1,104 research outputs found

    On terminal value problems for bi-parabolic equations driven by Wiener process and fractional Brownian motions

    Get PDF
    In this paper, we study two terminal value problems (TVPs) for stochastic bi-parabolic equations perturbed by standard Brownian motion and fractional Brownian motion with Hurst parameter h ∈ ( 1/2 , 1) separately. For each problem, we provide a representation for the mild solution and find the space where the existence of the solution is guaranteed. Additionally, we show clearly that the solution of each problem is not stable, which leads to the ill-posedness of each problem. Finally, we propose two regularization results for both considered problems by using the filter regularization method

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Polyharmonic Smoothing Splines and the Multidimensional Wiener Filtering of Fractal-Like Signals

    Get PDF
    Motivated by the fractal-like behavior of natural images, we develop a smoothing technique that uses a regularization functional which is a fractional iterate of the Laplacian. This type of functional was initially introduced by Duchon for the approximation of nonuniformily sampled, multidimensional data. He proved that the general solution is a smoothing spline that is represented by a linear combination of radial basis functions (RBFs). Unfortunately, this is tedious to implement for images because of the poor conditioning of RBFs and their lack of decay. Here, we present a much more efficient method for the special case of a uniform grid. The key idea is to express Duchon's solution in a fractional polyharmonic B-spline basis that spans the same space as the RBFs. This allows us to derive an algorithm where the smoothing is performed by filtering in the Fourier domain. Next we prove that the above smoothing spline can be optimally tuned to provide the MMSE estimation of a fractional Brownian field corrupted by white noise. This is a strong result that not only yields the best linear filter (Wiener solution), but also the optimal interpolation space, which is not bandlimited. It also suggests a way of using the noisy data to identify the optimal parameters (order of the spline and smoothing strength), which yields a fully automatic smoothing procedure. We evaluate the performance of our algorithm by comparing it against an oracle Wiener filter, which requires the knowledge of the true noiseless power spectrum of the signal. We find that our approach performs almost as well as the oracle solution over a wide range of conditions

    Ensemble-based implicit sampling for Bayesian inverse problems with non-Gaussian priors

    Full text link
    In the paper, we develop an ensemble-based implicit sampling method for Bayesian inverse problems. For Bayesian inference, the iterative ensemble smoother (IES) and implicit sampling are integrated to obtain importance ensemble samples, which build an importance density. The proposed method shares a similar idea to importance sampling. IES is used to approximate mean and covariance of a posterior distribution. This provides the MAP point and the inverse of Hessian matrix, which are necessary to construct the implicit map in implicit sampling. The importance samples are generated by the implicit map and the corresponding weights are the ratio between the importance density and posterior density. In the proposed method, we use the ensemble samples of IES to find the optimization solution of likelihood function and the inverse of Hessian matrix. This approach avoids the explicit computation for Jacobian matrix and Hessian matrix, which are very computationally expensive in high dimension spaces. To treat non-Gaussian models, discrete cosine transform and Gaussian mixture model are used to characterize the non-Gaussian priors. The ensemble-based implicit sampling method is extended to the non-Gaussian priors for exploring the posterior of unknowns in inverse problems. The proposed method is used for each individual Gaussian model in the Gaussian mixture model. The proposed approach substantially improves the applicability of implicit sampling method. A few numerical examples are presented to demonstrate the efficacy of the proposed method with applications of inverse problems for subsurface flow problems and anomalous diffusion models in porous media.Comment: 27 page
    • …
    corecore