is stable (Fig. 6, left picture), its

average is stable too and is at its maximum amplitude.
Nevertheless, if latency jitter is present (due to some
physiological cause), the corresponding average de-
creases because each ERP does not combine with the
same phase and consequently ERPs have a tendency to
cancel each other out. This effect is more pronounced as
the jitter increases. In the software emulation of Fig. 7, a

Fig. 6 ERP with stable latency on the left and with latency jitter on
the right

Fig. 7 A stable noise-to-signal ratio (3/1), but with a random jitter progressively increased
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stable noise-to-signal ratio (3/1) was used, but with a
random jitter progressively increased. Moreover, the jit-
ter was random between the ERPs, but was constant for
all the channels in each ERP. The results show that the
GW6 routine is more resistant to jitter than the simple
classic average.
Whereas the classic ERP waveform disappears rapidly

as the jitter increases, the GW6 routine gives a still iden-
tifiable result (the red curve), where the amplitude is
decreases but not as rapidly, and the curve’s width is in-
creases. This interesting property is very important, be-
cause it suggests some other possibility about the large
GW6 peaks observed in Fig. 3, in particular in B, C, and
D cases.
Following a hunch, we added a new and simple

process to our software used to analyze the true ERP
using both the classic and the GW6 methods. At the
end of the process, which gives the typical result shown
in Fig. 3, we created another procedure where the classic
ERP average was subtracted (see Additional file 1: Ap-
pendix) from the set of EEG signals W(C, X, J), giving a
new array:
W'(C, X, J) =W(C, X, J) − Ev(C, X), then this new data-

set was submitted to Stages 3, 4, 5, and 6 previously de-
scribed. Incorporating this process in our emulation
software, and successively performing the same 3, 4, 5,

and 6 stages, no ERP appears as a result nor does any
significant GW6 peak. This is obvious because in doing
so we have canceled the ERP component from the ran-
dom noise, and consequently, nothing is expected to ap-
pear, but that is true only if jitter is zero (Figs. 8 and 9).
We created a new variant in the emulation software:

alongside the pure ERP wave + random signal, we also
added a random common signal (RCS) to every channel
only in a limited zone near the ERP, but this RCS is ran-
dom between the ERPs (Fig. 10). In this emulation vari-
ant, we hypothesized that the stimulus given to the
subject could not only cause a simple brain response
based on a stable waveform with low jitter (the classic
ERP) but also cause a non-stable waveform very similar
or identical in all the EEG channels at each stimulus. A
simple calculation of the average does not reveal this
kind of electrical response, because the waveform is near
random, but it is easily revealed by the GW6 method,
which is based on the calculation of the variation of
correlation among all the EEG channels during the
stimulus.
We believe that the two last cases (4 in Fig. 11 and 5

in Fig. 12) best represent true experimental ERPs. With
our emulation software, many combinations and situa-
tions can be calculated. Now, if we submit our true ex-
perimental ERPs to the same procedure, i.e., analysis of

Fig. 8 Case 1. Left: W(C, X, J) from ERP pure wave + random noise, Jitter = 0, average of 100 ERPs. Right: with the same processing of the corresponding
W'(C, X, J) array both graphs disappear

Fig. 9 Case 2. Left: W(C, X, J) from ERP pure wave + random noise, Jitter = 78 ms (from 0 to 78 ms, random), average of 100 ERPs. Right: with the
same processing of the corresponding W'(C, X, J) array only the classic ERP disappears. In the presence of Jitter, the GW6 method always shows
an ERP
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the W(C, X, J) data followed by transformation into the
W'(C, X, J) data-set and a new analysis, we obtain these
typical results (Fig. 13).
As shown in Fig. 13, in the majority of cases, after the

subtraction of the classic ERP waveform from the EEG
data, the GW6 method (red graph) shows a reduction in
amplitude corresponding to the standard ERP wave, but
other peaks are hardly changed at all, and in several
cases, there is minimal change to the whole graph.

5 The ERP decomposition in sub-bands
In a recent paper, Ahirwal et al. [2] proposed to decom-
pose the ERP signal into the conventional bands delta,
theta, alpha, and beta in order to extract feature corre-
sponding to each band and to calculate the Combined
Factorised Feature Extraction (CFFE).
The purpose is to increase the control commands for

applications in the important area of brain-computer
interface (BCI).
The new method here described works also very well

when it is applied to an ERP signal pre-filtered in any
sub-band. Very important, the filtering must be per-
formed using any kind of digital filter that does not
change the signal phase.
In order to test the behavior of our method in this

case too, we filtered the EEG signals in the full-band
(1–40 Hz), then in delta (1–4 Hz), theta (4–8 Hz), and
alpha (8–12 Hz). Then we calculated the ERP by GW6

and compared the result with the standard averaging
procedure. Surprisingly, we observed that several sub-
jects endowed with an intrinsic medium-high level of
alpha rhythm show the tendency to generate an ERP
(in the full-band) with two main peaks, the first at
about 300 ms from the stimulus onset, the second at
about 600–800 ms (see Fig. 14).
The subjects with low alpha rhythm (determined by

the simple averaged FFT of the normalized EEG, as pre-
viously described) in general show only the dominant
peak at about 300 ms.
The new method seems able to identify correlations

(peaks) in bands and with latency not easy identified by
the simple standard averaging. Several questions arise
from this observation: why the latency of alpha ERP is
so different from about 300 ms? Why it is observed
mainly in subjects with high spontaneous alpha rhythm?
But the purpose of this paper is not, at present time, to
inquire about these questions.

6 Discussion
This new method allows the calculation of ERPs as vari-
ations of the global correlations among all the EEG
channels, with respect to the averaged pre-stimulus and
post-stimulus zone.
The basic idea is a sliding-window of Pearson’s correl-

ation between two EEG channels in the ERP zone, in
any pair combination.

Fig. 10 Case 3. Left: W(C, X, J) from ERP pure wave + random noise, Jitter = 0, RCS width about 400 ms, average of 100 ERPs. Right: with the same
processing of the W'(C, X, J) array only the classic ERP disappears, not that due to RCS

Fig. 11 Case 4. Left: W(C, X, J) from ERP pure wave + random noise, Jitter = 78 ms, RCS width about 400 ms, average of 100 ERPs. Right: with the
same processing of the W'(C, X, J) array, now both peaks are visible
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The method should not be regarded as alternative to
the classic averaging calculation but as an integration
and expansion of the information that we can draw out
from the EEG data.
Furthermore, the method shows significant peaks

in the P300 zone larger than the peaks calculated
from the standard procedure of averaging. In the
presence of significant jitter (instability of latency),
the new method is superior with respect to the clas-
sic one and shows significant peaks in this case too.

Our experimental results suggest that, in the major-
ity of cases, there is some amount of jitter coinciding
with the classic ERP and/or the significant presence
of other signal components that are not phase-
locked, such as those hypothesized in the emulation
software. These components could be easily calcu-
lated simply by subtracting the classic ERP from the
EEG signal of each channel and re-analyzing the new
data using the GW6 method or by filtering the EEG
signal in several sub-bands.

Fig. 12 Case 5. Left: W(C, X, J) from ERP pure wave + random noise, Jitter = 78 ms, RCS width about 860 ms, average of 100 ERPs. Right: with the
same processing of the W'(C, X, J) array, now both the peaks overlap and are visible

Fig. 13 Results of the true experimental ERP analysis of the W(C, X, J) data followed by transformation into the W'(C, X, J) data-set and new
method GW6
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According to Roach and Mathalon [24], we suppose
that an inter-neuronal synchronization occurs on each
stimulus trial, but the latency with respect to stimulus is
variable across trails.
In general, it is easy to explain because the great ma-

jority of ERP components are in the lower band fre-
quency (0.5–8 Hz). In fact, if we suppose a jitter of
about 50–100 ms among trials, then this random delay
is sufficient to destroy any average of frequency com-
ponents near or higher than 8–10 Hz, but not in the
lower frequencies, being Period = 1/Frequency. The
new method seems to be significantly less sensitive to
random jitter, and consequently, we can observe com-
ponents (peaks) also in the 8–12 frequency range too.
Consequently, it is now possible to obtain three types

of ERP: first, the classic ERP based only on simple aver-
aging, which highlights both phase and time-locked
components with low jitter; second, the new ERP which
shows more components including those that are non-
phase locked among trials but sufficiently in-phase
among EEG channels at every trial; and third, it is pos-
sible to show only the non-phase-locked components of
the ERP.
Our method is also inherently more resistant to arti-

facts because the Pearson’s correlation depends only on
signal phase and not on amplitude, while the artifacts
are mainly due to strong signal amplitude variations.
Although this method is not compatible with all the pre-
processing methods which change the correlation among
EEG signals, it is applicable to the majority of cases, and
probably also in cases not presented or discussed here
due to limitations in our instrumentation and experi-
mental setup.

7 Conclusions
The purpose of this paper is not, at this time, to accur-
ately investigate the EEG response to a specific stimulus
or specific experimental protocol, but only to propose a
new method for ERP detection and analysis that could
become very important for future research about the na-
ture, origin, and characteristics of ERPs in light of the
preliminary result presented here.
In particular, this new method could be very useful

for investigating hidden components of the ERP re-
sponse, with a possible important application for med-
ical purposes and in the fields of neurophysiology and
psychology.
Furthermore, we emphasize choosing the well-known

Matlab language tool for mathematical processing so
that the method can be easily used with and applied to
independent software as well as research.

8 Additional file
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show any peak in the alpha band
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