13,610 research outputs found

    Frequency Multiplexing for Quasi-Deterministic Heralded Single-Photon Sources

    Full text link
    Single-photon sources based on optical parametric processes have been used extensively for quantum information applications due to their flexibility, room-temperature operation and potential for photonic integration. However, the intrinsically probabilistic nature of these sources is a major limitation for realizing large-scale quantum networks. Active feedforward switching of photons from multiple probabilistic sources is a promising approach that can be used to build a deterministic source. However, previous implementations of this approach that utilize spatial and/or temporal multiplexing suffer from rapidly increasing switching losses when scaled to a large number of modes. Here, we break this limitation via frequency multiplexing in which the switching losses remain fixed irrespective of the number of modes. We use the third-order nonlinear process of Bragg scattering four-wave mixing as an efficient ultra-low noise frequency switch and demonstrate multiplexing of three frequency modes. We achieve a record generation rate of 4.6×1044.6\times10^4 multiplexed photons per second with an ultra-low g2(0)g^{2}(0) = 0.07, indicating high single-photon purity. Our scalable, all-fiber multiplexing system has a total loss of just 1.3 dB independent of the number of multiplexed modes, such that the 4.8 dB enhancement from multiplexing three frequency modes markedly overcomes switching loss. Our approach offers a highly promising path to creating a deterministic photon source that can be integrated on a chip-based platform.Comment: 28 pages, 9 figures. Comments welcom

    BER performance analysis of 100 and 200 Gbit/s all-optical OTDM node using symmetric Mach-Zehnder switches

    Get PDF
    New insight to the feasibility of all-optical ultra speed switching up to 200 Gb/s. The technique will reduce the dependency and bottleneck on the electronic-to-optical-to-electronic conversion. Current conversion speed is up to 40 Gb/s in laboratories. The novel clock extraction technique proposed shows the potential of an all-optical switch. The research results are directly relevant to the access technology where optical fibre and RF is competing to be the solution. The growing demands of bandwidth will exceed RF capability while the optical fibre will be the optimum solution. A PhD project (Le-Minh) funded by the University Studentship, completed in 2007

    Temporally and spectrally multiplexed single photon source using quantum feedback control for scalable photonic quantum technologies

    Get PDF
    Current proposals for scalable photonic quantum technologies require on-demand sources of indistinguishable single photons with very high efficiency (having unheralded loss below 1%1\%). Even with recent progress in the field there is still a significant gap between the requirements and state of the art performance. Here, we propose an on-chip source of multiplexed, heralded photons. Using quantum feedback control on a photon storage cavity with an optimized driving protocol, we estimate an on-demand efficiency of 99%99\% and unheralded loss of order 1%1\%, assuming high efficiency detectors and intrinsic cavity quality factors of order 10810^8. We further explain how temporal- and frequency-multiplexing can be used in parallel to significantly reduce device requirements if single photon frequency conversion is possible with efficiency in the same range of 99%99\%

    High-speed, solid state, interferometric interrogator and multiplexer for fiber Bragg grating sensors

    Get PDF
    We report on the design and prototyping of a robust high-speed interferometric multiplexer and interrogator for fiber Bragg grating sensors. The scheme is based on the combination of active WDM channel switching and passive, instantaneous interferometry, allowing the resolution of virgin interferometric interrogators to be retained at MHz multiplexing rates. In this article the system design and operation are described, and a prototype scheme is characterized for three sensors and a multiplexing rate of 4 kHz, demonstrating a noise floor of 10 nΔ/√Hz and no cross-sensitivity. It is proposed that the system will be applicable to demanding monitoring applications requiring high speed and high resolution measurements across the sensor array

    Effect of Loss on Multiplexed Single-Photon Sources

    Full text link
    An on-demand single-photon source is a key requirement for scaling many optical quantum technologies. A promising approach to realize an on-demand single-photon source is to multiplex an array of heralded single-photon sources using an active optical switching network. However, the performance of multiplexed sources is degraded by photon loss in the optical components and the non-unit detection efficiency of the heralding detectors. We provide a theoretical description of a general multiplexed single-photon source with lossy components and derive expressions for the output probabilities of single-photon emission and multi-photon contamination. We apply these expressions to three specific multiplexing source architectures and consider their tradeoffs in design and performance. To assess the effect of lossy components on near- and long-term experimental goals, we simulate the multiplexed sources when used for many-photon state generation under various amounts of component loss. We find that with a multiplexed source composed of switches with ~0.2-0.4 dB loss and high efficiency number-resolving detectors, a single-photon source capable of efficiently producing 20-40 photon states with low multi-photon contamination is possible, offering the possibility of unlocking new classes of experiments and technologies.Comment: Journal versio

    Ultrafast wavelength jumping and wavelength adjustment with low current using monolithically integrated FML for long-reach UDWDM-PON

    Get PDF
    Ultrafast wavelength jumping at optical network units (ONUs) for an access network with frequency modulated lasers (FMLs) is demonstrated. This FML consists of an intracavity tunable phase section and filtering gain section. It provides a total of 4.2 nm tuning range with fast wavelength jumping (2.2 nm in 1 ”s) and fast adjustment (1.3 nm in 1.8 ns), providing a candidate for the fast tuning ONU for coherent ultradense wavelength-division multiplexing passive optical networks (WDM-PONs).Peer ReviewedPostprint (author's final draft

    Active Temporal Multiplexing of Photons

    Get PDF
    Photonic qubits constitute a leading platform to disruptive quantum technologies due to their unique low-noise properties. The cost of the photonic approach is the non-deterministic nature of many of the processes, including single-photon generation, which arises from parametric sources and negligible interaction between photons. Active temporal multiplexing - repeating a generation process in time and rerouting to single modes using an optical switching network - is a promising approach to overcome this challenge and will likely be essential for large-scale applications with greatly reduced resource complexity and system sizes. Requirements include the precise synchronization of a system of low-loss switches, delay lines, fast photon detectors, and feed-forward. Here we demonstrate temporal multiplexing of 8 'bins' from a double-passed heralded photon source and observe an increase in the heralding and heralded photon rates. This system points the way to harnessing temporal multiplexing in quantum technologies, from single-photon sources to large-scale computation.Comment: Minor revision

    Development of a dc-ac power conditioner for wind generator by using neural network

    Get PDF
    This project present of development single phase DC-AC converter for wind generator application. The mathematical model of the wind generator and Artificial Neural Network control for DC-AC converter is derived. The controller is designed to stabilize the output voltage of DC-AC converter. To verify the effectiveness of the proposal controller, both simulation and experimental are developed. The simulation and experimental result show that the amplitude of output voltage of the DC-AC converter can be controlled

    Electronic and photonic switching in the atm era

    Get PDF
    Broadband networks require high-capacity switches in order to properly manage large amounts of traffic fluxes. Electronic and photonic technologies are being used to achieve this objective both allowing different multiplexing and switching techniques. Focusing on the asynchronous transfer mode (ATM), the inherent different characteristics of electronics and photonics makes different architectures feasible. In this paper, different switching structures are described, several ATM switching architectures which have been recently implemented are presented and the implementation characteristics discussed. Three diverse points of view are given from the electronic research, the photonic research and the commercial switches. Although all the architectures where successfully tested, they should also follow different market requirements in order to be commercialised. The characteristics are presented and the architectures projected over them to evaluate their commercial capabilities.Peer ReviewedPostprint (published version
    • 

    corecore