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ABSTRACT

Stochastic response determination and spectral identification of complex dynamic
structural systems

Olga Brudastova

Uncertainty propagation in engineering mechanics and dynamics is a highly challenging problem

that requires development of analytical/numerical techniques for determining the stochastic re-

sponse of complex engineering systems. In this regard, although Monte Carlo simulation (MCS)

has been the most versatile technique for addressing the above problem, it can become computa-

tionally daunting when faced with high-dimensional systems or with computing very low proba-

bility events. Thus, there is a demand for pursuing more computationally efficient methodologies.

Further, most structural systems are likely to exhibit nonlinear and time-varying behavior when

subjected to extreme events such as severe earthquake, wind and sea wave excitations. In such

cases, a reliable identification approach is of paramount importance for subsequent developments

of diagnostic methods for fault/damage detection, monitoring of the structural system dynamic

behavior and for assessing its reliability.

Current work addresses two research themes in the field of stochastic engineering dynamics

related to the above challenges.

In the first part of the dissertation, the recently developed Wiener Path Integral (WPI) technique

for determining the joint response probability density function (PDF) of nonlinear systems subject

to Gaussian white noise excitation is generalized herein to account for non-white, non-Gaussian,

and non-stationary excitation processes. Specifically, modeling the excitation process as the output

of a filter equation with Gaussian white noise as its input, it is possible to define an augmented

response vector process to be considered in the WPI solution technique. A significant advantage

relates to the fact that the technique is still applicable even for arbitrary excitation power spectrum



forms. In such cases, it is shown that the use of a filter approximation facilitates the implementation

of the WPI technique in a straightforward manner, without compromising its accuracy necessarily.

Further, in addition to dynamical systems subject to stochastic excitation, the technique can also

account for a special class of engineering mechanics problems where the media properties are

modeled as non-Gaussian and non-homogeneous stochastic fields. Several numerical examples

pertaining to both single- and multi-degree-of-freedom systems are considered, including a marine

structural system exposed to flow-induced non-white excitation, as well as a beam with a non-

Gaussian and non-homogeneous Young’s modulus. Comparisons with MCS data demonstrate the

accuracy of the technique.

In the second part of the dissertation, a novel multiple-input/single-output (MISO) system

identification technique is developed for parameter identification of nonlinear time-variant multi-

degree-of-freedom oscillators with fractional derivative terms subject to incomplete non-stationary

data. The technique utilizes a representation of the nonlinear restoring forces as a set of parallel lin-

ear subsystems. In this regard, the oscillator is transformed into an equivalent MISO system in the

wavelet domain. Next, a recently developed L1-norm minimization procedure based on compres-

sive sampling theory is applied for determining the wavelet coefficients of the available incomplete

non-stationary input-output (excitation-response) data. Finally, these wavelet coefficients are uti-

lized to determine appropriately defined time- and frequency-dependent wavelet based frequency

response functions and related oscillator parameters. A nonlinear time-variant system with frac-

tional derivative elements is used as a numerical example to demonstrate the reliability of the

technique even in cases of noise corrupted and incomplete data.
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Organization of the Thesis

The thesis consiststs of two parts followed by the list of cited references. Each part presents

an independent research topic and provides a complete presentation of that research effort which

includes an introductory section followed by the analytical derivations, verified by numerical ex-

ample(s), and concluded with remarks and suggestions for future work.

The first part is dedicated to developing a Wiener Path Integral (WPI) based technique for

response determination of nonlinear single- and multi-degree-of-freedom (SDOF and MDOF)

engineering systems subject to non-white, non-Gaussian, and non-stationary stochastic excita-

tions. The technique also allows to account for a class of systems with stochastic medium proper-

ties/parameters subject to deterministic excitations.

Chapter 1 serves as an introduction to the problem of interest, describes motivation and objec-

tives for the study.

Chapter 2 provides an overview of the WPI framework, starting with Chapman-Kolmogorov

(C-K) and Fokker-Planck (F-P) equations describing the associated Markov process, followed by

the corresponding stochastic differential equation (SDE) and the derivation of the transition prob-

ability density function (PDF) for the studied process. A notion of a Lagrangian functional of a

system is also introduced in this chapter.

In Chapter 3, the WPI technique is further generalized to account for non-white and non-

Gaussian excitation processes via a filter approximation technique that allows to reproduce excita-

1



tions not readily available in the time domain, but rather described in the frequency domain in the

form of the associated power spectrum. The full derivation of the Lagrangian and the path inte-

gral follows; calculus of variations is further used to obtain the appropriate Euler-Lagrange (E-L)

equations and the boundary conditions to define the set of boundary value problems (BVPs) to be

solved. The non-stationary nature of excitation processes is addressed in the next section of the

current chapter through considering time-modulated power spectra. An appropriate modification

to the WPI technique implementation is introduced in the context of the idea of a “switch” adopted,

for example, from standard statistical linearization technique implementations. In addition, compu-

tational aspects regarding addressing both of those challenges (non-white/non-Gaussian and non-

stationary processes) are discussed in this chapter.

In Chapter 4, several numerical examples pertaining to both SDOF and MDOF systems are

considered, including a marine structural system exposed to flow-induced non-white excitation,

as well as a bending beam with a non-Gaussian and non-homogeneous Young’s modulus. Com-

parisons with Monte Carlo simulations (MCS) data demonstrate accuracy and reliability of the

technique.

Chapter 5 concludes the first part of the thesis with remarks on the results and applicability of

the proposed herein technique, as well as potential direction for the future work.

The second part of the current work describes a parameter identification technique utilizing the

Generalized Harmonic Wavelet Transform (GHWT) suitable to treat nonlinear time-variant MDOF

oscillators with fractional derivative elements subject to incomplete/limited data.

Chapter 6 provides introductory remarks, including motivation and goals, for the research

project.

Chapter 7 addresses two major challenges in the field of system identification, namely, the non-

stationary nature of the real-life data and its limited/incomplete availability. The first challenge can

be approached via generalized harmonic wavelets transformation (GHWT) which allows to con-

2



sider signals exhibiting both time- and frequency-varying behavior. The incomplete data analysis

is accomplished through the compressive sensing (CS) approach; a signal processing technique

able to reconstruct signals recorded at the maximum frequency greater than half of the signal’s

sampling rate.

In Chapter 8, a system parameter identification technique is developed to treat nonlinear time-

varying engineering systems with fractional derivative elements. The technique utilizes the gener-

alized harmonic wavelet (GHW) treatment of the non-stationary signals and is based on the reverse

multiple-input/single-output (MISO) approach well established in literature. The chapter presents

full derivation of the method and is concluded with an algorithm outlining the procedure for pa-

rameter identification.

Chapter 9 presents numerical validation of the developed identification technique and considers

a time-variant MDOF Duffing oscillator with fractional derivative elements. The reliability and

robustness of the technique are shown in determining unknown system parameters, both time-

varying and constant.

Chapter 10 provides concluding remarks on the second part of the dissertation and suggests

directions for further implementation and development of the technique.

3
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Part I

Wiener Path Integral based response

determination of nonlinear systems subject

to non-white, non-Gaussian, and

non-stationary stochastic excitation
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Chapter 1

Introduction

Uncertainty propagation in engineering mechanics and dynamics is a highly challenging prob-

lem that requires development of analytical/numerical techniques for determining the stochastic

response of complex engineering systems. In this regard, although MCS has been the most ver-

satile technique for addressing the above problem (e.g., [Rubinstein and Kroese, 2007, Spanos

and Zeldin, 1998]), it can become computationally daunting when faced with high-dimensional

systems or with computing very low probability events. Thus, there is a demand for pursuing

more computationally efficient methodologies. In the field of stochastic engineering dynamics, a

number of alternative techniques, such as stochastic averaging (e.g., [Roberts and Spanos, 1986,

Spanos et al., 2011, Zhu, 1996]), statistical linearization (e.g., [Fragkoulis et al., 2016, Roberts and

Spanos, 2003, Spanos and Kougioumtzoglou, 2012]), as well as methodologies based on Markov

approximations and related Fokker-Planck equations [Lin, 1976], have been developed over the

past few decades with varying degrees of accuracy.

More recently, a WPI technique, whose origins can be found in theoretical physics [Chaichian

and Demichev, 2001], has been developed in the field of engineering dynamics for determining

the response transition PDF of oscillators subject to Gaussian white noise excitation [Kougioumt-

zoglou and Spanos, 2012]. The idea of a path integral was first presented by Wiener within the

7



CHAPTER 1. INTRODUCTION

Brownian motion theory [Wiener, 1921], and later rediscovered and generalized by Feynman in

quantum mechanics [Feynman, 1948]. The technique found a great variety of applications in the

field of theoretical physics; e.g. theories of superfluidity, of unified electromagnetic and weak

interactions, and of quantum chromodynamics. More specifically, it presented a valuable tool in

determining system transition PDF for a great variety of stochastic processes via the Feynman-Kac

formula [Feynman, 1948, Kac, 1949]. Moreover, both analytical and approximate numerical treat-

ments of path integrals can be found in literature (e.g., [Brush, 1961, Feng et al., 1992, Gelfand

and Yaglom, 1960, Wiegel, 1975]).

Despite the wide use of the WPI approach in various fields of theoretical physics, its applica-

tion to engineering dynamics problems has been considered only recently by [Kougioumtzoglou

and Spanos, 2012]. The WPI technique has been further generalized to account for MDOF sys-

tems and diverse nonlinear/hysteretic system modeling [Kougioumtzoglou and Spanos, 2014], as

well as for systems endowed with fractional derivative terms [Di Matteo et al., 2014]. Next, the

technique has been enhanced from a computational efficiency perspective by relying on its local-

ization capabilities and invoking appropriate expansions for the response PDF [Kougioumtzoglou

et al., 2015]. Moreover, it has been shown by [Kougioumtzoglou, 2017] that the technique can

also address a special class of engineering mechanics problems where media properties are mod-

eled as stochastic fields, while preliminary efforts on quantifying the error of the technique can

be found in [Meimaris et al., 2018]. The latest improvement of the technique has been introduced

by [Psaros et al., 2018b], where the computational efficiency has been improved by exploiting CS

procedures in combination with group sparsity concepts and appropriate optimization algorithms.

The technique also found a new area of application in the field of energy harvesting; more specif-

ically, it was recently utilized in stochastic response determination and optimization of a class of

nonlinear electromechanical energy harvesters [Petromichelakis et al., 2018]. Nevertheless, the

WPI technique has been limited so far to treating Gaussian white noise excitation processes only.

8



The presented herein research is specifically aimed at developing a novel WPI based tech-

nique for response statistics determination of nonlinear MDOF systems subject to non-white, non-

Gaussian and non-stationary excitation processes. The “filter” approximation [Spanos, 1986] is

utilized to model such excitations as an output to a filter equation with a Gaussian white noise

input. The resulting augmented response vector process is then considered in the WPI formula-

tion. Moreover, the approach allows to account for the excitations not readily available in the time

domain, but rather represented by power spectra in the frequency domain; this serves as a notice-

able advantage and makes the technique widely applicable in the field of engineering dynamics.

Finally, several numerical examples are presented , including a marine structure subject to flow-

induced forces and a Euler-Bernoulli beam with a non-Gaussian and non-homogeneous Young’s

modulus. The results are then compared to the MCS data; the comparisons demonstrate accuracy

and reliability of the technique for the wide variety of structural dynamics problems.

9
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Chapter 2

WPI Formalism

2.1 Fokker-Planck equation

The derivation of the path integral departs from the definition of a Markov process, whose most

prominent property is that “at a given instant, given all past observations, [conditional probability

distributions of a Markov process] depend only upon the most recent past” [Soong and Grigoriu,

1993]; a rigorous study of such processes can be found in [Doob, 1953, Kolmogorov, 1931, Loéve,

1963, Stratonovich, 1968] among other publications.

Consider a Markov stochastic vector process ααα(t) = [α1(t), . . . ,αn(t)] for which the C-K equa-

tion for any tl+1 ≥ tl ≥ tl−1 takes the form (e.g., [Soong and Grigoriu, 1993])

p(ααα l+1, tl+1|ααα l−1, tl−1) =

∞∫
−∞

p(ααα l−1, tl−1|ααα l, tl)p(ααα l, tl|ααα l+1, tl+1) dααα l, (2.1)

where p(ααα l+1, tl+1|ααα l−1, tl−1) is the transition PDF of the process from the state ααα l−1 at a time

instance tl−1 to the state ααα l+1 at a time tl+1.

The sample paths of a Markov process are continuous functions of t with probability one if the

11



CHAPTER 2. WPI FORMALISM

Lindeberg condition is satisfied (e.g., [Gihman and Skorohod, 1972])

lim
∆t→0

1
∆t

∫
|ααα l+1−ααα l |>ε

p(ααα l+1, tl+1|ααα l, tl)dααα l+1 = 0 ∀ε > 0, (2.2)

where ∆t = tl+1− tl . Such a process is defined as a diffusion process, and the components of its

drift vector A(ααα l, tl) = [A j(ααα l, tl)]n×1 and of its diffusion matrix B(ααα l, tl) = [B jk(ααα l, tl)]n×n can be

defined as (e.g., [Gardiner, 2009])

A j(ααα l, tl) = lim
∆t→0

E
[
α jl+1−α jl

]
∆t

(2.3)

and

B2
jk(ααα l, tl) = lim

∆t→0

E
[
(α jl+1−α jl)(αkl+1−αkl)

]
∆t

, (2.4)

respectively.

Further, the well-known F-P equation can be obtained through employing the C-K Eqn. (2.1)

(e.g., [Arnold, 1974, Grigoriu, 2002])

∂ p
∂ t

=−∑
j

∂

∂α j

(
A j(ααα, t)p

)
+

1
2 ∑

j
∑
k

∂

∂α j

∂

∂αk

(
B̃ jk(ααα, t)p

)
, (2.5)

where p = p(ααα l+1, tl+1|ααα l, tl), and B̃(ααα, t) = B(ααα, t)BT (ααα, t).

The F-P Eqn. (2.5) is related to a first-order SDE of the form

α̇αα = A(ααα, t)+B(ααα, t)ηηη(t), (2.6)

where ηηη(t) is a zero-mean delta-correlated process of intensity one, i.e., E
[
η j(t)

]
= 0 and E

[
η j(tl)ηk(tl+1)

]
=

δ jkδ (tl−tl+1), j,k∈{1, . . . ,n}, with δ jk being the Kronecker delta, and δ (t) representing the Dirac

delta function. Eqn. (2.6) is also widely known as the diffusion or Itô equation (e.g., [Grigoriu,

2002]).

12



2.2. WPI FORMULATION

2.2 WPI formulation

The transition PDF has been shown to admit a Gaussian distribution at the limit ∆t → 0 (e.g.,

[Gardiner, 2009, Risken, 1996])

p(ααα l+1, tl+1|ααα l, tl) =

[√
(2π∆t)n det

[
B̃(ααα l, tl)

]]−1

. . .

exp

−1
2

[ααα l+1−ααα l−∆tA(ααα l, tl)]T
[
B̃(ααα l, tl)

]−1
[ααα l+1−ααα l−∆tA(ααα l, tl)]

∆t

. (2.7)

Note here that the choice of the Gaussian distribution of the form of Eqn. is not restrictive, and

non-Gaussian distributions can also be utilized (e.g., [Langouche et al., 1979, Naess and Moe,

1996]). As a matter of fact, Eqn. (2.7) together with the C-K Eqn. (2.1) have been the starting

point of the alternative purely numerical schemes, typically refered in literature as numerical path

integral schemes, for propagating the response PDF in short time steps [Alevras and Yurchenko,

2016, Di Paola and Santoro, 2008, Naess and Johnsen, 1993, Wehner and Wolfer, 1983]. Despite

these schemes being highly accurate since the only approximation is related to discretizing the C-K

Eqn. (2.1), they have proven to be computationally demanding. This is caused by the fact that a

multi-dimensional convolution integral has to be calculated numerically for each time step, while

the time step is kept short.

It is assumed in Eqn. (2.7) that B̃ is a non-singular matrix and its inverse exists.

In addition, the probability that the stochastic process ααα follows a specific path, ααα(t), can be

interpreted as the probability of a compound event, i.e., as a product of probabilities of the form of

13



CHAPTER 2. WPI FORMALISM

Eqn. (2.7) (e.g., [Chaichian and Demichev, 2001, Risken, 1996])

P [ααα(t)] = lim
∆t→0
N→∞


N−1

∏
l=0

[√(2π∆t)n det
[
B̃(ααα l, tl)

]]−1 n

∏
j=1

dα jl

 . . .
exp

−N−1

∑
l=0

1
2

[ααα l+1−ααα l−∆tA(ααα l, tl)]
T
[
B̃(ααα l, tl)

]−1
[ααα l+1−ααα l−∆tA(ααα l, tl)]

∆t


 , (2.8)

where the time discretization assumes N points ∆t apart, and the path ααα(t) is represented by its

values ααα l at the discrete time instances tl , l ∈ {0, . . . ,N−1}. Moreover, dα jl represent the (infinite

in number) infinitesimal “gates” through which the path propagates. Eqn. (2.8) roughly represents

the probability of the process to propagate through the infinitesimally thin tube around the path

ααα(t). However, if the diffusion matrix B(ααα, t) is diagonal, Eqn. (2.8) can be written in a compact

form [Chaichian and Demichev, 2001]

P [ααα(t)] = exp

− t f∫
ti

1
2

n

∑
j=1

[α̇ j−A j(ααα, t)]2

B̃ j j(ααα, t)
dt

 n

∏
j=1

t f

∏
t=ti

dα j(t)√
2πB̃ j j(ααα, t) dt

. (2.9)

Consider next an initial state ααα i at time ti and a final state ααα f at time t f . Then, the total

probability that the path ααα will follow from ααα i to ααα f takes the form of a functional integral that

“sums up” the respective probabilities of each path that the process can possibly follow (see, e.g.,

[Chaichian and Demichev, 2001, Feynman et al., 2010]). Denoting the set of all such paths from

ααα i to ααα f by C{ααα i, ti;ααα f , t f }, the transition PDF becomes

p(ααα f , t f |ααα i, ti) =
∫

C{ααα i,ti;ααα f ,t f }

exp

− t f∫
ti

L [ααα, α̇αα]dt

 n

∏
j=1
D[α j(t)], (2.10)

where L [ααα, α̇αα] denotes the Lagrangian functional of the system of the form

L [ααα, α̇αα] =
1
2

n

∑
j=1

[α̇ j−A j(ααα, t)]2

B̃ j j(ααα, t)
, (2.11)

14
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and D[α j(t)], j ∈ {1, . . . ,n}, is a functional measure given as

D[α j(t)] =
t f

∏
t=ti

dα j(t)√
2πB̃ j j(ααα, t)dt

. (2.12)

The aforementioned concepts allowed Kougioumtzoglou and coworkers to develop recently a

novel WPI based technique for determination of the response tranasition PDF of stochastically

excited SDOF and MDOF nonlinear systems [Kougioumtzoglou and Spanos, 2012]. The tech-

nique has been shown to be versatile in addressing various engineering systems, including ones

with fractional derivative elements [Di Matteo et al., 2014] or exhibiting hysteretic behavior [Kou-

gioumtzoglou and Spanos, 2014]. Nonetheless, it has been applied so far to Gaussian white noise

excitation stochastic processes only.

15
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Chapter 3

Mathematical Formulation

3.1 WPI technique generalization: non-white and non-Gaussian

excitation process

3.1.1 Theoretical formulation

Consider a MDOF nonlinear oscillator governed by the following equation

Mẍ+Cẋ+Kx+g(x, ẋ) = ξξξ (t), (3.1)

where x(t) = [x1, . . . ,xm]
T is the displacement vector process; M, C, K are the m×m mass, damp-

ing and stiffness matrices, respectively; and g(x, ẋ) is an arbitrary nonlinear vector function. ξξξ (t)

represents a non-white non-Gaussian excitation stochastic process, which can be modeled as a

response to a nonlinear “filter” equation (e.g., [Roberts and Spanos, 2003])

Pξ̈ξξ +Qξ̇ξξ +Rξξξ +u(ξξξ , ξ̇ξξ ) = w(t), (3.2)

where P, Q, R are coefficient matrices; u(ξξξ , ξ̇ξξ ) is an arbitrary nonlinear vector function; and

w(t) = [w1, . . . ,wm]
T is a white noise stochastic vector process with the power spectrum matrix of
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CHAPTER 3. MATHEMATICAL FORMULATION

the form

Sw =


S0 . . . 0
... . . . ...
0 . . . S0

 . (3.3)

Various non-white excitation processes often employed in engineering dynamics models (e.g.,

the Kanai-Tajimi excitation process in earthquake engineering [Kanai, 1957, Tajimi, 1960]) can

be defined via the filter Eqn. (3.2). As a matter of fact, the filter equation can be understood as

the time-domain representation of those excitation processes that are typically described in the

frequency domain by their power spectra [Li and Chen, 2009]. More importantly, it has been

shown [Chai et al., 2015, Spanos, 1986] that a filter approximation of the form of Eqn. (3.2) can

generate satisfactory accuracy for practical applications even for the cases of excitations not readily

available in the time domain as a response to such a filter. Eqn. (3.2) also allows to account for

non-Gaussian excitation models via the nonlinear vector function u(ξξξ , ξ̇ξξ ).

Next, differentiating Eqn. (3.1) and substituting into Eqn. (3.2) yields the fourth-order SDE

ΛΛΛ4x(4)+ΛΛΛ3x(3)+ΛΛΛ2ẍ+ΛΛΛ1ẋ+ΛΛΛ0x+h(x, ẋ, ẍ,x(3)) = w(t), (3.4)

where



ΛΛΛ4 = PM

ΛΛΛ3 = PC+QM

ΛΛΛ2 = PK+QC+RM

ΛΛΛ1 = QK+RC

ΛΛΛ0 = RK,

(3.5)

and

h(x, ẋ, ẍ,x(3)) = Pg̈(x, ẋ)+Qġ(x, ẋ)+Rg(x, ẋ)+u(x, ẋ, ẍ,x(3)). (3.6)
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EXCITATION PROCESS

A state variable formulation can be applied to the Eqn. (3.4) [Einchcomb and McKane, 1995,

McKane et al., 1990, Risken, 1996] to yield an equation of the form of Eqn. (2.6) with

ααα = [x,y1,y2,y3]
T , (3.7)

A(ααα, t) =


y1

y2

y3

ΛΛΛ
−1
4 (−ΛΛΛ3y3−ΛΛΛ2y2−ΛΛΛ1y1−ΛΛΛ0x−h(x,y1,y2,y3))

 , (3.8)

and

B(ααα, t) =

[
03m×3m 03m×m

0m×3m
√

2πΛΛΛ
−1
4 Sw

1/2

]
. (3.9)

This way, the m-dimensional fourth-order SDE of Eqn. (3.4) becomes a 4m-dimensional first-order

SDE for the process ααα = [x,y1,y2,y3]
T .

Notice that the diffusion matrix B(ααα, t) (as well as B̃(ααα, t) = B(ααα, t)BT (ααα, t)) in Eqn. (3.9)

is singular and requires a different treatment than directly employing Eqn. (2.10). The chal-

lenge of encountering singular diffusion matrices in path integral formulations has been repeat-

edly addressed in literature [Colet et al., 1989, Donoso et al., 1999, Drozdov and Talkner, 1998,

Einchcomb and McKane, 1995, Hänggi, 1989, Machlup and Onsager, 1953, McKane et al., 1990,

Newman et al., 1990, Wio et al., 1989]. The ensuing analysis bypasses singularity of the matrix

B(ααα, t) by utilizing delta-functionals in the path integral formulation [Chaichian and Demichev,

2001, Wio, 2013], which enforce the compatibility equations (ẋ = y1, ẏ1 = y2, and ẏ2 = y3). In this

ragard, the transition PDF of ααα = [x,y1,y2,y3]
T can be expressed as [Chaichian and Demichev,

2001]

p(ααα f , t f |ααα i, ti) =
∫

C{ααα f ,t f ;ααα i,ti}

exp

− t f∫
ti

1
2

ST B̃−1
ns S dt

 . . .

δ [ẏ2−y3]δ [ẏ1−y2]δ [ẋ−y1]D[x(t)]D[y1(t)]D[y2(t)]D[y3(t)], (3.10)
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CHAPTER 3. MATHEMATICAL FORMULATION

where

S = ΛΛΛ4ẏ3 +ΛΛΛ3y3 +ΛΛΛ2y2 +ΛΛΛ1y1 +ΛΛΛ0x+h(x,y1,y2,y3), (3.11)

and

B̃ns =


2πS0 . . . 0

... . . . ...
0 . . . 2πS0

 . (3.12)

Integrating over paths y1(t), y2(t) and y3(t) [Wio, 2013] transforms Eqn. (3.10) into

p
(

x f , ẋ f , ẍ f ,x
(3)
f , t f |xi, ẋi, ẍi,x

(3)
i , ti

)
=

∫
C{xi,ẋi,ẍi,x

(3)
i ,ti;x f ,ẋ f ,ẍ f ,x

(3)
f ,t f }

exp

− t f∫
ti

L
[
x, ẋ, ẍ,x(3),x(4)

]
dt

D[x(t)], (3.13)

where the Lagrangian-like functional L
[
x, ẋ, ẍ,x(3),x(4)

]
is given by

L
[
x, ẋ, ẍ,x(3),x(4)

]
=

1
2

[
ΛΛΛ4x(4)+ΛΛΛ3x(3)+ΛΛΛ2ẍ+ΛΛΛ1ẋ+ΛΛΛ0x+h

(
x, ẋ, ẍ,x(3)

)]T

. . .

B̃−1
ns

[
ΛΛΛ4x(4)+ΛΛΛ3x(3)+ΛΛΛ2ẍ+ΛΛΛ1ẋ+ΛΛΛ0x+h

(
x, ẋ, ẍ,x(3)

)]
. (3.14)

Eqn. (3.13) provides a formal expression of the path integral and is of little practical use

since its analytical or numerical evaluation is extremely challenging [Chaichian and Demichev,

2001]. Hence, the problem requires an approximate solution of the path integral, such as the “most

probable path” approach (e.g., [Chaichian and Demichev, 2001, Kougioumtzoglou and Spanos,

2012]), according to which the largest contribution to the transition PDF of Eqn. (3.13) comes

from the path xc(t) that minimizes the integral inside the exponential. In agreement with calculus

of variations (e.g., [Ewing, 1985, Lanczos, 1986]), xc(t) should satisfy the extremality condition

δ

t f∫
ti

L
[
xc, ẋc, ẍc,x

(3)
c ,x(4)c

]
dt = 0, (3.15)
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which yields the system of Euler-Lagrange (E-L) equations

∂L
∂xc,1

− ∂

∂ t
∂L

∂ ẋc,1
+

∂ 2

∂ t2
∂L

∂ ẍc,1
− ∂ 3

∂ t3
∂L

∂x(3)c,1

+
∂ 4

∂ t4
∂L

∂x(4)c,1

= 0

... (3.16)

∂L
∂xc,m

− ∂

∂ t
∂L

∂ ẋc,m
+

∂ 2

∂ t2
∂L

∂ ẍc,m
− ∂ 3

∂ t3
∂L

∂x(3)c,m

+
∂ 4

∂ t4
∂L

∂x(4)c,m

= 0,

together with 8×m boundary conditions

xc,1(ti) = x1,i, ẋc,1(ti) = ẋ1,i, xc,1(t f ) = x1, f , ẋc,1(t f ) = ẋ1, f ,

ẍc,1(ti) = ẍ1,i, x(3)c,1(ti) = x(3)1,i , ẍc,1(t f ) = ẍ1, f , x(3)c,1(t f ) = x(3)1, f ,
...

xc,m(ti) = xm,i, ẋc,m(ti) = ẋm,i, xc,m(t f ) = xm, f , ẋc,m(t f ) = ẋm, f ,

ẍc,m(ti) = ẍm,i, x(3)c,m(ti) = x(3)m,i, ẍc,m(t f ) = ẍm, f , x(3)c,m(t f ) = x(3)m, f .

(3.17)

Further, the most probable path xc(t) can be obtained by solving the BVP of Eqs. (3.16) and

(3.17) (e.g., [Agarwal and O’Regan, 2008, Shampine et al., 2003]), and the transition PDF from

the initial state {xi, ẋi, ẍi,x
(3)
i , ti} to the final state {x f , ẋ f , ẍ f ,x

(3)
f , t f } is calculated as

p
(

x f , ẋ f , ẍ f ,x
(3)
f , t f |xi, ẋi, ẍi,x

(3)
i , ti

)
=C exp

− t f∫
ti

L
[
xc, ẋc, ẍc,x

(3)
c ,x(4)c

]
dt

, (3.18)

where the normalization constant C is determined through the condition
∞∫
−∞

· · ·
∞∫
−∞

p
(

x f , ẋ f , ẍ f ,x
(3)
f , t f |xi, ẋi, ẍi,x

(3)
i , ti

)
dx f . . .dx(3)f = 1. (3.19)

3.1.2 Computational aspects

The numerical implementation of the WPI technique as developed in Section 3.1.1 is dicussed

next. In this respect, one can note that solving one BVP of the form of Eqs. (3.16) and (3.17)

provides one point of the response transition PDF.

Consider a given time instance t f and a corresponding effective domain of boundary values

for the response transition PDF. The effective domain can be discretized with N points in each
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dimension (x f , ẋ f , ẍ f , x(3)f ). The brute force implementation of the technique yields the PDF

being determined for each point of the mesh. For example, an m-DOF system requires solution

of N4m BVPs. Clearly, this quickly drives the computational cost to prohibitive for relatively

high-dimensional MDOF engineering systems. However, an efficient approach, such as the ones

developed by [Kougioumtzoglou et al., 2015, Psaros et al., 2018b], can be combined with the WPI

technique. More specifically, one can utilize the localization property of the joint response PDF

and apply an appropriate polynomial expansion to it. This approach has been shown to result in a

computational effort following a power law of the form ∼ (4m)l /l! (where l is the degree of the

polynomial), which can be orders of magnitude smaller than N4m (depending on the dimensionality

of the original system of ineterest m) [Kougioumtzoglou et al., 2015]. Additionally, utilizing sparse

PDF respresentations in combination with CS tools and group sparsity concepts can reduce the

number of BVPs required to be solved even further [Psaros et al., 2018b].

3.2 WPI technique generalization: non-stationary excitation

process

3.2.1 Theoretical formulation

In the above, Section 3.1 presents stochastic modeling that takes into account the transient phase

of the filter through Eqn. (3.2), i.e., the non-white excitation process ξξξ (t) is non-stationary in

this formulation. However, many engineering dynamics applications adopt an excitation model

provided by a (time-mofulated) power spectrum [Li and Chen, 2009, Roberts and Spanos, 2003]

Sf(ω, t) = D(t)Sξξξ s
(ω)DT (t), (3.20)
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corresponding to the (non-stationary) stochastic process

f(t) = D(t)ξξξ s(t), (3.21)

where D(t) is the m×m matrix of deterministic time-modulating functions.

Note that ξξξ s(t) in Eqs. (3.20) and (3.21) represents the stationary reposnse of the filter of

Eqn. (3.2); in other words, the output of Eqn. (3.2) after the transient phase has died out and

ξξξ (t) has reached its stationary phase. Thus, the implementation of the WPI technique as it has

been derived in Section 3.1 requires a modification to account for modeling stochastic excitation

processes through Eqs. (3.20) and (3.21).

In this regard, Eqn. (3.1) becomes

Mẍ+Cẋ+Kx+g(x, ẋ) = f(t). (3.22)

Considering Eqn. (3.21) with D jk(t) 6= 0 ∀ j,k ∈ {1, . . . ,m} yields

ξξξ s(t) = D−1(t)f(t) (3.23)

ξ̇ξξ s(t) = D−1(t)
[
ḟ(t)− Ḋ(t)ξξξ s(t)

]
(3.24)

ξ̈ξξ s(t) = D−1(t)
[
f̈(t)− D̈(t)ξξξ s(t)−2Ḋ(t)ξ̇ξξ s(t)

]
(3.25)

Next, substituting Eqs. (3.22)-(3.25) into Eqn. (3.2), a SDE similar to Eqn. (3.4) can be obtained,
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where



ΛΛΛ4 = PD−1M

ΛΛΛ3 = PD−1 [−2ḊD−1M+C
]
+QD−1M

ΛΛΛ2 = PD−1 [(2ḊD−1ḊD−1− D̈D−1)M−2ḊD−1C+K
]

+QD−1 (−ḊD−1M+C
)
+RD−1M

ΛΛΛ1 = PD−1 [(2ḊD−1ḊD−1− D̈D−1)C−2ḊD−1K
]

+QD−1 (−ḊD−1C+K
)
+RD−1C

ΛΛΛ0 = PD−1 (2ḊD−1ḊD−1− D̈D−1)K

−QD−1ḊD−1K+RD−1K,

(3.26)

and

h(x, ẋ, ẍ,x(3)) = PD−1g̈(x, ẋ)

+
(
−2PD−1ḊD−1 +QD−1) ġ(x, ẋ)

+
[
PD−1 (2ḊD−1ḊD−1− D̈D−1)

− QD−1ḊD−1 +RD−1]g(x, ẋ)+u(x, ẋ, ẍ,x(3)).

(3.27)

Once again, one arrives at a set of BVPs (Eqs. (3.16) and (3.17)) that necessitates initial values(
xi, ẋi, ẍi,x

(3)
i

)
at time ti and final values

(
x f , ẋ f , ẍ f ,x

(3)
f

)
at time t f to be known. The initial

displacement xi and velocity ẋi are usually assumed to be deterministic and fixed, whereas the

values of ẍi and x(3)i are typically expressed through Eqn. (3.22) in the form of

ẍi = M−1 (f(ti)−Cẋi−Kxi−g(xi, ẋi)) , (3.28)

x(3)i = M−1 (ḟ(ti)−Cẍi−Kẋi− ġ(xi, ẋi)
)
. (3.29)

It is easy to notice from Eqs. (3.28) and (3.29) that ẍi and x(3)i are (correlated) random vectors,

whose joint PDF p
(

ẍi,x
(3)
i

)
can be determined via the following steps:
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3.2. WPI TECHNIQUE GENERALIZATION: NON-STATIONARY EXCITATION PROCESS

i. Apply the WPI technique (e.g., [Kougioumtzoglou et al., 2015]) to Eqn. (3.2) to evaluate the

joint PDF of ξξξ s and ξ̇ξξ s.

ii. ξξξ s and ξ̇ξξ s are related to f and ḟ via Eqn. (3.21) and its differentiated version

ḟ(t) = D(t)ξ̇ξξ s(t)+ Ḋ(t)ξξξ s(t) (3.30)

Thus, the joint PDF p
(

ẍi,x
(3)
i

)
can be readily evaluated by considering Eqs. (3.28), (3.29),

(3.21), and (3.30) and applying standard PDF transformations between random vectors (e.g.,

[Ang and Tang, 2007]).

Furthermore, taking into account the fact that the initial conditions xi and ẋi are deterministic

and fixed, the response transition PDF can be written as [Wio et al., 1989]

p
(

x f , ẋ f , ẍ f ,x
(3)
f , t f |xi, ẋi, ti

)
=

∞∫
−∞

p
(

x f , ẋ f , ẍ f ,x
(3)
f , t f |xi, ẋi, ẍi,x

(3)
i , ti

)
p
(

ẍi,x
(3)
i

)
dẍid x(3)i (3.31)

Eqn. (3.31) can be seen as the mean of p
(

x f , ẋ f , ẍ f ,x
(3)
f , t f |xi, ẋi, ẍi,x

(3)
i , ti

)
over all possible

initial values ẍi and x(3)i . In general, stochastic excitation models of the form of Eqs. (3.20)

and (3.21) can be accounted for with the use of the herein developed WPI based technique of

Section 3.1, where p
(

x f , ẋ f , ẍ f ,x
(3)
f , t f |xi, ẋi, ẍi,x

(3)
i , ti

)
is computed for every pair of initial values(

ẍi,x
(3)
i

)
, followed by the integration of Eqn. (3.31). This procedure yields one point of the

response transition PDF p
(

x f , ẋ f , ẍ f ,x
(3)
f , t f |xi, ẋi, ti

)
.

Interestingly, analogous modifications have been introduced in alternative stochastic dynamics

techniques, such as the time-domain formulation of statistical linearization, where a “switch” al-

lows the filter equation output to reach stationarity before being used as an input to the original

governing equation of the engineering system [Roberts and Spanos, 2003].

25



CHAPTER 3. MATHEMATICAL FORMULATION

3.2.2 Computational aspects

As discussed in Section 3.1.2, implementing the WPI technique with the brute force approach to

discretizing the effective domain for the response transition PDF yields N4m BVPs to be solved.

Moreover, discretizing the domains of the initial values of ẍi and x(3)i into M points in each dimen-

sion requires solving M2 BVPs (Eqs. (3.16) and (3.17)) to determine one point of p
(

x f , ẋ f , ẍ f ,x
(3)
f ,

t f |xi, ẋi, ti
)

. This way, the total number of BVPs to be solved to evaluate the full PDF p
(

x f , ẋ f , ẍ f ,

x(3)f , t f |xi, ẋi, ti
)

becomes M2N4m. Obviously, the increase in the computational effort makes it al-

most mandatory to use the WPI technique in combination with the computationally efficient PDF

representation scheme proposed in [Kougioumtzoglou et al., 2015].
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Chapter 4

Numerical Validation

In this chapter, the versatility and reliability of the developed technique are demonstrated by con-

sidering various diverse numerical examples. In the first example the technique developed in Sec-

tion 3.1 is applied to a 2-DOF linear structure under non-white excitation, while to demonstrate the

approach delineated in Section 3.2 the second example refers to an SDOF nonlinear oscillator sub-

ject to time-modulated non-white excitation. Further, the third example relates to a marine structure

subject to flow-induced forces. This example serves to demonstrate that even in cases where the

excitation power spectrum (e.g., JONSWAP [Hasselmann et al., 1973, Pierson and Moskowitz,

1964]) cannot be analytically expressed in the time domain in the form of Eqn. (3.2), a linear fil-

ter approximation [Spanos, 1986] provides satisfactory accuracy; and thus, the herein developed

WPI technique can be applied in a straightforward manner. Finally, the last example pertains to

a cantilever beam with the Young’s modulus modeled as a non-white and non-Gaussian stochas-

tic field. In all of the examples, comparisons with corresponding MCS data (50,000 realizations)

demonstrate the accuracy of the developed WPI technique. To this aim, a standard fourth-order

Runge-Kutta numerical integration scheme is employed for solving the governing equations of

motion within the MCS context.
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4.1 MDOF system subject to non-white excitation process

The first example demonstrates the WPI technique developed in Section 3.1 in application to a

MDOF system exposed to non-white stochastic excitation. Particularly, the joint response PDF of

a 2-DOF system is determined, where the oscillator is governed by the equation of motion of the

form of Eqn. (3.1) with g(x, ẋ) = 0 and

M =

[
m0 0
m0 m0

]
, (4.1)

C =

[
c −c

0 c

]
, (4.2)

K =

[
k −k

0 k

]
. (4.3)

The filter coefficients of Eqn. (3.2) are chosen as

P =

[
p 0
0 p

]
, (4.4)

Q =

[
q 0
0 q

]
, (4.5)

R =

[
r 0
0 r

]
. (4.6)

Table 4.1: System parameters pertaining to Eqs. (4.1)-(4.6).

m0 c k p q r S0

1 0.1 1 1 0.1 1 0.0637

The numerical values of the parameters chosen for the simulations are presented in Table 4.1.

The joint PDF of displacements x1 and x2 is plotted for time instances t = 1.0 s and t = 2.0 s in

Figs. 4.1 and 4.2, respectively. The corresponding marginal PDFs are presented in Fig. 4.3. The

joint response transition PDF is approximated by a second-order polynomial [Kougioumtzoglou

et al., 2015]; this way, the polynomial coefficients are obtained through solving only 37 BVPs of
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4.1. MDOF SYSTEM SUBJECT TO NON-WHITE EXCITATION PROCESS

the form of Eqs. (3.16) and (3.17) for any given time instance t f . The complete PDF is then readily

available at any point of the effective domain (x f , ẋ f , ẍ f , x(3)f ).

Comparison is made with the pertinent MCS data (50,000 realizations) and included in the

figures. The results obtained via the proposed technique are in very good agrrement with the MCS

data and demonstrate the capability of the WPI approach to capture the prominent features of the

system joint response PDF.

Figure 4.1: Joint PDF of x1(t) and x2(t) at time t = 1.0 s, as obtained via the WPI technique (a -
b); comparisons with MCS data - 50,000 realizations (c - d).
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Figure 4.2: Joint PDF of x1(t) and x2(t) at time t = 2.0 s, as obtained via the WPI technique (a -
b); comparisons with MCS data - 50,000 realizations (c - d).
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Figure 4.3: Marginal PDF of x1(t) (a) and x2(t) (b) at time instances t = 1.0 s and t = 2.0 s, as
obtained via the WPI technique; comparisons with MCS data (50,000 realizations).
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4.2 SDOF system subject to time-modulated non-white excita-

tion process

The modification of the technique discussed in Section 3.2 is implemented next. It allows the

filter equation output to reach stationarity, and is applied below to a problem of a nonlinear SDOF

oscillator. The oscillator’s motion is governed by Eqn. (3.22) with M = m0; C = c; K = k;

g(x, ẋ) = εkx3, where ε is the magnitude of nonlinearity. The numerical values of the parameters

are listed in Table 4.2.

Table 4.2: System parameters used in Section 4.2.

m0 c k ε S0 α β γ λ q r

1 0.1 2 1 1 1 2 10−4 4 1 1

The excitation f (t) is modeled in accordance with Eqs. (3.20) and (3.21) with the power

spectrum expressed as

S f (ω, t) = d2(t)Sξs(ω), (4.7)

where

Sξs(ω) =
S0

ω2q2 + r2 , (4.8)

and

d(t) = γ +λ (e−αt− e−β t). (4.9)

Note that Sξs(ω) corresponds to the stationary output of the filter equation in the time domain

qξ̇ + rξ = w(t), (4.10)

where w(t) is a zero-mean white noise process with intensity S0.

Next, ξs(t) and ξ̇s(t) can be expressed in terms of f (t) via applying Eqs. (3.23) and (3.24), and
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PROCESS

substituted into Eqn. (4.10), which yields

1
d

[
r
(
m0ẍ+ cẋ+ kx+ εkx3)

+q
(

m0x(3)+ cẍ+ kẋ+3εkx2ẋ− ḋ
d

(
m0ẍ+ cẋ+ kx+ εkx3))]= w(t). (4.11)

The associated Lagrangian then takes the form

L
[
x, ẋ, ẍ,x(3)

]
=

1
4πS0

· 1
d2

[
r
(
m0ẍ+ cẋ+ kx+ εkx3)

+q
(

m0x(3)+ cẍ+ kẋ+3εkx2ẋ− ḋ
d

(
m0ẍ+ cẋ+ kx+ εkx3))]2

, (4.12)

and the associated E-L Eqn. (3.16) becomes

∂L
∂xc
− ∂

∂ t
∂L
∂ ẋc

+
∂ 2

∂ t2
∂L
∂ ẍc
− ∂ 3

∂ t3
∂L

∂x(3)c

= 0, (4.13)

together with the initial conditions for ti = 0

xc(ti) = xi = 0, ẋc(ti) = ẋi = 0, ẍc(ti) = ẍi =
1

m0
d(ti)ξs(ti). (4.14)

It was noted in Section 3.2.1 that ẍi is a random variable. Therefore, the WPI technique [Kou-

gioumtzoglou et al., 2015] is first utilized in conjunction with the filter Eqn. (4.10) to determine

the stationary PDF pξs

(
ξs(ti)

)
. The PDF pẍi(ẍi) is then computed with the use of the following

relationship [Ang and Tang, 2007]

pẍi(ẍi) =
m0

d(ti)

[
pξs

(
m0

d(ti)
ẍi

)]
. (4.15)

The domain of initial values of ẍi is discretized into M = 30 points next. In addition, an effective

domain of final values x f , ẋ f and ẍ f is into N = 101 points in each dimension (see also Section

3.2.2). Therefore, each set of final values (x f , ẋ f , ẍ f ) requires solving M2 = 900 BVPs of the form

of Eqn. (4.13). Each such solution provides a most probable path xc(t), which can be substituted
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into Eqn. (3.18) to obtain

p(x f , ẋ f , ẍ f , t f |xi, ẋi, ẍi, ti) = exp

− t f∫
ti

L
[
xc, ẋc, ẍc,x

(3)
c

]
dt

 (4.16)

Next, Eqn. (3.31) is employed to calculate a point of the PDF p(x f , ẋ f , ẍ f , t f |xi, ẋi, ti)

p(x f , ẋ f , ẍ f , t f |xi, ẋi, ti) =
∞∫
−∞

p
(
x f , ẋ f , ẍ f , t f |xi, ẋi, ẍi, ti

)
pẍi(ẍi) dẍi (4.17)

Further, the developed approximate WPI technique is compared to the MCS data, namely, the

nonstationary response displacement and velocity PDFs. The spectral representation technique

[Liang et al., 2007, Shinozuka and Deodatis, 1991] is employed to generate realizations of f (t)

compatible with the evolutionary power spectrum of Eqn. (4.7) to be used in the MCS. The result

of modeling the evolutionary power spectrum (EPS) of the excitation is shown in Fig. 4.4.

The comparison between the MCS data (50,000 realizations) and the WPI results allows to

assess the performance of the new technique. Figs. 4.5 and 4.6 demonstrate the joint PDF of x(t)

and ẋ(t) at times t = 0.5 s and t = 1.0 s, respectively. In addition, the marginal PDFs of x(t) and

ẋ(t) at times t = 0.5 s and t = 1.0 s are obtained via both approaches for comparison and plotted

in Fig. 4.7. It can be observed that the results provided by the WPI technique agree very well with

the MCS data; nevertheless, the computational cost can become prohibitive for relatively high

dimensional MDOF systems. The suggestion is to employ an efficient numerical treatment for

determining the joint response PDF, such as the one proposed by [Kougioumtzoglou et al., 2015],

to reduce the computational effort.
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Figure 4.4: Excitation EPS, given by Eqn. (4.7) with parameter values from Table 4.2.
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Figure 4.5: Joint PDF of x(t) and ẋ(t) at time t = 0.5 s, as obtained via the WPI technique (a - b);
comparisons with MCS data - 50,000 realizations (c - d).

36



4.2. SDOF SYSTEM SUBJECT TO TIME-MODULATED NON-WHITE EXCITATION
PROCESS

Figure 4.6: Joint PDF of x(t) and ẋ(t) at time t = 1.0 s, as obtained via the WPI technique (a - b);
comparisons with MCS data - 50,000 realizations (c - d).
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Figure 4.7: Marginal PDF of x(t) (a) and ẋ(t) (b) at time instances t = 0.5 s and t = 1.0 s, as
obtained via the WPI technique; comparisons with MCS data (50,000 realizations).
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4.3 Structural system exposed to flow-induced forces

The next example studies a structure exposed to flow-induced forces. This is a frequently en-

countered problem in marine engineering applications, where structures composed with slender

elements are excited by flow-induced forces described often via Morison equation [Morison et al.,

1950]. The main terms of the Morison equation are the inertial force component proportional to

the mass of the system and the drag-type nonlinear term dependent on the relative velocity of the

structure to the water particles. Typical examples include tension leg platforms [Kim et al., 2001],

the jacket structures [Naess et al., 2007] and the spar structures [Spanos et al., 2005].

It is common to characterize the stochastic excitation in this class of problems through an

additional nonlinearity provided by non-white power spectra dependent on the free surface power

spectrum of the underlying sea state. A number classical models of the sea wave spectra have

been proposed over the last few decades; the current research utilizes the celebrated JONSWAP

spectrum for modeling of the sea state [Hasselmann et al., 1973, Pierson and Moskowitz, 1964].

This way, the power spectrum of the free surface displacement can be described by the following

nondimensional equation

S(ω̄) =
S(ω)

S(ωp)
=

exp(1.25)
ω̄5 exp

(
−1.25

ω̄4

)
γ

µ−1, (4.18)

where

ω̄ =
ω

ωp
, (4.19)

and

γ = exp
[
−(1− ω̄)2

2λ 2

]
. (4.20)

In this model, γ denotes the peak enhancement factor, λ the sharpness magnification factor, and

ωp is the peak frequency of the spectrum.
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This numerical example considers a SDOF linear oscillator

m0ẍ+ cẋ+ kx = h(t), (4.21)

where m0 is the mass of the engineering system; c its structural damping; k the structural stiffness; x

the absolute displacement of the structure; and h(t) the system excitation, which can be calculated

as [Spanos and Chen, 1981]

h(t) = ρAv̈+ClρA(v̈− ẍ)+
1
2

CDρD|v̇− ẋ|(v̇− ẋ). (4.22)

Here, ρ is the water density; A the cross-sectional area of the structure; D its diameter; Cl and CD

the mass and drag coefficients, respectively; and v̇ the water particles velocity. After switching to

the relative coordinates y = x− v, the equation of motion becomes

ÿ+2ωNξN ẏ+ω
2
Ny+

1
2

CDρD
M0
|V + ẏ|(V + ẏ) = f (t), (4.23)

where V denotes the water current (mean component of the water particle velocity); M0 = m0 +

ClρA; and f (t) denotes the system excitation compatible with the power spectrum [Spanos and

Chen, 1981]

S f (ω) =

[
ω

4
N +

(
2ξN−2+2CM

ρA
M0

)
ω

2
Nω

2 +

(
1−CM

ρA
M0

)2

ω
4

]
S(ω), (4.24)

with

CM = 1+Cl, (4.25)

ωN = ω0

√
m0

M0
, (4.26)

ξN = c
√

m0

M0
. (4.27)

An implementation of the proposed WPI technique follows via a second-order linear filter

approximation of the excitation power spectrum (4.24)

p f̈ (t)+q ḟ (t)+ r f (t) = w(t). (4.28)
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Thus, the dynamics of the system can be described by the system of equations
ÿ+2ωNξN ẏ+ω

2
Ny+

1
2

CDρD
M0
|V + ẏ|(V + ẏ) = f (t)

p f̈ (t)+q ḟ (t)+ r f (t) = w(t).
(4.29)

In this regard, the model is in no way restricted to use of a second-order linear filter. More-

over, the accuracy of the filter approximation can be enhanced to a desired level by employing

higher-order filters; relevant work has been done by [Spanos, 1986] and more recently by [Chai

et al., 2015] on evaluation of the filter parameters and its impact on the response determination of

engineering systems.

The numerical parameters for the example take the values in Table 4.3. The free surface dis-

placement power spectrum S(ω) is made compatible with the a mean JONSWAP spectrum with

the significant wave height HS = 1 m. Further, the system is exposed to an excitation compatible

with the power spectrum in Fig. 4.8; an important note is that the spectrum is bell-shaped. Fig.

4.8 also presents a comparison with the corresponding free surface displacement spectrum S(ω)

which demonstrates similarity in low frequency pattern and peak frequencies, however, the free

surface spectrum decays more rapidly at higher frequencies.

Table 4.3: System parameters used in Section 4.3.

ξN ρD/M0 V [m/s] CD ωN CM A[m2] D[m] p q r S0

0.02 1.136 0 1 1.2566 1.25 0.073 0.3 18.98 4.59 31.39 17.18

The implementation of the technique starts with employing the second-order filter with param-

eters (p,q,r) to approximate the system excitation, Eqn. (4.29). The parameters are estimated via

least squares numerical optimization scheme and are chosen to minimize the mean square error

between the excitation spectrum and the filter approximation in the frequency domain. The result-

ing optimal filter parameter values are presented in Table 4.3; the corresponding power spectrum

is shown in Fig. 4.9 as a dashed line.
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Figure 4.8: Comparison between the normalized power spectra of the free surface displacement
and of the system excitation Eqn. (4.23).

Reliability of the WPI technique is assessed through comparison of the response PDF with

the MCS data (50,000 realizations). The approximate WPI solution uses a domain of final val-

ues (y f , ẏ f , ÿ f ,y
(3)
f ) discretized into 51 points in each dimension; whereas, the initial values are

assumed deterministic (yi = 0, ẏi = 0, ÿi = 0,y(3)i = 0). The marginal PDFs are then obtained with

numerical integration. The joint PDFs of the system displacement and velocity at final time in-

stances t = 0.5 s and t = 1.0 s are demontsrated in Figs. 4.10 and 4.11, respectively. The marginal

system displacement and velocity PDFs at times t = 0.5 s and t = 1.0 s can be found in Fig. 4.12.

Comparison with the MCS data proves high degree of accuracy of the approximate WPI technique

developed herein. Moreover, an arbitrary form of the excitation power spectrum can be facilitated

in a straightforward manner due to the filter approximation.
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Figure 4.9: Comparison between the excitation spectrum and its filter approximation.
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Figure 4.10: Joint PDF of y(t) and ẏ(t) at time t = 0.5 s, as obtained via the WPI technique (a -
b); comparisons with MCS data - 50,000 realizations (c - d).
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Figure 4.11: Joint PDF of y(t) and ẏ(t) at time t = 1.0 s, as obtained via the WPI technique (a -
b); comparisons with MCS data - 50,000 realizations (c - d).
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Figure 4.12: Marginal PDF of y(t) (a) and ẏ(t) (b) at time instances t = 0.5 s and t = 1.0 s, as
obtained via the WPI technique; comparisons with MCS data (50,000 realizations).
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4.4 Beam Bending Problem with Stochastic Young’s Modulus

The final example considers a statically determinate Euler-Bernoulli beam described by the fol-

lowing differential equation

d2

dz2 [E(z)Iq̈(z)] = l(z), (4.30)

where E(z) is the Young’s modulus; I the constant cross-sectional moment of inertia; q(z) the

deflection of the beam; and l(z) is a deterministic distributed force. In the current problem, the dot

over a variable denotes differentiation with respect to the space coordinate z. Since the structure is

statically determinate, one can integrate Eqn. (4.30) twice [Kougioumtzoglou, 2017, Shinozuka,

1987] taking into account boundary conditions −E(z)Iq̈(z) = M0 at z = 0 and −E(z)Iq̈(z) = ML

at z = L which yields

−E(z)Iq̈(z) = M(z), (4.31)

where L is the length of the beam, and M(z) the bending moment of the beam. Eqn. (4.31) can be

also recast as

−M(z)
Iq̈(z)

= E(z). (4.32)

Further, the Young’s modulus is modeled as a non-Gaussian, non-white and non-homogeneous

stochastic field

Ė(z)
E(z)

= w(z), (4.33)

with E(0) = EM, and w(z) is the white noise process as defined in Eqn. (3.2). This way, Eqn.

(4.33) is a standard geometric Brownian motion SDE, whose space-dependent response PDF is

log-normal (e.g., [Øksendal, 2003]).

Moreover, Eqs. (4.32) and (4.33) can be combined to obtain an equation of the form of Eqn.
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(3.4)

Ṁ(z)
M(z)

− q(3)(z)
q̈(z)

= w(z). (4.34)

More specifiaclly, a cantilever beam subject to a single point moment at its free end is con-

sidered in the current example (Fig. 4.13). Thus, the bending moment M(z) is constant along the

length of the beam, i.e., M(z) = M0; Eqn. (4.34) then becomes

−q(3)(z)
q̈(z)

= w(z). (4.35)

Then, the Lagrangian from Eqn. (3.14) is

L
[
q, q̇, q̈,q(3)

]
=

(
q(3)(z)

)2

4πS0 (q̈(z))
2 , (4.36)

and the E-L equation becomes

∂L
∂qc
− ∂

∂ z
∂L
∂ q̇c

+
∂ 2

∂ z2
∂L
∂ q̈c
− ∂ 3

∂ z3
∂L

∂q(3)c

= 0, (4.37)

with the initial conditions for zi = 0, qc(zi) = qi = 0, q̇c(zi) = q̇i = 0 and q̈c(zi) =−M0/EMI.

L

z M

Figure 4.13: Cantilever beam subject to a single-point moment.

Table 4.4: System parameters used in Section 4.4.

EM I M0 L S0

106 10 105 1 0.001

The parameter values for the model are given in the Table 4.4. The joint PDFs of q(z) and
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q̇(z) at positions z = 0.5 and z = 1.0 along the length of the beam are shown in Figs. 4.14 and

4.15, respectively. Comparison with MCS data (50,000 realizations) is made as well. In addition,

marginal PDFs of q(z) and q̇(z) at positions z = 0.5 and z = 1.0 can be found in Figs. 4.16 and

4.17, respectively.

Figure 4.14: Joint PDF of q(z) and q̇(z) at position z = 0.5, as obtained via the WPI technique (a
- b); comparisons with MCS data - 50,000 realizations (c - d).

49



CHAPTER 4. NUMERICAL VALIDATION

Figure 4.15: Joint PDF of q(z) and q̇(z) at position z = 1.0, as obtained via the WPI technique (a
- b); comparisons with MCS data - 50,000 realizations (c - d).
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Figure 4.16: PDF of q(z) at positions z = 0.5 and z = 1.0, as obtained via the WPI technique;
comparisons with MCS data (50,000 realizations).
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Figure 4.17: PDF of q̇(z) at positions z = 0.5 and z = 1.0, as obtained via the WPI technique;
comparisons with MCS data (50,000 realizations).

52



Chapter 5

Concluding Remarks

An approximate WPI technique first proposed by [Kougioumtzoglou and Spanos, 2012] is gen-

eralized in this work to study non-Gaussian, non-white and non-stationary excitation processes.

Combining the WPI formulation with the filter approximation technique utilizes modeling an exci-

tation process as an output to the filter equation with a Gaussian white noise input and augmenting

the response process vector to account for this additional equation. This results in an increased

applicability of the technique to problems when the excitation power spectrum cannot be cast in

a convenient form in the time domain; the filter approximation successfully facilitates these sit-

uations. Moreover, the technique can potentially model a larger variety of stochastic mechanics

problems, including those with stochastic material/media properties represented by non-Gaussian

and non-homogeneous stochastic fields [Kougioumtzoglou, 2017]. The corresponding example

(Section 4.4) demonstrates a physically realistic modeling of the material properties.

Numerical validation using various SDOF and MDOF engineering systems have been per-

formed, and the results obtained via the WPI technique have been compared to the pertinent MCS

data. The comparison demonstrated high level of accuracy and reliability of the technique; the

proposed method proves to be able to capture the salient features of the response PDF.

The computational effort associated with implementing the approximate WPI technique can
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be sufficiently reduced via utilizing the localization property of the joint response PDF and cou-

pling the WPI formulation with the recently developed computationally efficient PDF expansion

schemes such as the one by [Kougioumtzoglou et al., 2015, Psaros et al., 2018b].

The future work in developing the WPI based technique can be directed at increasing the accu-

racy of the computations via exploring paths beyond the most probable one [Wio, 2013]. This can

be achieved by considering fluctuations around the most probable (also deterministic) trajectory

and higher order variations of the integral in Eqn. (3.15). In this regard, a scheme proposed by

[Davison, 1954, Levit and Smilansky, 1985] utilizes an infinite orthogonal basis allowing to con-

struct a Sturm-Liouville operator which is then used to take into account the fluctuations around

the most probable path.

The work discussed in Part I has been published in [Psaros et al., 2018a].
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Part II

Spectral parameter identification technique

for nonlinear time-variant MDOF

oscillators with fractional derivative

elements subject to incomplete data
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Chapter 6

Introduction

System identification has been an actively growing field for the past few decades with the focus

on both developing new parameter identification techniques ([Hong et al., 2008, Prochazka et al.,

1998, Reynders, 2012]) and assessing reliability of the existing methods under limited data ([Chatzi

and Papadimitriou, 2016, Priori et al., 2018, Udwadia and Sharma, 1978]). Other challenges that

require special consideration in this area of research are the non-stationary property of real-life

signals and complex mathematical models of continua based on such tools as fractional calculus.

Most of the data obtained in real-life situations (e.g., environmental excitations, traffic loadings,

vibration of operating machinery) exhibit time/space-varying behavior and, hence, can be best

described as non-stationary processes, meaning that their statistics and potentially the frequency

content vary with time. This makes traditional signal processing methods, such as Fourier analysis,

unfit for studying such signals. The short-time Fourier transform, the Gabor transform, wavelets,

chirplets, and the Wigner-Ville distribution are some of the most popular tools for analyzing the

non-stationary spectral content of signals ([Cohen, 1995, Qian, 2002, Stephane, 2009]).

A range of reasons cause the data obtained from structural monitoring to be limited, incom-

plete and/or missing, for example, cost of data transfer and storage for wireless sensor networks,

data corruption in harsh conditions or due to sensors failure/malfunction, frequency and unpre-
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dictability of the effect. Various existing signal reconstruction techniques (e.g., Lomb-Scargle

periodogram, iterative deconvolution method CLEAN, Auto-Regressive-Moving-Average model

based techniques) can be applied to such situations to handle missing data; a review can be found

in [Wang et al., 2006]. Most of the aforementioned techniques for signal reconstruction lack ver-

satility and exhibit certain limitations, such as requiring strong a priori assumptions about the

signal [Gudmundson et al., 2010], being computationally demanding [Comerford et al., 2015],

performing well only in cases of few missed observations [Hung, 2008], or not being applicable to

non-stationary data [Broersen, 2006].

Fractional calculus has recently become one of the advanced mathematical tools actively uti-

lized in more accurate materials/media modeling ([Oldham and Spanier, 2006, Sabatier et al.,

2007]). It can be interpreted as a generalization of classical calculus, which in turn provides with

enhanced modeling flexibility and allows the concept to be employed in engineering mechanics for

developing “non-local” continuum mechanics theories ([Di Paola et al., 2013, Tarasov, 2016]), as

well as for modeling of viscoelastic materials [Di Paola et al., 2011]. Nonetheless, the majority of

already existing system identification techniques have been based on the classical continuum (or

discrete) mechanics theories and have been developed for treating conventional governing dynam-

ics equations. Generalization of those techniques to fractional calculus models is not straightfor-

ward though.

A great number of researchers combine CS with time-frequency analysis when processing non-

stationary sparse signals; an overview of these techniques can be found in [Sejdic et al., 2018].

However, there are not many system identification techniques that can address those challenges

simultaneously, especially in applications to systems with fractional derivative terms. In this re-

gard, an identification technique based on multiple-input/single-output (MISO) approach in the

wavelet domain was originally proposed in [Kougioumtzoglou and Spanos, 2013], which allowed

to account for non-stationary inputs and time-varying signal parameters. A treatment of nonlin-
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ear oscillators with fractional derivative elements for response EPS determination was presented

in [Kougioumtzoglou and Spanos, 2016], which was further utilized in [Kougioumtzoglou et al.,

2017] to develop a parameter identification technique for such systems. In this work, the procedure

is further extended to account for MDOF oscillators under incomplete/missing data. A nonlin-

ear MDOF time-variant system with fractional derivative terms is used as numerical example to

demonstrate reliability of the technique even in the presence of noise or under limited data.
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Chapter 7

Treatment of Non-stationary and

Incomplete Data

7.1 Non-stationary data: a harmonic wavelets approach

The family of generalized harmonic wavelets (GHW) [Newland, 1994] utilizes two parameters

(m,n) to define the bandwidth at each scale level. One of the main advantages of this technique

is that these two parameters decouple the time-frequency resolution achieved at each scale from

the value of the central frequency, which is not the case with other wavelet bases. Moreover,

GHW have proven to be particularly useful for structural dynamics applications due to their non-

overlapping, box-shaped frequency spectrum, and their orthogonality properties.

A wavelet of (m,n) scale and k position in time attains a representation in the frequency domain

in the form

Ψ
G
(m,n),k(ω) =


1

(n−m)∆ω
exp
(
−i

ωkT0

n−m

)
, m∆ω ≤ ω < n∆ω

0, otherwise

, (7.1)
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where m, n and k are non-negative integers, and

∆ω =
2π

T0
, (7.2)

where T0 is the total duration of the signal, and m∆ω ≤ ω < n∆ω is the bandwidth of the box-

shaped spectrum. The inverse Fourier transform of Eqn. (7.1) gives the time-domain representation

of the wavelet which is

Ψ
G
(m,n),k(t) =

exp
(

in∆ω

(
t− kT0

n−m

))
− exp

(
im∆ω

(
t− kT0

n−m

))
i(n−m)∆ω

(
t− kT0

n−m

) . (7.3)

Next, it was shown in [Newland, 1994] that a collection of harmonic wavelets spanning ad-

jacent non-overlapping intervals at different scales forms an orthogonal basis. The continuous

generalized harmonic wavelet transform (GHWT) of an arbitrary signal x(t) can be given by

W G
(m,n),k[x] =

n−m
T0

∞∫
−∞

x(t)ΨG
(m,n),k(t)dt, (7.4)

whereas the inverse transform exactly reconstructs the target signal in the form

x(t) = ∑
m,n

∑
k

W G
(m,n),k[x]Ψ

G
(m,n),k(t)+W G

(m,n),k[x]Ψ
G
(m,n),k(t), (7.5)

where the bar over an expression denotes its complex conjugate. Considering Parseval’s theorem

and the non-overlapping quality of the different energy bands yields an estimate for the underlying

stochastic process EPS in the form [Spanos and Kougioumtzoglou, 2012]

Sxx(ω, t) = Sxx
(m,n),k =

E
[∣∣∣W G

(m,n),k[x]
∣∣∣2]

(n−m)∆ω
. (7.6)

Note that the expectation operator in Eqn. (7.6) implies that an ensemble of realizations compatible

with the underlying non-stationary stochastic process is readily available. Similarly, the cross-EPS
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of the two processes x(t) and y(t) can be estimated as

Sxy(ω, t) = Sxy
(m,n),k =

E
[
W G

(m,n),k[x]W
G
(m,n),k[y]

]
(n−m)∆ω

, (7.7)

where the bar over an expression denotes its complex conjugate.

In both Eqs. (7.6) and (7.7) the EPS is assumed to be constant over the intervals m∆ω ≤ ω <

n∆ω and kT0
n−m ≤ t < (k+1)T0

n−m , in agreement with the theory of locally stationary processes (e.g.,

[Spanos and Kougioumtzoglou, 2012]).

7.2 Incomplete data: a compressive sensing approach

7.2.1 Preliminary remarks

CS is a signal processing technique that allows for signal reconstruction even if the maximum

frequency in the recorded signal is greater than half the signal’s sampling rate ([Candes et al.,

2006a,b, Donoho, 2006, Eldar and Kutyniok, 2012]). Robust CS can be achieved utilizing several

important properties, one being sparsity, i.e. the sampled signal being sparse in some known basis.

Further, the sampling domain and the relatively sparse transformation domain must have high co-

herence. This results in a sparse signal in the transform domain having a non-sparse representation

in the sampling domain (e.g., a single Fourier coefficient in the transform domain corresponds to a

monochromatic signal in the sampling domain). Also, efficient CS requires the restricted isometry

property (RIP) being satisified as well [Candes et al., 2006b].

If it is known that the signal is sparse in a certain basis, the aim of CS is to find the sparsest

representation of the given data in that basis; this can be achieved via L1-norm minimization.

Given a sample record y of length N0−Nm, where N0 is the original sample length, and Nm is

the number of missing data points, and assuming the locations of the missing data are known, the
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corresponding sampling matrix B (N0−Nm by N0) can be drawn from

y = Bx, (7.8)

where x is the coefficients vector in the assumed sparse basis.

7.2.2 Minimization problem

Eqn. (7.8) represents an underdetermined system with infinite number of solutions. The sparsest

solution occurs when the L0-norm is minimized [Patel and Chellappa, 2013]. However, this min-

imization problem is non-convex, i.e. it does not have any known exact solutions. Nevertheless,

a viable alternative exists in minimizing the L1-norm instead, which promotes sparsity and often

yields the same results as minimization of the L0-norm. This way, the problem becomes convex

and can be set in a convenient linear algebra form

min |x|L1 subject to y = Bx. (7.9)

The problem can be then solved via, for instance, basis pursuit [Chen et al., 1998] or greedy

algorithms [Tropp and Gilbert, 2007].

A more recent enhancement was proposed in [Zhang et al., 2018] through focusing on the Lp-

norm minimization approach to estimating EPS of stochastic processes subject to incomplete/missing

data. The Lp-norm can be defined as

|x|Lp
=

(
∑

i
|xi|p

) 1
p

, p > 0 (7.10)

Since minimizing the L1-norm does not guarantee the sparsest solution, reconstruction technique

can be improved or accurately met with fewer sample data when 0 < p < 1 is used. In this regard,

it was shown in [Zhang et al., 2010] that p = 1/2 can yield the sparsest solution resulting in the
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minimization problem of the form [Zhang et al., 2018]

min |x|L1/2 subject to y = Bx. (7.11)

7.2.3 Applications in engineering dynamics

In general, CS has found a variety of applications in structural dynamics over the past few decades,

especially when dealing with wireless sensor networks which require saving in data transmission

and storage. These networks are widely used for real-time structural health monitoring, where

relying on the sparsity of the signal and combining CS with an appropriate compression basis can

not only be beneficial in terms of cost-efficiency ([Bao et al., 2017, Gkoktsi and Giaralis, 2017,

Harley, 2016, Jayawardhana et al., 2017, Ji et al., 2018, Perez-Ramirez et al., 2017, Xu et al., 2018,

Yang and Nagarajaiah, 2017, Yao et al., 2017], but can also provide reconstructed data series with

a far higher resolution than that of the originally captured signals when data corruption occurs due

to sensors failure or malfunction (e.g., [Chen et al., 2017]). These techniques can also be tailored

for fault detection and damage identification/localization in various engineering structures (e.g.,

[Du et al., 2017, Sousa and Wang, 2018].

Nonetheless, most of the aforementioned applications deal with the problems of compressing

an acquired signal, which is assumed to be complete, and avoiding the computational burden of

compressing it locally at the sensor. Thus, applications of CS theory to the problems of missing

data presents a major distinction in that missing data is not necessarily intentional. This removes

control over the arrangement of the sampling/sensing matrix B. Further, the works that address

situations of data losses focus primarily on deterministic signal reconstruction. However, for many

cases, the main objective may not be signal reconstruction but rather characterization and quan-

tification of the underlying stochastic process/field statistics relying on an ensemble of available

realizations (e.g., EPS estimation). In this regard, a CS based technique for determining the (evolu-

tionary) power spectra of stochastic processes was recently developed for realizations with highly
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incomplete/missing data [Comerford et al., 2014, 2016]. This work utilized the GHW basis (Eqn.

(7.5)) and showed that the accuracy/robustness of the technique can be further enhanced by rely-

ing on an adaptive basis reweighting procedure based on the information provided by an available

ensemble of realizations [Comerford et al., 2014].

Another application platform can be found in marine engineering. In this regard, a methodol-

ogy based on CS has been proposed for efficient processing and joint-frequency analysis of rela-

tively long water wave records by enabling reconstruction of data recorded at a very low sampling

rate (sub-Nyquist) [Laface et al., 2017]. Another example demonstrates a CS technique developed

for extrapolating in the spatial domain and estimating the space-time characteristics of a sea state

based on data collected at very few spatially sparse points (e.g. wave buoys) [Malara et al., 2018].

A number of marine engineering applications involving three-dimensional waves interacting with

marine structures, such as optimizing arrays of wave energy converters benefit from this novel

technique.

For the non-stationary processes considered in the current work, the EPS is calculated from a

mean square value of the GHWT over an ensemble of readily available time-histories (Eqn. (7.6)).

A “partial” GHW basis is required for this purpose. First, wavelet scales must be defined, i.e. a

set of non-overlapping frequency intervals corresponding to (m,n) in Eqn. (7.1) so that the desired

trade-off between time and frequency resolutions is achieved. Next, the harmonic wavelet basis

components can be generated efficiently via an inverse fast Fourier transform (FFT) algorithm.

However, a single harmonic wavelet must be shifted (n−m) times in the time domain to form

an orthogonal basis. Finally, rows corresponding to the missing data must be removed, yielding

a sampling matrix with more columns than rows. With the sampling matrix formed, solution

of the underdetermined linear system of Eqn. (7.8) yields the GHWT coefficients W G
(m,n),k. The

coefficients can be used directly for estimating the underlying stochastic process EPS via Eqs.

(7.6) and (7.7), allowing to circumvent the computationally demanding task of reconstructing the
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signal in the time domain first. A detailed presentation of the CS based EPS estimation technique

subject to missing data can be found in [Comerford et al., 2016].
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Chapter 8

Identification Technique

8.1 Input-output relationships

Consider a MDOF linear time-variant (LTV) oscillator with a fractional derivative element gov-

erned by the following differential equation of motion

ẍ+C(t)Dq[x(t)]+K(t)x = w(t), (8.1)

where x(t) is the oscillator response displacement; C(t) and K(t) are the time-varying damping

and stiffness matrices, respectively; w(t) is a realization compatible with a Gaussian, zero-mean

non-stationary stochastic excitation vector process, possessing a broad-band EPS Sw(ω, t); and

Dq[·] denotes the Caputo’s fractional derivative [Oldham and Spanier, 2006] defined as

Dq[x(t)] =
1

Γ(1−q)

t∫
0

ẋ(τ)
(t− τ)q dτ, (8.2)

where 0≤ q < 1, and Γ(z) is the gamma function.

Applying next the GHWT (Eqn. (7.4)) to the Eqn. (8.1) and assuming that the stiffness and

damping elements are slowly varying functions in time, and thus, approximately constant over the
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compact support of the GHW in the time domain (K(t)≈Kk and C(t)≈ Ck) yields

W G
(m,n),k[ẍ]+CkW G

(m,n),k[D
q[x(t)]]+KkW G

(m,n),k[x] =W G
(m,n),k[w]. (8.3)

Further, relying on the time localization of the GHW, the linearity property of the fractional

derivative, and assuming that the frequency band [m∆ω, n∆ω] is small enough for the frequency

dependent functions to be approximated constant over the compact support by their respective

values at the localized central frequencies ωc,(m,n),k = (n+m)∆ω/2, the following approximate

expressions can be derived [Kougioumtzoglou and Spanos, 2016]

W G
(m,n),k[ẋ] = iωc,(m,n),kW

G
(m,n),k[x], (8.4)

W G
(m,n),k[ẍ] =−ω

2
c,(m,n),kW

G
(m,n),k[x], (8.5)

W G
(m,n),k[D

q[x(t)]] =
(
iωc,(m,n),k

)qW G
(m,n),k[x]. (8.6)

The approximate expression of Eqn. (8.6) for the GHWT of the fractional derivative term can

be seen as a generalization of the standard result related to the Fourier transform FT[Dq[x(t)]] =

(iω)qFT[x(t)] [Oldham and Spanier, 2006].

Substituting Eqs. (8.4)-(8.6) into Eqn. (8.3) yields the input-output relationship

W G
(m,n),k[x]

(
−ω

2
c,(m,n),k +

(
iωc,(m,n),k

)q Ck +Kk

)
=W G

(m,n),k[w]. (8.7)

Next, considering the complex conjugate of Eqn. (8.7) and manipulating the equation yields

∣∣∣W G
(m,n),k[x]

∣∣∣2 =
∣∣∣W G

(m,n),k[w]
∣∣∣2∣∣∣−ω2

c,(m,n),k +
(
iωc,(m,n),k

)q Ck +Kk

∣∣∣2 , (8.8)

while applying the expectation operator on both sides leads to

Sx
(m,n),k = HG

(m,n),kSw
(m,n),kHG

(m,n),k

T
. (8.9)
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Note that HG
(m,n),k denotes the GHW frequency response function (GHW-FRF) given by

HG
(m,n),k =

(
−ω

2
c,(m,n),k +

(
iωc,(m,n),k

)q Ck +Kk

)−1
. (8.10)

In general, Eqn. (8.10) represents a time- and frequency-dependent GHW-FRF and Eqn. (8.8) can

be viewed as a generalization of the Wiener-Khinchin spectral relationship of the linear stationary

random vibration theory [Roberts and Spanos, 2003].

Note that the derivation of the approximate input-output relationship of Eqn. (8.8) relies on

the “local stationarity” assumption; see [Kougioumtzoglou and Spanos, 2016] for a detailed dis-

cussion. Thus, for cases when this assumption does not hold, Eqn. (8.8) might not provide the

adequate accuracy. In general, it can be argued that for relatively stiff systems and/or for sys-

tems with relatively high damping, the related impulse response function is short-lived, and thus,

a locally stationary input-output relationship of Eqn. (8.8) exhibits satisfactory approximation.

However, the “local stationarity” restriction was circumvented in [Spanos et al., 2016] where an

enhanced GHW based excitation-response relationship was derived for systems with integer order

derivative terms. Future research may encompass its generalization to account also for fractional

derivative elements.

8.2 Multiple-input/single-output technique

In this section, a novel MISO system identification technique is developed that relies on knowl-

edge of the measured excitation/response signals. The technique is based on the pioneering work

by Bendat and coworkers [Bendat, 1998, Bendat et al., 1992, 1995]. The MISO technique has

found applications in various fields (e.g., [Perreault et al., 1999, Raman et al., 2005, Selvam and

Bhattacharyya, 2006, Spanos and Lu, 1995]). It was recently generalized to account for non-

stationary inputs and time-varying system parameters using harmonic wavelets [Kougioumtzoglou

and Spanos, 2013]. The method was further extended to account for incomplete/missing data
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as well as for systems with fractional derivative elements [Kougioumtzoglou et al., 2017]. The

current work is focused on generalizing the methodology developed in [Kougioumtzoglou et al.,

2017] further, to nonlinear time-varying MDOF systems with fractional derivative terms under

limited data.

HG
(m,n),k

W G
(m,n),k[x1(t)]

W G
(m,n),k[x2(t)]

. . .

W G
(m,n),k[xq(t)]

W G
(m,n),k[y1(t)]

. . .

W G
(m,n),k[yr(t)]

W G
(m,n),k[yr+1(t)]

Figure 8.1: MIMO model with q inputs and r+1 outputs

∑

LG
1y,(m,n),k

. . .

LG
qy,(m,n),k

LG
(q+1)y,(m,n),k

. . .

LG
(q+r)y,(m,n),k

W G
(m,n),k[x1(t)]

. . .

W G
(m,n),k[xq(t)]

W G
(m,n),k[xq+1(t)]≡W G

(m,n),k[y1(t)]

. . .

W G
(m,n),k[xq+r(t)]≡W G

(m,n),k[yr(t)]

W G
(m,n),k[y(t)]

Figure 8.2: MISO model with q+ r inputs that can be correlated

Consider a general multiple-input/multiple-output (MIMO) system with q inputs and r + 1

different outputs as illustrated by Fig. 8.1. When any correlation that exists between the different

output records is due only to the fact that they come from the same set of input records, the MIMO

problem can be readily considered as a set of MISO problems for each output separately. A general

treatment of MISO systems is described in detail by [Bendat and Piersol, 1986]. However, when

some correlation between the output signals exists after the effects of the q input records have been

removed, the usual MISO problem should be extended to treat the additional contributions from
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the correlated output records [Bendat and Piersol, 1993]. The problem is then recast as a MISO

system with the q+ r inputs, which may be correlated (Fig. 8.2).

Each record allows us to define the auto-spectra Sii = Sxixi , Syy, and the cross-spectra Si j =

Sxix j , Siy = Sxi,y, where i, j = 1,2, . . . ,q+ r. Note that S ji = Si j. Next, the inputs are typically

correlated, which requires that the original set of inputs is replaced by a set of uncorrelated ones.

The decorrelation of the inputs can be performed via conditioning the EPS calculated from the

measured signals. The conditioned EPS can be defined as

Sc
i j = Si j.(i−1)!, (8.11)

Sc
iy = Siy.(i−1)!, (8.12)

where

Si j.r! = Si j.(r−1)!−
Sr j.(r−1)!

Srr.(r−1)!
Sir.(r−1)!, r < i,

Siy.r! = Siy.(r−1)!−
Sry.(r−1)!

Srr.(r−1)!
Sir.(r−1)!, r < i.

Note that for r = 0, Si j.r! = Si j and Siy.r! = Siy.

∑

LG
1y,(m,n),k

. . .

LG
qy,(m,n),k

LG
(q+1)y,(m,n),k

. . .

LG
(q+r)y,(m,n),k

W G
(m,n),k[z1(t)]

. . .

W G
(m,n),k[zq(t)]

W G
(m,n),k[zq+1(t)]

. . .

W G
(m,n),k[zq+r(t)]

W G
(m,n),k[y(t)]

Figure 8.3: MISO model with q+ r inputs that are mutually uncorrelated

Using the conditioned power spectra calculated via GHWT, one can define the linear operators
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LG
iy,(m,n),k (Fig. 8.3) that relate the conditioned input records zi(t) with a specific output y(t):

LG
iy,(m,n),k =

Siy,c
(m,n),k

Sii,c
(m,n),k

. (8.13)

The total output EPS can then be calculated as

Syy
(m,n),k =

q+r

∑
i=1

∣∣∣LG
iy,(m,n),k

∣∣∣2 Sii,c
(m,n),k. (8.14)

The current relationship does not take into account the presence of noise, which can be easily

added to the above equations due to the fact that it is usually assumed uncorrelated to the other

records.

Ordinary coherence functions between each of the inputs zi(t) and the total output y(t) are

given by

(
γ

iy
(m,n),k

)2
=

∣∣∣Siy,c
(m,n),k

∣∣∣2
Sii,c
(m,n),kSyy,c

(m,n),k

, i = 1,2, . . . ,q+ r. (8.15)

The ordinary coherence functions can be used to determine how much of the total spectral output

Syy
(m,n),k at any frequency is due to any subset of the original q input records, or to any subset of the

original r output records.

In the absence of noise, the GHW cumulative coherence function (GHW-CCF), or the total

multiple coherence function, can then be defined by the sum(
γ

y:z
(m,n),k

)2
=

q+r

∑
i=1

(
γ

iy
(m,n),k

)2
→ 1. (8.16)

This quantity is used as an indicator of the modeling error providing information about the “goodness-

of-fit” of the model subject to the measured data [Kougioumtzoglou and Spanos, 2013] and should

be equal to one if the model provides a good fit.
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8.3 Implementation of the identification technique

Consider a MDOF nonlinear oscillator whose motion is governed by the following differential

equation

ẍ+C(t)Dq[x(t)]+K(t)x+g(x, ẋ)+ z(t) = w(t), (8.17)

where g(x, ẋ) is an arbitrary nonlinear vector function of the response displacement and velocity;

and z(t) accounts for added extraneous noise [Bendat et al., 1992]. Next, it is assumed that g(x, ẋ)

can be represented by a superposition of zero-memory nonlinear transformations and linear sub-

systems [Zeldin and Spanos, 1998] in the form

g(x, ẋ) =
M

∑
i=1

Ai
d
dt

pi(x). (8.18)

In the above, Ai are polynomial functions; pi are zero-memory nonlinear transformations; and M

is the total number of base functions in the representation of g(x, ẋ). Substituting Eqn. (8.18) into

Eqn. (8.17) provides

ẍ+C(t)Dq[x(t)]+K(t)x+
M

∑
i=1

Ai
d
dt

pi(x)+ z(t) = w(t). (8.19)

Taking a GHWT of Eqn. (8.19) and grouping terms for the MISO identification technique

yields [Kougioumtzoglou et al., 2017]

M+1

∑
i=1

AG
i,(m,n),kW

G
(m,n),k[xi]+W G

(m,n),k[z] =W G
(m,n),k[w], (8.20)

where AG
i,(m,n),k are unknown time- and frequency-dependent GHW-FRFs; and xi(t) = x(t). Note

that each W G
(m,n),k[xi] provides n inputs W G

(m,n),k[xi j], where n is the number of degrees of freedom

of the oscillator. Thus, the total number of inputs is equal to n(M+1).

Taking into account Eqn. (8.10), one can notice that

AG
1,(m,n),k =

[
HG

(m,n),k

]−1
=−ω

2
c,(m,n),k +

(
iωc,(m,n),k

)q Ck +Kk. (8.21)
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However, W G
(m,n),k[xi] represent, in general, mutually correlated inputs. A decorrelation scheme

based on conditioned spectra described above (see also [Bendat and Piersol, 1986, 1993, Rice and

Fitzpatrick, 1988]) and generalized in [Kougioumtzoglou and Spanos, 2013] to account for time-

and frequency dependent EPS is applied next. The GHW-FRFs are then

AG
i,(m,n),k = LG

i,(m,n),k−
n(M+1)

∑
j=i+1

AG
j,(m,n),k

Si j,c
(m,n),k

Sii,c
(m,n),k

. (8.22)

A more detailed treatment of correlated inputs is given in books by Bendat and Piersol [Bendat

and Piersol, 1986] and [Bendat and Piersol, 1993].

The identification procedure can be outlined as the following algorithm:

i. Provided records of excitation and oscillator response time histories, apply the GHWT (Sec-

tion 7.1) and estimate the auto- and cross-EPS Sxixi
(m,n),k, Swiwi

(m,n),k, Sxix j
(m,n),k, Swiw j

(m,n),k, Sxiw j
(m,n),k for

all input and output processes. In case of incomplete/missing data, apply the CS technique

delineated in Section 7.2 to reconstruct the signals.

ii. Compute the GHW-CCF
(

γw:x
(m,n),k

)2
via Eqn. (8.16) and select an appropriate frequency

range to perform an accurate system parameter identification.

iii. Determine the GHW-FRFs AG
i,(m,n),k via Eqn. (8.22).

iv. Determine the unknown system parameters. Note that Kk can be readily determined from

AG
1,(m,n),k for ωc,(m,n),k = 0. Further, the same GHW-FRF can be rewritten as

AG
1,(m,n),k =

[
ω

2
c,(m,n),k +Kk +Ckω

q
c,(m,n),k cos

(
q

π

2

)]
+ i
[
Ckω

q
c,(m,n),k sin

(
q

π

2

)]
. (8.23)

The imaginary part of AG
1,(m,n),k is then equal to

Im
[
AG

1,(m,n),k

]
= Ckω

q
c,(m,n),k sin

(
q

π

2

)
, (8.24)

from where Ck can be obtained. However, one has to identify the order of the fractional
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derivative q first by manipulating Eqn. (8.23), which yields

q =
2
π

Im
[
AG

1,(m,n),k

]
Re
[
AG

1,(m,n),k

]
−Kk +ωc,(m,n),kI

. (8.25)

The GHW-FRFs AG
i,(m,n),k, i = 2, . . . ,M+1 corresponding to the nonlinear terms of the equa-

tion of motion can be used to identify the specific nonlinearity parameters.
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Chapter 9

Numerical Validation

9.1 Time-variant Duffing oscillator with fractional derivative

elements

The following example considers a 2-degree-of-freedom (2DOF) time-variant Duffing oscillator

with a fractional derivative element in the form of Eqn. (8.17). In this regard, g(x, ẋ) = εK(t)x3,

the damping and stiffness matrices are

C(t) =

[
c1(t)+ c2(t) −c2(t)

−c2(t) c2(t)

]
, K(t) =

[
k1(t)+ k2(t) −k2(t)

−k2(t) k2(t)

]
, (9.1)

where the time-varying parameters are

c1(t) = 8+0.003t2, c2(t) = 1+0.002t2, (9.2)

k1(t) = 100−0.05t2, k2(t) = 10−0.005t2. (9.3)

The smoothly varying stiffness can be a reasonable model, for instance, of a degrading structure

during a seismic event. The order of the fractional derivative is q = 0.5, and the nonlinearity

parameters are ε1 = 10 and ε2 = 5. The corresponding MIMO identification model is shown in

Fig. 9.1.
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∑

AG
1,(m,n),k

AG
2,(m,n),k

W G
(m,n),k[x1]

W G
(m,n),k[x2]

W G
(m,n),k[x

3
1]

W G
(m,n),k[x

3
2]

W G
(m,n),k[ f1]

W G
(m,n),k[ f2]

W G
(m,n),k[z]

Figure 9.1: 2-DOF Duffing oscillator recast as a MISO problem for parameter identification

The excitation is modeled as a non-stationary stochastic vector process with a prescribed non-

separable EPS of the form (Fig. 9.2)

Sf(ω, t) = S0

(
ω

p1

)2

exp(−bt) t2 exp

(
−
(

ω

p2

)2

t

)
, (9.4)

where the parameters assume the values from Table 9.1. The EPS demonstrates some of the main

characteristics observed in recorded seismic motions, such as the decreasing with time dominant

frequency [Kougioumtzoglou and Spanos, 2009].

Table 9.1: System parameters pertaining to Eqn. (9.4)

S0 p1 p2 b
5 30π 10π 0.15

Further, time-histories compatible with the excitation EPS are produced via spectral represen-

tation technique [Shinozuka and Deodatis, 1991] for each degree of freedom

fi(t) = 2
m−1

∑
j=0

√
S f ( j∆ω, t)∆ω cos

(
j∆ωt +φ j

)
, (9.5)

where ∆ω refers to the discretization in the frequency domain, and φ j are independent random

variables uniformly distributed over the interval [0,2π] describing the phase. The total of 50 time-

histories is available for each recorded signal, and the duration of the recorded signals is T =

31.4 s. In applying the GHWT, the value n−m = 5 is chosen to compromise between the time and
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frequency resolutions.

The oscillator response is obtained for each sample path numerically via the linear L1-algorithm

utilizing discretization of the fractional derivative and a linear piecewise approximation when com-

puting the derivatives; the algorithm is presented in detail in [Koh and Kelly, 1990].

The robustness of the technique is assessed through considering four differenet data scenarios:

i. complete excitation-response time histories,

ii. complete excitation-response time histories with added noise,

iii. incomplete excitation-response time histories,

iv. incomplete excitation-response time histories with added noise.

The added noise is modeled as a Gaussian white noise vector process with a signal-to-noise ratio

of 40 dB; i.e. the standard deviation of the white noise is equivalent to 10 percent of the standard

deviation of the signal. 20 percent missing data are imposed in uniformly distributed random

locations in the signal records.

Fig. 9.3 shows sample realizations of system response (displacement) for the four data sce-

narios considered herein. The estimated EPS of the excitations f1 and f2 based on Eqn. (7.6) in

combination with the CS treatment (Section 7.2) can be found in Figs. 9.4 and 9.5. The estimated

EPS of the response vector process elements x1 and x2 calculated in a similar manner for all four

data scenarios are demonstrated in Figs. 9.6 and 9.7.

The ordinary GHW-CCFs for the dominant inputs for each of the outputs are presented in

Fig. 9.8 for the two time instances t = 12.56 s and t = 31.4 s for each of the four data scenarios.

The effects of data loss and noise corruption on the technqiue’s accuracy can be easily noticed

in these figures. The total multiple GHW-CCFs are calculated and are equal to one ((γ f1:x
(m,n),k)

2 =

(γ
f2:x
(m,n),k)

2 = 1) which supports the validity of the identification model (Eqn. (8.16)).
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All the parameters of the system are further estimated for all four data scenarios and compared

to the target values. The identified damping, stiffness and nonlinearity parameters are plotted in

Figs. 9.9-9.11, respectively. Additionally, the mean values of the nonlinearity parameters and the

fractional derivative order are presented in Tables 9.2-9.4.

In Figs. 9.9 and 9.10, one can observe that the technique captures the main features of the

time-varying parameters satisfactorily, even in the cases of noise and/or missing data. The constant

parameters q, ε1 and ε2 are computed with satisfactory accuracy in average sense.

Table 9.2: Comparison between the target and the estimated mean values of the fractional deriva-
tive order q of the time-varying 2-DOF Duffing oscillator for four different data scenarios.

Target Complete Noise Incomplete Incomplete + Noise
0.5 0.5300 0.4515 0.5249 0.6078

Table 9.3: Comparison between the target and the estimated mean values of the nonlinearity pa-
rameters ε1 of the time-varying 2-DOF Duffing oscillator for four different data scenarios.

Target Complete Noise Incomplete Incomplete + Noise
10 10.9773 9.8650 11.1273 13.4416

Table 9.4: Comparison between the target and the estimated mean values of the nonlinearity pa-
rameters ε2 of the time-varying 2-DOF Duffing oscillator for four different data scenarios.

Target Complete Noise Incomplete Incomplete + Noise
5 5.2283 5.2222 4.1784 3.9839
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Figure 9.2: Non-separable excitation EPS used in Chapter 9.
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(a) Complete (b) Noise

(c) Incomplete (d) Incomplete + Noise

Figure 9.3: Typical response realizations of the time-varying 2-DOF Duffing oscillator for four
different data scenarios.
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(a) Complete (b) Noise

(c) Incomplete (d) Incomplete + Noise

Figure 9.4: Estimated EPS of the excitation applied to the first DOF ( f1) of the time-varying
2-DOF Duffing oscillator for four different data scenarios.

(a) Complete (b) Noise

(c) Incomplete (d) Incomplete + Noise

Figure 9.5: Estimated EPS of the excitation applied to the second DOF ( f2) of the time-varying
2-DOF Duffing oscillator for four different data scenarios.
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(a) Complete (b) Noise

(c) Incomplete (d) Incomplete + Noise

Figure 9.6: Estimated EPS of the response of the first DOF (x1) of the time-varying 2-DOF Duffing
oscillator for four different data scenarios.

(a) Complete (b) Noise

(c) Incomplete (d) Incomplete + Noise

Figure 9.7: Estimated EPS of the response of the first DOF (x2) of the time-varying 2-DOF Duffing
oscillator for four different data scenarios.
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(a)
(

γ
1 f1
(m,n),k

)2

(b)
(

γ
2 f2
(m,n),k

)2

Figure 9.8: Estimated ordinary GHW-CCF of the dominating inputs for the time-varying 2-DOF
Duffing oscillator for four different data scenarios at time instances t = 12.56 s and t = 31.4 s.
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(a) Damping parameter c1

(b) Damping parameter c2

Figure 9.9: Comparison between the target and the estimated damping parameters of the time-
varying 2-DOF Duffing oscillator for four different data scenarios.
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(a) Stiffness parameter k1

(b) Stiffness parameter k2

Figure 9.10: Comparison between the target and the estimated stiffness parameters of the time-
varying 2-DOF Duffing oscillator for four different data scenarios.
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(a) Nonlinearity parameter ε1

(b) Nonlinearity parameter ε1

Figure 9.11: Comparison between the target and the estimated nonlinearity parameters of the
time-varying 2-DOF Duffing oscillator for four different data scenarios.
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Chapter 10

Concluding Remarks

Structural health monitoring and damage detection rely primarily on accuracy and robustness of

the underlying identification techniques. Literature presents a variety of structural and mechanical

system identification techniques capable of handling non-stationary time-histories, incomplete sig-

nal records, or advanced mathematical models like fractional derivative terms. Nonetheless, few

of them can address all the aforementioned challenges simultaneously especially when applied to

MDOF engineering systems.

The current research has focused on generalizing the recently developed MISO system identi-

fication technique for parameter identification of nonlinear and time-variant oscillators with frac-

tional derivative terms subject to incomplete non-stationary data to MDOF systems. The MDOF

problem has been recast in a way suitable for the MISO technique which was combined with a

wavelet representation. Further, the L1-norm minimization procedure based on CS theory has been

utilized to determine wavelet coefficients in cases of incomplete/missing data. The wavelet coeffi-

cients are then used to calculate the time- and frequency-dependent GHW-FRFs and the unknown

system parameters. Numerical validation of the proposed technique has been performed on the

example of the 2-DOF Duffing oscillator with time-varying stiffness and damping, and a fractional

derivative element. Numerical modeling has demonstrated robustness and reliability of the tech-
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nique for different data scenarios, including noise corruption and limited availability of the data.

Even though the technique fails to capture the details of the time-varying behavior of parameters,

it succeeds in identifying their trend in average sense.

Future implementation of the technique may include problems of off-shore structures subject

to flow-induced forces (e.g., [Raman et al., 2005, Selvam and Bhattacharyya, 2006, Spanos and

Lu, 1995]). The governing equations for such structures account for various nonlinear terms of the

Morison equation [Morison et al., 1950] and can potentially be capable of identifying time-varying

system parameters. An improvement of the technique can be made in two regards:

i. CS minimization technique: Lp-norm minimization can be adopted to potentially improve

reliability and accuracy of the MISO identification technique in cases of incomplete/limited

data [Zhang et al., 2018];

ii. “Local stationarity” assumption: the technique developed herein relies on the “local sta-

tionarity” assumption, i.e. assuming that the impulse response function is short-lived. The

assumption has been successfully circumvented for linear and non-linear SDOF oscillators

through applying periodized GHWT in conjunction with a Galerkin scheme, and relying on

the orthogonality properties of the GHW [Kong et al., 2016, Spanos et al., 2016].
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