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1. Introduction

Fiber tractography based on diffusion-weighted magnetic resonance imaging (DW-
MRI) is to date the only method for the three-dimensional visualization of nerve
fiber bundles in the living human brain noninvasively. Therefore, it is an invalu-
able tool for both clinical practice and medical research. Applications include
neurosurgical planning as well as research on human brain anatomy, connec-
tomics, and disorders of the nervous system, such as Alzheimer’s disease and
multiple sclerosis. Since its introduction at the end of the 20th century, various
strategies for fiber tractography have been developed. Early streamline trac-
tography methods, for instance the approach described in the article by Basser
et al. (2000), reconstruct in each image voxel a symmetric positive definite diffu-
sion tensor (DT) from the diffusion-weighted magnetic resonance measurements
and derive fiber tracks by iteratively stepping from predefined starting points
and with a certain step length in the direction of the tensor’s principle eigenvec-
tor. Tensor-based methods, unable to describe more than one fiber population
in a voxel, were succeeded by techniques using orientation distribution functions
(ODFs) of an angular resolution high enough to resolve multiple fiber populations
per voxel. Similarly, streamline tractography follows the direction maximizing
the local ODF, as for instance presented in the work by Descoteaux et al. (2009).
In a previous thesis by Rügge (2015), an ODF reconstruction method was devel-
oped. Taking one step further, the present thesis aims at reconstructing nerve
fiber bundles from ODF data.

Due to simplicity and computational efficiency, streamline tractography is widely
used. However, a drawback inherent in such line propagation methods operat-
ing on DW-MR data with low signal-to-noise ratio is the stepwise accumulation
of measurement errors. These inaccuracies often result in the reconstruction of
fiber tracks which are anatomically incorrect or implausible. The main objective
of this thesis is the development of improved tractography strategies which yield
an increased proportion of anatomically correct tracks. We present a semi-local
approach based on the fast streamline method which includes information about
the local neighborhood to increase robustness against noise. For this purpose,
candidate tracks are generated and assigned an a-posteriori probability by means
of Bayesian statistics. We model the likelihood to represent plausibility of a can-
didate track using the underlying ODF data. The prior distribution includes
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1. Introduction

information about track curvature. Moreover, the prior can be used to incorpo-
rate anatomical information such as tissue type. From this Bayesian framework
we derive both a deterministic tractography algorithm by maximum a-posteriori
estimation, and a probabilistic algorithm by drawing from the marginalized pos-
terior distribution. Both algorithms are tested and compared to state-of-the-art
methods on data obtained from computer simulations and on MR scans of dif-
fusion phantoms and of a human brain in vivo.

The question that now arises is how well fiber tracks which were reconstructed
by a local or semi-local method describe the underlying diffusion data globally.
A global tractography approach which seeks to filter out invalid tracks in a
postprocessing step is introduced in the article by Daducci et al. (2015). There, a
large number of fiber tracks is generated from the data and each track contributes
individually to a multi-compartment model of the DW-MR signal. The modeled
signal is fitted to the measured DW-MR signal by solving a large-scale linear
least squares problem

min
x≥0
‖Ax− y‖2

2

with an ill-conditioned dictionary matrix A ∈ Rm×n, weight vector x ∈ Rn,
and measured data y ∈ Rm. In a simplified scheme, the vector x = [x1|x2]>
contains fiber weights x1 and voxel weights x2. The authors suggest the use
of `1-norm regularization to promote sparseness of the weight vector x. Thus,
fiber tracks which do not support the measured signal globally can be discarded.
In consideration of the used multi-compartment model, `1-norm regularization
is appropriate for x1, but regularization promoting spatial smoothness is better
suited for the voxel weights x2. In this thesis, we derive an improved version of the
method stated in Daducci et al. (2015) by addingHs-Sobolev-norm regularization
terms. We solve the resulting minimization problem of the form

min
x≥0
{‖Ax− y‖2

2 + α1‖x1‖1 + α2‖x2‖2
Hs},

α1, α2 > 0, using the alternating direction method of multipliers (ADMM) de-
scribed by Boyd et al. (2011). The matrix A, though relatively sparse, is very
large in practice. Exploiting the special structure of A, we develop strategies for
the efficient solution of large systems of equations arising in the ADMM method
based on dimension reduction using truncated singular value decomposition of
certain matrix blocks. The algorithm is tested and compared on data obtained
from computer simulations, MR scans of a diffusion phantom, and in vivo MR
scans.

The thesis is structured as follows: In Chapter 2, we summarize the basic prin-
ciples of MRI and diffusion-weighted MRI, and motivate the use of DW-MRI as
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a reconstruction tool for nerve fiber bundles by outlining the diffusion properties
of nerve tissue in the brain. Then, we briefly consider the estimation of diffu-
sion tensors and orientation distribution functions from the DW-MRI data, and
the computation of different image contrasts that can be derived from MRI and
DW-MRI data and will be used in the course of this work. Furthermore, we give
a detailed introduction of fiber tractography where we group and describe differ-
ent classes of algorithms that can be found in literature. Finally, we summarize
the approach of modeling white matter microstructure using multi-compartment
diffusion models.

Chapter 3 gives an overview of the different data sets used to test the algorithms
developed in the following chapters.

In Chapter 4, we introduce both a deterministic and a probabilistic neigh-
borhood-informed tractography algorithm derived from a Bayesian framework.
Experiments and results on simulated, phantom, and in vivo data are illustrated
and discussed. Moreover, a literature review examines related work.

Chapter 5 starts by explaining the multi-compartment model and global model-
fitting problem proposed in Daducci et al. (2015). Then, we motivate the use
of Hs-norm regularization and state the resulting minimization problem. We
describe the theory of ADMM based on the article by Boyd et al. (2011), and
derive an algorithm that solves our minimization problem. Furthermore, we
propose strategies for efficient computation. Finally, we present and discuss
numerical experiments and results using simulated, phantom and in vivo data.

We conclude with a summary in Chapter 6.
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2. Diffusion Magnetic Resonance
Imaging and Fiber Tractography

The human brain contains a dense network of nerve fibers responsible for trans-
mission and processing of information. Knowledge about the location of these
neuronal pathways gives information about connectivity between different brain
parts, for instance by deriving a map of connections. This information can then
be used to better understand and treat neurological disorders, or can be helpful
for planning a surgery. In the brain, diffusion of water is mostly directional,
or anisotropic, along fiber bundles, and free, or isotropic, elsewhere. Diffusion-
weighted magnetic resonance imaging (DW-MRI) is the only technique that can
noninvasively detect neuronal pathways in the living human brain by measuring
these diffusion properties. In Sections 2.1 and 2.2, we briefly explain the idea
behind magnetic resonance imaging (MRI) and diffusion-weighted MRI, respec-
tively. Section 2.3 reviews diffusion properties in the brain and motivates the use
of diffusion MRI as a tool to infer the pathways of nerve fiber bundles. Diffusion
tensor imaging (DTI), a technique to obtain the principle diffusion direction from
the diffusion-weighted measurements, is briefly summarized in Section 2.4. Since
DTI requires relatively few diffusion-weighted measurements it is widely used
in clinical applications, yet at the cost of inaccuracies due to imprecise model
assumptions and the inability of resolving more than one fiber population per
voxel. High angular resolution diffusion imaging (HARDI) is used to overcome
the drawbacks of DTI. In Section 2.5, we consider HARDI-based fiber orienta-
tion distribution function (ODF) reconstruction techniques employing spherical
deconvolution. Important image contrasts obtained from anatomical MR im-
ages, DTI, and ODF reconstructions, which will be useful in Section 2.7 and
in following chapters, are summarized in Section 2.6. In Section 2.7, we review
basic ideas and recent developments of fiber tractography, with the main fo-
cus on ODF-based deterministic and probabilistic streamline methods. Finally,
in Section 2.8, we regard multi-compartment models which, in contrast to DT
and fiber ODF studied in Sections 2.4 and 2.5 that only represent diffusion or
fiber density averaged over a whole voxel, seek to explain the underlying tissue
microstructure.
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2. Diffusion Magnetic Resonance Imaging and Fiber Tractography
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Figure 2.1.: Above: Behaviour of hydrogen nuclei, represented as blue dots, in an
MR scanner with static magnetic field B0. The arrows pointing up and down indicate
the protons’ spin axes at different energy states (here, up: low, down: high), the
circular arrows indicate precession around the axes aligned with the direction of B0.
(1) The protons in the MR scanner are in equilibrium state. They are aligned with
the magnetic field and in precession. (2) An RF-pulse results in the excitation of spins
from low to high energy state. (3) Protons move back from high to low energy state
while emitting electromagnetic energy. Below: Corresponding net magnetization.

2.1. Basic Principles of MRI

Human tissue consists of about 60% water, and the hydrogen nuclei thereof
constitute more than 90% of the overall hydrogen nuclei in the human body.
Hydrogen nuclei consist of single protons, which are spinning around their own
axis. Due to its spin, each proton has an angular momentum and a magnetic mo-
ment. These two properties lay the foundation for MR measurements. Though
not solely inherent in hydrogen but in all isotopes with an odd number of protons
and/or neutrons, the behaviour of hydrogen nuclei is mainly what is measured
in MRI due to the abundance of water in the body. In the following, we discuss
the basic ideas of MRI. For a more detailed description, we refer to the books by
Slichter (1990) and Haacke et al. (1999).
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2.1. Basic Principles of MRI

In an MR scanner where a static magnetic field with strength B0 is applied,
protons can be viewed as being in precession, which means that they rotate - in
addition to their spin - with their rotation axis around the direction of the B-field.
The precession has a certain frequency called Larmor frequency, ω = γB0, which
depends only on the field strength and the gyromagnetic ratio γ. In the presence
of a static magnetic field, the spins are aligned with the magnetic field and are
in one of two different states, the parallel (or low-energy) or the antiparallel (or
high-energy) state. In fact, a little more than half of the protons are in the
low-energy state, whereas the remaining protons are in the high-energy state.
This so called initial or equilibrium state is exemplarily illustrated in Figure 2.1
(1). The space and time dependent net magnetization M : R3 × R → R3 is
proportional to the difference of the overall amount of parallel and antiparallel
spins in the scanner. Without a magnetic field, the spins are oriented randomly
resulting inM = 0. In the equilibrium state where the spins are aligned with the
magnetic field, spins with opposite alignment cancel out, but |M | > 0 as more
spins are in the low-energy state. We define the MR scanner coordinate system
such that the x3-axis is aligned with the direction of the static magnetic field. M
initially points in x3-direction, also called longitudinal direction. Then, a short
radio frequency pulse (RF-pulse) with Larmor frequency is applied to the static
magnetic field. As shown in Figure 2.1 (2), the electromagnetic energy emitted
from the RF coils results in excitations of the protons from low to high energy
states. Correspondingly, the direction of the net magnetization precesses with
Larmor frequency around the x3-axis while spiraling out into the x1-x2-plane
perpendicular to the direction of the magnetic field, also called the transverse
plane.

After the RF-pulse has been switched off again, the protons move back to their
initial states while emitting electromagnetic energy, as illustrated in Figure 2.1
(3). This restoration of the equilibrium is called spin relaxation. A distinction is
made between longitudinal and transverse relaxation. Longitudinal relaxation,
or T1 recovery, is the restoration process of the net magnetization in direction of
the magnetic field due to spins returning to the low-energy state. At the same
time, transverse relaxation, or T2 decay proceeds, which can be described as a
decrease of transverse magnetization due to phase decoherence of spins. In the
following, time constants T1 and T2 indicate the time required for T1 recovery
and T2 decay, respectively. Let B : R3 × R → R3 denote the sum of the static
magnetic field with field strength B0 and a time-dependent, spatially varying
gradient field

BG : R3 × R→ R3, BG(x, t) = (G(t)>x)e3

with G : R → R3 and e3 = (0, 0, 1)>, that is necessary to encode spatial infor-
mation in the MR signal. The change in net magnetization with time explained
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2. Diffusion Magnetic Resonance Imaging and Fiber Tractography

above is summarized by the Bloch equation

dM(x, t)
dt

= γM(x, t)×B(x, t) +

 −M1(x,t)/T2

−M2(x,t)/T2

(M0(x)−M3(x,t))/T1

 (2.1)

that was derived in the article by Bloch (1946). Here, × denotes the cross prod-
uct, M0 denotes the initial magnetization where all spins are at the equilibrium
state, and M1, M2, M3 are the three components of M .

Basically, the signal at time t that is measured in MRI is given by the total
transverse magnetization,

S(t) =
∫
R3

M⊥(x, t)dx,

where the transverse magnetization M⊥ is defined by

M⊥(x, t) := M1(x, t) + iM2(x, t).

Solving the partial differential equation (2.1) yields

M⊥(x, t) = M⊥(x, 0)e−t/T2e−γB0te−iγ
∫ t

0 BG(x,t)dt

for the transverse magnetization. Note, that M⊥(x, 0) is proportional to the
density of hydrogen atoms. Omitting the scaling parameters e−t/T2 and e−γB0t

we obtain for the MR signal the commonly used representation

S(t) =
∫
R3

M⊥(x, 0)e−iγ
∫ t

0 G(t)>x dtdx.

In practice, the MR signal is usually measured as 2D slices, and in k-space (Twieg,
1983). For instance, let z denote the x3−coordinate of the scanned slice. Then,
the MR signal of a 2D slice in the transverse plane can be represented as

S(z, t) =
∫
R2

M⊥(x, 0) exp
(
−i2πk(t)>x

) ∣∣∣∣∣
x3=z

dx1dx2, (2.2)

with

k : R→ R3, k(t) = γ

2π

∫ t

0
G(τ)dτ,

where G is chosen such that k is sampled on a uniform grid. A 2D inverse
Fourier transform of (2.2) yields the respective MR image slice. Different MR

8



2.2. Diffusion MRI

(a) sagittal plane (b) coronal plane (c) transversal plane

Figure 2.2.: T1w acquisition of the HCP data set (see Sec. 3.3).

contrasts can be obtained by applying suitable sequences of excitation pulses. An
important example for a structural contrast that can be generated from MRI by
exploiting relaxation time properties of different tissue types is the T1-weighted
image, which can be used to differentiate between different nerve tissue types.
In Figure 2.2, different slices through a T1-weighted image of a human brain are
shown. Note that anatomical terms of location are summarized in Appendix A.
Apart from identifying static properties such as brain anatomy, MRI can also
be used to measure the movement of atomic nuclei. In the next section, we
discuss the basic idea of diffusion MRI, where the concepts summarized above
are extended to measure the diffusion of water in tissue.

2.2. Diffusion MRI

Diffusion, or Brownian motion, describes the process of random motion of par-
ticles due to thermal energy. Diffusion MRI is a variant of MRI that provides
the possibility of measuring the diffusion of water molecules in biological tis-
sue. As for conventional MRI, we regard the effects on protons in a magnetic
field. The measurement sequence can be summarized as follows. First, an RF-
pulse results in the excitation of spins. All spins are in precession, aligned,
and at the same frequency. In the following, let the 2-sphere be defined by
S2 = {x ∈ R3 : ‖x‖2 = 1}. At time t0, a diffusion sensitizing gradient pulse in
direction g ∈ S2 is applied with duration δ. This so called dephasing gradient
introduces a magnetic field inhomogeneity, inducing spin precession at different
frequencies. While the magnetic field regains homogeneity, some of the protons
are in motion due to diffusion. At time t1, a second, invertive gradient pulse
of same strength and duration is applied to the B-field. This gradient pulse is
called rephasing, since it results in phases of static protons being the same as
in the beginning, and in different phases of protons which have moved. The
overall signal attenuation compared to the initial signal is measured, providing

9



2. Diffusion Magnetic Resonance Imaging and Fiber Tractography
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Figure 2.3.: Basic concept of diffusion MRI signal attenuation. (1) All protons hi are
in precession at the same frequency in a homogeneous magnetic field. (2) A diffusion
sensitizing gradient pulse is applied resulting in the precession at different frequencies.
(3) The magnetic field regains homogeneity. Some protons (h2, h4, h5, h7) have moved
due to self-diffusion. (4) The invertive gradient pulse is applied. (5) Signal attenuation
since the protons in motion are in precession at a different phase.

insight into the diffusion process. A simplified illustration of the basic process of
diffusion MRI is given in Figure 2.3.

If the duration δ of the gradient pulses is assumed to be infinitely narrow, that
is, Dirac delta functions, a transversal slice of the measured DW-MR signal in
k-space can be expressed as

Ŝ(q, t, z) =
∫
R3

∫
R2
M⊥(x, 0)p(x+ r|x, t)e−2πik(t)>xe−2πiq>r

∣∣∣∣∣
x3=z

dx1dx2dr,

where M⊥ and k are defined as in (2.2), and q = γδg. The diffusion propagator
p(x + r|x, t) describes the probability that a particle that is at position x ∈ R3

at time t0 has at time t1 drifted to position x + r, r ∈ R3. A preprocessing
step yields the more commonly used representation of the signal as 3D Fourier
transform of the diffusion propagator

S(x, q) = S0(x)
∫
R3
p(x+ r|x, t)e−2πiq>rdr, (2.3)

where S0 is the MR signal without applied gradient. In the following, we are
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2.2. Diffusion MRI

(a) sagittal plane (b) coronal plane (c) transversal plane

Figure 2.4.: Diffusion MRI acquisition of the HCP data set (for one single gradient
direction; see Sec. 3.3).

interested in p(x+ r|x, t).

In an unrestricted homogeneous medium, the diffusion propagator can be repre-
sented by a Gaussian distribution

p(x+ r|x, t) = 1√
(2πσ2)3

e−
r>r
2σ2 . (2.4)

The average distance σ a particle travels in a period of time t is related to the
diffusion coefficient d by Einstein’s equation σ2 = 2 · d · t. Hence, (2.4) can be
written as

p(x+ r|x, t) = 1√
(4πd(t1 − t0))3

e
− r>r

4d(t1−t0) . (2.5)

Substituting (2.5) in Equation (2.3), we obtain

S(x, q) = S0(x) exp(−bd)

with b = (t1 − t0)|q|2. The b-value b is an important acquisition parameter in
diffusion MRI that indicates the amount of diffusion weighting.

The first diffusion-weighted imaging experiments based upon the concepts de-
scribed above were performed in the mid-1980s by Le Bihan and Breton (1985),
Merboldt et al. (1985), and Taylor and Bushell (1985). Since then, Diffusion MRI
has been widely used for imaging the movement of water molecules in biological
tissue in vivo. Figure 2.4 shows sample slices of a diffusion MRI acquisition of a
human brain.

The diffusion-weighted MRI signal is in the spatial domain acquired on a three-
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2. Diffusion Magnetic Resonance Imaging and Fiber Tractography

(a) Neuron. (b) Brain tissue. (c) Axon bundles.

Figure 2.5.: Different levels of brain organization. 2.5a: Schematic drawing of a
neuron, adapted from commons.wikimedia.org. 2.5b: Coronal slice of a human brain.
Figure taken from www.neuroanatomy.ca. 2.5c: Electron micrographs of transverse
(above) and longitudinal (below) sections of axons in the monkey’s brain. Figures
taken from www.bu.edu1.

dimensional Cartesian grid which we define by

Ωh = {xi = ihx : i = 1, . . . , Nx}
×{xj = jhy : j = 1, . . . , Ny}
×{xk = ihz : k = 1, . . . , Nz} ⊂ R3 (2.6)

with voxel-size hx, hy, hz in x−, y−, and z−direction, respectively. The reso-
lution is usually of the order of mm. In the following, a voxel denotes a three-
dimensional grid cell[

xi −
hx
2 , xi + hx

2

]
×
[
xj −

hy
2 , xj + hy

2

]
×
[
xk −

hz
2 , xk + hz

2

]
.

Furthermore, the diffusion-weighted signal is usually acquired for approximately
32 to 90 different gradient directions.

2.3. Diffusion in the Brain

Nerve cells, or neurons, are the structural and functional core components of
the brain. They connect to networks where information is transmitted and pro-
cessed via electrical and chemical excitation. The basic parts of a neuron -
cell body, dendrites, axon, and synapses - are exemplarily illustrated in Figure
2.5a. Dendrites and synapses are in contact with other neurons to receive and

1The Fine Structure of the Aging Brain, Authors: Alan Peters and Claire Folger Sethares, Boston University
School of Medicine, 72 East Newton Street, Boston, MA 02118, www.bu.edu/agingbrain, Supported by the Institute on Aging
of the National Institute of Health, grant number P 01-AG 000001
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2.4. Diffusion Tensor Imaging

transmit information, respectively. The axon conducts received signals from the
dendrites towards the synapses. Axons are often myelinated which accelerates
signal transmission. Overall, the human brain contains approximately 86 billion
nerve cells. The cells are structured and densely packed, forming gray matter
(GM) and white matter (WM) regions. Gray matter contains mainly cell bodies
and dendrites, whereas white matter is primarily composed of axons arranged
in bundles connecting GM regions. In Figure 2.5b, a coronal slice of a human
brain is shown where these two tissue types can be distinguished as lighter (WM)
and darker (GM) regions. The surrounding areas and hollow structures of nerve
tissue are occupied by cerebrospinal fluid (CSF).

Figure 2.5c shows electron microscopy images of transversal and longitudinal
sections of myelinated axons in the white matter of a monkey’s brain. It can
be observed that fibre bundles in white matter consist of coherently organized
axons whose cell membranes form longitudinal boundaries. Experiments verified
that anisotropic diffusion in the brain is mainly due to these barriers resulting
from densely packed axon membranes (Beaulieu, 2002). Water can diffuse rela-
tively fast along the aligned axons, both in intracellular and extracellular space,
whereas diffusion perpendicular to the fiber bundles is highly restricted. Hence,
diffusion MRI measurements of anisotropic diffusion in white matter can be used
to probe the pathways of nerve fiber bundles in vivo.

The measurement time of diffusion along a certain gradient direction is usually
selected in the range from 10 ms to 100 ms. In the brain, the diffusion constant
of water is given by d ≈ 1 ·10−3 mm2

s (Mori, 2007, Chapter 3). Hence, during mea-
surement time, the average distance water molecules diffuse can be approximated
by 4-14 µm using Einstein’s equation. Due to the special cellular architecture of
white matter, where most axons have a diameter of approximately 1 µm and the
length of axon bundles is larger than 2 mm, measurement time is sufficient to
capture diffusion anisotropy. However, as the spatial resolution of diffusion MRI
is 2-3 mm, the diffusion measurement yields no microscopic diffusion information
but the average diffusion information within a voxel.

2.4. Diffusion Tensor Imaging

Various diffusion models were introduced to derive the diffusion properties of
tissues from the diffusion-weighted measurements. A pioneering role in diffusion
MRI has the widely used diffusion tensor (DT) model (Basser et al., 1994). Here,

13



2. Diffusion Magnetic Resonance Imaging and Fiber Tractography

(a) DT (b) CSD-ODF (c) spat. reg. ODF

Figure 2.6.: Comparison of different voxel-wise diffusion imaging techniques.

diffusion propagator p(x+ r|x, t) is modeled as a Gaussian distribution

p(x+ r|x, t) = 1√
(4πt)3 det(D(x))

exp
(
−r
>D−1(x)r

4t

)
(2.7)

with symmetric positive definite diffusion tensor D : R3 → R3×3. Substituting
(2.7) in Equation (2.3), the signal simplifies to

S(x, q) = S0(x)e−bq>D(x)q.

To estimate the diffusion tensor D(x) in each voxel, which has six degrees of
freedom due to symmetry, at least six diffusion MR measurements with different
gradient directions (S(x, q1), . . . , S(x, q6)), and the unweighted signal S0(x) are
necessary. The eigenvalues λ1 ≥ λ2 ≥ λ3 and respective eigenvectors v1, v2, v3
of D(x) are computed to obtain diffusion properties of the respective voxel. If
λ1 > λ2, λ3 the tensor indicates an anisotropic voxel, where the eigenvector
corresponding to λ1 points in the main diffusion direction. On the other hand,
similar eigenvalues (λ1 ≈ λ2 ≈ λ3) imply an isotropic region. The diffusion tensor
is usually represented by an ellipsoid, whose axes coincide with the eigenvectors
scaled by their corresponding eigenvalues. Computing the tensor for each voxel
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yields a tensor field as shown in Figure 2.6a.

An important limitation to DT imaging is, that only one main diffusion direc-
tion can be represented in a voxel. This is problematic since due to the coarse
resolution of diffusion MRI, the diffusion signal in about one third of all voxels
in white matter is caused by crossing fiber bundles (Behrens et al., 2007), but
the anisotropic diffusion occurring along individual bundles cannot be resolved
by DTI. Figure 2.6a illustrates this problem by means of a DT field computed
from physical phantom data with regions of crossing of fiber bundles.

2.5. High Angular Resolution Diffusion Imaging

Various methods have been developed to overcome the limitations of DTI. These
techniques are based upon high angular resolution diffusion imaging (HARDI),
where diffusion MR data are acquired for a much larger number of, usually 32
to 90, different gradient directions to resolve crossing fibers. From this data, an
orientation distribution function (ODF), which describes the diffusion quantity
(Jansons and Alexander, 2003; Tuch, 2004; Wedeen et al., 2005) or fiber den-
sity (Tournier et al., 2004) in each direction, is reconstructed for each voxel. In
the following we consider a reconstruction method using constrained spherical
deconvolution (CSD) that was introduced in (Tournier et al., 2004), and a spa-
tially regularized variant of this method described in (Hohage and Rügge, 2015).
Both methods are used as input data to test our newly developed tractography
algorithms presented in this thesis.

2.5.1. Fiber ODF Estimation with CSD

In the following, let the diffusion data be given on a three-dimensional domain
Ω ⊂ R3. We consider a single voxel x ∈ Ω in white matter where N different fiber
populations are located. Assuming that the diffusion characteristics of all these
fiber populations are identical, Tournier et al. (2004) model the DW-MRI signal
S : S2 → R in that voxel as the sum of signal contributions of N individual fiber
populations

S(q) =
N∑
i=1

fiR(i)(q) (2.8)
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2. Diffusion Magnetic Resonance Imaging and Fiber Tractography

where the axially-symmetric response function R(i) : S2 → R, whose z-axis is
aligned with fiber population i, describes the attenuation of the diffusion weight-
ed signal originating from fiber population i, and fi ≥ 0 denotes the volume
fraction of fiber population i. Representation (2.8) can be expressed for an
arbitrary voxel x ∈ Ω as the spherical convolution operation

Tψ(x, q) :=
∫
S2
K(q · u)ψ(x, u) du (2.9)

of kernel function K : [−1, 1] → R and fiber orientation distribution function
(fODF) ψ : Ω× S2 → R, where T denotes the convolution operator. The fODF
ψ : Ω× S2 → R characterizes at a point x ∈ Ω the fiber density in each direction
q ∈ S2. Given the response function K the fODF can be computed voxel-wise
using constrained spherical deconvolution techniques, as for instance described in
Tournier et al. (2007). Various heuristics for approximating the response function
exist. For example, K can be selected as the Gaussian diffusion propagator
defined in (2.7) with anisotropic diffusion tensor, or it can be estimated from the
DW-MRI data, as suggested in Tournier et al. (2004). Figure 2.6 illustrates that,
as opposed to DTI, the fiber ODF can represent multiple fiber orientations per
voxel.

Spatial Regularization

Due to the characteristically low SNR of DW-MRI images, employing some reg-
ularization strategy is beneficial for the reconstruction of the fODF. The spatial
regularization method described in (Hohage and Rügge, 2015) supports smooth-
ness along fibers assuming that the point (x, u) ∈ R3×S2 belongs to a structure
locally oriented along the horizontal line

(−ε, ε) 3 t 7→ (x+ tu, u)

for ε sufficiently small. The authors define the horizontal derivative by

Dhorψ(x, u) := u · ∇ψ(x, u),

and the horizontal norm by

‖ψ‖2
hor := ‖ψ‖2 + ‖gradx ψ‖

2 + ‖Dhorψ‖2,

where grad is the surface gradient on S2. Then the regularized fODF reconstruc-
tion given the diffusion-weighted MR signal S is the solution to the constrained
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12 vertices 42 vertices 2562 vertices

Figure 2.7.: Triangulations of the unit sphere derived after 0, 1 and 4 (from left to
right) refinement steps.

Tikhonov optimization problem

ψα := argmin
ψ≥0

{
‖Tψ − S‖2 + α‖ψ‖2

hor

}
.

with convolution operator T as defined in (2.9), and regularization parameter
α > 0. Comparing Figures 2.6b and 2.6c, the benefits of spatially regularized
ODFs can be observed, especially in the fiber crossing structure. On the other
hand, artifacts may occur in structures of high curvature, as can be discovered
in the picture below in Figure 2.6c.

2.5.2. Discrete Representation

Let a set of Nu sampling points distributed on the unit sphere be given by the
subset U ⊂ S2. We obtain the sampling points by an iterative refinement of
a uniform icosahedron which is centered at the origin and whose circumscribed
sphere has a radius of one. In each iteration step, each triangle is subdivided into
four smaller, congruent triangles and the coordinates of the resulting new vertices
are normalized such that all vertices are located on the unit sphere. In Figure 2.7,
a uniform icosahedron and the derived triangular tessellations obtained after one
and four iterations are shown. A discrete version of the ODF ψ at each spatial
position x ∈ Ω is obtained by evaluating ψ : Ω× S2 → R at the sampling points
contained in U .
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2. Diffusion Magnetic Resonance Imaging and Fiber Tractography

Spatial Interpolation

In practice, diffusion data and thus reconstructed ODFs are obtained on a regular
grid Ωh ⊂ Ω as defined in (2.6). Here, we work in dimensionless coordinates which
are chosen such that x1 = y1 = z1 = 1, xNx = Nx, yNy = Ny, zNz = Nz, and
hx = hy = hz = 1. For the reconstruction of fiber tracks from ODF data (see
Section 2.7) it is useful to have a continuous ODF field on Ω. To achieve this,
we estimate ODF-values between grid points by trilinear interpolation.

2.6. Image Contrasts Derived from MRI and
DW-MRI

In this section, we define apparent diffusion coefficient and fractional anisotropy
which are derived from DW-MRI data and describe diffusion in each voxel by a
scalar. Furthermore, we briefly discuss maps obtained from anatomical images.

2.6.1. Scalar Diffusion Maps

Scalar diffusion maps are usually visualized as gray scale images. In each voxel,
the diffusion properties derived from DT or ODF are reduced to a single scalar
value. In the following, we describe the calculation of the most widely used
scalar diffusion values, the apparent diffusion coefficient (ADC) and the fractional
anisotropy (FA).

Apparent Diffusion Coefficient (ADC)

The ADC, or mean diffusivity, represents the amount of diffusion present at a
voxel x ∈ Ω. For a DT D(x) as introduced in Section 2.4, it is given by

ADCD(x) := 〈λ〉 := 1
3(λ1 + λ2 + λ3), (2.10)

an average of the DT’s eigenvalues. Similarly, we define

ADCψ(x,·) := 〈ψ〉 := 1
Nu

Nu∑
i=1

ψ(x, ui) (2.11)
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for ODF ψ sampled at points ui ∈ U , i = 1, . . . , Nu, as specified in Section
2.5.2.

Fractional Anisotropy (FA/GFA)

The FA value in each voxel x ∈ Ω is a measure for the degree of anisotropy. It
is defined as the standard deviation of the eigenvalues of the DT divided by the
root mean squared, that is

FAD(x) :=

√√√√3 ((λ1 − 〈λ〉)2 + (λ2 − 〈λ〉)2 + (λ3 − 〈λ〉)2)
2(λ2

1 + λ2
2 + λ2

3) (2.12)

where 〈λ〉 is the mean defined in (2.10). The FA value derived from an ODF,
also known as general FA (GFA), was introduced in the article by (Tuch, 2004).
Similar to (2.12), it is given by

FAψ(x,·) :=

√√√√Nu
∑Nu
i=1 (ψ(x, ui)− 〈ψ〉)2

(Nu − 1)∑Nu
i=1 ψ(x, ui)2

with 〈ψ〉 as defined in (2.11). FA values are in the range from zero to one.
A value close to zero indicates isotropic diffusion, whereas a value close to one
indicates anisotropic diffusion along a single direction.

2.6.2. Anatomical Maps

Knowledge about the location of different tissue types in a data set can provide
very useful additional information for tractography. In the following, we consider
binary and tissue partial volume maps.

Binary Tissue Masks

Let A denote an anatomical MR image of size Nx × Ny × Nz. A binary tissue
mask MT ∈ {0, 1}Nx×Ny×Nz for each voxel (i, j, k), i = 1, . . . , Nx, j = 1, . . . , Ny,
k = 1, . . . , Nz, is defined by

MT (i, j, k) =
1 if A(i, j, k) predominantly contains tissue type T

0 else
(2.13)
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Figure 2.8.: Tissue partial volume maps of a coronal slice generated with FAST from
FSL. Left: White matter, middle: gray matter, right: CSF.

where T ∈ {WM,GM,CSF} (see Section 2.3 for the a definition of the different
tissue types). White matter masks, for instance, are often used as tracking masks.
Note that the classification of different tissue types requires a preprocessing step
which is addressed at the end of this section.

Tissue Partial Volume Maps

We define WM, GM, and CSF tissue partial volume maps as images IWM, IGM,
ICSF ∈ [0, 1]Nx×Ny×Nz such that IWM +IGM +ICSF = 1Nx×Ny×Nz . Each voxel value
represents the proportion of the respective tissue type in that voxel, or could be
interpreted as the probability that a random (uniformly distributed) point in
that voxel belongs to one of the three categories. An example for tissue partial
volume maps is shown in Figure 2.8.

In practice, automated tissue segmentation, both binary and partial volume, is
difficult. The MRI analysis software FSL provides the segmentation tool FAST
based upon an algorithm described in (Zhang et al., 2001). FAST generates
binary segmented masks, as well as tissue partial volume maps, using for instance
a T1-weighted image (see Equation (2.1)) as input. Nonetheless, it is always
advisable to check such automatically segmented images, and manually modify
them if necessary.

2.7. Fundamentals of Fiber Tractography

Let D represent the measured diffusion MRI data and F a set of three-dimen-
sional white matter trajectories corresponding to D. The relation between D
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and F can be described by

D = A(F) + ε,

where A denotes an operator assigning the fiber tracts to their individual signal
contributions, and ε denotes noise in the measured data. Given data D and
a strategy of retrieving information about tract location from the data, that
is, in a sense, inverting A, fiber tractography denotes the inverse problem of
reconstructing the set of fiber bundles F .

In the following, the terms fiber tractography and fiber tracking are used inter-
changeably. Furthermore, let the output of a fiber tractography algorithm be
given by fiber tracks. We define a fiber track T by a discrete representation in
the form of an array

T = (x1, x2, . . . , xn)> ∈ Rn×3 (2.14)

of n points xi ∈ Ω, i = 1, 2, . . . , n. The points will usually be chosen equidistantly,
i.e. ‖xj − xj−1‖2 = ‖xk − xk−1‖2, 1 < j, k ≤ n. A set of fiber tracks of the same
data set is called a tractogram.

Basically, there are two different categories of tractography algorithms, stream-
line and global methods. Streamline tractography reconstructs fiber tracks based
on the information obtained from the underlying DT or ODF field by line prop-
agation starting from given seed points. On the other hand, global tractography
yields a tractogram from optimizing a global objective function. We review
streamline tractography methods in Section 2.7.1, and briefly summarize global
strategies in Section 2.7.2. Regardless of the method used, one has to deal with
the question if a reconstructed track really reflects the underlying brain anatomy.
In Section 2.7.3, we regard approaches that seek to evaluate a given tractogram.

2.7.1. Streamline Tractography

In this section, we introduce streamline tractography and state a basic determin-
istic and a basic probabilistic streamline tractography algorithm. Moreover, we
discuss drawbacks and advantages of different streamline approaches that can be
found in literature and summarize common strategies for seed point selection,
choice of the step length, and stopping criteria.
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Deterministic

In the early days of fiber tractography, track propagation was usually based on
diffusion tensors. Given a continuous representation of a tensor field, the prin-
ciple diffusion direction at each point x ∈ Ω can be obtained as the eigenvector
corresponding to the largest eigenvalue of the diffusion tensor at that point. As-
suming its uniqueness at each x ∈ Ω, we define the principle diffusion direction
by the vector field ε1 : Ω → R3. In Basser et al. (2000), the evolution of a fiber
tract trajectory R → R3, t 7→ χ(t) from a seed point x(0) ∈ Ω is formulated as
an initial value problem:

dχ(t)
dt

= ε1(χ(t)), χ(0) = x(0). (2.15)

Approximating the solution to (2.15) using Euler’s method results in the well-
known streamline tractography rule for calculating in each iteration step k =
0, 1, 2, . . . a new fiber path point

x(k+1) = x(k) + λd(k) (2.16)

with starting point x(0), direction d(k) = ε1
(
x(k)

)
and step length λ > 0. Similar

approaches can be found in Conturo et al. (1999) and Mori et al. (1999).

Replacing Euler’s method by higher order methods, such as Runge-Kutta schemes,
a more accurate approximation to the solution of ODF system (2.15) can be ob-
tained. For example, applying standard fourth order Runge-Kutta integration
yields the tractography iteration rule

x(k+1) = x(k) + 1
6k1 + 1

3k2 + 1
3k3 + 1

6k4

where
k1 = λε1

(
x(k)

)
= λd(k)

k2 = λε1

(
x(k) + 1

2k1

)
k3 = λε1

(
x(k) + 1

2k2

)
k4 = λε1

(
x(k) + k3

)
, (2.17)

as described, for instance, in McGraw et al. (2004). So far, we have assumed
uniqueness of the principle diffusion direction. In fact, as described in Section
2.4, the sign of the principle diffusion direction is indefinite and other ambiguities
occur if the largest eigenvalue is not unique (λ1 = λ2, λ1 = λ2 = λ3). These
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issues are resolved by, for instance, selecting the direction in coherence with the
previous tracking direction.

The strategies introduced above essentially reconstruct fibers by successively
stepping in the direction of principle diffusion of the current spatial position.
More refined methods (e.g. Weinstein et al. (1999); Westin et al. (2002)) try to
cope with tensor orientation ambiguities in voxels with multiple fiber orientations
by using the full tensor information to increase robustness of tract propagation.

Eventually, the development of HARDI-based methods with the ability to resolve
crossing fibers enables fiber tracking in regions of complex tissue architecture,
outperforming DT-based tractography. Several methods (e.g. Descoteaux et al.
(2009); Wedeen et al. (2008)) have extended the basic concept of tensor methods
to ODF data substituting the principle eigenvector of the DT for the direction
maximizing the local ODF ψ

(
x(k), d

)
while producing the smallest angle with

the incoming direction d(k−1). In the following, we denote this direction by d(k)
ψ .

As described in Section 2.5.2, trilinear interpolation is used to obtain values of ψ
between grid points. Selecting d(0) ∈ argmaxd∈U ψ

(
x(0), d

)
and d(k) = d

(k)
ψ for k >

0 in the discrete fiber track evolution equation (2.16) results in a straightforward
deterministic tracking method:

Algorithm 2.1. (Basic deterministic tractography)
Input:
ψ : Ω× U → R (field of ODFs)
dir ∈ {+,−} (sign of initial tracking direction)
x(0) ∈ Ω (initial point)
d

(0)
ψ ∈ U (initial direction)
ϕ ∈ (0, π] (max. deviation angle from previous direction)

if dir=='−'
d

(0)
ψ = −d(0)

ψ

end

for k = 1, 2, . . .
x(k) = x(k−1) + λd

(k−1)
ψ

if x(k) ∈ Ω
T dir(k) = x(k)

compute D =

d
∗ ∈ U|d∗ = argmax

d∈U
^(d,d(k−1))<ϕ

ψ
(
x(k), d

)
select d(k)

ψ ∈ argmin
d∈D

^
(
d, d

(k−1)
ψ

)
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else
break

end
end

Output: T dir (fiber track)

Note that since the ODF is symmetric, the tracking algorithm can proceed from
a seed point x(0) both in positive and negative direction. Hence, the complete
track T obtained from streamline tractography can be represented by

T =
(
PT−

T+

)
with P =


1

. .
.

1

 (2.18)

with tracks T+ and T− resulting from invoking the algorithm with dir = + and
dir = −, respectively, and permutation matrix P .

A method generalizing the DT-based tracking rule derived from Runge-Kutta
fourth order integration stated in (2.17) to ODF input data is the state-of-the-
art SD_Stream algorithm included in the widely-used MRI software tool MRtrix.
Yet another interesting strategy described in Chao et al. (2008) uses branching
of fiber tracks in regions with multiple prominent diffusion directions.

On the whole, deterministic streamline tractography is computationally very
efficient. However, a drawback inherent in line propagation methods operating
on data with low SNR, like DW-MRI data, is the stepwise accumulation of
measurement errors. Moreover, streamline fiber tracking suffers from partial
volume effects due to the rather coarse spatial resolution (1 - 4 mm3) of DW-
MRI acquisitions.

Probabilistic

Probabilistic tractography seeks to tackle the problems of deterministic methods
by taking into account the uncertainty inherent in reconstructed fiber orienta-
tions. For instance, statistical bootstrapping strategies generate a multitude of
individual DTI or HARDI data sets by using one of various schemes to resam-
ple the corresponding diffusion-weighted MRI acquisitions. Multiple probabilis-
tic fiber tracks are then produced for any seed point by calculating tensor or
ODF volumes and applying a deterministic streamline tractography algorithm
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to each data set (Lazar and Alexander, 2005; Berman et al., 2008; Jones, 2008;
Jeurissen et al., 2011). Another category of probabilistic streamline tractography
algorithms is based on Monte Carlo simulations or random walks. Unlike deter-
ministic streamline methods that follow in each iteration a uniquely identified
direction of principle diffusion, these techniques determine the stepping direction
by sampling at the current spatial position a probability distribution representing
local uncertainty of the fiber orientation. The probability distribution is derived
from the shape of the DT (Björnemo et al., 2002; Lazar and Alexander, 2002;
Koch et al., 2002; Hagmann et al., 2003; Parker et al., 2003) or ODF (Parker
and Alexander, 2005), or the direction is directly sampled from the local ODF
(Perrin et al., 2005; Descoteaux et al., 2009).

Referring to the latter case and adopting the notion from Algorithm 2.1, we can
regard the ODF ψ as a probability distribution

P (x(k), d) = ψ(x(k), d)∑
d∈U ψ(x(k), d)

and deduce the straightforward probabilistic tracking rule:

Algorithm 2.2. (Basic Probabilistic Tractography)
Input:
ψ : Ω× U → R (field of ODFs)
dir ∈ {+,−} (sign of initial tracking direction)
x(0) ∈ Ω (initial point)
d

(0)
ψ ∈ U (initial direction)

if dir=='−'
d

(0)
ψ = −d(0)

ψ

end

for k = 1, 2, . . .
x(k) = x(k−1) + λd

(k−1)
ψ

if x(k) ∈ Ω
T dir(k) = x(k)

sample d(k)
ψ ∈ U from P (x(k), d)

if ^
(
d

(k)
ψ , d

(k−1)
ψ

)
> π

2

d
(k)
ψ = −d(k)

ψ

end else
break

end
end
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Output: T dir (fiber track)

Thus, the probability to step in the direction of principle diffusion is high, but
other directions are possible as well. Repeating this procedure, a multitude of
possible fiber tracks emanating from each seed point is obtained. Note that
the complete track is obtained as in (2.18). A state-of-the-art second order
probabilistic streamline tractography strategy, included in the MRtrix software
package, is the algorithm IFOD-2 described in Tournier et al. (2010).

Similarly, Bayesian methods (e.g. Behrens et al. (2003); Kaden et al. (2007);
Friman et al. (2006); Ramirez-Manzanares and Rivera (2006)) generate fiber
tracks by sampling from a local posterior probability density function on the
fiber direction given the measured data and diffusion model. The posterior is
calculated as the normalized product of a likelihood or observation density, de-
rived from a parametric model of the diffusion signal, and a prior density mod-
eling knowledge about the model parameters (Behrens et al., 2003; Kaden et al.,
2007) or promoting the continuation of the track in the previous stepping direc-
tion (Friman et al., 2006; Ramirez-Manzanares and Rivera, 2006). Furthermore,
Zhang et al. (2009) combine this approach with particle filtering (sequential
Monte Carlo methods). Here, a finite number of particles is propagated from
a seed point by drawing samples from an importance function and assigning
weights to the evolving path according to a recursively defined posterior distri-
bution. The path with the highest weight is selected as the optimal fiber path
estimate. All these probabilistic techniques allow the assignment of a degree of
confidence to a reconstructed fiber path. Furthermore, anatomical connectivity
indices between different brain regions can be derived.

A different but somewhat related strategy for tractography is referred to as front
evolution. As probabilistic tractography, front evolution methods can provide
information about the likeliness of a path. Usually, these methods are based on
level set theory. From a seed point, a surface propagates guided by either the
field of principle diffusion directions (Parker et al., 2002; Jbabdi et al., 2008), i.e.
the eigenvectors corresponding to the largest eigenvalue of the DT, or the full
DT or ODF (Campbell et al., 2005). From the resulting map of arrival times
of the front surface at each voxel, fiber tracts are reconstructed as the minimal
distance path, or geodesic, from any spatial point of the volume to the seed
point. Though being robust in the presence of noise and partial volume effects
due to optimization of a global criterion, the minimal distance approach appears
to be problematic in regions of high curvature fibers where a higher connectivity
index may be assigned to false positive but smooth tracks than to sharp bending
fibers. Apart from using level set theory, similar front evolution methods exist.
For instance, Tournier et al. (2003) consider a front whose surface consists of a
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finite number of points. In each iteration, the front is evolving by sampling from
an ODF derived from the DT at each point of the surface of the front. Number
and orientation of the sampled vectors are restricted by a curvature constraint
and an ODF-value threshold.

Seed Point Selection

Seed points are selected in a region of interest (ROI) in white matter either at
random (e.g. Hagmann et al. (2003)), on a regular grid (e.g. Conturo et al.
(1999)), or manually (e.g. Parker et al. (2003)). According to the different
aims of tractography experiments, the size of the ROI ranges from only few
voxels for targeted tractography of individual fiber bundles (Descoteaux et al.,
2009; Berman et al., 2008; Parker et al., 2003), to a segmentation of the whole
brain, e.g. for the generation of connectivity maps (Hagmann et al., 2003). Some
methods also perform a filtering step after tractography where tracks that do not
start and end in predefined ROIs are discarded (Conturo et al., 1999; Hagmann
et al., 2003).

Choice of step length λ

The step length λ is usually set to a fixed value between 0.1 and 0.5× voxel-size
(e.g. Basser et al. (2000); Parker et al. (2003); Descoteaux et al. (2009)). Besides,
some methods (e.g. Mori et al. (1999); Chao et al. (2008)) employ an adaptive
step length scheme. Here, the stepping direction is constant until a boundary of
the current voxel is reached and a new direction corresponding to the subsequent
voxel is computed.

Stopping Criteria

Apart from termination due to leaving the image boundaries or executing a
preselected number of iteration steps, other stopping criteria have been pro-
posed. Most commonly, tracking terminates if the local FA value, defined in
Section 2.6.1, falls below a threshold (e.g. Basser et al. (2000); Berman et al.
(2008)). Moreover, ODF-based tractography algorithm often use an ODF ampli-
tude threshold (e.g. Tournier et al. (2010); Jeurissen et al. (2011)). In addition to
FA and ODF amplitude, tracking masks may contain information such as brain
boundaries or tissue properties (Koch et al., 2002; Jeurissen et al., 2011). For
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2. Diffusion Magnetic Resonance Imaging and Fiber Tractography

instance, a WM tracking maskMWM, as stated in (2.13) can be included as stop-
ping criterion in the following way: Tractography continues whileMWM(x(k)) = 1
but track generation terminates if MWM(x(k)) = 0. Furthermore, a curvature
threshold is often selected as termination criterion. For instance, the algorithm
described in Wedeen et al. (2008) breaks if the curvature is larger than 0.5 rad in
one voxel, while Descoteaux et al. (2009) terminate tracking if the angle between
two consecutive steps is larger than 75° where λ = 0.5.

2.7.2. Global Tractography

Yet another class of methods, usually referred to as global tractography, seek to
simultaneously determine fiber tracks across the whole data set by optimizing
a global objective function. In Kreher et al. (2008), Fillard et al. (2009), and
Reisert et al. (2011), for example, each fiber track comprises small fiber segments
defined by spatial position and orientation. An initial configuration of fiber seg-
ments distributed in white matter regions is iteratively adjusted using stochastic
optimization techniques to best fit an overall energy function controlling the dif-
ference between measured and predicted signal, as well as anatomical knowledge
like low curvature of fibers. Compared to local fiber tracking algorithms, these
methods are less prone to errors and image artifacts, but rather expensive re-
garding computation time. Besides, stochastic optimization techniques do not
ensure convergence to a global optimal solution.

A different approach based on the solution of a convex optimization problem is
introduced in Daducci et al. (2013). The framework uses a tractogram as input,
approximates the diffusion-weighted MR signal by a linear combination of signal
contributions of individual fibers, and fits the modeled signal to the measured
one by solving a least-squares problem with `1-regularization. By this means,
fibers that do not well support the global diffusion signal can be eliminated
from the tractogram. Due to the convexity of the problem, a unique solution
is guaranteed. Moreover, depending on the method used to obtain the initial
tractogram, the overall technique can be much faster regarding computation
time than the stochastic procedure stated above.

2.7.3. Quantitative Validation

In recent years, a variety of both numerical and physical diffusion phantoms have
been designed to quantitatively validate the performance of fiber reconstruction
methods. Côté et al. (2013) introduced the Tractometer evaluation tool for
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data sets with known ground truth bundles, comprising several characteristics to
quantify a given tractogram. Let nVC, nIC, and nNC denote the numbers of valid
connections, invalid connections, and no connections in the regarded tractogram.
The number of overall tracks is defined by n = nVC + nIC + nNC. The regarded
characteristics are:

VC = nVC
n

(proportion of valid connections to total tracks)

IC = nIC
n

(proportion of invalid connections to total tracks)

NC = nNC
n

(proportion of no connections to total tracks)

VB (number of valid bundles)

IB (number of invalid bundles)

Furthermore, Girard et al. (2014) introduce

VCCR = nVC
nVC+nIC

(proportion of valid connections to total connections, or
the valid connection to connection ratio)

CSR = nVC+nIC
#seeds (proportion of connections to number of seed points, or the

connection to seed ratio)

In the literature, the Tractometer results are usually stated in percent.

Let the end regions connected by ground truth bundle j be indicated by Ej,1
and Ej,2. We regard a fiber track T of length N as defined in (2.14). Further-
more, let successive points of each track in the ground truth bundles have the
same Euclidean distance as for track T . We assign track T to one of the three
categories, valid, invalid, and no connection, in the following way:

Algorithm 2.3. (Track categorization)
Input:
threshold θ ≥ 0,
track T ,
GT bundles j = 1, 2, . . . with end-regions Ej,1, Ej,2

if (x1 ∈ Ej,1 ∧ xN ∈ Ej,2) ∨ (x1 ∈ Ej,2 ∧ xN ∈ Ej,1)
if there exists a track TGT in bundle j such that ‖T − TGT‖2 ≤ θ
T is valid connection

else
T is invalid connection
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end
elseif (x1 ∈ Ej,· ∧ xN ∈ Ek,·) , j 6= k
T is invalid connection

else
T is no connection

end

In other words, if a track connects two end regions of the same bundle and
the difference to one of the ground truth tracks (measured in Euclidean norm)
is below a threshold, the track is categorized as VC. On the other hand, if the
difference is above a threshold, or if the track connects two end regions of different
bundles, the track is assigned to the IC tracks. A track is counted as NC, if it
does not connect two regions.

2.8. Modeling WM Microstructure

Compartment models are used to probe white matter microstructure from dif-
fusion MRI measurements. In the article by Panagiotaki et al. (2012), com-
partment models are reviewed and compared. Three types of compartments are
considered. First, the intra-axonal compartment describing diffusion of water
inside the axons. Second, models that seek to explain hindered diffusion in the
space between axons of fiber bundles, the extra-axonal space. And last, other
cellular structures of white matter apart from axons where diffusion is modeled
as restricted but isotropic. The myelin coating the axons is assumed to be im-
permeable to water, thus there is no exchange between intra- and extra-axonal
space and in the intra-axonal compartments diffusion is considered restricted.
In the following, we denote the signals modeling intra-axonal, extra-axonal, and
isotropic diffusion in a voxel by RIC, REC, and RISO : S2 → R, respectively. The
overall estimated voxel-wise signal attenuation is defined by

S(q)
S0

= fICR
IC(q) + fECR

EC(q) + fISOR
ISO(q) (2.19)

where fIC, fEC, fISO ∈ [0, 1] denote the proportions of water molecules in the
respective compartment, and fIC + fEC + fISO = 1.

The intra-axonal diffusion signal is, for instance, represented as diffusion in a
cylinder with radius zero by the stick model (Behrens et al., 2003)

RIC(q) = exp
(
−bd(v>1 q)2

)
(2.20)
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with b-value as defined in Section 2.2, axonal diffusivity d > 0, and fiber orien-
tation v1 ∈ S2. More complex models also incorporate axon diameter and the
distribution of multiple axons.

The zeppelin model (Alexander, 2008) is often used to describe diffusion in extra-
axonal space. Here, diffusion is modeled using an anisotropic, cylindrical sym-
metric diffusion tensor D with eigenvalues λ1 > λ2 = λ3 and corresponding
eigenvectors v1, v2, v3 ∈ R3. Defining the isotropic tensor

Iλ := λ[v1, v2, v3]

1
1

1


 v>1
v>2
v>3

 (2.21)

with identical eigenvalues λ ≥ 0, we can write the diffusion signal as

REC(q) = exp
(
−bq>

(
αv1v

>
1 + Iβ

)
q
)

(2.22)

where λ1 = α + β and λ2 = λ3 = β. Information about diffusivity parallel
to the axons is obtained by d‖ = λ1, and perpendicular diffusivity is given by
d⊥ = λ2 = λ3. Simpler models use only the isotropic tensor, while for a more
accurate approximation the full diffusion tensor is taken into account.

Restricted isotropic diffusion can, for example, be explained by the ball model
(Behrens et al., 2003) as an isotropic tensor. The resulting diffusion signal is
given by

RISO(q) = exp
(
−bq>Idq

)
(2.23)

with diffusivity d and Id as defined in Equation (2.21). More models for isotropic
diffusion are summarized in Panagiotaki et al. (2012).

In Panagiotaki et al. (2012), estimating the signal attenuation stated in Equation
(2.19) substituting RIC, REC, and RISO as defined in Equations (2.20), (2.22), and
(2.23), respectively, is termed the StickZeppelinBall model. Information such as
axonal- and extra-axonal diffusivity, fiber orientations, and axon diameter are
computed by parameter estimation, where the modeled signal (2.19) is fitted to
the measured diffusion-weighted MR data S specified in (2.3).
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This chapter is intended to give an overview of the different numerically sim-
ulated, diffusion phantom and an in vivo data set that we used as input data
for the methods described in Chapters 4 and 5. We owe the opportunity to test
our algorithms performance on various different data sets to the Biomedizinische
NMR Forschungs GmbH, who provided several diffusion data sets, as well as
to other groups from the diffusion MRI community, who made their data freely
available. In the following, we briefly present the generation strategies for the
simulated data sets, development and structure of the physical phantoms, and
acquisition parameters used to obtain the MRI measurements. Moreover, we
state ODF reconstruction details. The diagram below gives an outline of the
different data sets discussed in the following sections:

global tractography
(Ch. 5)

simulated
Sec. 3.1.2Sec. 3.1.3

measured


Sec. 3.2.2
Sec. 3.2.1
Sec. 3.3

DW-MRI data
CSD

Sec. 3.1.1 (simulated)

ODF data

ODF-based tractography
(Chs. 4,5)
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3.1. Simulated Data

The data considered in this section was not acquired by MRI measurements, but
was computationally generated by different strategies based on models for the
orientation distribution function or the diffusion MRI signal. In Section 3.1.1,
we describe a method to generate ODF testing data. In Sections 3.1.2 and 3.1.3,
we summarize the properties of two simulated diffusion MR data sets that were
obtained by other groups and are publicly available.

3.1.1. Numerical ODF Data

To generate artificial ODF data, we consider a fiber track as a curve

R ⊃ [a, b]→ R3, t 7→ χ(t) =

 χ1(t)
χ2(t)
χ3(t)


and model the orientation distribution function along x by a function

f(u, t) =
u> d

dt
χ(t)∥∥∥ d

dt
χ(t)

∥∥∥
p

with u ∈ S2, t ∈ [a, b] and p ∈ N. Here, we choose p = 4. The function f is then
multiplied with a Gaussian function

g(ω, t) = 1
2πδ exp

(
−(ω1 − χ1(t))2 + (ω2 − χ2(t))2 + (ω3 − χ3(t))2

2δ

)

where δ2 > 0, ω ∈ Ω and t ∈ [a, b]. We obtain the ODF field by numerical
integration of the integral

ψ(ω, u) =
∫ b

a
f(u, t)g(ω, t)dt

on a uniform grid. In the following, we consider ODF data generated in that way
which constitutes a circle intersected by a secant line. The ODFs, each sampled
at 2562 points on the sphere, are equidistantly distributed on a Cartesian grid of
size 25× 25× 3. The three slices in the third dimension are identical and equal
to the ODF field shown in Figure 3.1. In Section 4.3.1, tractography results for
this data set are shown.
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3.1. Simulated Data

Figure 3.1.: Right: Computationally generated ODF field of size 25 × 25 where the
two ground truth fibers are plotted in blue (circle) and red (line), respectively. Left:
Enlarged section of a crossing region.

3.1.2. ISBI 2013 HARDI Reconstruction Challenge Data

The ISBI 2013 HARDI reconstruction challenge data1 was provided for the IEEE
International Symposium on Biomedical Imaging 2013 in order to compare differ-
ent schemes for ODF reconstruction and tractography. It contains the simulated
MR signal of complex three-dimensional fiber configurations distributed in a
spherical domain. The MR signal was generated similar to the method described
in the article by Close et al. (2009), but using a multi-compartment model. We
chose the training data sets with 64 directions and b = 3000 s/mm2, and both
SNR = 10 and SNR = 30, respectively. The spatial dimensions are 50× 50× 50.
Furthermore, a brain mask, 40 seeding regions of different size, and a fiber ge-
ometry ground truth are provided for the data. Fiber ODF reconstruction was
performed by standard CSD in MRtrix. Figure 3.2 illustrates the ground truth
fiber configuration and the diffusion signal. Tractography results using this data
set are discussed in Section 4.3.3.

1http://hardi.epfl.ch/static/events/2013_ISBI/
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3. Data

(a) Ground truth1. (b) Sagittal, coronal and transversal slices of the simu-
lated MR signal for a single gradient direction.

Figure 3.2.: Simulated data from ISBI 2013 HARDI reconstruction challenge.

3.1.3. ISMRM 2015 Tractography Challenge Data

The ISMRM 2015 Tractography challenge data set2 was generated for the com-
parison of different tractography pipelines. Data simulation consists of the fol-
lowing steps: First, a whole-brain tractogram is computed for an acquisition
of the human connectome project (HCP) data set (see Sec. 3.3) using a global
tractography method. Then, 25 bundles are manually segmented and processed,
and the diffusion-weighted MR signal is simulated using the method described
in Neher et al. (2014). The procedure results in a realistic simulation of a whole-
brain DW-MR image with 32 diffusion-weighted images at b = 1000 s/mm2, and
one image without diffusion-weighting. The spatial dimensions are 90×108×90,
and isotropic voxel-size is 2 × 2 × 2 mm3. We chose the DW image without
additional artifacts. Furthermore, a ground truth is provided for the 25 fiber
bundles. The ground truth bundles and the simulated diffusion-weighted signal
are illustrated in Figures 3.3 and 3.4, respectively. Fiber ODF reconstructions
were computed using standard CSD in MRtrix. Results for the ISMRM 2015
data set are discussed in Section 4.3.4.

3.2. Diffusion Phantom Data

The physical phantoms considered in this section are built from synthetic mate-
rials to model configurations of nerve fiber bundles in the brain. The phantoms
are constructed in such a way that diffusion MR scans yield diffusion anisotropy
properties similar to the living brain. Since the fiber configuration is known, the

1Figure taken from http://hardi.epfl.ch/static/events/2013_ISBI/
2http://www.tractometer.org/ismrm_2015_challenge/
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3.2. Diffusion Phantom Data

(a) Color corresponding to direc-
tion.

(b) Color corresponding to bundle
classification.

Figure 3.3.: Ground truth fibers of ISMRM 2015 data (sagittal view).

Figure 3.4.: Sagittal, coronal and transversal slices of the simulated data from the
ISMRM 2015 tractography challenge for a single gradient direction.
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diffusion MR acquisitions obtained from the phantoms can be used to validate
diffusion imaging methods, such as ODF reconstruction or tractography.

3.2.1. Fiber Cup Phantom

The Fiber Cup diffusion phantom1 was designed for a tractography challenge
where ten algorithms were quantitatively evaluated and compared (Fillard et al.,
2011). Modeling a coronal slice of a human brain, the phantom contains seven
bundles of different curvature, crossing and kissing structures. The bundles,
consisting of acrylic fibers of a diameter of 20 µm, are fixed and compressed
between two polyurethane disks which have the fiber configuration engraved in.
Each fiber is oriented in a plane perpendicular to the z-direction, that is, the
phantom does not contain complicated three-dimensional fiber configurations.
Fibers are arranged such that there are approximately 100 fibers per bundle and
the fiber density is approximately the same in all areas of the fibrous structure,
also at the crossings. For diffusion measurements, the phantom is placed inside
a water-filled cylindrical container made of Plexiglas. A detailed description of
design, construction and data acquisition of the diffusion phantom is given in
Poupon et al. (2008) and Poupon et al. (2010).

Here, we consider a data acquisition of the phantom that was obtained on a
64 × 64 × 3 grid with 3 × 3 × 3 mm3 isotropic voxel-size using 64 gradients at
b = 1500 s/mm2. Figure 3.5 shows the fiber pathways (Figure 3.5a) and image
slices of the diffusion-weighted acquisition for b = 0 s/mm2 (Figure 3.5b) and
b = 1500 s/mm2 for one gradient (Figure 3.5c). From the DWI acquisition we
computed a set of fiber ODFs using the standard CSD algorithm from MRtrix
as well as a set of spatially regularized fiber ODFs using the algorithm by Ho-
hage and Rügge (2015). Both ODF data sets are sampled at 642 points on the
sphere as described in Section 2.5.2. Standard and spatially regularized ODFs
are visualized in the previous chapter in Figures 2.6b and 2.6c for the two rect-
angular regions indicated in Figure 3.5a. Tractography experiments and results
are discussed in Sections 4.3.2 and 5.7.2.

3.2.2. Spherical Diffusion Phantom

Manufacturing and diffusion-weighted MR measurements of a spherical diffu-
sion phantom simulating crossing fiber bundles were performed by members of

1http://www.tractometer.org/original_fibercup/data/
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3.2. Diffusion Phantom Data

(a) fiber pathways (b) b = 0 s/mm2 (c) b = 1500 s/mm2 (for
a single gradient direc-
tion)

Figure 3.5.: Fiber pathways (left) and Diffusion MRI acquisition (middle and right)
for one slice in the x− y-plane.

(a) phantom (b) crossing structure

Figure 3.6.: Spherical diffusion phantom construction.
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(a) b = 0 s/mm2 (b) b = 1000 s/mm2 (for a single gra-
dient direction)

Figure 3.7.: Diffusion MRI acquisition in the mid-coronal image plane.

the Biomedizinische NMR Forschungs GmbH in accordance with the procedure
described in Moussavi-Biugui et al. (2011). The phantom, illustrated in Fig-
ure 3.6a, consists of a spherical polyamide spindel where thin polyfil fibers are
winded around forming three bundles. In each of two opposite regions on the
spindle surface, a 60◦ crossing is formed by interleaving polyfil fibers of the bun-
dles marked in blue and red in Figure 3.6b. Similarly, the bundles colored in
blue and yellow in Figure 3.6b form a 30◦ crossing located directly below the 60◦
crossing in the direction towards the center of the sphere, respectively. In total,
there are four crossings, two with a 30◦ and two with a 60◦ crossing angle. There
is no area where all three bundles cross.

We use a diffusion-weighted data set of the phantom containing 92 diffusion-
weighted images at b = 1000 s/mm2 and one unweighted image. The spatial
resolution is 84×100×61, and voxel-size is 1.8×1.8×1.8 mm3. Two-dimensional
image slices of the diffusion data are shown in Figure 3.7. We computed an
ODF reconstruction with spatial regularization (see. Section 2.5.1). Though
benefiting from the regularization when comparing it to standard CSD ODFs
(not shown), the reconstruction suffers from artifacts due to the relatively high
noise level of the data set. Figure 3.8 shows the ODF reconstruction in two
coronal slices containing 30◦ and 60◦ crossing regions, respectively. As can be
observed in Figure 3.8b, the 60◦ crossing could be resolved. That is, the ODFs
in the crossing region have local maxima pointing in the directions of the fiber
bundles. On the other hand, Figure 3.8a shows that the 30◦ crossing could not be
resolved properly. That means that, instead of having maxima in the directions
of the two crossing fiber bundles, most ODFs in the 30◦ crossing region have a
single maximum pointing bidirectionally in a direction resembling the average
between both fiber bundle directions. This may be caused by the fact that a
b-value of 1000 is relatively low for ODF reconstruction. For instance, Tournier
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(a) 30◦ crossing (b) 60◦ crossing (c) 60◦ crossing (detail)

Figure 3.8.: ODF reconstruction.

et al. (2004) examine the effects of different b-values on ODF reconstructions
obtained with CSD. They conclude that a b-value chosen too low can result in
an angular dependency that is too small to resolve the different fiber orientations.
Tractography results for these data are discussed in Section 4.3.6.

3.3. Human Connectome Project

The Human Connectome Project (HCP) are projects conducted by neuroscien-
tists from 9 different universities and other research institutions and funded by
the National Institutes of Health (NIH) with the objective of investigating the
human connectome (Van Essen et al., 2013). Data resulting from these research
projects are made publicly available for download at humanconnectome.org.

We use a data set containing preprocessed diffusion and structural (T1w) MRI
scans (Andersson et al., 2003; Sotiropoulos et al., 2013; Milchenko and Marcus,
2013; Glasser et al., 2013). The considered acquisition has spatial dimensions
145×174×145, a voxel-size of 1.25×1.25×1.25 mm3 and consists of 18 scans at
b = 0 s/mm2 and diffusion-weighted scans at b = 1000 s/mm2, b = 2000 s/mm2

and b = 3000 s/mm2 using 90 gradients, respectively. A brain mask is provided
with the data set. We obtained a white matter mask using FAST in FSL (Zhang
et al., 2001) from the T1 weighted image with default options. In a postpro-
cessing step we manually dilated the mask because it appeared too restrictive in
some regions. Moreover, FSL/FAST was used to generate tissue partial volume
maps for anatomically informed tractography. In Figures 2.2 and 2.8, diffusion-
weighted MR images and tissue partial volume maps are illustrated, respectively.
The spatially regularized ODFs reconstructed from the data were sampled at 642
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directions. Figure 4.11 shows a coronal view of the ODF data in a part of the
centrum semiovale.
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4. A Bayesian Approach for
Neighborhood-Informed
Tractography

In Section 2.7.1, we describe a class of widely-used local streamline tractography
algorithms. Though being fast and easy to implement, these algorithms have
the disadvantage of accumulating DT or ODF data errors due to the exclusively
local treatment of the data in each iteration step. In this chapter, we focus on
the improvement of ODF-based streamline techniques by including information
obtained from the local neighborhood to refine the tracking direction. The guid-
ing by extrapolation strategy, introduced in Section 4.1, integrates information
about the curvature of the recently generated fiber fragment into the step-wise
tracking process by extrapolating a polynomial of degree two, curve-fitted to a
certain number of previously tracked path points. In Section 4.2, we describe
the forward search strategy which explores the region ahead by characterizing
candidate tracts of a certain length originating from the current path point. By
means of Bayesian statistics, an a-posteriori probability, depending on prior and
likelihood, is assigned to each candidate tract. We model the likelihood in such
a way that it represents the plausibility of a candidate tract with respect to the
underlying field of ODFs. Including the guiding by extrapolation strategy de-
scribed above, the prior distribution assigns to the candidate tracts a probability
considering its curvature. Maximum a-posteriori estimation is used to derive
an optimal (deterministic) tracking direction in each iteration step. Moreover,
we obtain a probabilistic tracking method by drawing from the marginalized
posterior distribution. In Section 4.3, tests and comparisons on simulated data,
diffusion phantom data, and in vivo data show the advantages of our approach.

This chapter has in part been published in the journal Medical Image Analysis
(Schomburg and Hohage, 2017). Basic concepts and early results have appeared
in abstract form (Schomburg et al., 2014, 2015).
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4.1. Guiding by Extrapolation

Using the same notation as in Section 2.7.1, we seek to improve the tracking
direction d(k) of the streamline iteration scheme (2.16). Let the ODF-based
main diffusion direction d(k)

ψ ∈ U in iteration k be as described in Algorithm 2.1.
As a first attempt in obtaining a more stable tracking direction in the presence
of noise, we search for the direction that optimizes the regularized problem

d∗ = argmin
d∈R3

∥∥∥d− d(k+1)
ψ

∥∥∥2

2
+ α

∥∥∥d− d(k)
∥∥∥2

2
(4.1)

where the weighting factor α > 0 balances closeness to the main diffusion direc-
tion d

(k+1)
ψ ∈ U at point x(k+1) and the previous direction d(k), thus regulating

the curvature of the reconstructed fiber track. Solving (4.1) yields as tracking
direction in iteration k the weighted sum

d∗ = 1
1 + α

(
d

(k+1)
ψ + αd(k)

)
, d(k+1) = d∗

‖d∗‖2
(4.2)

of main diffusion direction and former direction. This formulation is related
to the ideas of Weinstein et al. (1999) and Westin et al. (2002) who added
a stabilizing term to the principle eigenvector for DT tracking due to tensor
ambiguities.

Instead of only using information about the previous tracking direction, it can be
beneficial to look back a few more steps and consider a certain (small) number
of former directions. Hence, we deduce an extrapolation strategy to include
information about the curvature of the previously obtained fiber fragment. For
this purpose, a smooth curve

R→ R3, t 7→ γ(t) = (γ1(t), γ2(t), γ3(t)) ,

is fitted to the N previously tracked path points x(k−i) ∈ Ω, i = 0, 1, . . . , N − 1
using the curve-fitting strategy explained below, which is in this situation more
robust than for instance a polynomial or spline interpolation. The functions γ1,
γ2 and γ3 are chosen as polynomials of degree 2 to obtain curvature and keep
oscillating to a minimum. Thus, we want to find the coefficients c(j) ∈ R3 of the
three polynomials γj

(
t, c(j)

)
= c

(j)
0 + c

(j)
1 t+ c

(j)
2 t2, j = 1, 2, 3 such that

c(j) = argmin
c∈R3

N−1∑
i=0

wi
(
γj (ti, c)− x(k−i)

j

)2

with monotonically decreasing weights wi > 0, wi ≥ wi+1 for i = 0, 1, . . . , N − 1
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and parameter values ti = −λi, where λ ≥ 0 is the step length as introduced
in Equation (2.16). For our tests we have chosen linearly decreasing weights
wi = (N − i)/N . The three weighted least-squares problems are formulated as
matrix equations W 1

2V c(j) = W
1
2x with

W =


w0

w1
. . .

wN−1

 ∈ RN×N , x =


x

(k)
j

x
(k−1)
j
...

x
(k−(N−1))
j

 ∈ RN×1,

and Vandermonde matrix

V =


1 t0 t20
1 t1 t21
...

...
...

1 tN−1 t2N−1

 ∈ RN×3

and are solved using QR-factorization, respectively. The obtained curve γ(t) is
extrapolated at t−1 = λ to determine a guiding direction

d
(k)
extr := γ(t−1)− x(k)

‖γ(t−1)− x(k)‖2

at point x(k). The guiding by extrapolation method is illustrated in Figure 4.1a
using the five previously tracked path points x(k), . . . , x(k−4). A curve, illustrated
in dark green, is fitted to the five points. Via extrapolation of that curve, we
obtain the guiding direction d(k)

extr. The new direction d(k) is computed using d(k)
extr

instead of d(k−1) in (4.2). The new path point x(k) computed using the guiding
direction will be located close to the course of the true fiber depicted in green.
On the other hand, following the local direction d(k)

ψ that maximizes the ODF at
point x(k) causes a deviation from the true track indicated by the red curve.

4.2. Forward Search Method

For increased robustness against noise and artifacts we expand the algorithm
described above by a method incorporating diffusion information of the region
that lies ahead. Basically, a set of candidate fiber fragments of a certain length
continuing from the current path point x(k) is determined based on anatomical
plausibility, and a probability is assigned to each of these paths according to
ODF data. The fiber tracking algorithm continues in the direction of the most
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(a) Guiding by extrapolation (b) Forward search method

Figure 4.1.: Exemplary illustration of the methods described in Sections 4.1 and 4.2.

likely candidate path.

The idea of our approach is illustrated in Figure 4.1b for two search steps. From
a path point x(k), the green line depicts the course of the true fiber, whereas the
red line indicates a wrong track that a simple tracking algorithm without forward
search would follow given the underlying field of ODFs. d(k)

ψ represents the locally
optimal tracking direction at x(k) and d(k)

extr is the guiding direction described in
Section 4.1. The orange area fanning out from x(k) indicates the region around
d

(k)
extr from which candidates for the direction d(k) are selected. The region angle

is preselected to restrict curvature of the candidate tracts to an anatomically
reasonable degree. The procedure is repeated for all x(k+1) = x(k) + µd(k) with
valid candidate directions of d(k) and step length µ > 0. For the sake of clarity,
the figure shows areas of valid candidates for the direction d(k+1) originating only
from two of the candidate points of x(k+1). Taking into account this whole set of
fiber fragments of length two and the related ODF values, the most promising
candidate direction of d(k) is selected for calculation of the new tracking direction.
Note that for forward search we introduce a second step length µ that can be
chosen independently from λ. Hence, the curve parameterization used for curve
fitting in Section 4.1 is not entirely equidistant, but the distance |ti − ti−1| of
successive points is equal to λ for the track up to x(k) and equal to µ for the
candidate tracks generated by forward search.

In the following, we formalize this idea using Bayesian statistics and deduce both
a deterministic and a probabilistic tractography algorithm.
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^
(
d(k+j), d

(k+j)
extr

)p
(
d(k+j)|d(k), . . . , d(k−1+j))

−ϕ+ ϑ ϕ+ ϑ−π2
π
2−π π

Figure 4.2.: Illustration of the transition probabilities. The angle between former and
guiding direction is defined by ϑ := ^

(
d(k+j−1), d

(k+j)
extr

)
. In this example, we chose

σ = π
4 , a ≈ 0.8869, and ϕ = π

4 and ϑ = π
18 .

4.2.1. Bayesian Framework

Let U denote a set of sampled directions on the unit sphere, as described in
Section 2.5.2. In iteration k − 1, a fiber track proceeding from a starting point
x(0) in either positive or negative direction is uniquely determined by step length
λ and the directions d(0), d(1), . . . , d(k−1). We define the (unknown) fiber fragment
of length n continuing this already tracked path by the array

Fn :=
(
d(k), d(k+1), . . . , d(k+n−1)

)
∈ Un, Un = U × . . .× U

of successive directions. Moreover, D represents the observations, that is the
ODF data providing information about directional diffusion of water at each
voxel of a volumetric data set given on a domain Ω = [1, Nx]×[1, Ny]×[1, Nz]. We
are interested in the (a-posteriori) probability P (Fn|D) that the fiber fragment
adopts a certain configuration given the diffusion data. By Bayes’ theorem the
a-posteriori probability is given by

P (Fn|D) = P (Fn)P (D|Fn)
P (D)

with the prior-distribution P (Fn), the likelihood P (D|Fn), and the normalizing
constant P (D). We model the prior-distribution to represent the probability of
a certain fiber configuration Fn by considering its anatomical plausibility with
respect to tract curvature. Therefore, we introduce the prior distribution as a
product

P (Fn) := p
(
d(k)

)
· p
(
d(k+1)|d(k)

)
· . . . · p

(
d(k+n−1)|d(k), . . . , d(k+n−2)

)
=

n−1∏
j=0

p
(
d(k+j)|d(k), . . . , d(k−1+j)

)
(4.3)

of transition probabilities

p
(
d(k+j)|d(k), . . . , d(k−1+j)

)
(4.4)
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=


a · exp

−^
(
d(k+j),d

(k+j)
extr

)2

σ2

 if
∣∣∣^ (d(k+j), d(k+j−1)

) ∣∣∣ ≤ ϕ

0 else

given by the probability density of a truncated normal distribution with σ2 > 0
and zero mean, depending on the angle between d(k+j) and the guiding di-
rection d

(k+j)
extr defined in Section 4.1 determined at step k + j. Hence, the

less the direction d(k+j) deviates from the previously tracked path represented
here by the guiding direction, the larger the transition probability. The angle
ϕ ∈ (0, π2 ] indicates the maximally permitted deviation of d(k+j) from the direc-
tion d(k+j−1). As illustrated in Figure 4.2, the normal distribution is truncated
according to the choice of ϕ. The normalizing constant a is selected such that∑
d(k+j)∈U

p
(
d(k+j)|d(k), . . . , d(k−1+j)

)
= 1 for any j = 1, . . . , n−1. This implies that∑

Fn∈Un
P (Fn) = 1.

We model the likelihood by

P (D|Fn) :=
n−1∏
j=0

ψ
(
x(k+j) + µ

2d
(k+j), d(k+j)

)

in terms of orientation distribution function ψ : Ω × S2 → R. The likeli-
hood is normalized such that ∑

Fn∈Un
P (D|Fn) = 1. As illustrated in Figure

4.3 for j = 0, the ODF is evaluated at the midpoint of the points x(k+j) and
x(k+j+1) = x(k+j) + µd(k+j) which, compared to simply taking ψ

(
x(k+j), d(k+j)

)
,

increases stability against local errors of the ODF due to noise. Our setting
uses linear interpolation between the ODFs at the grid points. Hence, the
ODF value obtained at x(k+j) + µ

2d
(k+j) in direction d(k+j) is equal to 0.5 ·(

ψ
(
x(k+j), d(k+j)

)
+ ψ

(
x(k+j+1),−d(k+j)

))
. The likelihood P (D|Fn) describes

the probability distribution of data D conditioned that the true fiber contin-
ues as

(
d(k), d(k+1), . . . , d(k+n−1)

)
. It can be understood as the probability that

a given fiber configuration is plausible regarding the fiber orientations given by
the field of ODFs. Note that the purpose of local tractography as opposed to
a (truly) global tractography is to recover only partial information about the
fiber structure of the brain, which are not sufficient to fully explain the mea-
sured ODFs up to measurement errors. Therefore, we cannot simply compute
the likelihood function from a fully specified set of probability distributions, but
the definition of the likelihood has to involve some modeling.

The a-posteriori probability is computed as the product of prior and likelihood
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Figure 4.3.: ODF evaluation

and normalized such that ∑
Fn∈Un

P (Fn|D) = 1. We determine the maximum
a-posteriori estimate

F̂MAP
n =

(
d̂

(k)
MAP, d̂

(k+1)
MAP , . . . , d̂

(k+n−1)
MAP

)
∈ argmax
Fn∈Un

P (Fn|D) (4.5)

and select d̂(k)
MAP as the new tracking direction d(k) of our deterministic tracking

algorithm.

In the following, we show that this expression can be rewritten as an optimization
problem similar to (4.1) where the objective function consists of a regularizing
term that promotes closeness to the guiding direction and a data term to reduce
deviations from the main diffusion direction. First, we reformulate the maximum
a-posteriori (4.5) estimate as

F̂MAP
n ∈ argmax

Fn∈Un
P (Fn|D)

= argmin
Fn∈Un

[− log(P (Fn|D))]

= argmin
Fn∈Un

[− log (P (Fn)P (D|Fn))︸ ︷︷ ︸
=:G(Fn)

]. (4.6)

Inserting the expressions for prior and likelihood we obtain for the objective
function

G
(
Fn =

(
d(k), d(k+1), . . . , d(k+n−1)

))
= − log

n−1∏
j=0

p
(
d(k+j)|d(k+1), . . . , d(k+j−1)

)
· ψ

(
x(k+j) + µ

2d
(k+j), d(k+j)

)

=



n−1∑
j=0

^
(
d(k+j),d

(k+j)
extr

)2

σ2 − log(a)− log
(
ψ
(
x(k+j) + µ

2d
(k+j), d(k+j)

))
if
∣∣∣∣∣^ (d(k+j), d(k+j−1)

) ∣∣∣∣∣ ≤ ϕ

∞ else,
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for j = 0, . . . , n− 1. Finally, substituting in equation (4.6) yields

F̂MAP
n ∈ argmin

(d(k),...,d(k+n−1))∈Un
^(d(k+j),d(k+j−1))≤ϕ

n−1∑
j=0

^
(
d(k+j), d

(k+j)
extr

)2

σ2

− log
(
ψ
(
x(k+j) + µ

2d
(k+j), d(k+j)

))
for the maximum a-posteriori estimate an expression comprising a sum of data
term and regularization term similar to (4.1).

Alternatively, we can regard whole regions combining possible tract configuration
for a certain starting orientation, instead of evaluating the possibility of single
tract configurations, to increase stability against data errors. We define the
marginal distribution at path point x(k) as

ψ̃
(
x(k), d(k)

)
= P

 ⋃
d(k+1)∈U

· · ·
⋃

d(k+n−1)∈U
Fn =

(
d(k), . . . , d(k+n−1)

) ∣∣∣∣∣D


=
∑

d(k+1)∈U
· · ·

∑
d(k+n−1)∈U

P

(
Fn =

(
d(k), . . . , d(k+n−1)

) ∣∣∣∣∣D
)

(4.7)

with Fn disjoint. It describes the probability that the true fiber matches one of
the fibers passing through d(k) by taking into account the averaged probabilities
of subsequent configurations

(
d(k+1), . . . , d(k+n−1)

)
. We derive a probabilistic

interpretation of the tractography algorithm proposed above by drawing the new
tracking direction d(k) from the marginalized probability distribution stated in
(4.7).

Example for n = 2

For a better understanding, we illustrate two steps of the method in Figure 4.4
by means of a tree diagram where the root is given by the path point x(k). The
nodes on the first level represent the candidate points of x(k+1). The edges linking
these points with the root are each associated with a candidate direction d(k) and
carry as weights the product of transition probability defined in (4.4) and the
value of the local orientation distribution function describing the likeliness of the
connection. Repeating this procedure, new candidates for the directions d(k+1)

and points x(k+2) = x(k+1) + µd(k+1) are calculated from each candidate point of
x(k+1) determined in the first step. The weights indicate the likeliness of a link
between nodes x(k+1) and x(k+2). Overall, we can compute the probabilities of
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p
(
d(k+1)|d(k)

)
·ψ
(
x(k+1) + µ

2 d
(k+1), d(k+1)

)

p
(
d(k)
)

·ψ
(
x(k) + µ

2 d
(k), d(k)

)

x(k+2) = x(k+1) + µd(k+1)

x(k+1) = x(k) + µd(k)

x(k)

· · ·

· · · · · · · · ·

d(k+1) ∈ U

d(k) ∈ U

P (F2|D) ∝ P (F2) · P (D|F2) = p
(
d(k)
)
· p
(
d(k+1)|d(k)

)
· ψ
(
x(k) + µ

2 d
(k), d(k)

)
· ψ
(
x(k+1) + µ

2 d
(k+1), d(k+1)

)

Figure 4.4.: Tree diagram of the forward search method for two steps.

connections between root and candidate nodes x(k+2) by either the product of
edge weights of the path x(k) → x(k+1) → x(k+2) given by

P (F2) · P (D|F2)

= p
(
d(k)

)
· p
(
d(k+1)|d(k)

)
· ψ

(
x(k) + µ

2d
(k), d(k)

)
· ψ

(
x(k+1) + µ

2d
(k+1), d(k+1)

)
,

or by the marginal distribution∑
d(k+1)∈U

P
(
F2 =

(
d(k), d(k+1)

))
· P

(
D|F2 =

(
d(k), d(k+1)

))

= p
(
d(k)

)
· ψ

(
x(k) + µ

2d
(k), d(k)

)
·

∑
d(k+1)∈U

p
(
d(k+1)|d(k)

)
· ψ

(
x(k+1) + µ

2d
(k+1), d(k+1)

)
,

combining weights of subtrees from nodes x(k+1), respectively.

4.2.2. Computation of the Overall Tracking Direction

We sample the ODF ψ : Ω× S2 → R at the vertices u ∈ U of a triangulation
of the sphere, as described in Section 2.5.2. Thus, the maximum a-posteriori
estimate (4.5) provides the optimal tracking direction, d̂(k)

MAP, from only a finite set
of sampling points. To obtain an optimal tracking direction on S2 instead of U ,
we linearly interpolate on the tessellated surface of the sphere using barycentric
coordinates. For this purpose, consider a triangle defined by its vertices v1, v2
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4. A Bayesian Approach for Neighborhood-Informed Tractography

and v3. Each point v in the triangle plane or on its edges can be described as a
barycentric combination

v =
3∑
i=1

bivi

of the vertices, where 0 ≤ bi ≤ 1 and ∑3
i=1 bi = 1. For each of the, usually 5 to 6,

triangles containing d̂(k)
MAP as one of its vertices we assume linearity of the marginal

distribution ψ̃ defined in (4.7) and determine the barycentric coordinates bi,
i = 1, 2, 3, of point v solving

argmin
b1,b2,b3∈[0,1]∑3

i=1 bi=1

−
3∑
i=1

biψ̃(x(k), vi) + β

∥∥∥∥∥
3∑
i=1

bivi − d(k)
extr

∥∥∥∥∥
2

2


with β > 0. Choosing the overall minimum comparing results for the neighboring
triangles that share vertex d̂(k)

MAP, we obtain the final tracking direction d(k+1) ∈
S2 as a refinement of d̂(k)

MAP. To solve these constrained quadratic minimization
problems, we implemented an active set strategy. Typically, it finds the global
minimum in only 2–3 iteration steps.

4.2.3. Stopping Criteria

The proposed algorithm stops when reaching a region outside a previously defined
valid domain W ⊆ Ω. In general, this domain can be defined as a Nx×Ny ×Nz

binary mask M . For instance, M can be a binary brain mask with elements

MB(i, j, k) =
1 if voxel (i, j, k) is inside the brain

0 else

for i = 1, . . . , Nx, j = 1, . . . , Ny, k = 1, . . . , Nz, or a subset of MB derived
from binary tissue segmented maps, or tissue partial volume maps. For this
purpose, let IWM, IGM, and ICSF denote tissue partial volume images as described
in Section 2.6.2. Then we define,

MT(i, j, k) =
0 if IGM(i, j, k) ≥ θGM and ICSF(i, j, k) ≥ θCSF

1 else

for i = 1, . . . , Nx, j = 1, . . . , Ny, k = 1, . . . , Nz, where θGM and θCSF are threshold
values e.g. θGM = θCSF = 0.5, similar to Smith et al. (2012) or Girard et al.
(2014). The algorithm breaks if MT(i, j, k) = 0. Note that in the case of binary
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4.2. Forward Search Method

GM and CSF maps, θGM = θCSF = 1. In Section 4.3, we describe the masks used
for the respective data sets in more details. Besides using a predefined mask,
we also experimented with thresholds on the a-posteriori probability. Results
generated in this way are discussed in Section 4.3.

4.2.4. Including Anatomical Priors in the Bayesian Framework

It is also possible to include additional anatomical prior information in the pos-
terior probability to inform the algorithm about tissue types present in its neigh-
borhood. As a first approach, we have achieved this by weighting the transition
probabilities of the prior distribution with a combined white and gray matter bi-
nary (see results for the Fiber Cup phantom) or partial volume map (see results
for in vivo data), that is, Equation (4.3) is extended to

P (Fn) =
n−1∏
j=0

A
(
x(k+j+1)

)
p
(
d(k+j)|d(k+1), . . . , d(k−1+j)

)
︸ ︷︷ ︸

=:p̃(d(k+j)|d(k+1),...,d(k−1+j))

where map A = IGM + IWM is interpolated at x(k+j). The weighted transition
probabilities p̃ are normalized such that ∑

Fn∈Un
P (Fn) = 1. The voxel weights in

A are chosen as the sum of WM and GM proportions, since we do not want the
algorithm to avoid entering GM. Termination of tracks in GM regions is ensured
by the stopping criteria described in 4.2.3.

4.2.5. Algorithm

We summarize the tractography algorithm (Algorithm 1) combining both meth-
ods described above, forward search and guiding by extrapolation. The following
steps are executed for a maximum number of iterations or while the current
fiber path point x(k) lies inside the physiologically reasonable region W ⊆ Ω
determined according to Section 4.2.3.

Algorithm 4.1. (Tractography with 2.1 and 2.2)
Input:
x(0) ∈ Ω - starting point
d(0) ∈ U - starting direction
n - # forward search steps
N - # extrapolation points
λ, µ > 0 - step lengths
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ϕ ∈ [0, π/2) - angle
type - deterministic or probabilistic

x(0) = x(1) + λd(0)
1

k = 1 2

while x(k) ∈ W 3

for each Fn 4

[P (Fn), P (D|Fn)] = forwardSearch
(
x(k),Fn, ϕ, n,N, µ

)
5

end 6

normalize P (Fn) and P (D|Fn) 7

P (Fn|D) = P (Fn)P (D|Fn) 8

normalize P (Fn|D) 9

if type == deterministic % det. algorithm 10

F̂nMAP ∈ argmax
Fn∈Un

P (Fn|D) where F̂nMAP =
(
d̂

(k)
MAP, . . . , d̂

(k+n−1)
MAP

)
11

d(k) = refine
(
d̂

(k)
MAP

)
% see 4.2.2 12

else % prob. algorithm 13

draw d(k) ∈ U from probability distribution 14∑
d(k+1)∈U

· · · ∑
d(k+n−1)∈U

P (Fn|D) where Fn =
(
d(k), . . . , d(k+n−1)

)
15

end 16

x(k+1) = x(k) + λd(k)
17

k = k + 1 18

end 19

Output:
(
x(0), x(1), . . .

)
- fiber path

First, a forward search is performed, exploring the neighborhood in front of the
current point x(k+1). For this purpose, the posterior probability P (Fn|D) is
determined for each fiber fragment Fn where n denotes the number of forward
search steps as shown in Section 4.2. The forward search algorithm (Algorithm
4.2) is explained in detail below. The deterministic version of Algorithm 4.1 is
executed, if type = deterministic is specified, in lines 11 and 12. Here, a new
direction d(k+1) is selected such that it equals the candidate direction of the first
forward search step corresponding to the fiber fragment Fn that maximizes the
a-posteriori probability. Subsequently, d(k+1) is refined according to the method
explained in Section 4.2.2. The probabilistic version of Algorithm 4.1 where a
new direction d(k+1) is drawn from the marginal distribution is specified in lines
14 and 15. Then, a new path point x(k+1) is computed in line 17.

Algorithm 4.2 summarizes the forward search method that estimates the poste-
rior probability P (Fn|D) for each of the candidate fiber fragments Fn. In line
1, values for prior and likelihood are initialized with one. Then, for each forward
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search step j = 0, . . . , n− 1 a guiding direction at x(k+j) is determined from the
N previously tracked points using the method described in Section 4.1. In lines
4 to 8, the transition probability of d(k+j) is specified according to its deviation
from the guiding direction. In line 9, the value for the prior is updated by mul-
tiplying the transition probability. Similarly, the likelihood is updated in line 10
where ψ : S2 × R2 → R denotes the orientation distribution function.

Algorithm 4.2. forwardSearch
Input:
x(k) - path point at iteration k
Fn - fiber fragments
ϕ - angle
n - # forward search steps
N - # extrapolation steps
µ - step length

initialize P (F0) = 1, P (D|F0) = 1 1

for j = 0, . . . , n− 1 2

d
(k+j)
extr = extrGuiding

(
x(k+j), . . . , x(k+j−N+1)

)
3

if ^
(
d(k+j), d(k+j−1)

)
≤ ϕ 4

p
(
d(k+j)|d(k), . . . , d(k−1+j)

)
= exp

−^
(
d(k+j),d

(k+j)
extr

)2

σ2

 5

else 6

p
(
d(k+j)|d(k), . . . , d(k−1+j)

)
= 0 7

end 8

P (Fn) = P (Fn−1)·p
(
d(k+j)|d(k), . . . , d(k−1+j)

)
9

P (D|Fn) = P (D|Fn−1) · ψ
(
x(k+j) + µ

2d
(k+j), d(k+j)

)
10

end 11

Output: P (Fn), P (D|Fn)

In Algorithm 4.3, we summarize the steps necessary to compute a guiding direc-
tion, as described in Section 4.1.

Algorithm 4.3. extrGuiding
Input: x =

(
x(k), . . . , x(k−N+1)

)
for j = 1,2,3

Solve W 1
2V c(j) = W

1
2x

γj
(
t, c(j)

)
= c

(j)
0 + c

(j)
1 t+ c

(j)
2 t2

end
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γ(t) = (γ1(t), γ2(t), γ3(t))
d

(k)
extr := γ(t−1)−x(k)

‖γ(t−1)−x(k)‖2

Output: d(k)
extr

4.3. Experiments and Results

At first, we show results for applying our method to an academic example of
an ODF field consisting of a circular bundle crossed by a straight bundle. This
simple ODF field is simulated by an own implementation. The data set and the
procedure used for data simulation are described in Section 3.1.1. Furthermore,
we tested our algorithm on two simulated data sets, the ISBI 2013 challenge
training data set and the ISMRM 2015 tractography challenge data, outlined in
Sections 3.1.2 and 3.1.3, respectively, on acquisitions of two diffusion phantoms,
the Fiber Cup diffusion phantom (see Section 3.2.1), and a spherical diffusion
phantom (see Section 3.2.2), as well as on in vivo data provided by the HCP (see
Section 3.3).

Our algorithm has originally been developed based upon ODF reconstructions
obtained from high-angular-resolution diffusion imaging (HARDI) data using
constrained spherical deconvolution (CSD) with spatial regularization as de-
scribed by Hohage and Rügge (2015). To demonstrate that our algorithm is not
limited to data obtained from that method but can be applied independently
from the fiber ODF acquisition technique, we also include some results using
ODF reconstructions generated by the CSD algorithm included in the software
package MRtrix1.

4.3.1. Numerical ODF Data

Creation and properties of the simulated data set considered here are detailed
in Section 3.1.1. In Figure 4.5, results are illustrated from applying to the
data (a) the basic tractography strategy stated in Algorithm 2.1 in Section 2.7.1,
(b) an expansion of this basic algorithm by our extrapolation guided approach
described in Section 4.1, and (c) the deterministic version of our tractography
algorithm summarized in Section 4.2.5, respectively. As seed point, we choose a

1http://www.mrtrix.org/

56

http://www.mrtrix.org/


4.3. Experiments and Results

(a) Ground truth. (b) Basic algorithm.

(c) Extrapolation guided. (d) Forward search.

(e) Minimum distance min
t

∥∥∥xcircle(t)− x(k)
∥∥∥

2
of the counter-clockwise track from the

ground truth curve xcircle(t).

Figure 4.5.: Comparison of results for fiber tracking on the simulated data for three
different methods with step length λ = 0.2. Each method is used to generate one track
(plotted in blue) in clockwise and counter-clockwise direction, respectively, starting
from a seed point on the top left highlighted in yellow in Subfigures 4.5b, 4.5c, 4.5d
and by the white arrow in Figure 4.5a. The maximum number of iterations is set to
2000.
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point on the top right of the circle highlighted by the white arrow in Figure 4.5a.
The step lengths λ and µ are chosen as 0.2× voxel-size and the maximum num-
ber of iterations is set to 2000. The basic tractography algorithm whose result
is shown in Figure 4.5b successively steps in the direction maximizing the local
ODF. The optimal direction is searched for in each iteration step in a region of
ϕ = π/36 around the former tracking direction, thus allowing for a maximum of
5◦ difference between consecutive tracking directions. This curvature restriction
is chosen to avoid problems at the crossings while it still allows enough flexibility
in tracking the circle with radius ≈ 9× voxel-size (discretizing the ground truth
circle with step-length 0.2×voxel-size results in circle segments of angle ≈ 1.27◦).
The algorithm used to generate the track in Figure 4.5c merely differs in the fact
that in each iteration step k the maximum is located in a region of ϕ = π/36
around the guiding direction d

(k)
extr determined by extrapolation of a quadratic

polynomial fitted through the N = 6 previously tracked points. Figure 4.5d
shows results for the forward search algorithm without further refinement, i.e.
simply taking the direction obtained from the maximum a-posteriori estimate.
We choose the further parameters as follows: The number of forward search steps
is set to n = 2, we compute the guiding direction from N = 6 previously tracked
path points as explained above, and the standard deviation of the Gaussian tran-
sition probabilities (see equation (4.4)) is set to σ = 2π. Moreover, the angle
indicating the size of the candidate region around d(k)

extr is set to ϕ = π/36. For
2562 sampling points on the sphere, this results in approximately 5-6 candidate
directions per cone-shaped region. Besides, this choice allows for approximately
the same maximum deviation between successive tracking directions as for both
other methods regarded in this section. Regarding the tractography results of
the different algorithms we observe the following: Applying the basic algorithm,
the evolving fiber track is spiraling outward and deflects after several rounds at
the margin of one of the crossing structures, as can be seen in Figure 4.5b. For
instance, the track that is running in counter-clockwise direction breaks after
397 iterations (≈ 1.5 circles). As shown in Figure 4.5c, including a guiding di-
rection by extrapolation the tracking algorithm performs much better. However,
also severe deviations from the ground truth can be discovered that finally re-
sult in deflection from the ring and subsequent termination in counter-clockwise
direction, though only after 1000 iteration (≈ 3.5 circles). In comparison, in
Figure 4.5d it can be observed that when applying two steps of forward search
the tracked path shows hardly any deviations from the ground truth even after
the maximum of 2000 iterations (≈ 7 circles). In Figure 4.5e, the deviation of
the current path point x(k) from the ground truth circle xcircle(t) calculated as
min
t

∥∥∥xcircle(t)− x(k)
∥∥∥

2
is plotted against the number of iteration steps k for the

three different methods.
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4.3.2. Fiber Cup Phantom

In this section, we analyze the performance of our method on the Fiber Cup dif-
fusion phantom data described in Section 3.2.1. We test both deterministic and
probabilistic version of Algorithm 4.1 and compare them to the basic methods
stated in Algorithms 2.1 and 2.2, and to state-of-the-art algorithms.

Qualitative Analysis

In Figure 4.6a, the Fiber Cup phantom is illustrated showing ground truth and
three regions where we analyze the tractography results and compare them to
the deterministic SD_Stream with 4-th order Runge-Kutta integration and the
probabilistic IFOD-2 algorithm, both included in the MRtrix software. The first
region consists of a U-shaped bundle, the second region includes an approxi-
mately 90◦-fiber-crossing and the third region a crossing of approximately 70◦.
In Figure 4.6b, results of the deterministic version of our proposed algorithm
are shown using ODF data obtained using CSD with spatial regularization. The
parameter settings of the tractography algorithm are as follows: We chose step
length λ = 0.5 × voxel-size for tract evolution, n = 2 forward search steps, for-
ward search step length µ = 1 × voxel-size, standard deviation σ = π for the
transition probabilities, regularization parameter β = 0.5 for the computation
of the overall tracking direction, and the N = 6 previously tracked points for
extrapolation of a guiding direction. The angle indicating the maximum allowed
deviation of candidate directions from the guiding direction is set to ϕ = π/9,
resulting in approximately 20 candidate directions per cone-shaped region. The
algorithm terminates if it enters the regions resembling gray matter and CSF de-
fined in Figure 4.6c, or if it leaves the circular phantoms boundaries. Moreover,
the data has been zero-padded in the third dimension, which is originally only
three slices thin, to avoid early termination due to exiting the spatial dimensions
of the phantom. Figure 4.7 compares results of a basic tractography algorithm
and the forward search algorithm with respect to the three rectangular regions
in Figure 4.6a. The seed points are the same as those used in Figure 4.6b. In
the first row of Figure 4.7, the outcome of the basic tracking method labeled
Algorithm 2.1 is shown using spatially regularized ODF data. The basic algo-
rithm successively steps with step length λ = 0.5 × voxel-size in the direction
that maximizes the local ODF. In each iteration step, the maximizing direction
is located in a region of ϕ = π/9 around the previous tracking direction, which
allows for a maximum of 20◦ difference between successive tracking directions.
Regarding the sharp bending in Region 1, it can be observed that all tracks
terminate before completing the U-turn. On the other hand, the 90◦-crossing
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(a) Ground truth. (b) Results. (c) Segmentation.

Figure 4.6.: GFA map of the Fiber Cup phantom overlaid with left: ground truth
fibers, three regions of interest and angles ϕ1 ≈ 70◦, ϕ2 ≈ 90◦, and middle: fiber
tracking results using our proposed deterministic forward search method with 20 seed
points randomly selected in each of the areas framed in blue. right: Mask defining
white matter (white), gray matter (light gray) and fluid filled regions (dark gray). The
12 seed regions used for quantitative analysis are highlighted in red.

(a) Basic algorithm

(b) Forward search

(c) SD_Stream -rk4

Figure 4.7.: Deterministic tractography results for the three regions specified in Fig-
ure 4.6a using fiber ODF data obtained with spatially regularized CSD. Top row:
Basic algorithm with step length λ = 0.5×voxel-size. Middle: Forward search method
with λ = 0.5× voxel-size. Bottom row: MRtrix SD_Stream algorithm with 4-th order
Runge-Kutta integration, step size 0.5×voxel-size and default maximum angle between
successive steps (45◦).

60



4.3. Experiments and Results

and the more challenging 70◦-crossing in the third column are correctly passed
by all tracks. Shown in the second row are enlarged image details of the results
of our forward search algorithm presented in Figure 4.6b. Here, not only do all
tracks perfectly pass the 90◦-crossing and 70◦-crossing, but also the U-turn is
tracked by all fibers without deviation. In the bottom row, results for applying
the SD_Stream algorithm with 4-th order Runge-Kutta integration included in
MRtrix are shown. The step size is chosen, equal to the other two methods,
as 0.5 × voxel-size . According to the step size, the default angle between suc-
cessive steps is used (90◦× step-size/voxel-size = 45◦). The algorithm performs
very good for the straight bundles. Regarding the sharp bending, SD_Stream
performs better than the basic algorithm, but still most tracks break without
completing the turn.

In Figure 4.8, we compare the probabilistic version of our forward search method
to the simple probabilistic tractography algorithm referred to as Algorithm 2.2,
and to the MRtrix IFOD-2 method. Tracking starts from 2000 seed points ran-
domly selected in each of the three regions that where also used for the deter-
ministic tracking in Figure 4.6b. The basic probabilistic algorithm regards the
ODF at the current spatial position as a probability distribution restricted to a
region of maximum deviation of 20◦ from the former tracking direction. In each
iteration, the track evolves by stepping with step length λ = 0.5 × voxel-size
in a direction drawn from this distribution. The results are shown in Figure
4.8a in the form of general fractional anisotropy (GFA) maps with voxels col-
ored according to the number of tracks passing through. The number of voxel
visits is summed up along the three slices of the data set in the third dimen-
sion. Similarly, the results for the probabilistic forward search algorithm setting
λ = 0.5× voxel-size, µ = 1× voxel-size, n = 2, N = 6, σ = π, and ϕ = π/9 are
presented in Figure 4.8b. Regarding the first region of interest, none of the 2000
tracks generated by the basic algorithm manages the U-turn without deflection,
while it is passed by 1050 of 2000 tracks produced by the forward search method.
Starting in the second seed region, 807 of 2000 tracks resulting from the basic
algorithm and 1708 of 2000 tracks resulting from the forward search algorithm
correctly pass the 90◦-crossing. Furthermore, after the 70◦-crossing in Region 3,
we count 87 of 2000 tracks from the basic algorithm and 1275 of 2000 tracks gen-
erated by our algorithm that had started in the third region. In Figure 4.8c, the
results for IFOD-2 using the default parameter settings (λ = 0.5×voxel-size, 45◦
maximum angle between successive steps) are shown. Here, 320 of 2000 tracks
manage to track the U-turn, 1163 of 2000 correctly pass the 90◦-crossing, and
154 of 2000 the 70◦-crossing.
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(a) Basic probabilistic algorithm (number of track visits)

(b) Probabilistic forward search algorithm (number of track visits)

(c) MRtrix IFOD-2 (number of track visits)

Figure 4.8.: Probabilistic tractography results for the three regions specified in Figure
4.6a, comparing a basic probabilistic algorithm (Figure 4.8a), our proposed method
(Figure 4.8b), and the MRtrix IFOD-2 algorithm with default parameters (Figure
4.8c). Tracking starts from 2000 seed points randomly selected from inside the region
defined in yellow. The voxels are colored according to the number of track visits on a
logarithmic scale.
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Quantitative Analysis

For the Fiber Cup phantom, we model white matter, gray matter, and CSF as
shown in Figure 4.6c. The fiber ODF data was zero-padded in third dimension as
described above and set equal to zero in CSF regions. This causes a weighting of
candidate directions according to this information, as theoretically described in
Section 4.2.4. For quantitative analysis, 100 seed points per region were randomly
selected on the interface between white and gray matter. Tracks were generated
from these (identical) seed points using the deterministic and probabilistic basic
in-house algorithms described above, the deterministic and probabilistic versions
of the proposed algorithm, and both the deterministic SD_Stream with 4-th
order Runge-Kutta integration and the probabilistic IFOD-2 included in MRtrix.
Moreover, we ran our proposed method on (spatially regularized) ODF data
where the CSF regions where not set to zeros for comparison. The results are
stated in the column with heading not anatomically-informed. The algorithms
stop if entering CSF regions, reach gray matter, or the outer bounds of the
circular phantom.

We used Algorithm 2.3 to categorize the tracks and computed the Tractometer
values defined in Section 2.7.3 to evaluate the results. Valid connections (VC),
invalid connections (IC), no connections (NC), valid connection to connection
ratio (VCCR) and connection to seed ratio (CSR) are listed in percent in Tables
4.1 and 4.2 for the performance on the overall dataset of the deterministic and
probabilistic algorithms, respectively. In Table 4.1, we observe that the proposed

spatially regularized fODF standard fODF
basic proposed SD_Stream

-rk4
basic proposed SD_Stream

-rk4
na

VC 40.25 90.58 75.33 54.65 31.17 87.42 32.43
IC 2.33 6.25 2.08 0.00 11.08 7.00 2.54
NC 57.42 3.17 22.58 43.67 57.75 5.58 62.66

VCCR 94.52 93.55 97.31 100.00 73.77 92.59 92.74
CSR 42.58 96.83 77.42 55.58 42.25 94.42 35.82

Table 4.1.: Tractometer values for the three deterministic algorithms compared on the
Fiber Cup phantom (na = not anatomically-informed). All data are given in percent.

method has the highest percentage of VC and the lowest percentage of NC using
both standard and spatially regularized fODFs. The VCCR is above 90% for all
methods, whereas the proposed method achieves the highest CSR. MRtrix could
not generate tracks from approximately 2% of the seed points for SD_Stream
which does not have a significant influence on the CSR values. Note, that we
did not include these as no connections. Regarding results for the probabilistic
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spatially regularized fODF standard fODF
basic proposed IFOD-2 basic proposed IFOD-2

na
VC 0.58 56.83 26.92 12.83 0.83 51.25 9.92
IC 0.67 25.67 10.08 11.17 1.25 25.25 7.42
NC 98.75 17.50 63.00 74.92 97.92 23.50 81.75

VCCR 46.67 68.89 72.75 53.47 40.00 66.99 57.21
CSR 1.25 82.50 37.00 24.26 2.08 76.50 17.49

Table 4.2.: Tractometer values for the three probabilistic algorithms compared on the
Fiber Cup phantom (na = not anatomically-informed). All data are given in percent.

algorithms in Table 4.2, the proposed method has again the highest percentage
of VC and CSR and the lowest percentage of NC. The rather high amount of
invalid connections is due to the fact that overall very few tracks terminate in
white matter. Essentially, invalid connections can be reduced in the proposed
method (though at the cost of VC) by terminating if the posterior probability falls
below a certain threshold. The VCCR is comparatively high with around 70%.
Comparing the two settings of the proposed method, we observe that especially
the probabilistic algorithm benefits from using information about CSF regions
in the tracking process.

Effects of Parameter Changes

Figure 4.9 illustrates the effects of parameter changes with respect to two of
the regions considered above. All other parameter choices are equal to those
described above. Different choices for the forward search step length µ, are
shown in Figure 4.9a. It is not advisable to chose µ much smaller than the
actual step length λ. The result could be improved by increasing the number
of forward steps n, but this would increase computation time. On the other
hand, selecting µ to large causes inaccuracies because of skipping the immediate
neighborhood. Different settings for parameter σ are shown in Figure 4.9b. A
decrease in clustering of tracks can be observed with decreasing σ, since the
impact of the guiding direction becomes stronger while the information obtained
by the ODF field is down weighted. These qualitative results are supported by
a quantitative evaluation according to the definitions of Section 2.7.3, which is
summarized in Table 4.3. One can observe that choosing the forward search step
length µ smaller than the actual step length λ (here: µ = 0.2, λ = 0.5) can cause
problems in those bundles with high curvature (4-5 and 8-9), since then forward
searching is too local and has no effect. On the other hand, if the immediate
neighborhood is skipped by selecting µ much larger than λ (here: µ = 1.5, λ =
0.5) difficulties in tracking bundle 6-11, which is straight but includes crossing
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µ = 0.2 µ = 1 µ = 1.5
(a) Effect of changing the forward search step length parameter µ.

σ = π σ = π/2 σ = π/4
(b) Effects of changing parameter σ.

Figure 4.9.: Effects of parameter change regarding the proposed method. The other
parameters are chosen as described in Section 4.3.2
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and kissing structures, can occur. The effects of changing parameter σ, which
were visually distinguishable in Figure 4.9 as the degree of clustering of tracks,
are insignificant with respect to the quantitative results.

4.3.3. ISBI 2013 HARDI Reconstruction Challenge Data

We also tested and compared our algorithm quantitatively on simulated data
used for a reconstruction challenge at ISBI 2013. A more detailed description
of the data set can be found in Section 3.1.2. The tractography algorithms are
initialized from 100 seed points per seed region using the same parameter settings
as in Section 4.3.2 for the Fiber Cup phantom. We define the seed regions as
gray matter regions and obtain a binary white matter mask from thresholding
ADC, i.e. setting all voxel with ADC ≥ 0.6 to one. The algorithm stops when
the track leaves white matter. In Table 4.4, the Tractometer values described in
Section 2.7.3 are presented. Among the deterministic algorithms, our proposed
deterministic method performs only slightly better for the SNR = 30 data with
respect to valid connections. On the other hand, regarding the results for the data
set with SNR = 10 the proposed algorithm stands out with more than 20% more
VC than the basic deterministic Algorithm 2.1 and the SD_Stream algorithm.
The results for the proposed probabilistic algorithm show significantly more VC
than for the basic probabilistic Algorithm 2.2 and IFOD-2 for both data sets.
Furthermore, NC are increasing for SD_Stream and IFOD-2 with decreasing
SNR while remaining almost constant for the proposed methods. The relatively
high percentage of IC connections for the proposed probabilistic method can be
reduced by for instance terminating the algorithm if the posterior probability
is below a threshold. In the column headed cutoff, metrics for the probabilistic
method where tracks are terminated if the posterior is below 0.005 are given.
Though this results in a decrease of valid connections and an increase of no
connections, the proportion of invalid connections is reduced by about 40%.

4.3.4. ISMRM 2015 Tractography Challenge Data

Furthermore, we tested our algorithm on the ISMRM 2015 tractography chal-
lenge data described in Section 3.1.3 and compared the results quantitatively to
the basic deterministic and probabilistic algorithms described in Section 2.7.1,
and to SD_Stream and IFOD-2 from MRtrix. Tractography starts from the end-
points of 200 randomly selected GT tracks per bundle. The parameter settings
of the algorithms are the same as in Sections 4.3.2 and 4.3.3. Tractography ter-
minates if a track leaves the WM mask defined by all voxels containing ground

66



4.3. Experiments and Results

Figure 4.10.: Valid connection (VC) tracks generated for the ISMRM 2015 tracto-
graphy challenge data by the proposed algorithm.

truth fiber tracks, or if the ODF evaluated at the current tracking direction is
below a threshold. The threshold is set to 0.08 for basic and proposed algorithms,
and to the MRtrix default for SD_Stream and IFOD-2. The threshold was not
selected equally for all algorithm, because the MRtrix algorithms yielded better
results for their default cutoff value than for the value more suitable for the other
algorithms. Moreover, track length is restricted to a minimum of 5 and a maxi-
mum of 100×voxel-size. For the quantitative evaluation we define end regions as
voxels with endpoints of the respective ground truth bundles. Tracks are catego-
rized using Algorithm 2.3. In Table 4.5, the results of the Tractometer evaluation
are listed. In addition to VC, IC, NC, VCCR, and CSR, we also counted the
number of valid bundles (VB) and invalid bundles (IB) that were detected by
the algorithms. As some end regions are overlapping, an invalid track can be
assigned to more than one invalid bundle. IB contains all possible combinations
and is thus rather high for all algorithms. Regarding the deterministic tracking
algorithms, our proposed method generates about 30% more VC and more than
70% less NC than the other two methods. All three algorithms perform simi-
lar with respect to IC, whereas VCCR is slightly higher and CSR considerable
higher for the proposed algorithm. Of the 25 ground truth bundles, all but the
posterior commissure are detected. Comparing the probabilistic algorithms, the
proposed method and IFOD-2 perform rather similar. On the other hand, the
simple probabilistic algorithm produces a lot of NC, verifying the advantage of
tracking algorithms of higher order. Figure 4.10 shows the tracks generated by
the proposed deterministic algorithm that were assigned to the valid connection
category.

4.3.5. In Vivo Human Brain

In this section we test our method on an in vivo data set provided by the Human
Connectome Project. A detailed description of data properties and preprocess-
ing steps can be found in Section 3.3. ODF reconstruction in a part of the
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centrum semiovale is depicted in Figure 4.11, along with a corresponding deter-
ministic tracking experiment using the proposed algorithm originating from a
seed region in the corpus callosum. Parameter settings for both deterministic
and probabilistic version of our algorithm (summarized in Section 4.2.5) are as
follows: We chose a tract propagation step size of λ = 0.5 × voxel-size, forward
search with n = 2 steps and step length µ = 1 × voxel-size, N = 5 path points
for the extrapolation strategy, and regularization parameter β = 0.03. Trac-
tography experiments were performed seeding from three different regions: the
corpus callosum in the mid-sagittal slice, the pyramidal tracts, and the cingulum
bundles. The exact locations are illustrated in the right column of Figure 4.12
as projections onto a sagittal, coronal and transversal slice, respectively. The
prior distribution was adapted to the different brain regions with respect to the
standard deviation using σ = π/14 for the tracks starting in the corpus callo-
sum, σ = π/18 for the pyramidal tracts, and σ = π/2 for the cingulum bundles.
The angle determining the difference from the former tracking direction was set
consistently to ϕ = π/18, corresponding to approximately 7 candidate directions
per cone-shaped region. Tracking starts in left and right direction from the seed
region in the corpus callosum of the mid-sagittal slice, in (+/-)-direction of prin-
ciple diffusion from the seed region of the pyramidal tracts, and in anterior and
posterior direction from the seed region in the cingulum bundles. The tracking
algorithm stops when reaching a voxel outside the valid domainW ⊂ Ω obtained
by combining the white matter mask with GFA and ADC thresholding. In Figure
4.12, results for the deterministic basic tractography Algorithm 2.1 and for our
proposed deterministic algorithm are compared. The basic algorithm generates
streamlines by following with step size λ = 0.5×voxel-size the ODF maximizing
direction that lies in a region of ϕ = π/18 around the former stepping direction.
Thus, both algorithms allow for a maximum of 10◦ difference between successive
steps. For each voxel in the seed region, 9 tracks were generated, respectively.
The fibers generated from seeding in the corpus callosum appear similar. Com-
pared to the tractogram on the right obtained from our proposed algorithm, the
lateral bundles in the tractogram generated by the basic algorithm appear more
sparse. Vice versa, the vertical projections are a bit more pronounced for the
basic algorithm. Increasing parameter σ, our method approaches the outcome
of the basic algorithm. The results for the pyramidal tracts demonstrate the
potential of our method to increase lateral projection fibers. The result obtained
from the basic method captures merely a vertical course of fibers, whereas us-
ing the proposed algorithm the fiber tracks show a broader dispersion towards
the cortex. Regarding the outcome for the cingulum bundle, the result from
the proposed forward search method appears smoother with less spurious tracks.
Furthermore, the challenging sharp bendings are managed much better as com-
pared to the basic algorithm. In Figure 4.13, results for different choices of
parameter σ are shown. It can be observed, that a small value for σ promotes
smooth tracks, but results in earlier termination of the curvy regions of the cin-
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gulum bundle. On the other hand, a larger value for σ reduces the reconstruction
of lateral connections in the corpus callosum or pyramidal tracts. Results for a
first approach to include anatomical information in our tractography algorithm
are shown in Figure 4.14. Therefore, the prior probability was in each forward
search step multiplied by the sum of WM and GM partial volume map at the re-
spective path point. Tracking terminates when GM or CSF partial volume maps
are ≥ 0.5 or if the brain region is left. The results show less spurious tracks,
but also an earlier termination of tracks. Probabilistic tractography experiments
using our proposed algorithm are illustrated in Figure 4.15. Here, 90 tracks were
generated from each voxel in the seed region, respectively. Next to the plotted
tracks, a GFA map with voxels colored according to the number of track visits is
shown for the three regions of interest, respectively. For these probability maps,
the number of tracks passing through is summed up along 20 slices whose exact
location is highlighted in the S0 images on the right side.

4.3.6. Spherical Diffusion Phantom

Furthermore, we tested the proposed method on data obtained from the spherical
diffusion phantom described in Section 3.2.2. Computation and visualization
were performed using the diffusion MRI postprocessing kit pk. The tractography
algorithm parameters were chosen as in Section 4.3.2 for the Fiber Cup phantom,
that is λ = 0.5 × voxel-size, n = 2, µ = 1 × voxel-size, σ = π, β = 0.5, N = 6,
and ϕ = π/9. The algorithm terminates if FAψ < 0.2. For comparison, we also
computed results using the DT-based FACT algorithm included in pk. Here, the
algorithm stops if the angle between successive directions is larger than 20◦, and
FAD < 0.08. We experienced that increasing the FA threshold resulted in early
termination of tracks in the crossing regions. Figures 4.16 and 4.17 illustrate
the results for seeding in the bundle that crosses both other bundles at 60◦ and
30◦ angle, respectively. The exact seeding ROI is located in the mid-coronal
slice and highlighted in red in Figure 4.16a. Tractography starts bi-directionally
from the points in the center and at the corners of each voxel in the ROI. In
Figures 4.16b and 4.16c, the results are shown after the tracks passed through
the crossing for the first time. The bundle resulting from the FACT algorithm
fans out at the crossing, i.e. some tracks pass the crossing correctly while others
make a wrong turn. This is due to the fact that, as described in Section 2.4, the
diffusion tensors at the crossings are isotropic. On the other hand, the crossings
are passed correctly without deviations by the proposed ODF-based algorithm.
Figure 4.17 shows results where the maximum number of iteration steps of the
tracking algorithm is set to 500, but otherwise the parameter setting is the same
as above. 500 iteration steps equal approximately 2-3 circles around the sphere.
Now, also the proposed algorithm produces a few tracks that make a wrong turn
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ODF-field in a coronal slice Tracking result

Figure 4.11.: ODFs (bottom left) and deterministic tractography using the proposed
algorithm (bottom right) in a part of the centrum semiovale. The location and seed
region for tractography are highlighted above.
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Basic algorithm Forward search

Figure 4.12.: Deterministic tractography results for basic and the proposed forward
search method with extrapolation guiding. First row: seeding in the center sagittal
slice of the corpus callosum, second row: seeding in the pyramidal tracts, third row:
seeding in the cingulum bundles. The seed regions are highlighted in the last column,
respectively.
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σ = π

σ = π/18

Figure 4.13.: Comparison of different choices for parameter σ. Seed regions and the
other parameters are equal to those used for forward search in Figure 4.12.

cingulum bundle corpus callosum pyramidal tracts

Figure 4.14.: Results for the anatomically-informed deterministic forward search
method using the same parameter settings as for the results in Figure 4.12.
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Figure 4.15.: Probabilistic tractography results using the proposed algorithm. First
row: seeding in the corpus callosum, second row: seeding in the pyramidal tracts, third
row: seeding in the cingulum bundles. The seed regions are the same as in Figure 4.12.
The colored GFA maps in the second column show on a logarithmic scale the number
of track visits per voxel summed up along the 20 slices highlighted in red on the right
side, respectively. A projection of the seed region from these 20 slices is highlighted in
yellow. 73
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(a) seedregion (b) DT-based (c) proposed

Figure 4.16.: Tractography results of the crossing region after the first pass through.

(a) DT-based (b) proposed

Figure 4.17.: 3D view of tractography results for maxIter = 500.

at the 30◦ crossing, which is mainly due to the improperly resolved 30◦ crossing
of the ODF reconstruction discussed in Section 3.2.2.

4.4. Discussion

Qualitative, Quantitative Analysis and Comparison

We compared our algorithm to a purely local streamline method, and to SD_-
Stream with 4-th order Runge-Kutta integration and IFOD-2 from MRtrix.
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Qualitatively, the proposed deterministic and probabilistic methods show a clear
advantage with respect to the number of valid tracks. For quantitative eval-
uation, we regarded the Tractometer values introduced by Côté et al. (2013).
Here, our method has the highest percentage of valid and the lowest percentage
of no connections for experiments performed on Fiber Cup, ISBI phantom, and
ISMRM challenge data. Since almost no tracks terminate before reaching the
gray matter regions defined for the phantoms, the method shows also a certain
increase of invalid tracks. That number can be reduced by introducing a cut-
off threshold, as described below in the discussion part about stopping criteria.
Moreover, we show qualitative results for in vivo data obtained from the HCP
for three different bundles. Compared to the purely local streamline method,
results benefit from the use of the proposed algorithm. For instance, the fiber
tracks tracing the pyramidal tracts fan out more broadly towards the cortex and
also in the tracking results of the corpus callosum, laterality is more pronounced.
Moreover, tracking of the cingulum bundles involving difficult crossings as well
as narrow curving structures yields reasonable results. A limitation is, that in
vivo the parameter σ (standard deviation) that regulates the narrowness of the
truncated Gaussian transition probabilities forming the prior distribution may
have to be adapted. However, promising quantitative results for the ISMRM 2015
tractography challenge data show that the proposed algorithm also performs well
on data simulating realistic WM fiber bundles with constant parameter σ.

Parameter Choice

Table 4.6 summarizes the parameters of the proposed algorithm and suggests
ranges for n, µ, σ, ϕ, N , and β for a fixed step length of λ = 0.5 × voxel-size.
Parameter ϕ defines the maximum deviation angle of the candidate directions
from the former direction. Decreasing ϕ results in smooth tracks, where increas-
ing it promotes structures of high curvature. We suggest to choose ϕ between 18◦
and 30◦. The forward search step length µ has been introduced to the algorithm
to decouple forward search from actual step length λ for more flexibility. The
smaller the value for µ is chosen, the more forward search steps n are necessary for
a good result. Since computation time increases with n, the number of forward
search steps, we recommend to use only a subset of most promising candidate
directions, or a smaller angle ϕ, when selecting n > 3. On the other hand, setting
µ larger than one voxel-size leads to inaccuracies due to skipping the immediate
neighborhood. Therefore, we suggest to choose µ ∈ [λ, voxel-size]. Regarding
extrapolation, we suggest to choose the number of previous points included in
the curve fitting process between 3 and 10 for a step length of 0.5 × voxel-size.
Parameter σ controls the shape of the Gaussian prior distribution. Increasing σ
increases the influence of the guiding direction but reduces the influence of the
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fiber ODF information on the overall tracking direction. It has to be adapted
according to data set and ODF reconstruction to find a trade-off between pro-
moting straight and curved structures.

Stopping Criteria

Regarding the majority of results shown in the previous sections, the proposed
algorithm is terminated when it encounters a region which is not supported by a
predefined binary mask. However, it is also possible to define a threshold on the
a-posteriori probability to terminate or even reject a track that is not supported
by the local neighborhood. For the simulated data set, we showed that stopping
the algorithm if the a-posteriori probability at the current path point fell below
a certain value, could decrease the amount of invalid connections.

Including Anatomical Priors

We showed that anatomical information of binary or tissue partial volume maps
can be included in the Bayesian framework to inform tractography, similar to the
particle filtering algorithm presented by Girard et al. (2014). Especially for the
phantom data, we observed that our proposed algorithm performed better with
respect to the number of valid connections when information about the location
of modeled CSF and white matter was incorporated into the prior distribution.
For the in vivo data set, we showed first results of a straightforward approach to
inform our algorithm by partial volume maps.

4.5. Related Work

Previously, different approaches for neighborhood informed tractography have
been introduced, e.g. in Savadjiev et al. (2008); Tournier et al. (2010); Dhol-
lander et al. (2014); Smith et al. (2012); Zhang et al. (2009); Pontabry and
Rousseau (2011); Rowe et al. (2013); Girard et al. (2014). Zhang et al. (2009);
Pontabry and Rousseau (2011); Rowe et al. (2013); Girard et al. (2014) combine
probabilistic streamline tracking with a particle filter (sequential Monte Carlo
methods). There, a finite number of particles is propagated from a seed point by
drawing samples from an importance function and assigning weights to the evolv-
ing path according to a recursively defined posterior distribution. The methods
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differ in the diffusion model that contributes to the posterior distribution as ob-
servation density. For instance, instead of using a single tensor diffusion model
as in Zhang et al. (2009), Pontabry and Rousseau (2011) extend the method
incorporating the Q-ball diffusion model. Subsequently, Zhang et al. (2009);
Pontabry and Rousseau (2011); Girard et al. (2014) perform a resampling step
where particles with low weights are eliminated and particles with high weights
are emphasized. In contrast, the method described by Rowe et al. (2013) uses
particle filtering only over a short distance in each streamline iteration step to
explore the neighborhood and select the new propagation direction accordingly.
Particle filtering methods are similar to our approach in the sense of a forward
exploration scheme derived from a stochastic framework, but differ in the un-
derlying Bayesian model. Yet another similar method with respect to forward
exploration, though not based upon a Bayesian approach, is the second order
integration probabilistic streamline method proposed in Tournier et al. (2010).
Here, candidate paths originating from the current point are chosen as circular
arcs tangent to the current tracking direction and evaluated based on a probabil-
ity density function. Another difference compared to our approach is that these
two methods only generate probabilistic tracks while we derive both a determin-
istic and a probabilistic algorithm. Track orientation distribution (TOD) based
tractography recently introduced by Dhollander et al. (2014) can be seen as an-
other related approach. The TOD, a function on the 5d spatio-angular domain,
indicates the existence of fiber tracks along certain orientations. Since TODs
are obtained from continuity constrained short-tracks tractograms, TOD-based
tractography is informed by the track-like structure of the local neighborhood
leading to more coherent tractography results. A different concept of neighbor-
hood informed tractography is described by Savadjiev et al. (2008). There, an
ODF-based labeling scheme is presented assigning to each voxel one of the four
associated tract configurations cross, fan, single, or unknown. To distinguish
between fanning and single fiber tract, a differential geometry framework is used
that approximates tracts in each voxel by helical curves supported by a local
neighborhood. A deterministic tracking algorithm is then applied based upon
this advance information. These latter two methods have in common that, com-
pared to Rowe et al. (2013); Tournier et al. (2010) and the algorithm proposed
in this thesis, neighborhood exploration is carried out in a preprocessing step
before the actual tractography algorithm is applied. Beyond using only the in-
formation provided by the diffusion signal, Smith et al. (2012) and Girard et al.
(2014) propose methods for anatomically-informed tractography. For instance,
Smith et al. (2012) introduce a back-tracking strategy which cuts and re-tracks
streamlines that are not sufficiently supported by anatomical image data. Girard
et al. (2014) extend this idea including tissue partial volume information derived
from a T1-weighted image in the weighting process of the particle filtering algo-
rithm.

77



4. A Bayesian Approach for Neighborhood-Informed Tractography

bundle µ = 0.2 µ = 1 µ = 1.5 σ = π
4 σ = π

2 σ = π
3-(1,10,12) VC 94.25 97.50 98.00 97.25 97.75 97.50

IC 0.00 0.50 1.50 0.50 0.50 0.50
NC 5.75 2.00 0.50 2.25 1.75 2.00

VCCR 100.00 99.49 98.49 99.49 99.49 99.49
CSR 94.25 98.00 99.50 97.75 98.25 98.00

2-7 VC 90.50 100.00 100.00 100.00 100.00 100.00
IC 6.00 0.00 0.00 0.00 0.00 0.00
NC 3.50 0.00 0.00 0.00 0.00 0.00

VCCR 93.78 100.00 100.00 100.00 100.00 100.00
CSR 96.50 100.00 100.00 100.00 100.00 100.00

4-5 VC 14.00 100.00 100.00 99.50 100.00 100.00
IC 0.00 0.00 0.00 0.00 0.00 0.00
NC 86.00 0.00 0.00 0.50 0.00 0.00

VCCR 100.00 100.00 100.00 100.00 100.00 100.00
CSR 14.00 100.00 100.00 100.00 99.50 100.00

6-11 VC 86.50 61.00 0.00 72.00 70.50 61.00
IC 5.50 32.50 95.50 22.00 25.50 32.50
NC 8.00 6.50 4.50 6.00 4.00 6.50

VCCR 94.02 65.24 0.00 76.60 73.44 65.24
CSR 92.00 93.50 95.50 94.00 96.00 93.50

8-9 VC 12.50 87.50 61.00 86.00 85.50 87.50
IC 9.00 4.00 0.00 5.00 4.00 4.00
NC 78.50 8.50 39.00 9.00 10.50 8.50

VCCR 58.14 95.63 100.00 94.51 95.53 95.63
CSR 21.50 91.50 61.00 91.00 89.50 91.50

all VC 65.33 90.58 76.17 92.00 91.92 90.58
IC 3.42 6.25 16.42 4.67 5.08 6.25
NC 31.25 3.17 7.42 3.33 3.00 3.17

VCCR 95.03 93.55 82.27 95.17 94.76 93.55
CSR 68.75 96.83 92.58 96.67 97.00 96.83

Table 4.3.: Tractometer values for different choices of µ and σ. All data are given
in percent. The bundles are defined by connected end regions numbered as in Figure
4.6c.
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deterministic probabilistic
basic proposed SD_Stream

-rk4
basic proposed IFOD-2

cutoff
SNR 30

VC 71.65 78.85 76.05 49.30 68.70 42.85 51.10
IC 14.20 16.05 12.47 19.75 22.75 13.75 21.85
NC 14.15 5.10 11.47 30.95 8.50 43.40 27.05

VCCR 83.46 83.09 86.89 71.40 75.12 75.71 70.05
CSR 85.85 94.90 87.53 69.05 91.50 56.60 72.95

SNR 10
VC 55.50 66.95 52.08 36.05 51.70 35.23 29.70
IC 29.80 27.70 19.57 28.70 39.70 21.79 23.00
NC 14.70 4.95 28.35 35.25 8.20 42.88 47.20

VCCR 65.06 70.73 72.69 55.68 56.56 61.79 56.36
CSR 85.30 95.03 71.65 64.75 91.77 57.05 52.75

Table 4.4.: Tractometer values comparing deterministic and probabilistic algorithms
on the ISBI phantom. Fiber ODFs were derived with standard CSD using MRtrix. All
data are given in percent.

deterministic probabilistic
basic proposed SD_Stream

-rk4
basic proposed IFOD-2

VC 56.83 80.03 61.83 1.19 21.86 20.92
IC 13.17 13.19 13.16 7.53 16.75 17.44
NC 30.00 6.78 25.01 91.28 61.39 61.65

VCCR 81.18 85.85 82.45 13.66 56.61 54.54
CSR 59.31 79.60 67.62 4.76 28.30 34.93
VB 24 24 24 11 23 23
IB 423 348 442 253 501 532

Table 4.5.: Tractometer values comparing deterministic and probabilistic algorithms
on the ISMRM 2015 tractography challenge data. Fiber ODFs were derived with
standard CSD using MRtrix. The numbers for VC, IC, NC, VCCR, and CSR are
given in percent. VB and IB denote the number of detected valid and invalid bundles,
respectively.
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Param. Function Range
n number of forward search steps 0 < n ≤ 3 (larger

where appropriate)

µ forward search step size µ ∈ [λ, voxel-size]

σ standard deviation of Gaussian
function of prior distribution

σ ∈ ]0, 2π]

ϕ maximum deviation of candidate
directions from former direction

ϕ ∈ [ π10 ,
π
6 ]

N number of points used to deter-
mine guiding direction

3 ≤ N ≤ 10

β smoothing parameter 0 < β < 1

Table 4.6.: Suggested parameter ranges for λ = 0.5× voxel-size.
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5. Microstructure-Informed Global
Tractography

Previously, we have described and developed tractography strategies that prop-
agate streamlines based on diffusion information of the local neighborhood. In
this chapter, we focus on the global support of a tractogram by the underly-
ing DW-MRI data. The methods described in Daducci et al. (2013, 2015) and
Pestilli et al. (2014) seek to model the diffusion MR signal from a large set of
candidate fibers obtained from an arbitrary tractography algorithm. In an opti-
mization procedure, weights to the candidate fibers are adjusted, such that the
modeled signal best fits the measured one. By this means, these methods can
serve to quantify the quality of a tractogram, as well as filter out tracks that
do not well support the diffusion data. In Sections 5.1 and 5.2, we summarize
the approach described in Daducci et al. (2015), where the DW-MR signal is
modeled by three compartments to account for tissue microstructure, and the
model fitting problem is expressed as a convex `1-norm minimization problem.
By the three compartment model, the signal is modeled by an intra-axonal, an
extra-axonal, and an isotropic part. Only the intra-axonal part is described by
the tractogram, but the other two parts are related to the voxels in the image
domain where spatial regularization would be more appropriate. In Section 5.3,
we expand on the approach stated in Daducci et al. (2015) by formulating the
problem as a Tikhonov-type regularization problem where fiber weights are reg-
ularized by `1, and voxel weights by a Hs norm to promote spatial smoothness.
Moreover, we outline the theory of the alternating direction method of multi-
pliers (ADMM) in Section 5.4, and use it as a tool to efficiently solve our large
scale optimization problem in Section 5.5. In Section 5.6, we propose strategies
to further reduce computation time of the algorithm presented in Section 5.5.
Experiments and results are discussed in Section 5.7.
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5.1. Modeling the DW-MR Signal

Based upon the StickZeppelinBall compartment model described in Section 2.8,
and using the notions of Tournier et al. (2004), Daducci et al. (2015) represent
the diffusion signal in white matter as a combination of restricted, hindered, and
isotropic contributions. Before summarizing the overall signal model, we first
describe the three individual signal parts in detail. Let R : S2 → R denote
the response function describing the signal attenuation profile for a fiber or fiber
bundle, as stated in Section 2.5.1. Furthermore, let the set of candidate fibers
be defined by F :=

{
F1,F2, . . . ,Fnf

}
with Fi ∈ Rni×3 as introduced in (2.14),

and the set of fiber populations in a voxel, for instance obtained as the principle
diffusion directions from the fiber ODF, by B = {B1,B2, . . . ,Bnb} ⊆ S2. For
reasons of clarity, the modeled signal is in this section considered only as a
function of q ∈ S2 and for a fixed voxel. In the next section, we state an
expression for the signal depending on both direction q ∈ S2 and voxel v ∈ R3.

The predicted intra-axonal diffusion signal SIC in each voxel consists of the signal
contributions of the candidate fibers. In gradient direction q ∈ S2, it is defined
by

SIC(q) :=
∑
Fi∈F

`if
IC
i RIC

i (q), (5.1)

where `i ≥ 0 is the length of the fiber segment and f IC
i ≥ 0 denotes the weight

or volume fraction, both corresponding to fiber Fi in the respective voxel. The
response function RIC

i for fiber Fi is defined as in Equation (2.20) with principle
diffusion direction v1 aligned with the local fiber orientation of Fi. For fibers Fi
which do not cross the voxel, the signal contribution is zero. Similar to equation
(5.1), extra-axonal diffusion in a voxel is modeled by

SEC(q) :=
∑
Bj∈B

fEC
j REC

j (q), (5.2)

with weights fEC
j ≥ 0 and where the rotated response function REC

j is defined
as in Equation (2.22) with v1 matching the direction of the respective principle
diffusion directions Bj in that voxel. Finally, the predicted isotropic signal

SISO(q) := f ISORISO(q) (5.3)

is modeled by the isotropic response function RISO defined in Equation (2.23)
and scaled by f ISO ≥ 0. Overall, the voxel-wise diffusion signal attenuation in
gradient direction q ∈ S2 is given by the sum of the signals defined in Equations
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F1F2 . . . F10

B1

F11
F12...
F15

B2

`1 f IC
1 R

IC
1 + `2 f IC

2 R
IC
2 + . . . + `15f IC

15R
IC
15 = SIC

fEC
1 REC

(1) + fEC
2 REC

(2) = SEC

f ISORISO = SISO

Figure 5.1.: Two-dimensional exemplary illustration of the modeled diffusion signal.
Left: A pixel containing two crossing fiber bundles. The corresponding principle dif-
fusion directions are delineated in orange and blue, respectively. Right: Intra-axonal,
extra-axonal, and isotropic signal components as linear combinations of response func-
tions.

(5.1),(5.2), and (5.3), that is

S̃(q)
S̃0

= SIC(q) + SEC(q) + SISO(q) (5.4)

with diffusion-weighted signal S̃ : S2 → R and unweighted signal S̃0. Figure
5.1 illustrates the composition of the modeled diffusion signal by means of a
two-dimensional example of two crossing fiber bundles in a pixel.

5.2. Global Optimization Problem

Let the measured DW-MR signal be given by S : S2 × Ω → R, as defined in
Chapter 2, Equation (2.3). Extending the expression for the predicted voxel-wise
signal in (5.4), the modeled signal attenuation for all voxels v ∈ Ω and gradient
directions q ∈ S2 can be written as

S̃(q, v)
S̃0(v)

=
∑
Fi∈F

`i(v)f IC
i RIC

i (q, v) +
∑
Bj∈B(v)

fEC
j (v)REC

j (q, v) + f ISO(v)RISO(q, v) (5.5)
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with response functions R : S2 × Ω→ R, and where `i(v) is the length of fiber
Fi in voxel v, fEC

j (v) is the weight corresponding to fiber population Bj in voxel
v, and B(v) denotes the set of principle diffusion directions in voxel v. Given `i,
RIC
i , REC

j , and RISO, the aim is to find weights f IC
i , fEC

j , and, f ISO, such that the
predicted signal best fits the measured signal S. That is, we want to solve

argmin
f IC
i ,fEC

j ,f ISO≥0
D
(
S̃
(
q, v; f IC

i , fEC
j , f ISO

)
− S(q, v)

)
+ αR

(
f IC
i , fEC

j , f ISO
)

with data fidelity function D, and possibly a regularization term R where α ≥ 0.
Note that, while the f IC

i weight the individual candidate fibers, each crossing
several voxels, the weights fEC

j and f ISO correspond to the individual voxels,
respectively.

5.2.1. Discretization and Matrix-Vector Notation

Let nd denote the number of gradient directions, nv the number of voxels, nf
the number of candidate fibers in F , and nb the predefined maximum number of
considered bundles in B(v). The representation of the estimated signal (5.5) can
be formulated as matrix-vector product

[AIC|AEC|AISO]x = Ax = yest

with the block matrix A consisting of AIC ∈ Rnd·nv×nf , AEC ∈ Rnd·nv×nb·nv ,
and AISO ∈ Rnd·nv×nv , containing for each voxel and each gradient direction the
values of `iRIC

i , REC
j , and RISO, respectively. The weights f IC

i , fEC
j , and, f ISO

are stored in vector

x = [xIC|xEC|xISO] ∈ Rnf+nb·nv+nv

where

xIC =
(
f IC

(1), f
IC
(2), . . . , f

IC
(nf )

)>
xEC =

(
xEC

1 (1), . . . , xEC
nb

(1), . . . , xEC
1 (nv), . . . , xEC

nb
(nv)

)>
with xEC

j =
(
fEC

(j) (v1), fEC
(j) (v2), . . . , fEC

(j) (vnv)
)>
, j = 1, . . . , nb

xISO =
(
f ISO(v1), f ISO(v2), . . . , f ISO(vnv)

)>
. (5.6)

Figure 5.2 illustrates the structure of matrix A and corresponding vectors x and
yest. In accordance with modeled signal yest, let y denote the measured DW-MRI
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signal in vector notation.

=×
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1 2 . . . nf 1 . . . nb 1 . . . nb. . .1 . . . nb 1 2 . . . nv

1

1

1

2

2

2
...

...

...

nu

nu

nu

`i(vnv )RIC
i (ql, vnv )

`i(v2)RIC
i (ql, v2)

`i(v1)RIC
i (ql, v1)

REC
j (ql, vnv )

REC
j (ql, v2)

REC
j (ql, v1)

RISO(vnv )

RISO(v2)

RISO(v1)
f IC
i

fEC
j (v)

f ISO(v)
S̃(ql,vnv )
S̃0(vnv )

S̃(ql,v2)
S̃0(v2)

S̃(ql,v1)
S̃0(v1)

Figure 5.2.: Structure of matrix A, where i = 1, 2, . . . , nf is the fiber index, j =
1, 2, . . . , nb is the bundle index, and l = 1, 2, . . . , nu is the gradient direction index.

5.2.2. Convex Optimization Problem Formulation

In Daducci et al. (2015), two formulations of the model fitting problem, non-
negative least-squares (NNLS)

argmin
x≥0

‖Ax− y‖2
2 (5.7)

and basis pursuit de-noise (BPDN)

argmin
x≥0

{‖x‖1 subject to ‖Ax− y‖2 ≤ ε} , ε ≥ 0, (5.8)
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where x ∈ Rn and A ∈ Rm×n, are analyzed. The constrained minimization
problem (5.8) is closely related to the penalized minimization problem

argmin
x≥0

{‖Ax− y‖2 + α‖x‖1} (5.9)

with α > 0. In fact, the unconstrained problem formulation (5.9) can be regarded
as the problem of minimizing the Lagrange function

L(x, µ) = ‖x‖1 + λ (‖Ax− y‖2 − ε) , λ > 0,

of constrained problem (5.8) over x ∈ Rn
≥0 and shifting the (modified) Lagrange

multiplier in front of the `1-norm term (α = 1/λ). Under certain assumptions,
a minimizer x∗ ∈ Rn

≥0 of (5.8) also solves (5.9) and vice versa (see for example
Hiriart-Urruty and Lemarechal (1993, VII), Ciak et al. (2013)).

These problem formulations either do not include regularization (NNLS), or im-
pose `1 regularization upon all weights (BPDN). While `1 regularization is useful
with respect to fiber weighting coefficients xIC, for instance to filter out anatom-
ically implausible tracts of a tractogram, a regularization term that enforces
spatial smoothness would be more suitable regarding the voxel weighting coeffi-
cients xEC

j and xISO. In the next section, we take this into account and formulate
a new approach by adding a Sobolev norm term to the optimization problem to
promote smoothness of xEC

j and xISO.

5.3. Sobolev Norm Regularization

In this section, we define the Sobolev space Hs and consider different represen-
tations of the associated norm ‖ · ‖Hs .

Definition 5.1. For s ≥ 0, the Sobolev space Hs(Rn) is defined by

Hs(Rn) :=
{
f ∈ L2(Rn) :

(
1 + |ξ|2

)s/2
(Ff)(ξ) ∈ L2(Rn)

}
, ξ ∈ Rn

with the norm

‖f‖Hs(Rn) :=
∥∥∥∥F−1

[(
1 + |ξ|2

)s/2
Ff

]∥∥∥∥
L2(Rn)

where F denotes the n-dimensional Fourier transform.

The Hs-norm can also be expressed in terms of the Bessel-potential operator

86



5.3. Sobolev Norm Regularization

(I −∆)s, which is given by

(I −∆)sf = F−1
[(

1 + |ξ|2
)s/2

Ff
]
,

where ∆ describes the Laplace operator. Regarding our application, we consider
a function f : Ω → R assigning an intensity to each point in a cuboid domain
Ω = [1, nx]× [1, ny]× [1, nz] ⊂ R3. In three dimensions, the Laplace operator of
f in Cartesian coordinates is given by

∆f = ∂2f

∂x2 + ∂2f

∂y2 + ∂2f

∂z2 ,

that is, the sum of (unmixed) second-order partial derivatives. Since the in-
tensities are only given at discrete grid points (voxels), we deduce a discretized
expression for the Hs norm below.

5.3.1. Discretization of the Laplacian

In the following, we summarize the discretization of the Laplacian by finite dif-
ferences, which is well documented, for instance in the book by Hanke-Bourgeois
(2009, XV,83). First, we consider the one-dimensional case where f is given on
an equidistant grid

{xi = ih : i = 1, . . . , nx}

with h > 0. We approximate the second derivative of f at point xi by the central
difference quotient

D2
h [f ] (xi) = 1

h2 (f(xi − h)− 2f(xi) + f(xi + h)) ≈ f ′′(xi), (5.10)

for i = 2, . . . , nx − 1. Using Neumann boundary conditions and approximating
the first derivatives of f at x1 and xnx by forward and backward differences,
respectively, we obtain

f ′′(x1) ≈ 1
h2 (f(x2)− f(x1))

f ′′(xnx) ≈
1
h2 (f(xnx−1)− f(xnx)) (5.11)

for the second derivative at the boundaries. Rewriting (5.10) and (5.11) as
matrix-vector multiplication, we obtain the well-known formulation of the one-
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dimensional discrete Laplace operator equation

f ′′ ≈ ∆1Df with ∆1D = 1
h2



−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1

 ∈ Rn×n (5.12)

with

f := (f(x1), . . . , f(xnx))> and f ′′ := (f ′′(x1), . . . , f ′′(xnx))>. (5.13)

The image data we want to apply the Laplacian to is, as a whole, given on a
three dimensional equidistant grid in the domain Ω. However, since the problem
size of our optimization problem can be dramatically reduced by only including
voxels where fiber tracks are passing through, we need a modified version of (5.12)
where the Laplacian is applied to not necessarily connected subdomains of Ω.
For this purpose, the number of neighboring points is determined for each grid
point in the set of included points, and the rows of the linear Laplace operator are
modified accordingly. In one dimension, there are only three different cases: (1)
The grid point can have two neighbors, i.e. it is an inner points, (2) one neighbor,
i.e. it is a point at the boundary, or (3) no neighbors, then it is a single-point
domain and the approximative second derivative is zero. The following examples
illustrates the structure of matrix ∆1D.

Example 5.2. Consider f given at the following grid points, where only the
points highlighted by blue dots are of interest.

h

x
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

The corresponding discrete Laplacian applied to f = ( f(x1), f(x2), f(x4), f(x6),
f(x7), f(x8) )> is the 6× 6 matrix

∆1D = 1
h2



−1 1
1 −1

0
−1 1
1 −2 1

1 −1
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∂Ωn

Ω

(a) grad f>n = 0 on ∂Ω

∂Ω

Ω
(x, y) (x + h, y)(x− h, y)

(x, y + h)

(x, y − h)

(b) ∂f
∂y (x, y + h

2 ) ≈ f(x,y)−f(x,y+h)
h = 0

Figure 5.3.: Exemplary illustration of Neumann zero boundary conditions. Left:
Smooth boundary. Right: Approximation used here.

This approach can easily be extended to 2 or 3 dimensions by consecutively
assigning linear indices to the grid points of the subregions of Ω that are of inter-
est. Let N denote the overall number of included grid points. Then f ∈ RN and
f ′′ ∈ RN contain the respective function values arranged as in (5.13). Assuming
that grid width h is the same in all dimensions, the matrices ∆2D,∆3D ∈ RN×N

describing the 2D and 3D Laplace operator, respectively, are structured as fol-
lows: Let Nk ⊂ {1, 2, . . . , N} define the set of indices corresponding to neighbor-
ing grid points of point k. Then, row k of ∆{2D,3D}, which multiplied to f yields
element f ′′(k), is given by

∆{2D,3D}(k, j) = 1
h2 ·


−|Nk| if j = k

1 if j ∈ Nk,
0 else,

that is, each row of ∆2D contains up to 5 entries different from zero, each row of
∆3D up to 7, and the row entries sum up to zero.

Implementation Details

In general, imposing Neumann zero boundary conditions implies that the deriva-
tive of a function f given on a domain Ω vanishes on the boundary ∂Ω in direction
of the exterior normal n, as illustrated in Figure 5.3a. Note that for our appli-
cation the domain Ω is discretized on a uniform grid. Hence, the boundary ∂Ω
is not smooth, as in Figure 5.3a, but piecewise constant, as exemplarily shown
in Figure 5.3b for the two-dimensional case, and we approximate the derivatives
along the equidistant grid points. Our implementation of the discrete Laplacian
is similar to Matlab’s delsq with an extension to three dimensions. Despite
the relatively coarse approximation of the boundary itself and the first derivative
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(a) Ω (white regions) (b) G derived
from discretization.

(c) G computed
directly.

Figure 5.4.: Green’s function G corresponding to differential operator (λ2I − ∆2D)
for fixed λ > 0 evaluated at the two sample pixels highlighted in red.

on the boundary, we obtain good results with this approach. Green’s functions
from a partial differential equations perspective are briefly reviewed in Appendix
B. In our context, from a Bayesian perspective, Green’s function G is the kernel
of the prior covariance operator, i.e. G(x, y) indicates how much the values at
points x and y are correlated in the chosen prior distribution. In Figure 5.4b,
we show the Green’s function (see Appendix B) computed from the operator
(λ2I − ∆2D) discretized as described here for two sample points in the domain
illustrated in Figure 5.4a. As a comparison, the free Green’s function correspond-
ing to (λ2I − ∆2D) ∈ R2 given by Bessel functions is shown in Figure 5.4c. In
view of the above interpretation, the width of Green’s function seems plausible.
Moreover, as opposed to some other boundary conditions and implementations,
the width of Green’s function is not significantly influenced by the boundary,
which is reasonable in our context.

Experimental Motivation for Using Hs-Norm Regularization

Consider the Fiber Cup phantom data where the fiber ground truth is known, as
described in Section 3.2.1. Furthermore, let a tractogram with valid and invalid
tracks be given for this data set. Correspondingly, A = [AIC|AISO] denotes
the dictionary matrix where the extra-cellular part is omitted for simplicity, and
whose structure is explained by Figure 5.2. To specify which of the tracks belongs
to which category, we define index sets IVC and IIC containing the indices of valid
and invalid connections, respectively. To acquire a data set with known optimal
solution xtrue for testing purposes, we use the following simulation strategy:
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5.3. Sobolev Norm Regularization

(a)
∑
Fi∈F `i(v)f IC

i (b) f ISO(v)

Figure 5.5.: Intracellular and isotropic contributions for the data set simulated from
Fiber Cup data, shown for one slice in the x− y plane.

1. Compute the weights for the valid connection tracks solving

xIC(IVC) = argmin
x≥0

‖AIC(:, IVC)x− y‖2
2.

2. Set the weights for the invalid tracks to zero: xIC(IIC) = 0.

3. Note that we want that Ax = AICx
IC + AISOx

ISO = y, and compute the
weights of the isotropic contributions by solving

xISO = argmin
x≥0

‖AISOx− b‖2
2,

where b = y − AICx
IC.

4. Obtain the simulated signal ỹ = Axtrue + ε where xtrue = [xIC, xISO] and ε
denotes Gaussian white noise.

As can be seen in Figure 5.5, the isotropic weights obtained by this procedure
appear smooth apart from a few outliers at the borders of the image domain.
Thus, regularization promoting spatial smoothness of the voxel weights appears
plausible.

5.3.2. Overall Problem Formulation

Equipped with a discrete formulation of the Sobolev norm, we return to the
optimization problem and associated notation introduced in Section 5.2. We split
vector x into intracellular, extracellular and isotropic components as in (5.6) for
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5. Microstructure-Informed Global Tractography

regularization, and introduce Sobolev norm terms for spatial smoothing, thus
estimating x by solving

argmin
x≥0

1
2 ‖Ax− y‖

2
2 + α

∥∥∥xIC
∥∥∥

1
+

nb∑
j=1

βj
2
∥∥∥xEC

j

∥∥∥2

Hs
+ γ

2
∥∥∥xISO

∥∥∥2

Hs
(5.14)

where α, βj, γ ≥ 0, and ‖ · ‖Hs denotes the Sobolev norm. Note that matrix A is
ill-conditioned.

In the next section, we introduce the alternating direction method of multipliers
(Boyd et al., 2011) as a strategy to solve problem (5.14).

5.4. Alternating Direction Method of Multipliers

In this section, we describe the theory of the alternating direction method of
multipliers (ADMM), based upon the article by Boyd et al. (2011), in order
to solve our minimization problem (5.14). Concepts from convex optimization
needed in this section are summarized in Appendix C. The ADMM solves the
equality-constrained optimization problem

minimize f(x) + g(z)
subject to M1x+M2z = c (5.15)

with x ∈ Rn, z ∈ Rm, M1 ∈ Rp×n, M2 ∈ Rp×m, c ∈ Rp, and convex functions
f : Rn → R, g : Rm → R.

Applying basic Lagrange duality theory, the associated Lagrangian function is
given by

L0(x, z, λ) = f(x) + g(z) + λ>(M1x+M2z − c) (5.16)

where λ ∈ Rp denotes the Lagrange multiplier vector, also called dual variable.
The dual problem corresponding to (5.15) can be formulated as

maximize h(λ) (5.17)

with Lagrange dual function h : Rp → R defined by

h(λ) = inf
(x,z)∈Rn×Rm

L0(x, z, λ).

A point (x, z) is called primal feasible if it satisfies the constraints of the primal
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5.4. Alternating Direction Method of Multipliers

problem (5.15). If a point λ ∈ dom(h), it is called dual feasible. Furthermore,
a primal optimal point denotes a primal feasible point which minimizes problem
(5.15), while a dual optimal point is dual feasible and maximizes (5.17). The
dual optimization problem can be solved using dual gradient/subgradient ascent
strategies of the form

λk+1 = λk + αk gradλ h(λk)

with step length αk > 0, k = 0, 1, 2, . . .. Since the Lagrangian is separable with
respect to x and z, the gradient can be formulated as

gradλ h(λ) = gradλ inf
x,z
L0(x, z, λ)

= gradλ
(

inf
x

{
f(x) + λTM1x

}
+ inf

z

{
g(z) + λ>M2z

}
− λ>c

)
= gradλ

(
f(x) + λ>M1x+ g(z) + λ>M2z − λ>c

)
= M1x+M2z − c

where

x = argmin
x

{
f(x) + λ>M1x

}
z = argmin

z

{
g(z) + λ>M2z

}
resulting in the iteration steps

xk+1 = argmin
x
L0
(
x, zk, λk

)
zk+1 = argmin

z
L0
(
xk+1, z, λk

)
λk+1 = λk + αk

(
M1x

k+1 +M2z
k+1 − c

)
.

However, this algorithm converges only under very strong assumptions. For more
robustness and better convergence properties, the augmented Lagrangian is used
instead of (5.16), resulting in the ADMM algorithm.

The augmented Lagrangian function related to problem (5.15) is given by

Lρ(x, z, λ) := f(x) + g(z) + λ> (M1x+M2z − c) + ρ

2 ‖M1x+M2z − c‖2
2

with a linear Lagrange term involving the dual variable λ ∈ Rp, and a quadratic
penalty term weighted by the penalty parameter ρ > 0. For ρ = 0, the augmented
Lagrangian is equal to the standard Lagrangian stated in (5.16). Applying the
dual ascent strategy from above to the modified problem with augmented La-
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5. Microstructure-Informed Global Tractography

grangian yields the ADMM algorithm where variables x (by x-minimization of
Lρ), z (by z-minimization of Lρ), and λ (by a dual update), are alternatingly
updated as follows:

Algorithm 5.3. (ADMM)
Given z0 ∈ Rm, λ0 ∈ Rp, ρ > 0:
for k = 0, 1, 2, . . .

xk+1 := argmin
x
Lρ
(
x, zk, λk

)
zk+1 := argmin

z
Lρ
(
xk+1, z, λk

)
λk+1 := λk + ρ

(
M1x

k+1 +M2z
k+1 − c

)
end

Due to the distributed structure of the algorithm, it is especially well suited for
applications to large scale problems. In the following, we review some essential
convergence properties, and state necessary and sufficient optimality conditions
for Algorithm 5.3.

Theorem 5.4. (Convergence of ADMM, Boyd et al. (2011))
If both assumptions

(1) f : Rn → R ∪ {+∞} and g : Rm → R ∪ {+∞} are proper, convex, and
lower semi-continuous, and

(2) L0 has a saddle point

hold, then as k →∞, the iterates of Algorithm 5.3 satisfy

(i) rk → 0 (residual convergence),

(ii) f(xk) + g(zk)→ p∗ (objective convergence),

(iii) λk → λ∗ (dual variable convergence)

where rk = M1x
k + M2z

k −c denotes the residual, p∗ := inf {f(x) + g(z) | M1x
+ M2z = c} is an optimal value of (5.15), and λ∗ is an optimal selection for the
dual variable.

Theorem 5.5. (Necessary and sufficient optimality conditions for ADMM, Boyd
et al. (2011))
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If x∗ and z∗ are primal optimal points, and λ∗ is dual optimal point, then primal
feasibility is given by

M1x
∗ +M2z

∗ − c = 0

and dual feasibility is given by

0 ∈ ∂f(x∗) +M>
1 λ
∗

0 ∈ ∂g(z∗) +M>
2 λ
∗

where ∂ denotes the subdifferential.

Besides, if x can be split into subvectors x = (x1, . . . , xN), and f and ‖M1x‖2
2 are

separable accordingly, then the x-minimization iteration step in Algorithm 5.3
can be partitioned into the updates of the N subvectors. Hence, computation
time can be reduced due to a decrease in problem size and by executing the N
subproblems in parallel.

5.5. Solving the Model-Fitting Problem

We efficiently solve inverse problem (5.14) by ADMM. First, consider (5.14)
without non-negativity constraint. To obtain the ADMM formulation of the
problem, we substitute

f(x) := 1
2‖Ax− y‖

2
2,

g(z) := α
∥∥∥zIC

∥∥∥
1︸ ︷︷ ︸

g1(zIC)

+
nb∑
j=1

βj
2
∥∥∥zEC
j

∥∥∥2

Hs︸ ︷︷ ︸
g2(zEC

1 )+...+gnb+1(zEC
nb

)

+ γ

2
∥∥∥zISO

∥∥∥2

Hs︸ ︷︷ ︸
gnb+2(zISO)

,

in the objective, and M1 := I, M2 := −I, c := 0 in the equality constrained
formulation of (5.15). Let the indicator function I+ : Rn → R ∪ {∞} be defined
by

I+(z) :=
0, if z ≥ 0
∞ else.

To account for non-negativity of z, and (indirectly) x, we replace g by an extended
version g̃(z) = g(z)+I+(z). In summary, problem (5.14) in ADMM form is given
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5. Microstructure-Informed Global Tractography

by

argmin
x,z

f(x) + g̃(z)

subject to x = z. (5.18)

Accordingly, using the identity

λ>a+ ρ

2‖a‖
2 = ρ

2
(
‖a+ λ/ρ‖2 − ‖λ/ρ‖2

)
,

the augmented Lagrangian with scaled dual variable u := λ/ρ is given by

Lρ(x, z, u) = f(x) + g̃(z) + ρIC

2

(∥∥∥xIC − zIC + uIC
∥∥∥2

2
−
∥∥∥uIC

∥∥∥2

2

)

+ ρEC

2

 nb∑
j=1

∥∥∥xEC
j − zEC

j + uEC
j

∥∥∥2

2
−
∥∥∥uEC

j

∥∥∥2

2


+ ρISO

2

(∥∥∥xISO − zISO + uISO
∥∥∥2

2
−
∥∥∥uISO

∥∥∥2

2

)
= f(x) + g̃(z) + 1

2

(∥∥∥D 1
2 (x− z + u)

∥∥∥2

2
−
∥∥∥D 1

2u
∥∥∥2

2

)
with x, z and u partitioned as defined in (5.6), penalty parameters ρIC, ρEC, ρISO

> 0, and diagonal matrix

D
1
2 =


√
ρICInf √

ρECInbnv √
ρISOInv


where In denotes the n × n identity matrix. Minimizing Lρ(x, z, u) alternately
for x and z, and updating u, yields the ADMM iterations. Below, we regard the
x- and z-minimizations in more detail, and summarize our method in Algorithm
5.6.

x-Minimization The x-minimization problem is given by

x = argmin
x

{
f(x) + 1

2
∥∥∥D 1

2 (x− z + u)
∥∥∥2

2

}
.

Since the gradient of the objective can be computed as

∇x

{
f(x) + 1

2
∥∥∥D 1

2 (x− z + u)
∥∥∥2

2

}
= A>Ax− A>y +D

1
2D

1
2 (x− z + u),
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5.5. Solving the Model-Fitting Problem

we obtain

x =
(
A>A+D

1
2D

1
2
)−1 (

A>y +D
1
2D

1
2 (z − u)

)
.

Thus, in ADMM iteration k the new iterate xk+1 is given by

xk+1 =
(
A>A+D

1
2D

1
2
)−1 (

A>y +D
1
2D

1
2
(
zk − uk

))
.

z-Minimization The z-minimization problem

z = argmin
z

{
g̃(z) + 1

2
∥∥∥D 1

2 (x− z + u)
∥∥∥2

2

}
is split up into nb + 2 subproblems

zIC = argmin
zIC

{
α
∥∥zIC∥∥

1 + I+(zIC) + ρIC

2
∥∥xIC − zIC + uIC∥∥2

2

}
, (5.19)

zEC
j = argmin

zEC
j

{
βj
2
∥∥zEC
j

∥∥2
Hs

+ I+(zEC
j ) + ρEC

2
∥∥xEC

j − zEC
j + uEC

j

∥∥2
2

}
, (5.20)

j = 1, . . . , nb

zISO = argmin
zISO

{
γ

2
∥∥zISO∥∥2

Hs
+ I+(zISO) + ρISO

2
∥∥xISO − zISO + uISO∥∥2

2

}
(5.21)

which can be solved independently. A solution to (5.19) is given by

zIC = S+
α/ρIC

(
xIC + uIC

)
where

S+
a (xi) :=

xi − a, if xi > a

0, else

denotes a variation of the soft-threshold operator ensuring non-negativity. Ne-
glecting regularization parameters βj and γ, problems (5.20) and (5.21) can
equivalently be represented by constrained quadratic optimization problems of
the form

argmin
v

{1
2v
>Q{EC,ISO}v − ρv>w

}
subject to v ≥ 0

with QEC
j = βj (I −∆)s + ρECI and QISO = γ (I −∆)s + ρISOI. This problem

can be solved using, for instance, active-set, gradient-projection or interior-point
methods. In summary, the ADMM iterations are given by:
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Algorithm 5.6. (ADMM applied to problem (5.14))
Given z0, u0 ∈ Rnf+nbnv+nv , ρIC, ρEC, ρISO > 0:
for k = 0, 1, 2, . . .

x-minimization:

xk+1 =
(
A>A+D

1
2D

1
2

)−1 (
A>y +D

1
2D

1
2
(
zk − uk

))
(5.22)

z-minimization:(
zIC)k+1 = S+

α/ρIC

((
xIC)k+1 +

(
uIC)k)

(
zEC
j

)k+1 = argmin
zEC
j
≥0

{
βj
2
(
zEC
j

)>
QEC
j zEC

j − ρEC (zEC
j

)> ((
xEC
j

)k+1 +
(
uEC
j

)k)}
,

j = 1, . . . , nb(
zEC)k+1 =

((
zEC

1 (1)
)k+1

, . . . ,
(
zEC
nb

(1)
)k+1

, . . . ,
(
zEC

1 (nv)
)k+1

, . . . ,
(
zEC
nb

(nv)
)k+1)>

(
zISO)k+1 = argmin

zISO≥0

{γ
2
(
zISO)>QISOzISO − ρISO (zISO)> ((xISO)k+1 +

(
uISO)k)}

zk+1 =
[(
zIC)k+1 |

(
zEC)k+1 |

(
zISO)k+1]

dual update:
uk+1 = uk + xk+1 − zk+1

end

Convergence

The following Theorem ensures residual convergence, objective convergence, and
dual variable convergence of Algorithm 5.6.

Theorem 5.7. Assumptions (1) and (2) of Theorem 5.4 hold for optimization
problem (5.18).

Proof. The proof is stated in Appendix D.

In this section, we have derived the ADMM algorithm for the solution of our
optimization problem (5.14). However, the straight-forward solution of the x-
minimization step, involving the solution of a large-scale problem, is computa-
tionally very expensive. Hence, in the next section, we focus on more efficient
computation strategies regarding this algorithm step.
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5.6. Strategies for Efficient x-Minimization

In practice, x-minimization step (5.22) requires the solution of a large system of
linear equations. In this section, we discuss strategies for efficient computation
of this large-scale problem, for instance by exploiting the special structure of
dictionary matrix A.

5.6.1. Using a Precomputed Cholesky Decomposition

Since
(
A>A+D

1
2D

1
2
)
is symmetric positive definite for ρIC, ρEC, ρISO > 0, the

Cholesky decomposition
(
A>A+D

1
2D

1
2
)

= LL> with lower triangular matrix
L ∈ RN×N , N := nf + nbnv + nv, exists. Using a precomputed Cholesky decom-
position, (5.22) can be performed more efficiently by forward substitution solving
Ly = A>y +D

1
2D

1
2
(
zk − uk

)
for y, followed by a back substitution step solving

L>xk+1 = y for xk+1. Hence, in each ADMM iteration the x-minimization step
has the computational complexity O(N2). Algorithms calculating the Cholesky
decomposition usually have order of N3 complexity, but this computation is only
required once prior to the ADMM iterations.

However, since L is usually a dense matrix, an incomplete Cholesky decomposi-
tion can be more suitable depending on the degree of sparsity of

(
A>A+D

1
2D

1
2
)
.

An incomplete Cholesky decomposition can simply be obtained by calculating
only the entries in L that coincide with non-zero elements in A and setting the
remaining elements in L equal to zero. It is most commonly used as precondi-
tioner for the preconditioned conjugate gradient (pCG) algorithm (Golub and
van Loan, 1983, 10.3).

5.6.2. Dimension Reduction Using Truncated SVDs

Dictionary matrix A ∈ Rndnv×N , where N := nf + nbnv + nv for simplicity, can
be considered as a block matrix

A =


A1
A2
...

Anv

 with Ai ∈ Rnd×N , i = 1, . . . , nv. (5.23)
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Hence, each block matrix contains the diffusion information with respect to the
nd gradient directions for a certain voxel.

Computing the singular value decomposition (SVD) for each block matrix Ai,
we observe that the singular values rapidly decrease towards zero. This property
motivates replacing Ai by a reduced rank approximation to reduce computation
time. Recall that the truncated SVD is defined as follows:

Definition 5.8. (truncated SVD) Let M = UΣV > denote the SVD of matrix
M ∈ Rm×n of rank p ≤ min{m,n}. A truncated SVD of M is given by

Mk = UkΣkV
>
k , k � p, with Σk =


σ1

σ2
. . .

σk


where σ1 ≥ σ2 ≥ . . . ≥ σk > 0 are the k largest singular values of M , and
Uk = [u1, . . . , uk] ∈ Rm×k, Vk = [v1, . . . , vk] ∈ Rn×k consist of the corresponding
singular vectors of M .

Note that by the Eckard-Young theorem, matrix Mk is the closest rank-k ap-
proximation to M .

Let the truncated SVD of matrix Ai be given by Aki = UkiΣkiV
>
ki
, where Uki ∈

Rnd×ki , Vki ∈ RN×ki , and Σki ∈ Rki×ki . In (5.22) we require the matrix product
A>A, which can be represented as follows using the block diagonal structure of
A stated in (5.23):

A>A =
nv∑
i=1

A>i Ai ≈
nv∑
i=1

VkiΣkiU
>
ki
UkiΣkiV

>
ki

=
nv∑
i=1

VkiΣ2
ki
V >ki = V BV > (5.24)

where U>kiUki = Iki due to orthogonality of Uki , and defining block matrix V :=
[V1, V2, . . . , Vnv ] ∈ RN×k, k = ∑nv

i ki, and block diagonal matrix B ∈ Rk×k with
diagonal block, thus diag(B) =

[
Σ2

1,Σ2
2, . . . ,Σ2

nv

]
.

Reformulating the inverse in x-minimization step (5.22) of Algorithm 5.6, we
obtain (

A>A+D
1
2D

1
2
)−1

=
(
D

1
2
(
D−

1
2A>AD−

1
2 + IN

)
D

1
2
)−1

= D−
1
2

(
D−

1
2A>AD−

1
2︸ ︷︷ ︸

Ã>Ã

+IN
)−1

D−
1
2
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with diagonal matrix D 1
2 , and defining Ã := AD−

1
2 . Similar to Ai, the singular

values of many of the matrices Ãi decrease rapidly towards zero. Computing
the truncated SVDs of Ãi we get Ã>Ã ≈ Ṽ B̃Ṽ > as in (5.24), and the following
theorem holds:

Theorem 5.9. Let Ṽ = QR denote the QR-factorization of Ṽ where R ∈ Rk×k

and Q ∈ RN×k, and define Z := RB̃R>. Then, Ṽ B̃Ṽ > = QZQ> and the inverse
of matrix

(
QZQ> + IN

)
is given by

(
QZQ> + IN

)−1
= Q

[
(Z + Ik)−1 − Ik

]
Q> + IN . (5.25)

Proof. The first assertion follows immediately from substituting Ṽ = QR and
Z = RB̃R>:

Ṽ B̃Ṽ > = QRB̃(QR)> = QRB̃R>Q> = QZQ>

To prove that equation (5.25) holds true, we show that multiplying the inverse
by QZQ> + IN yields the identity:(

QZQ> + IN
) (
Q
[
(Z + Ik)−1 − Ik

]
Q> + IN

)
= Q

(
Z Q>Q︸ ︷︷ ︸

Ik

[
(Z + Ik)−1 − Ik

]
+ Z + (Z + Ik)−1 − Ik

)
Q> + IN

= Q
(
Z (Z + Ik)−1−Z + Z︸ ︷︷ ︸

=0

+ (Z + Ik)−1 − Ik
)
Q> + IN

= Q (Z + Ik − (Z + Ik))︸ ︷︷ ︸
=0

(Z + Ik)−1Q> + IN

= IN

Hence, by applying (5.25), the inversion of N×N matrix
(
Ã>Ã+ IN

)
is reduced

to matrix-vector multiplications and the inversion of k× k matrix (Z + Ik) with
k � N . Again, a Cholesky decomposition of (Z + Ik) can be precomputed to
speed up ADMM iterations. Then, the computational complexity of applying the
approximated inverse isO(N+Nk+k2) in each ADMM iteration step. Since k �
N , both the calculation of the Cholesky decomposition and the application of the
inverse matrix are much more efficient compared to performing the computations
with matrix

(
Ã>Ã+ IN

)
as described in Section 5.6.1.

Instead of using direct solvers, (5.25) can also function as a preconditioner for
pCG. However, this is only favorable if k is very small, i.e. only few singular
values are kept.
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Figure 5.6.: The 20 largest singular values σj , j = 1, . . . , 20, of each matrix Ai,
i = 1, . . . , 100. Each plot corresponds to a different Ai.

Numerical Experiments

We regard the Fiber Cup data set with 64 gradients and b0-image, and a cor-
responding tractogram consisting of 7500 evenly distributed tracks. 100 white-
matter voxels are randomly selected, and a test matrix A = [AIC|AISO] of size
(nv · nd)× (nf + nv) with nv = 100, nd = 65, nf = 7500, modeling restricted and
isotropic diffusion, is generated. In Figure 5.6, the 20 largest singular values are
plotted on linear and logarithmic scale for each block matrix Ai ∈ Rnd×nf+nv ,
i = 1, . . . , 100. Given a threshold c > 1 on the condition of matrix Ai, let σki(Ai)
be the smallest singular value of Ai such that σ1(Ai)/σki(Ai) < c. For each
block Ai, all singular values smaller than σki are truncated. The number of all
singular values included in the truncated SVDs of Ai, i = 1, . . . , 100, defined
by k, is plotted against different values of c in Figure 5.7a. Correspondingly,
Figure 5.7b shows the difference between A>A and its approximation by V BV >.
In Figure 5.8a, the relative error e = ‖x − x̃‖2

2/‖x‖2
2 between true x solving

(A>A+ ρIN)x = A>y, and solution x̃ obtained using (5.25) is plotted for ρ = 1
and different values of c. Figure 5.8b shows e for ρ = σ2

1(A)/(c− 1).

5.7. Numerical Experiments and Results

We tested the methods derived in Sections 5.5 and 5.6 on simulated and real
diffusion data. Experiments and results are presented in this section.
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Figure 5.7.: Number of singular values k = k1 + . . .+ knv (left), and approximation
error in Frobenius norm (right), for different condition thresholds c on the truncated
SVD of Ai.
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5. Microstructure-Informed Global Tractography

5.7.1. Simulated Test Data

For first tests of the ADMM algorithm’s properties on data with known solution,
we generate a simple data set which is not based on a physical model. The
resulting system of linear equations considered in this section is much smaller
than it is for real data sets used in Section 5.7.2.

Signal Modeling

First, we test our algorithm on a simple simulated data set that we obtain as
follows. Let n fibers, distributed on the surface of the unit ball, be given by
the curves γk : [0, 1] → S2, k = 1, . . . , n. We define the signal Yk : S2 → R
originating from fiber k by

Yk(u) =
∫ 1

0
exp

{
− 1
σ2 |γk(t)− u|

2
}
|γ′k(t)|dt.

Regarding the signal at m points on the sphere, the dictionary matrix can be
written as

A =


Y1(u1) . . . Yn(u1)
...

...
Y1(um) . . . Yn(um)

 (5.26)

where u1, . . . , um ∈ S2. A subset of the n fibers is specified as valid, the remaining
fibers as invalid. Accordingly we define a weight vector

(xtrue)k =
1 if fiber k is valid

0 else

specifying the contribution of each fiber to the overall signal. Furthermore, we
define the overall (observed) signal by

Y = Axtrue + ε (5.27)

with Gaussian white noise ε. After discretization, we obtain data as depicted in
Figure 5.9.
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5.7. Numerical Experiments and Results

Figure 5.9.: Simulated data on the sphere with Gaussian noise added such that PSNR
≈ 20 dB. The triangles are colored according to signal Y . True fibers are plotted in
green, false fibers in red. Dashed green fibers represent true fibers with overlapping to
a certain extent with a false fiber.

Data and Results

In this section, we present results for a data set obtained as described above with
nd = 162 sampling points on the sphere and nf = 10 fibers. Matrix AIC ∈ R162×10

is obtained as in (5.26), AISO ∈ R162×1 is set to a vector with constant entries.
Extra-cellular contributions were not simulated to keep this first example simple.
As can be observed in Figure 5.10, dictionary matrix [AIC, AISO] is sparse except
for the last column. Half of the simulated fibers are categorized as valid, the
other half as invalid. This classification is encoded as ones and zeros in vector
xIC. The isotropic part xISO consists of a single component that is set to one.
The signal Y is simulated as stated in (5.27) with xtrue = [xIC, xISO] and additive
noise ε chosen such that PSNR = 20dB.

We use the proposed ADMM algorithm (Algorithm 5.6) to solve

argmin
x≥0

1
2‖Ax− Y ‖

2
2 + α‖xIC‖1 + β

2
(
xISO

)2
,

setting ρIC = 0.9 and ρISO = 0.1. Figure 5.11 shows the relative squared dis-
tance between xtrue and the solution x of the ADMM minimization for different
choices of α, β ∈ [0, 1] after 20 ADMM iterations. The minimum distance is
attained for α = 0.13 and β = 0.22. In Figure 5.12, relative error, norm of the
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5. Microstructure-Informed Global Tractography

0 5 10

0

50

100

150

nz = 217

Figure 5.10.: Nonzero entries of matrix A considered in Section 5.7.1.
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Figure 5.12.: Norm of the relative error, norm of relative residual, and objective
(left), primal and dual residual norm (right) plotted against ADMM iteration k.

relative residual, objective, primal and dual residual of the ADMM optimization
problem are plotted against the number of iterations for α = 0.13 and β = 0.22.
We observe that, as stated in Theorem 5.4, the objective converges, and primal
and dual residual norm converge to zero. In Table 5.1, solutions for different
choices of α and number of ADMM iterations are compared to the true solution.
Moreover, the solution of Ax = Y obtained using Matlab’s mldivide is stated
for comparison. As expected, increasing α and/or the number of iterations in-
creases sparsity of the solution. A larger parameter α also results in a stronger
enforcement of the minimization of the `1 norm relative to the minimization of
the data misfit term. Hence, the components of xIC become small while norm of
error and residual increase. To extract the true fibers from a solution vector it
is advisable to set a threshold close to zero and discard those tracks correspond-
ing to weights below that threshold. For instance, with respect to the solution
for α = 0.13 and k = 20, discarding all tracks with absolute weights smaller
or equal to 0.0028 yields all valid fibers. Furthermore, compared to the solu-
tion without regularization, the solution of the ADMM algorithm shows a great
improvement.

Overall, we notice that for this first test problem the ADMM algorithm converges
after less than 20 iteration steps to a good approximation to the true solution
from which all tracks can correctly be classified as valid or invalid.
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5. Microstructure-Informed Global Tractography

α = 0.13 α = 0.3 no reg.
k = 20 k = 100 k = 20 k = 100 (direct)

xtrue = xk = xk = xk = xk = x =
0
1
0
1
1
1
0
0
0
1
1

−0.0010
1.0585
0.0017
1.0149
1.1292
0.8493
−0.0005
−0.0007
−0.0028

0.8807
1.0470

−0.0000
1.0586
0.0018
1.0150
1.1290
0.8494
0.0000
−0.0000
−0.0000

0.8804
1.0459

−0.0011
1.0295
0.0008
0.9964
1.1044
0.8251
−0.0004
−0.0009
−0.0028

0.8630
1.0830

0.0000
1.0296
0.0000
0.9965
1.1042
0.8252
−0.0000

0.0000
0.0000
0.8628
1.0821

−0.0426
1.0582
0.0010
1.0129
1.1495
0.8496
−0.0548

0.0066
−0.2042

0.9157
1.2575

‖xk−xtrue‖2
2

‖xtrue‖2
2

0.00992 0.009899 0.011338 0.011309 0.028082
‖Axk−y‖2

2
‖y‖2

2
0.093129 0.09321 0.09371 0.093792 0.089613

Table 5.1.: Comparison between true solution, solution of ADMM for two differ-
ent choices of α and different numbers of iterations, and the solution obtained from
applying Matlab’s mldivide to the unregularized problem.

5.7.2. Diffusion-Weighted MR Data

In the following, we apply the proposed ADMM algorithm to two different
diffusion-weighted MR data sets. First, we consider an in-vivo data set for
which we present qualitative results in comparison with results obtained using the
COMMIT algorithm by Daducci et al. (2015). Then, we present experiments and
quantitative results for a diffusion phantom data set with known ground truth.

in-vivo Data

We tested our algorithm on in-vivo human brain data that was provided with
the COMMIT software package which is available at https://github.com/
daducci/COMMIT. The diffusion MR data contains 30 diffusion-weighted mea-
surements at b = 700 s/mm2, 60 at b = 2000 s/mm2, and 10 unweighted mea-
surements, and has a spatial resolution of 106×106×60. Moreover, a correspond-
ing tractogram consisting of nf = 283522 tracks is given. All b0-measurements
are averaged resulting in one merged b0-image, and the diffusion-weighted im-
ages are normalized to the b0-image. The domain containing fiber tracks includes
nv = 53021 voxels. Hence, the dictionary matrix, obtained using the default set-
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5.7. Numerical Experiments and Results

tings of the COMMIT software for this data set, is given by A = [AIC|AEC|AISO]
with block matrix AIC ∈ Rnvnu×nf encoding the intra-cellular components, block
matrix AEC ∈ Rnvnu×145471 for the extra-cellular components, and isotropic part
AISO ∈ Rnvnu×106042. Matrix AEC encodes for each voxel between 1 and 3 fiber
populations, matrix AISO consists of two isotropic contributions per voxel. The
structure of the dictionary matrix is illustrated in Figure 5.2 at the beginning of
this chapter.

All regularization parameters are set to the same value, that is α = βi = γ = 0.1,
i = 1, 2, 3, and for the Sobolev norm we select s = 1. The penalty parameters
of the augmented Lagrangian are chosen as ρIC = ρEC = ρISO = 1. Apart from
the penalty parameters, ADMM expects initial solutions z0 and u0 as input. For
our tests, we chose z0 as a vector with identical positive components, and set
u0 = 0. As the NNLS algorithm used by the COMMIT framework breaks per
default if

|‖Axk − y‖2 − ‖Axk−1 − y‖2|
‖Axk − y‖2

< 10−4

we included the same criteria with our algorithm for comparison. For a coro-
nal image slice, Figure 5.13 compares voxel-wise intra-cellular, extra-cellular and
isotropic contributions between the proposed method solving minimization prob-
lem 5.14 with ADMM, and for the COMMIT algorithm. The contributions are
derived from solution vector x in the following way: For voxel v ∈ Ω, the isotropic
contributions are defined by ∑nf

i=1 `i(v)f IC
i , the extracellular contributions are

(fEC
1 + fEC

2 + fEC
3 )(v) and the isotropic contribution is given by f ISO(v). For

both methods, the values of the IC contributions are highest in regions with
dense fiber bundles. The extra-cellular contributions tend to decrease slightly
with an increase in IC values, and the isotropic weights are small in regions with
fibers and high in regions close to boundaries where partial volume effects are ex-
pected. It can be observed that due to Hs-norm regularization the images of EC
and ISO contributions resulting from the proposed method are much smoother
than the images obtained from COMMIT showing some unnaturally high peaks.
RMSE and NRMSE for both methods are shown in Figure 5.14 for the same
coronal slice as above.

Fiber Cup Phantom Data

In this section we present experiments and results using the Fiber Cup phantom
data set described in Section 3.2.1. A deterministic streamline tractography
algorithm was used to generate a large number of tracks. As the fiber ground
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IC contributions EC contributions ISO contributions

(a) `1 −Hs-regularized problem solved with ADMM.

IC contributions EC contributions ISO contributions

(b) COMMIT

Figure 5.13.: Comparison of intracellular (IC), extracellular (EC), and isotropic (ISO)
contributions for a coronal slice.

RMSE NRMSE

(a) `1 −Hs-regularized problem solved with ADMM.

RMSE NRMSE

(b) COMMIT

Figure 5.14.: Comparison of RMSE and NRMSE for a coronal slice.
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Figure 5.15.: Objective, primal and dual residual norm plotted against ADMM itera-
tion k for the ADMM algorithm with ρIC = ρISO = 1 applied to the `1−Hs-regularized
problem with α = γ = 0.1.

truth of the data set is known, the tracks can be assigned to one of the three
categories, valid connection (VC), invalid connection (IC) and no connection
(NC) explained in Section 2.7.3. From this tractogram, we selected nf = 19480
tracks, 10480 valid connections and 9000 invalid connections, evenly distributed
in the white matter regions. The number of voxels containing tracks is nv =
2005. We consider only intracellular and isotropic contributions for simplicity
and obtain dictionary matrix A = [AIC|AISO] ∈ R130325×21485 using the COMMIT
software by Daducci et al. (2015) which is available at https://github.com/
daducci/COMMIT. Correspondingly, vector y containing the measured DW-MRI
data is reduced to the nv = 2005 voxels containing tracks, thus y ∈ R130325.
Here, we discuss results obtained from applying ADMM algorithm 5.6 to solve
problem

argmin
x≥0

1
2‖Ax− y‖

2
2 + α‖xIC‖1 + γ

2‖x
ISO‖2

Hs

with A and y as described above, and where s = 1 for the Sobolev norm. As for
the in-vivo data, z0 is chosen as vector with constant entries, and u0 = 0.

In Figure 5.15, objective, primal and dual residual norm are plotted against
ADMM iteration k for ρIC = ρISO = 1 and α = γ = 0.1. The objective changes
only slightly for k > 10, while primal and dual residual norms tend more slowly
towards zero.

With respect to the choice of the regularization parameter, our tests showed that
good results can be obtained by setting α = γ ∈ [2 · 10−2, 2 · 10−1]. Table 5.2
summarizes results for fixed penalty parameter ρIC = ρISO = 1 and a collection
of choices of regularization parameters α and γ. Furthermore, results obtained
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5. Microstructure-Informed Global Tractography

VC
% # RMSE NRMSE

`1, H
1 (ADMM) α = γ

0.04 81.41 3670 0.036 +/- 0.055 0.197 +/- 0.110
0.06 85.57 3838 0.036 +/- 0.055 0.203 +/- 0.109
0.08 87.68 4243 0.036 +/- 0.055 0.210 +/- 0.108
0.10 89.65 4582 0.039 +/- 0.055 0.218 +/- 0.107
0.12 88.12 4998 0.040 +/- 0.055 0.227 +/- 0.106

`1 (ADMM) α

0.04 82.72 4563 0.035 +/- 0.055 0.197 +/- 0.110
0.06 86.27 4720 0.036 +/- 0.055 0.203 +/- 0.110
0.08 88.40 5435 0.037 +/- 0.055 0.211 +/- 0.109
0.10 73.17 6421 0.039 +/- 0.054 0.221 +/- 0.108
0.12 65.82 6523 0.040 +/- 0.054 0.232 +/- 0.106

COMMIT (NNLS) 74.86 542 0.037 +/- 0.055 0.206 +/- 0.110

Table 5.2.: Results for the Fiber Cup data set with an input tractogram consisting
of 10480 valid connections and 9000 invalid connections.

using the COMMIT software package, where a NNLS problem is solved as stated
in (5.7), and from the solution of a solely `1-regularized problem

argmin
x≥0

1
2‖Ax− y‖

2
2 + α‖x‖1 (5.28)

are included as comparison. As the COMMIT software package only provides
a solver for NNLS, we used an own implementation for the solution of problem
(5.28) which uses ADMM. All algorithms considered in Table 5.2 break if stop-
ping rule 5.7.2 is satisfied. For the `1 − Hs regularized problems that means
that ADMM stops after around 80 iterations. As described above, this criterion
was chosen for reasons of comparability. In fact, more sophisticated stopping
conditions involving primal and dual residual norms could be used for ADMM.
The initial tractogram has 53.90% of valid and 46.10% of invalid connections.
After the optimization procedure of the respective algorithm where the weights
xIC are adjusted, all tracks with xIC ≤ 0 are discarded from the tractogram. For
the remaining tracks, valid connections in percent are stated in Table 5.2. Us-
ing our proposed algorithm, the highest percentage of valid connections, 89.65%,
can be obtained. Hence, the percentage of invalid connections can be reduced by
about 10% compared to the best solution of the solely `1-regularized problem,
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and by almost 60% compared to NNLS. Furthermore, the proposed algorithm
is relatively stable with respect to parameter changes. For α = γ between 0.04
and 0.12, the valid connections are above 80%. Using only `1-regularization, the
range of regularization parameters yielding a good result is much narrower. As
can be observed in the column showing the absolute number of valid tracks after
optimization, many tracks - also valid tracks - are discarded, as they possibly
do not yield new information for the description of the diffusion data. The root
mean squared error (RMSE) for a voxel v ∈ R3 is defined by

RMSE(v) =
√√√√ 1
nu

nu∑
i=1

(
S(v, qi)− S̃(v, qi)

)

where nu is the number of gradient directions. Accordingly, the normed root
mean squared error (NRMSE) is given by

NRMSE(v) = RMSE(v)√
1
nu

∑nu
i=1 S(v, qi)

.

In the last two columns of Table 5.2, mean RMSE and NRMSE, and correspond-
ing standard deviations are shown. As would be expected, the errors increase
with increasing regularization parameters.

Different choices of ρ Decreasing ρ = ρIC = ρISO increases the ill-conditioning
of (A>A + ρI), which results in slower convergence of the CG method in the
x-minimization step. Hence, the computation time that is needed to execute a
single ADMM iteration increases. On the other hand, the data error decreases
faster as ADMM proceeds, as can be observed in Figure 5.16a. Moreover, if ρ is
small primal infeasibility is less penalized. It can be seen in Figure 5.16b that the
smaller ρ is chosen, the slower the primal residual norm decreases in the first few
ADMM iteration steps. Dual feasibility by definition becomes small for smaller
ρ, as illustrated by Figure 5.16c. From this property, as for instance described
in Boyd et al. (2011), strategies can be derived which adapt ρ in each iteration
to keep primal and dual residual norm in a certain range relative to each other
to improve convergence of the ADMM algorithm.

Different x-minimization strategies In Section 5.6, we considered strategies
to perform the x-minimization step of the proposed algorithm more efficiently
by using truncated SVDs. Note that, although time consuming, the initial com-
putation of SVDs of the block matrices of AD 1

2 can be seen as a preprocessing
step if a good choice for ρIC and ρISO is known, and the resulting matrix can be
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Figure 5.16.: Effects of changing parameter ρ = ρIC = ρISO.

saved, and loaded before starting ADMM. To analyze performance, 20 ADMM
iterations with ρIC = ρISO = 1 and α = γ = 0.1 were executed with the following
x-minimization methods, respectively: CG without preconditioning, CG using
the inverse stated in Equation (5.25) with ki = 1 for all i = 1, . . . , nv as pre-
conditioner, and the low rank approximation approach using the inverse stated
in Equation (5.25) where the SVDs of matrices Ai are truncated according to a
threshold c = 10 on the condition (compare the numerical experiments section
at the end of Section 5.6.2), respectively. The CG algorithm stops if the relative
residual is smaller than 10−6. In Figure 5.17, we compare computation time and
data error for the different approaches. Preconditioning yields a great benefit
with respect to computation time compared to the unconditioned CG method.
In each ADMM iteration, the standard version needs on average about 15 times
more CG iterations than the preconditioned one. The low rank approximation
method is fastest but less accurate regarding the data error. Note, that for the
low rank approximation method between one and four singular values were in-
cluded in the truncated SVDs of the matrices Ai defined in (5.23). Increasing the
number of singular values used to compute the inverse representation in (5.25)
yields more accurate results at the cost of a higher computation time.
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Figure 5.17.: Comparison of different computation methods for the x-minimization
step of the ADMM algorithm.
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6. Summary

The aim of this thesis was to develop ODF-based tractography algorithms which
are more robust in the presence of noise and artifacts. Furthermore, we inves-
tigated possibilities for further reducing the number of incorrect tracks using a
global framework.

Semi-local tractography methods can be regarded as a compromise between re-
liable but computationally expensive global methods, and fast but noise suscep-
tible local methods. In Chapter 4, we have proposed semi-local strategies based
on ODF data where streamline fiber tracking is informed by the local neigh-
borhood to improve performance in the presence of noise and partial voluming.
Instead of only incorporating information about the previous tracking direction in
the streamlining process, the guiding by extrapolation approach seeks to include
curvature information of the subsequently tracked fiber fragment. The forward
search strategy embeds this guidance and, furthermore, allows for the exploration
of the region that lies ahead. Our algorithms have been derived from a Bayesian
paradigm which has always turned out to be superior to ad hoc solutions. Qual-
itative results on simulated and diffusion phantom data demonstrate that the
proposed method can keep up with state-of-the-art higher order methods, and
shows clear advantages compared to a purely local streamline method. Quan-
titative experiments show, that by using the proposed algorithm, the number
of tracks terminating before reaching the designated regions simulating cortical
gray matter can be drastically reduced. Accordingly, the number of valid con-
nections increases. Benefits can also be observed in experiments on in vivo data,
when compared to a simple local streamline method.

To filter out invalid tracks resulting from local tractography methods, we use a
global preprocessing approach. In Chapter 5, we extend the method introduced
in Daducci et al. (2015) by additional Sobolev-norm regularization to promote
spatial smoothness of weights in the solution vector that correspond to image
voxels. We developed and implemented algorithms for the efficient solution of
the resulting non-trivial, large-scale minimization problem for both the solely
`1- as well as the `1- and Hs-norm regularized formulation using the alternating
direction method of multipliers. For the proposed algorithm, residual, objective,
and dual variable convergence hold. A low rank approximation strategy which
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6. Summary

takes advantage of the special structure of the dictionary matrix A by computing
truncated SVDs of block matrices of A speeds up computation of the expensive
x-minimization step of the ADMM algorithm. The low rank approximation can
either be used in a direct optimization procedure or, if the problem size is very
large, it can be used as a preconditioner for the conjugate gradient method which
leads to a significant increase in computational efficiency. Qualitative results
on real data show the applicability of the algorithm to large in vivo data sets.
Furthermore, quantitative results for diffusion phantom data with known ground
truth clearly show the benefits of the proposed method when compared to the
results of the solely `1-regularized problem and the method provided with the
COMMIT software package by Daducci et al. (2015).

An interesting starting point for future work would be a more extensive testing
of the proposed algorithms on in vivo data sets obtained with clinically realistic
acquisition parameters. These tests could serve to derive stable default parameter
values for the algorithms to improve user-friendliness for clinical applications. To
further improve usability for practical applications, both semi-local and global
algorithms can in part be designed to be executed in parallel.
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A. Anatomical Terms of Location

Throughout this thesis, the following locational terminology is used to describe,
for instance, the position of image slices or the course of fiber bundles in the
brain.

Important directional terms are:

• superior (= above) and inferior (= below)

• anterior (= in front) and posterior (= to the back)

The three image planes, illustrated in Figure A.1, are defined as follows:

• sagittal plane: the y − z plane, separating left from right

• coronal plane: the x− y plane, separating anterior from posterior

• transverse or axial plane: the x−z plane, separating superior from inferior

Figure A.1.: Anatomical planes in the human body. (Image adapted from commons.
wikimedia.org.)
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B. Green’s Functions

The Green’s function can be regarded as a tool for the solution of linear differ-
ential equations. In Section 5.3.1 we examine the difference between the Green’s
function of the discretized modified Helmholtz operator (λ2I −∆) on a domain
with Neumann boundary conditions, and the fundamental solution, also called
free Green’s function, which does not accept boundary conditions. Below, we
define the Green’s function and briefly motivate its use. Green’s functions and
their applications are for example covered in the books by Roach (1970) and
Arfken (1968).

Let L be a linear elliptic differential operator on Rn. A function G defined on

{(x, y) ∈ Rn × Rn : x 6= y}

is called fundamental solution or free Green’s function if

LG(·, y) = δy

where δy is the Dirac delta distribution at y. This characterization can be used
to solve differential equations of the form

Lu(x) = f(x), (B.1)

for x ∈ Rn. In fact, u can be expressed by

u(x) =
∫
Rn
G(x, y)f(y)dy. (B.2)

Hence, Equation (B.1) can be solved using formulation (B.2) if a Green’s func-
tion is known. For instance, consider the homogeneous modified Helmholtz equa-
tion

(λ2I −∆)u = 0
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B. Green’s Functions

with λ > 0. In two dimensions

G(x, y) = K0(λ|x− y|),

and in three dimensions

G(x, y) = K1/2(λ|x− y|),

whereKα is the modified bessel function of the second kind of order α (see Arfken
(1968, Ch. 11, Ch. 15)).

Let us now consider a boundary value problem of the form

Lu(x) = f(x) for x ∈ Ω
Du(x) = 0 for x ∈ ∂Ω (B.3)

with a bounded Lipschitz domain Ω ⊂ Rn and a boundary condition operator
D. A function G on

{(x, y) ∈ Ω2 : x 6= y}

is called Green’s function for the boundary value problem (B.3) if G(·, y) solves
(B.3) with f = δy for all y ∈ Ω. Similar to above, the solution of (B.3) can be
formulated as

u(x) =
∫

Ω
G(x, y)f(y)dy.
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C. Concepts from Convex
Optimization

In this section, we summarize fundamentals of convex optimization arising in
the theory of the alternating direction method of multipliers in Section 5.4, and
in its application to our optimization problem regarded in Section 5.5. The
contents of this section are based on the books by Rockafellar (1970), Boyd and
Vandenberghe (2004), and Hiriart-Urruty and Lemarechal (1993).

Convex sets and convex functions

Definition C.1. (convex set)
A set C ⊂ Rn is convex if

λx+ (1− λ)y ∈ C

for any x, y ∈ C and 0 < λ < 1.

Example C.2. ∅ and Rn are convex sets.

Definition C.3. (proper function)
A function f : Rn → R ∪ {∞} is called proper if it is not identical to ∞.

Definition C.4. (convex function)
A proper function f : Rn → R ∪ {∞} is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ Rn and all 0 ≤ λ ≤ 1.
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C. Concepts from Convex Optimization

Epigraph

Definition C.5. (epigraph)
For a function f : Rn → R ∪ {∞}, the set

epif := {(x, µ)|µ ∈ R, x ∈ dom(f), f(x) ≤ µ} ⊂ Rn+1

defines the epigraph of f .

Theorem C.6. A proper function f : Rn → R ∪ {∞} is convex if and only if
epif is convex in Rn × R.

Proof. See e.g. Hiriart-Urruty and Lemarechal (1993, Ch. IV, Sec. 1, Proposi-
tion 1.1.6).

Lower semi-continuity

Definition C.7. (lower semi-continuous function)
A function f : Rn → R ∪ {∞} is lower semi-continuous if

lim inf
y→x

f(y) ≥ f(x)

for all x ∈ Rn.

Theorem C.8. A function f : Rn → R ∪ {∞} is lower semi-continuous if and
only if epif is closed in Rn × R.

Proof. See e.g. Hiriart-Urruty and Lemarechal (1993, Ch. IV, Sec. 1, Proposi-
tion 1.2.1).

Lemma C.9. Let f, g : Rn → R ∪ {∞} be convex and lower semi-continuous
functions, and α > 0. Then

• αf is convex and lower semi-continuous, and

• f + g is convex and lower semi-continuous.

Proof. See e.g. Hiriart-Urruty and Lemarechal (1993, Ch. IV, Sec. 2, Proposi-
tion 2.1.1).

Example C.10.
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• Norms on Rn are convex and lower semi-continuous.

• Quadratic functions f : Rn → R of the form f(x) = 1
2x
>A>x+d>x+c with

symmetric positive semi-definite linear operator A : Rn → Rn are convex
and lower semi-continuous.

• The indicator function of a (nonempty) closed and convex set C,

ĨC(x) =
0 if x ∈ C
∞ else,

is convex and lower semi-continuous.

See e.g. Hiriart-Urruty and Lemarechal (1993, Ch. IV, Sec. 1.3) for more details.

Subdifferentiability

The concept of subdifferentiability generalizes the gradient to convex functions
which are not differentiable.

Definition C.11. (subdifferential)
g ∈ Rn is called a subgradient of a convex function f : Rn → R at x0 if

f(x) ≥ f(x0) + 〈g, x− x0〉

for all x ∈ Rn. The subdifferential ∂f(x0) denotes the set of all subgradients of
f at x0.

Example C.12. The subdifferential of f(x) = |x| is given by

∂f(x0) =


{−1} at x0 < 0
[−1, 1] at x0 = 0
{1} at x0 > 0.

Existence of a solution

Consider a convex, lower semi-continuous and proper function f : C → R where
C ⊆ Rn is nonempty, convex and closed. We are interested in the existence of a
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solution of the general minimization problem

Inf
x∈C

f(x). (C.1)

Therefore, we consider the definition of a coercive function below:

Definition C.13. A function f : C → R is called coercive if

lim
‖x‖→∞
x∈C

f(x) =∞.

Theorem C.14. If f : C → R is coercive, then the minimization problem (C.1)
has at least one solution.

Proof. See e.g. Ekeland and Temam (1976, Ch. II, Sec. 1, Proposition 1.2).

Lagrange-Duality

Definition C.15. (saddle point)
A point (x∗, λ∗) ∈ Rn×Rm is called a saddle point of a function L : Rn×Rm → R
if

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗)

for all x ∈ Rn, λ ∈ Rm.

Definition C.16. (primal and dual problem)
As above, let L : Rn × Rm → R and define the functions

F (x) := sup
λ∈Rm

L(x, λ), x ∈ Rn

G(λ) := inf
x∈Rm

L(x, λ), λ ∈ Rm.

The optimization problem

min
x∈Rn

F (x) (C.2)

is called primal problem, while

max
λ∈Rm

G(λ) (C.3)
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is the corresponding dual problem. Furthermore, let

α := inf
x∈Rn

F (x)

β := sup
λ∈Rm

G(λ)

denote the optimal values of (C.2) and (C.3), respectively.
Theorem C.17. (weak duality)
The optimal value of the dual problem is a lower bound on the optimal value of
the primal problem, that is β ≤ α.

Proof. See e.g. Geiger and Kanzow (2002, Ch. 6, Theorem 6.10).
Theorem C.18. (strong duality)
(x∗, λ∗) is a saddle point of L if and only if x∗ is a primal optimal point (i.e. a
minimizer of the primal problem), λ∗ is a dual optimal point (i.e. a maximizer
of the dual problem), and α = β.

Proof. See e.g. Hiriart-Urruty and Lemarechal (1993, Ch. VII, Sec. 4, Theorem
4.2.5).

Let f : C → R be a function and consider the general minimization problem with
linear inequality and equality constraints:

min
x∈C

f(x)

subject to AIx− bI ≤ 0
AEx− bE = 0 (C.4)

with AI ∈ RmI×n, AE ∈ RmE×n, bI ∈ RmI , bE ∈ RmE . The Lagrange function
corresponding to problem (C.4) is defined by

L(x, µ, λ) = f(x) + µ>(AIx− bI) + λ>(AEx− bE) (C.5)

where µ ∈ RmI and λ ∈ RmE are called Lagrange multipliers.
Theorem C.19. Let function f be convex. Then (x∗, µ∗, λ∗) is a saddle point of
L in (C.5) if and only if x∗ is an optimal point of minimization problem (C.4),
and µ∗ and λ∗ are Lagrange multipliers.

Proof. See e.g. Hiriart-Urruty and Lemarechal (1993, Ch. VII, Sec. 4, Theorem
4.4.3).
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D. Proof of Theorem 5.7

Recall that minimization problem (5.14) is given by

argmin
x≥0

1
2 ‖Ax− y‖

2
2 + α

∥∥∥xIC
∥∥∥

1
+

nb∑
j=1

βj
2
∥∥∥xEC

i

∥∥∥2

Hs
+ γ

2
∥∥∥xISO

∥∥∥2

Hs
(D.1)

where α, βj, γ > 0, and that in ADMM form the problem is written as

argmin
x,z

1
2‖Ax− y‖

2
2 + α

∥∥∥zIC
∥∥∥

1︸ ︷︷ ︸
g1(zIC)

+
nb∑
j=1

βj
2
∥∥∥zEC
j

∥∥∥2

Hs︸ ︷︷ ︸
g2(zEC

1 )+...+gnb+1(zEC
nb

)

+ γ

2
∥∥∥zISO

∥∥∥2

Hs︸ ︷︷ ︸
gnb+2(zISO)

+I+(z)

subject to x = z. (D.2)

To show that this problem satisfies the assumptions for the ADMM convergence
results in Theorem 5.4, we have to verify

(1) f(x) = 1
2‖Ax − y‖

2
2 and g(z) = α

∥∥∥zIC
∥∥∥

1
+ ∑nb

j=1
βj
2

∥∥∥zEC
j

∥∥∥2

Hs
+ γ

2

∥∥∥zISO
∥∥∥2

Hs

+ I+(z) are lower semi-continuous, proper, and convex functions.

(2) L0(x, z, u) = f(x) + g(z) + λ>(x− z) has a saddle point.

Proof of (1) Function

f(x) = 1
2‖Ax− y‖

2
2 = 1

2x
>A>Ax− y>Ax+ 1

2y
>y

and the squared Sobolev norm terms of function g, having the form

‖z‖2
Hs = ‖(∆ + I)s/2‖2

2 = z>(∆ + I)sz,

are convex and lower semi-continuous according to Example C.10. Being a norm
on Rnf , the first term of function g, g1

(
zIC
)

= ‖x‖1, is also convex and lower
semi-continuous (see e.g. Example C.10). Furthermore, the indicator function
is I+(z) is convex and lower semi-continuous (see e.g. Example C.10). Hence,
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D. Proof of Theorem 5.7

function g is convex and lower semi-continuous by Theorem C.9. Clearly, func-
tions f and g are proper, as both attain values different from ∞ for any x ∈ R
and z ∈ R≥0.

Proof of (2) To show that L0(x, z, λ) has a saddle point, we first show the
existence of a solution of the corresponding minimization problem. We consider
the minimization problem formulation (D.1) and define by

F (x) := 1
2 ‖Ax− y‖

2
2 + α

∥∥∥xIC
∥∥∥

1
+

nb∑
j=1

βj
2
∥∥∥xEC

j

∥∥∥2

Hs
+ γ

2
∥∥∥xISO

∥∥∥2

Hs

the objective function of (D.1). From above we know that F is proper, convex,
and lower semi-continuous. Moreover, the set of feasible points of minimization
problem (D.1), C := Rn

≥0, is convex, closed and nonempty. We notice that

F (x) ≥ α
∥∥∥xIC

∥∥∥
1

+
nb∑
j=1

βj
2
∥∥∥xEC

j

∥∥∥2

Hs
+ γ

2
∥∥∥xISO

∥∥∥2

Hs

≥ c

(∥∥∥xIC
∥∥∥

1
+
∥∥∥∥((xEC

)>
,
(
xISO

)>)∥∥∥∥2

Hs

)
(D.3)

with c = min
{
α, βj2 ,

γ
2

}
. To show that F : C → R is coercive, we consider a

sequence (x`) with ‖x`‖ → ∞ and show that F (x`) → ∞ as ` → ∞. For the
sake of clearness, we define x1 := xIC and x2 :=

((
xEC

)>
,
(
xISO

)>)
. Using

triangle inequality and equivalence of all norms on Rn it can be shown that

‖x`‖ =
∥∥∥∥∥
(
x`1
x`2

)∥∥∥∥∥ ≤ C
(
‖x`1‖+

∥∥∥x`2∥∥∥)

with a real constant C > 0. Hence, at least one of the two norms
∥∥∥x`1∥∥∥ or

∥∥∥x`2∥∥∥
diverges to ∞.

First, we consider the case that
∥∥∥x`1∥∥∥→∞. From (D.3) we deduce that

F (x`) ≥ c
∥∥∥x`1∥∥∥1

.

As all norms are equivalent on Rn, it follows that

F (x`) ≥ c
∥∥∥x`1∥∥∥1

→∞ as `→∞.
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Now, consider the second case, i.e.
∥∥∥x`2∥∥∥ → ∞. As

∥∥∥x`2∥∥∥ → ∞,
∥∥∥x`2∥∥∥ ≥ 1 for all

elements of the sequence above a certain element. That is, we can write

F (x`) ≥ c
∥∥∥x`2∥∥∥2

Hs
≥ c

∥∥∥x`2∥∥∥Hs
.

Similar to above, we obtain

F (x`) ≥ c
∥∥∥x`2∥∥∥Hs

→∞ as `→∞.

Hence, F (x`) → ∞ as ` → ∞ which means that F : C → R is coercive. With
Theorem C.14 it follows that minimization problem (D.1) has at least one solu-
tion.

Now, let x∗ be a solution of (D.1). Then (x∗, z∗) where x∗ = z∗ is a solution of
(D.2). Hence, the objective of (D.2) is finite at (x∗, z∗). Recall that (D.2) is a
convex minimization problem with linear equality constraints. Furthermore, let
λ∗ denote a Lagrange multiplier. Then, Theorem C.19 implies that (x∗, z∗, λ∗)
is a saddle point of the unaugmented Lagrangian L0.
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List of Abbreviations

ADC Apparent Diffusion Coefficient

ADMM Alternating Direction Method of Multipliers

BPDN Basis Pursuit Denoise

CG/pCG (preconditioned) Conjugate Gradients

CSD Constrained Spherical Deconvolution

CSF Cerebrospinal Fluid

CSR Connection to Seed Ratio

DTI Diffusion Tensor Imaging

DWI Diffusion Weighted Imaging

EC Extra Cellular (as superscript)

FA Fractional Anisotropy

GFA General Fractional Anisotropy

GM Gray Matter

HARDI High Angular Resolution Diffusion Imaging

HCP Human Connectome Project

IB Invalid Bundles

IC Invalid Connections
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List of Abbreviations

IC Intra Cellular (as superscript)

ISO Isotropic (as superscript)

MRI Magnetic Resonance Imaging

NC No Connections

NNLS Nonnegative Least Squares

NRMSE Normalized Root Mean Squared Error

ODF/fODF (fiber) Orientation Distribution Function

PSNR Peak Signal to Noise Ratio

RF Radio Frequency

RMSE Root Mean Squared Error

ROI Region Of Interest

SNR Signal to Noise Ratio

SVD Singular Value Decomposition

VB Valid Bundles

VC Valid Connections

VCCR Valid Connection to Connection Ratio

WM White Matter
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