2,490 research outputs found

    SemImput: Bridging Semantic Imputation with Deep Learning for Complex Human Activity Recognition

    Get PDF
    The recognition of activities of daily living (ADL) in smart environments is a well-known and an important research area, which presents the real-time state of humans in pervasive computing. The process of recognizing human activities generally involves deploying a set of obtrusive and unobtrusive sensors, pre-processing the raw data, and building classification models using machine learning (ML) algorithms. Integrating data from multiple sensors is a challenging task due to dynamic nature of data sources. This is further complicated due to semantic and syntactic differences in these data sources. These differences become even more complex if the data generated is imperfect, which ultimately has a direct impact on its usefulness in yielding an accurate classifier. In this study, we propose a semantic imputation framework to improve the quality of sensor data using ontology-based semantic similarity learning. This is achieved by identifying semantic correlations among sensor events through SPARQL queries, and by performing a time-series longitudinal imputation. Furthermore, we applied deep learning (DL) based artificial neural network (ANN) on public datasets to demonstrate the applicability and validity of the proposed approach. The results showed a higher accuracy with semantically imputed datasets using ANN. We also presented a detailed comparative analysis, comparing the results with the state-of-the-art from the literature. We found that our semantic imputed datasets improved the classification accuracy with 95.78% as a higher one thus proving the effectiveness and robustness of learned models

    Efectos de la pérdida de datos en las métricas de Variabilidad del Ritmo Cardíaco

    Get PDF
    La explosión en el mercado de dispositivos wearables ha supuesto una revolución en el ámbito de la monitorización de la salud. Gran parte de la población, incluida la población no paciente, posee dispositivos de pulsera capaces de detectar sus latidos a lo largo de todo el día. Juntocon las ventajas que esto supone, aparecen nuevos retos. Uno de ellos es la estabilidad de la calidad de la señal. Los movimientos constantes de estos dispositivos hacen que se produzcan grandes pérdidas de datos, que pueden ocasionar un deterioro de las mediciones. Esto es especialmente relevante en los dispositivos que analizan la variabilidad de ritmo cardíaco, una técnica que permite inferir información del sistema nervioso autónomo de forma no invasiva a partir del control que éste ejerce sobre el sistema circulatorio. Esta técnica necesita que todos los pulsos sean detectados para funcionar correctamente, por lo que la pérdida de datos supone inevitablemente un deterioro. Este trabajo se centra en investigar cómo se produce esta degradación para diferentes métodos y qué técnicas se pueden utilizar para reducirla. Para ello, se ha desarrollado un método de simulación de pérdida de pulsos que permite analizar los dos tipos de errores que se suelen dar: errores aleatoriamente distribuidos y en ráfagas. A su vez, se propone un nuevo método de rellenado de pulsos como una posibilidad de preprocesado, que obtiene mejores resultados que el método de referencia. Dependiendo de la aplicación y de los requerimientos de los dispositivos, se sugieren los métodos más robustos teniendo en cuenta también su coste y la información que proveen. Los métodos se han probado en una base de datos con 17 sujetos sometidos a una prueba de mesa basculante, que permite provocar cambios en la activación del sistema nervioso autónomo sin involucrar al sistema central o causar actividad en los músculos. Las métricas se han comparado tanto en la degradación de sus valores como en la capacidad para distinguir los cambios provocados por la prueba de mesa basculante.<br /

    Handling Missing Data For Sleep Monitoring Systems

    Get PDF
    Sensor-based sleep monitoring systems can be used to track sleep behavior on a daily basis and provide feedback to their users to promote health and well-being. Such systems can provide data visualizations to enable self-reflection on sleep habits or a sleep coaching service to improve sleep quality. To provide useful feedback, sleep monitoring systems must be able to recognize whether an individual is sleeping or awake. Existing approaches to infer sleep-wake phases, however, typically assume continuous streams of data to be available at inference time. In real-world settings, though, data streams or data samples may be missing, causing severe performance degradation of models trained on complete data streams. In this paper, we investigate the impact of missing data to recognize sleep and wake, and use regression-and interpolation-based imputation strategies to mitigate the errors that might be caused by incomplete data. To evaluate our approach, we use a data set that includes physiological traces-collected using wristbands-, behavioral data-gathered using smartphones-and self-reports from 16 participants over 30 days. Our results show that the presence of missing sensor data degrades the balanced accuracy of the classifier on average by 10-35 percentage points for detecting sleep and wake depending on the missing data rate. The impu-tation strategies explored in this work increase the performance of the classifier by 4-30 percentage points. These results open up new opportunities to improve the robustness of sleep monitoring systems against missing data

    Learning Sensory Representations with Minimal Supervision

    Get PDF

    Behavioral Privacy Risks and Mitigation Approaches in Sharing of Wearable Inertial Sensor Data

    Get PDF
    Wrist-worn inertial sensors in activity trackers and smartwatches are increasingly being used for daily tracking of activity and sleep. Wearable devices, with their onboard sensors, provide appealing mobile health (mHealth) platform that can be leveraged for continuous and unobtrusive monitoring of an individual in their daily life. As a result, an adaptation of wrist-worn devices in many applications (such as health, sport, and recreation) increases. Additionally, an increasing number of sensory datasets consisting of motion sensor data from wrist-worn devices are becoming publicly available for research. However, releasing or sharing these wearable sensor data creates serious privacy concerns of the user. First, in many application domains (such as mHealth, insurance, and health provider), user identity is an integral part of the shared data. In such settings, instead of identity privacy preservation, the focus is more on the behavioral privacy problem that is the disclosure of sensitive behaviors from the shared sensor data. Second, different datasets usually focus on only a select subset of these behaviors. But, in the event that users can be re-identified from accelerometry data, different databases of motion data (contributed by the same user) can be linked, resulting in the revelation of sensitive behaviors or health diagnoses of a user that was neither originally declared by a data collector nor consented by the user. The contributions of this dissertation are multifold. First, to show the behavioral privacy risk in sharing the raw sensor, this dissertation presents a detailed case study of detecting cigarette smoking in the field. It proposes a new machine learning model, called puffMarker, that achieves a false positive rate of 1/6 (or 0.17) per day, with a recall rate of 87.5%, when tested in a field study with 61 newly abstinent daily smokers. Second, it proposes a model-based data substitution mechanism, namely mSieve, to protect behavioral privacy. It evaluates the efficacy of the scheme using 660 hours of raw sensor data collected and demonstrates that it is possible to retain meaningful utility, in terms of inference accuracy (90%), while simultaneously preserving the privacy of sensitive behaviors. Finally, it analyzes the risks of user re-identification from wrist-worn sensor data, even after applying mSieve for protecting behavioral privacy. It presents a deep learning architecture that can identify unique micro-movement pattern in each wearer\u27s wrists. A new consistency-distinction loss function is proposed to train the deep learning model for open set learning so as to maximize re-identification consistency for known users and amplify distinction with any unknown user. In 10 weeks of daily sensor wearing by 353 participants, we show that a known user can be re-identified with a 99.7% true matching rate while keeping the false acceptance rate to 0.1% for an unknown user. Finally, for mitigation, we show that injecting even a low level of Laplace noise in the data stream can limit the re-identification risk. This dissertation creates new research opportunities on understanding and mitigating risks and ethical challenges associated with behavioral privacy

    Blending the Material and Digital World for Hybrid Interfaces

    Get PDF
    The development of digital technologies in the 21st century is progressing continuously and new device classes such as tablets, smartphones or smartwatches are finding their way into our everyday lives. However, this development also poses problems, as these prevailing touch and gestural interfaces often lack tangibility, take little account of haptic qualities and therefore require full attention from their users. Compared to traditional tools and analog interfaces, the human skills to experience and manipulate material in its natural environment and context remain unexploited. To combine the best of both, a key question is how it is possible to blend the material world and digital world to design and realize novel hybrid interfaces in a meaningful way. Research on Tangible User Interfaces (TUIs) investigates the coupling between physical objects and virtual data. In contrast, hybrid interfaces, which specifically aim to digitally enrich analog artifacts of everyday work, have not yet been sufficiently researched and systematically discussed. Therefore, this doctoral thesis rethinks how user interfaces can provide useful digital functionality while maintaining their physical properties and familiar patterns of use in the real world. However, the development of such hybrid interfaces raises overarching research questions about the design: Which kind of physical interfaces are worth exploring? What type of digital enhancement will improve existing interfaces? How can hybrid interfaces retain their physical properties while enabling new digital functions? What are suitable methods to explore different design? And how to support technology-enthusiast users in prototyping? For a systematic investigation, the thesis builds on a design-oriented, exploratory and iterative development process using digital fabrication methods and novel materials. As a main contribution, four specific research projects are presented that apply and discuss different visual and interactive augmentation principles along real-world applications. The applications range from digitally-enhanced paper, interactive cords over visual watch strap extensions to novel prototyping tools for smart garments. While almost all of them integrate visual feedback and haptic input, none of them are built on rigid, rectangular pixel screens or use standard input modalities, as they all aim to reveal new design approaches. The dissertation shows how valuable it can be to rethink familiar, analog applications while thoughtfully extending them digitally. Finally, this thesis’ extensive work of engineering versatile research platforms is accompanied by overarching conceptual work, user evaluations and technical experiments, as well as literature reviews.Die Durchdringung digitaler Technologien im 21. Jahrhundert schreitet stetig voran und neue Geräteklassen wie Tablets, Smartphones oder Smartwatches erobern unseren Alltag. Diese Entwicklung birgt aber auch Probleme, denn die vorherrschenden berührungsempfindlichen Oberflächen berücksichtigen kaum haptische Qualitäten und erfordern daher die volle Aufmerksamkeit ihrer Nutzer:innen. Im Vergleich zu traditionellen Werkzeugen und analogen Schnittstellen bleiben die menschlichen Fähigkeiten ungenutzt, die Umwelt mit allen Sinnen zu begreifen und wahrzunehmen. Um das Beste aus beiden Welten zu vereinen, stellt sich daher die Frage, wie neuartige hybride Schnittstellen sinnvoll gestaltet und realisiert werden können, um die materielle und die digitale Welt zu verschmelzen. In der Forschung zu Tangible User Interfaces (TUIs) wird die Verbindung zwischen physischen Objekten und virtuellen Daten untersucht. Noch nicht ausreichend erforscht wurden hingegen hybride Schnittstellen, die speziell darauf abzielen, physische Gegenstände des Alltags digital zu erweitern und anhand geeigneter Designparameter und Entwurfsräume systematisch zu untersuchen. In dieser Dissertation wird daher untersucht, wie Materialität und Digitalität nahtlos ineinander übergehen können. Es soll erforscht werden, wie künftige Benutzungsschnittstellen nützliche digitale Funktionen bereitstellen können, ohne ihre physischen Eigenschaften und vertrauten Nutzungsmuster in der realen Welt zu verlieren. Die Entwicklung solcher hybriden Ansätze wirft jedoch übergreifende Forschungsfragen zum Design auf: Welche Arten von physischen Schnittstellen sind es wert, betrachtet zu werden? Welche Art von digitaler Erweiterung verbessert das Bestehende? Wie können hybride Konzepte ihre physischen Eigenschaften beibehalten und gleichzeitig neue digitale Funktionen ermöglichen? Was sind geeignete Methoden, um verschiedene Designs zu erforschen? Wie kann man Technologiebegeisterte bei der Erstellung von Prototypen unterstützen? Für eine systematische Untersuchung stützt sich die Arbeit auf einen designorientierten, explorativen und iterativen Entwicklungsprozess unter Verwendung digitaler Fabrikationsmethoden und neuartiger Materialien. Im Hauptteil werden vier Forschungsprojekte vorgestellt, die verschiedene visuelle und interaktive Prinzipien entlang realer Anwendungen diskutieren. Die Szenarien reichen von digital angereichertem Papier, interaktiven Kordeln über visuelle Erweiterungen von Uhrarmbändern bis hin zu neuartigen Prototyping-Tools für intelligente Kleidungsstücke. Um neue Designansätze aufzuzeigen, integrieren nahezu alle visuelles Feedback und haptische Eingaben, um Alternativen zu Standard-Eingabemodalitäten auf starren Pixelbildschirmen zu schaffen. Die Dissertation hat gezeigt, wie wertvoll es sein kann, bekannte, analoge Anwendungen zu überdenken und sie dabei gleichzeitig mit Bedacht digital zu erweitern. Dabei umfasst die vorliegende Arbeit sowohl realisierte technische Forschungsplattformen als auch übergreifende konzeptionelle Arbeiten, Nutzerstudien und technische Experimente sowie die Analyse existierender Forschungsarbeiten
    corecore