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Abstract: The recognition of activities of daily living (ADL) in smart environments is a well-known
and an important research area, which presents the real-time state of humans in pervasive computing.
The process of recognizing human activities generally involves deploying a set of obtrusive and
unobtrusive sensors, pre-processing the raw data, and building classification models using machine
learning (ML) algorithms. Integrating data from multiple sensors is a challenging task due to dynamic
nature of data sources. This is further complicated due to semantic and syntactic differences in these
data sources. These differences become even more complex if the data generated is imperfect,
which ultimately has a direct impact on its usefulness in yielding an accurate classifier. In this
study, we propose a semantic imputation framework to improve the quality of sensor data using
ontology-based semantic similarity learning. This is achieved by identifying semantic correlations
among sensor events through SPARQL queries, and by performing a time-series longitudinal
imputation. Furthermore, we applied deep learning (DL) based artificial neural network (ANN) on
public datasets to demonstrate the applicability and validity of the proposed approach. The results
showed a higher accuracy with semantically imputed datasets using ANN. We also presented a
detailed comparative analysis, comparing the results with the state-of-the-art from the literature. We
found that our semantic imputed datasets improved the classification accuracy with 95.78% as a
higher one thus proving the effectiveness and robustness of learned models.

Keywords: activity recognition; unobtrusive sensing; BLE; proximity; ontologies; semantic
imputation; segmentation; neural network

1. Introduction

Over the past few decades, a rapid advancement has been observed in pervasive computing for
the assessment of cognitive and physical well-being of older adults. For this purpose, monitoring
of Activities of Daily Living (ADLs) is often performed over extended periods of time [1]. This is
generally carried out in intelligent environments containing various pervasive computing and sensing
solutions. Recognition of ADLs has been undertaken across a wide variety of applications including
cooking, physical activity, personal hygiene, and social contexts. Generally, solutions for recognizing
ADLs are underpinned with rule-based or knowledge-driven supported by conventional Machine
Learning (ML) algorithms [2,3]. In such environments, the embedded or wireless sensors generate
high volumes of streaming data [4], which in a real world setting can contain huge amounts of missing
values or duplicate values [5]. Such noisy and imprecise data may lead to one of the major causes of
an erroneous classification or imprecise recognition. Conversely, several challenges also exist while
coping with missing values hence an efficient mechanism for imputation of the sensory data are thus
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required. Issues in missing data become even more difficult when considering multimodal sensor
data to recognize real-time complex ADLs. In this case, some of the sensors may generate continuous
streams of data whilst others generate discrete streams [6].

Several statistical-based approaches are reported in the literature to deal with missing values. The
majority of these propose data imputation solutions, the nature of which can vary depending on the
size of the actual data and the number of missing values [7]. Most of them, however, use model-based
imputation algorithms i.e., likelihood-based or logistic regression to encounter the missing values.
The impact of imputation is determined by the classification performance, which may lead to biased
parameter estimates, as most of the ML classifiers deal with the missing information implicitly. For
this reason, complications whilst handling missing sensor states is still considered to be a non-trivial
problem [8]. An appropriate strategy is therefore needed to improve the quality of data imputation with
minimal computational efforts. Current approaches must also address data imputation in multimodal
sensor streams, which not only improves the recognition performance but also increases overall
robustness of the applications [9,10].

Despite the gain in statistical power, more recently, ontology-based modeling and representation
techniques have been introduced [11]. These ontological models can discover, capture, encode rich
domain knowledge, monitor patterns of ADLs, and provide heuristics in a machine-processable
way [12,13]. Ontologies represent rich structured hierarchical vocabularies and can be used to
explain the relations amongst concepts or classes. The coded knowledge is made accessible and
reusable by separating sub-structural axioms, rules and conjunctions among the concepts [14]. In
addition to separation logic, use of a query language, SPARQL also provides support for disengaging
these semantics and assertions for interpreting any rule-based complex activities [15]. In work by
Amador et al. [16], the authors used SPARQL for retrieving class entities and their types, which were
later transformed into vector form before using deep learning approaches. Similarly, Socher et al. [17]
have bridged neural networks with an ontological knowledge-base for the identification of additional
facts. Only a limited amount of work, however, has been undertaken to account for semantic
imputation using ontological models and SPARQL [18].

Moreover, the usability of semantic imputation and feature extraction using ontological methods
in combination with deep neural networks for recognizing complex activities remains to be investigated.
Previous studies have not provided a comprehensive analysis on the impact of imputation on
the classification accuracy. To this end, we present research proving the applicability of semantic
imputation for missing sensors and their states on activity classification in a controlled environment
using deep-learning based Artificial Neural Networks (ANNSs). This combination of semantic
imputation with neural networks in a supervised learning method using public datasets not only
increases accuracy, but also reduces the complexity of training data. The presented work is, to the best
of our knowledge, the first to exploit ontologies, semantic imputation, and neural networks.

The key objectives being addressed in this study are to: (1) design and development of a practical
scheme for modeling time-series data into an ontology, (2) perform semantic data expansion using
the semantic properties, (3) identify suitable semantic data imputation measure, (4) design and
train an effective deep learning model for Human Activity Recognition (HAR), and (5) undertake
a comparative analysis using public datasets with each having different rates of missing data and
imputation challenges.

The rest of the paper is structured as follows: Section 2 presents the problem formulation and
key definitions. Section 3 elaborates on the structure of our proposed framework. In Section 4, we
report the experimental evaluations and provide a comparative analysis using public datasets. Finally,
Section 5 draws the conclusion and presents future work.



Sensors 2020, 20, 2771 3 0of 23

2. Problem Statement

In this section, we first introduce key definitions, which are carried throughout the paper. These
definitions are necessary for understanding concepts referred to in this paper. Later, a robust illustrative
example is presented to represent the research problem for HAR referred in this study.

2.1. Some Definitions

In this section, we first give preliminary definitions of problems that the methodology aims to
address. Laterally, we introduce the notion of Semantic imputation.

Definition 1. (Formal Notation) Let {D1,D,, ..., Dy} be the set of multimodal sensory data of the form
(p x q) matrices modeled over the domain ontologies {O1, Oy, ..., O} respectively, where p represents the
number of observations for q concepts (variables).

Definition 2. (Training Tuples) Let Ty = {t1, ..., t,} be the set of training tuples for dataset D, containing
missing attributes or their values. Let t,, is a tuple with q attributes { A, ... A4}, which may have one or more
missing attributes or its value where t,;, € Ty;. Let ty,, be the missing attribute A and t,,, be the missing value
on attribute A where A € Ay. Given a candidate imputed set, ty, = UT (tma U tio) for a possible missing
attributes or its value for t,.

Definition 3. (Ontology) A core ontology is a structure O := (C, <., R, o, <,) consisting of two disjoint sets
concept identifiers 'C” and relation identifiers 'R’, a partial order <. on C, called concept hierarchy or taxonomy,
a function o representing signature, and a partial order <, on R defining relation hierarchy.

Definition 4. (Ontology-based Tuples) Given oy and o; in O, (o, 0;) is called an ontology-based tuple, if and
onlyif: (1) 3A,Be C|ox € Aand o) € B; (2) A B; and (3) Ay, (01) < 7.

Definition 5. (Knowledge-base)A Knowledge Base K is conceptually referred to a combination of intentional
terminologies TBox (T") part and extensional assertion ABox (A) part modeled over an ontology O. T includes
concept modeling and the relations in ontology O and A includes concept instances and roles.

Definition 6. (Conjunctive Query) Conjunctive queries Q enable answers by identifying attributes or their
values, which are rewritten as
\V/AR(A, Ck) /\not(N(A, Ck)) (1)

where A represents vector of attributes (A, ..., Ay), vectors of concept instances Cy, conjoined predicates
(relations) R, and a vector of disjoined predicates (relations) N.

2.2. Problem Formulation: Semantic Imputation

A Knowledge Base is a consistent structure K = (7,.4), and we revise the Abox A to A! such
that K = (7, A!) should also be consistent:

Al = AUTZ(Ap) since (A = Dy \ A) )

Z(Am) = Iss(Am) + Lsi(Am) + ZL(Am) 3)

where A,, represents missing attributes or their values and Zss(Awm), Zs;(Am), Zr(Am) measure
structural-based, instance-based and longitudinal imputations for missing attributes and their values,
respectively.

Hence, we define our problem in a 4-tuple (D, K, Q, Z) such that D denotes the input data,
modeled over the ontology O having assertion set .4 which are retrieved using conjunctive queries
Q with the results used to perform semantic imputation Z(A,,) introducing improved assertions
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Al. We ensure that, during the whole process, K remains consistent with the addition of imputed
assertions A

2.3. Preliminaries of Sensing Technologies

In this section, we describe the nature of available HAR public datasets D,, with underlying
sensing technologies. These can be differentiated into two broad categories of unobtrusive and obtrusive
activity sensing based on the wearables and data sources. We, therefore, provide a brief description of
both categories using UCamlI [19], Opportunity [20], and UCI-ADL [21] public datasets for their distinct
sensing functionalities, signal type, sampling frequencies, and protocols.

2.3.1. Unobtrusive Sensing

Unobtrusive sensing enables continuous monitoring of activities and physiological patterns
during the daily life of the subject. These wearables most often involve binary sensors (BinSens), PIR
sensors, and pressure sensors embedded within smart objects or the ambient environment. BinSens
generate an event stream comprising of binary values, working on the principles of the Z-Wave
protocol. Such protocols are implemented through some unobtrusive wireless magnetic sensors. This
can be explained through the Prepare breakfast example in Figure 1. For 'Pantry’, 'Refrigerator’, and
"Microwave’ objects, Open state means magnets are detached and they are in use, whereas Close state
shows they are not in use. The inhabitant’s movements are recorded at a sample rate of 5 Hz, using
the ZigBee protocol implemented in 'PIR sensors’ such as the "Sensor Kitchen Movement’ [22]. It also
produces binary values with Movement or No Movement. The presence of an inhabitant on the "Sofa’,
’Chair’, and ‘Bed’ objects are collected via the Z-Wave sensing protocol, implemented through the
"Textile Layer Sensors’, which produce binary values Present or Not present. Similarly, a continuous
stream of data are also observed for unobtrusive spatial data gathered through the suite of capacitive
sensors installed underneath the floor.

‘ Sensor ‘ Object ‘ State ‘ Data lization (A02: Prepare breakfast )
Open | |

Pantry Close
. ) Open
Binary Close
Sensors i Gpan ||

Close L
Sensor Kitchen Movement
No |

Excellent | ] I i ! |

Floor
Capacitance

SensFloor
(40 Modules)

Good Lo | | \
Proximity | BLEBeacons = } i t i
Data Poor

T 1 1
Object Type* ‘F WBWB TB F | F LB LB LB E F LB PDrPDr LB PDr F LB/LB F LB LB F WBLB F LB F | LB LB TB LB TB LB WD LB WD TB TB TB MB
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, Continous
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Figure 1. Time series analysis for example Prepare breakfast in UCamlI dataset [19].

The dataset generated through the BinSens is of a challenging nature as the duration of the
generated stream may be instantaneous, lasting for a few seconds or may continue for hours. As
shown in Figure 1, filling the gaps between two states for BinSens is of a challenging nature since every
BinSens has a different operation nature and state transition time depending on the activities performed.

2.3.2. Obtrusive Sensing

The proximity data from the Bluetooth Low Energy (BLE) beacons is collected through an android
application installed on the smart-watch at a sample rate of 0.25 Hz [22]. BLE beacons are measured
through RSSI. The value of the RSSI is higher if there is the smaller distance between an object and the
smart-watch and vice versa. BLE beacons are used for ‘Food Cupboard’, ‘Fridge’, ‘Pot Drawer’, etc.,
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for the Prepare breakfast activity example in Figure 1. Ambulatory motion is represented by Acceleration
data, which is again gathered through the android application installed on the smart-watch. The 3D
acceleration data are collected in a continuous nature using a sampling frequency of 50 Hz. Such
acceleration data [20] is also measured through body-worn sensors, object sensors and ambient sensors,
which measure 3D acceleration using inertial measurement units, 3D acceleration with 2D rate of turn
and 3D acceleration with multiple switches, respectively.

3. Methodology

In this section, we demonstrate the proposed methodology, overall functional architecture and
workflow in Section 3.1. An ontology model to represent the activities is presented in Section 3.2 and a
detail of specially designed SPARQL queries for semantic segmentation in Section 3.3. Ontology-based
complex activities identification and conjunction separation for semantic data expansion is explained
in Section 3.4. An algorithm to perform semantic imputation is then described in Section 3.5. Lastly,
the classification method describing HAR using DL based ANNSs is presented.

3.1. High-Level Overview of the SemImput Functional Framework

The presented work describes a layered Semantic-based Imputation (SemImput) framework, which
supports an innovative means to synchronize, segment, and complete the missing sensor data. This
is achieved by automatically recognizing the indoor activities within the smart environment. The
architecture depicted in Figure 2 comprises of (a) Data Sensing and Representation Layer designed to
capture data; (b) the Semantic Segmentation Layer segments the data based on the timestamps for over
1-second; (c) the Semantic Expansion Layer segregates the concurrent activities represented by separate
features into a sensor event matrix; (d) the Semantic Imputation Layer, responsible to fill the missing data,
sensor states, which are of periodic nature and provides continuity to the data by using the proposed
strategies; (e) the Semantic Vectorization receives the filled sensor event matrix and generates vector sets;
(f) and finally the Classification Layer, which uses a neural network to classify the augmented Semantic
Vectors for evaluation purposes.

Classification SemDeep-ANN SemDeep-ANN Convolution & Input
Test & i Model Training Pooling Preparation
I
Semantic One-Hot Order Semantic Obtrusive Data Unobtrusive Data
Vectorization Encoding Vectors Vectors Distribution Distribution
I
Semantic Structural Instance Degree of Single LOCB &
Imputation Strategy Strategy Activity Imputation NOCB
I
Semantic Sequential Concurrent Ontological SPARQL Sensor Event
Expansion Activities Activities Rules Queries Matrix
T
Semantic Noise Data i Data Sliding Window Time-based
Segmentation & Enrichment & Filtering | Synch
Training / Test Dataset
Acceleration BLE Variable Event Spatial
& Proximity 5 Beacons Sampling Rate Stream Information
Smart 2 — et der oo
- Watch™ ~ § 3 _mBle ~30 Binary- _ ~Floor~ ..
Data s E - - p g Sensors “ Sensors 4 Sj&ius A
Sensing 28 : 73 | \ | ;_L;,i
= 5/ 2 n | l '
Layer £ 5 @ £ %8 v i N ! } f.le\"“ =
o< = i [FN=] 0 ! B
T4 E s N | N )

Figure 2. A detailed view of SemImput framework.

3.2. Data Sensing and Representation

The Data Sensing and Representation layer utilizes the sensor streams which are simulated over a
dynamic sliding window. We used ontological constructs, which are derived through the data-driven
techniques for representing sequential and parallel activities. This layer is encapsulated by the newly
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modeled set of OWL2 Semantic Imputation Ontologies (SemImputOnt) to map sensory data. It models
sensor streams, identifies patterns, and discovers the overlapping temporal relations in them. It
supports generality in terms of data semantization [23], offers more expressiveness, and helps in
decoupling the concurrent fragments of sensor data rather than using non-semantic models. It not
only provides a basic model for representing the atomic and complex ADLs but also supports the
expansion of dataset instances through the SPARQL queries.

3.2.1. Taxonomy Construction

We followed and utilized the data-driven techniques to model sensor streams for identifying
complex concurrent sensor temporal state patterns. These state patterns become the basis for the
parallel and interleaved ADLs, which are of static and dynamic nature as mentioned in Table 1. An
ontology engineer utilizes the complete knowledge of involved sensors and the nature of the data
produced by them. In addition, the core vocabulary required to model and design the SemImputOnt is
obtained through the temporal patterns of sensor stream data, describing the complex ADL’s main
class definitions. The descendants of these main classes, however, have been described to model each
sensor object, which generates discrete or continuous sensory data. These primitive classes are related
to ADLs using “SensorStateObject” properties. These object properties such as hasBinarySensorObject
shows the relationship between the ADL and the core sensor object defining its state. Again, the state
is linked by a property hasBinarySensorState with SensorStateObjects. Similarly, the other obtrusive
sensor objects have the properties hasAccelerometer, hasBLESensor with the hasRSSI data property. All
these sensor objects define the ADL with open intervals without any prior knowledge of Start-time
or End-time [1]. The temporal relations for each sensor object are obtained using object properties
hasStartTime and hasEndTime.

How comprehensive SemlImputOnt is at representing disjoint ADLs can be visualized and
explained through an example of the activity Breakfast modeled in Figure 3. In this example, an
ADL Breakfast is represented as a class. The ADL Breakfast is a descendant of the Activities class,
defined as being an equivalent class relating to the instances of BinarySensorObject, BinarySensorState,
Accelerometer, Devices, FloorCapacitance, BLESensors, and DaySession. This means that, to be a
member of the defined class Breakfast, an instance of the Activities class must have a property of
type hasBinarySensorObject, which relates to an instance of the SensorKitchenMovement class, and this
property can only take as value an instance of the SensorKitchenMovement class. The instance of the
Activities class must also have a property of type hasBinarySensorState, which relates to an instance of
the Movement class, or the NoMovement class, and this property can only take as value an instance of
one of them. The instance of the Activities class must also have a property of type hasAccelerometer,
which relates to an instance of the x class, y class, and z class. This property must only relate to the
instances of these three classes. The instance of the Activities class must also have a property of type
hasDevice, which relates to an instance of the Devicel class, and Device2 class. This property must only
relate to the instances of these two classes. The instance of the Activities class must also have a property
of type hasFloorCapacitance, which relates to an instance of the CI class, C2 class, C3 class, C4 class, C5
class, C6 class, C7 class, and C8 class. This property must only relate to the instances of these seven
classes. The instance of the Activities class must also have a property of type hasBLESensor, which relate
to an instance of the Tap class, FoodCupboard class, Fridge class, and WaterBottle class for this example.
This property must only relate to the instances of these four classes and every class must also have a
property hasRSSI, which relates to the instance of RSSI class. Moreover, the instance of the Activities
class must also have a property of type hasDaySession, which relates to an instance of the Morning class
and only to an instance of the Morning class. Thus, if an instance of the Activities class fulfills the seven
existential restrictions on the properties hasBinarySensorObject, hasBinarySensorState, hasAccelerometer,
hasDevice, hasFloorCapacitance, hasBLESensor, and hasDaySession, the instance will be inferred as being a
member of the Breakfast class.



Sensors 2020, 20, 2771

7 of 23
|G|35595 | Cbject properties | Data properties | = © DBreakfast — http:/fwww_semanticweb_org/ontologies/2020/8/SemimputOnt#Breakfast
Class hierarchy: Breakfast (1 I = w1 %] @ Description: Breakfast ] 0 = ] =]
u L:-I- BE Asserted Equivalert To
¥ &0 owl:Thing O Activities

v Semimputont

and {{(hasBinary SensorObject some SensorKitchenMovement)
b 0 Opportunity

and (hasBinarySensorState only (Movement or HoMovement)))}
¥-- 0 UCaml and {(hasAccelerometer some (X and y and z))
¥ 0 Activities and {(hasDevice some (Device1 and Device2))
----- I=lBrcakfast| and {hasFloorCapacitance some (C1 and C2 and C3 and C4 and C5 and C6 and C7 and C8))

----- & Brush_teeth and {(hasBLESensor only {{BathroomTap and {(hasRS Sl some RSS1)) or {FoodCupboard
----- & Dinner and (hasRS5 81 some R551)) or (Fridge and {(hasRS %! some R351)) or (WaterBottle

----- £ Dressing and (hasR55] some RS51))))

----- © Eat_a_snack and {(hasDaySession only Morning)

----- £ Enter_the_SmartLab

----- £ Go_to_the_bed

""" & Leave_the_Smarlab SubClass Of
""" & Lunch

""" £ Play_a_videogame
""" & Prepare_Breakfast
""" © Prepare_Dinner

""" & Prepare_Lunch SubClass Of (Anonymous Ancestor)
""" & Put_washing_into_the_washing_machine

----- © Put_waste_in_the__bin

""" £ Relax_on_the_sofa Instances

----- & Take_Medication

----- £ Use_the_toilet

General class axioms

Target for Key

----- £ Visit_in_the_SmartLab AR IRy

----- & Wake_up

----- & Wash_dishes Disjoint \With

- g 3:?;1—"%','“ © Wake_up, Lunch, Use_the_toilet, Enter_the_SmartLab,

- Put_washing_into_the_washing_machine, Work_at_the_table, Take_Medication,

----- £ Work_at_the_table -

»- @ DataSources Brush_teeth, Wash_hands, Prepare_Lunch, Eat_a_snack, Play_a_videogame,
N Visit_in_the_SmartLab, Prepare_Dinner, Dressing, Go_to_the bed, Watch_TV, Dinner,
B 0 Inhabitant ; ] -
» - @ Objects Prepare_Breakfast, Wash_dishes, Put_waste_in_the__ bin, Relax_on_the_sofa,
»-- @ SmartLabRegions Leave_the_SmarLab
B UCI-ADL

Figure 3. SemImputOnt: Class hierarchy with a definition axiom for the activity Breakfast.
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Table 1. A list of activities, locations, and dependent sensor objects identified from UCamlI dataset utilized for SemImputOnt constructs.

Type ID Activity Name Location Activity Dependencies Sensors” Objects
Static Act01 Take medication Kitchen Water bottle, MedicationBox
. . .. Motion Sensor Bedroom, Sensor Kitchen Movement,
Dynamic  Act02 Prepare breakfast Kitchen, Dining room Refrigerator, Kettle, Microwave, Tap, Kitchen Faucet
. . .. Motion Sensor Bedroom, Sensor Kitchen Movement,
Dynamic Act03 Prepare lunch Kitchen, Dining room Refrigerator, Pantry, Cupboard Cups, Cutlery, Pots, Microwave
Dynamic  Act04 Prepare dinner Kitchen, Dining room Motion Sen§0r Bedroom, SensF) r Klt?hen Movement,
Refrigerator, Pantry, Dish, microwave
. . .. Motion Sensor Bedroom, Sensor Kitchen Movement,
Dynamic  Act05 Breakfast Kitchen, Dining room Pots, Dishwasher, Tap, Kitchen Faucet
. . .. Motion Sensor Bedroom, Sensor Kitchen Movement,
Dynamic  Act06 Lunch Kitchen, Dining room Pots, Dishwasher, Tap, Kitchen Faucet
. . . .. Motion Sensor Bedroom, Sensor Kitchen Movement,
Dynamic  Act07 Dinner Kitchen, Dining room Pots, Dishwasher, Tap, Kitchen Faucet
. . .. Motion Sensor Bedroom, Sensor Kitchen Movement,
Dynamic Act08 Eat a snack Kitchen, Living room Fruit Platter, Pots, Dishwasher, Tap, Kitchen Faucet
Static Act09 Watch TV Living room RemoteControl, Motion Sensor Sofa, Pressure Sofa, TV
Dynamic  Actl0 Enter the SmartLab Entrance Door
Static Actll Play a video game Living room Motion Sensor Sofa, Motion Sensor Bedroom, Pressure Sofa, Remote XBOX
Static Actl12 Relax on the sofa Living room Motion Sensor Sofa, Motion Sensor Bedroom, Pressure Sofa
Dynamic  Act13 Leave the SmartLab Entrance Door
Dynamic  Actl4 Visit in the SmartLab Entrance Door
Dynamic  Actl5 Put waste in the bin Kitchen, Entrance Trash
Dynamic  Actl6 Wash hands bathroom Motion Sensor Bathroom, Tap, Tank
Dynamic  Actl7 Brush teeth bathroom Motion Sensor Bathroom, Tap, Tank
Static Actl8 Use the toilet bathroom Motion Sensor Bathroom, Top WC
Static Act19 Wash dishes Kitchen dish, dishwasher
Dynamic  Act20 Put washing into the washing machine Bedroom, Kitchen Laundry Basket, Washing machine, Closet
Static Act21 Work at the table Workplace
Dynamic  Act22 Dressing Bedroom Wardrobe Clothes, Pyjama drawer, Laundry Basket, Closet
Static Act23 Go to the bed Bedroom Motion Sensor bedroom, Bed
Static Act24 Wake up Bedroom Motion Sensor bedroom, Bed
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3.2.2. Concurrent Sensor State Modeling

The object properties introduced in SemImputOnt as an existential restriction support management
of concurrent and sequential sensor states as explained in the Breakfast activity model example. These
properties not only describe the hierarchy of sensor object states, and their actions by establishing
object-data relationships but also support in augmenting the incomplete sensor sequences using
SPARQL queries. Moreover, the relationship also supports, while generalizing data-driven rules as
shown in the anonymous equivalent class for the activity Breakfast. These rules map sensor states in
SemImputOnt to model an activity rather than tracking rigid sensor state patterns. These sensor state
patterns are identified and linked to their respective timestamps using temporal datatype properties
such as hasStartTime and hasEndTime. SemImputOnt comprehensively models sensor situations using
sensor state concepts independently and concurrently by exploiting their relationships using Allen’s
temporal operators [15].

3.3. Semantic Segmentation

The Semantic Segmentation Layer in the SemImput framework describes the ontological operations
to illustrate the modeling patterns of ADLs, by observing them in a sliding window. The first step is
to retrieve and synchronize the non-segmented sensor state instances obtained from obtrusive and
unobtrusive data sources along with their temporal information. We used a non-overlapping and
static sliding time windows [24] approach, in which each sensor state is identified by a timestamp.
For this, we used a set of 9 SPARQL-based query templates for retrieving and interpreting rules to
deal with underlying temporal sensor state relations, as well as their structural properties. Moreover,
the SPARQL queries require additional parameters in order to correlate, interpret, and aggregate
sensor states within the endpoints of the sliding window [25]. Some of the initializing parameters
include start-time, end-time, and a list of sensors within the sliding window identified based on the
start-time and datatype properties. These parameters provide support for manipulating concurrent
sensors states, which are expanded and imputed as illustrated in further sections. SemImputOnt is also
used for validating temporal constraints and for the verification of property values within a sliding
window [26]. The sensor state endpoints are retrieved through the following custom set of conjunctive
ABox SPARQL queries C Q where (cg; € C Q) over the sliding time window:

cqp: Valid Open sensor state

cqy: Valid Closed sensor state

cq3: Start-time of Next, sensor state

cqa: Sensor having Open state within the sliding window
cqgs: Sensor having Closed state within the sliding window

whereas the concurrent sensor states are retrieved through following SPARQL-based query templates,
which are also coincidental at their:

cqe: start-time and still Open sensor states
cqy: start-time but Closed sensor states
cqs: end-time but still Open sensor states
cqy: end-time but Closed sensor states

The SPARQL query, cqy, refers to the identifiers from the SemImputOnt retrieved instances, which
are still active but are yet to be finished. These states are identified based on their initialization
timestamps represented by the start-time. The query cq, retrieves SemImputOnt instances having both
endpoints identified by start-time and end-time. The query cq3 retrieves the start-time of the sensor
initialization, which may deactivate and at the same time becomes active in a current sliding time
window. The query cqy retrieves sensor state, which has just started in the sliding window; this query
provides the start-time. The query cgs, a specially designed query to monitor the sensor state, which
is currently active in the sliding window and changes its states to deactivation or off state. This query
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retrieves the end-time for such state transition. The query cgq retrieves active concurrent sensor states
for more than one sensor, based on the start-time within the current sliding time window which is yet
to finish. The query cq7 on the other hand fetches the start-time for such concurrent sensors, which
have closed states with valid end-times. Similarly, the queries cqg and cqg retrieve the active and inactive
concurrent sensor states based on some end-time data value, respectively. The above-mentioned queries
cq3, cq4, and cqg are responsible for initializing a separate thread to monitor and keep the track for
sensor states which are to become inactive by identifying the end-time.

The segments returned through the SPARQL queries may be considered complete if they contain
both the endpoints represented by dissimilar sensor states. If one of the end points goes missing,
however, the segment becomes anomalous or erroneous in the sensor stream data. Such erroneous
behavior is identified by using semantic data expansion and resolved through the semantic imputation.

3.4. Semantic Data Expansion

The proposed set of SemImputOnt models sensor objects (concepts and properties) and their
states (instances) from the segmented D, datasets. It not only maps sensor streams but also
captures structure, preserving the associations within the sensor state instances using a data-driven
approach. A structure-preserving transformation encompasses each sensor object, their associations,
and subsumptions relating to different concurrent activities [27]. These preserved semantics and
associations are separated by understanding the complex activity structures. The separation process
includes conversions of these semantics into distinct columns while conjunctions in between them
provide essential existential conditions for representing activities in a matrix.

3.4.1. Ontology-Based Complex Activity Structures

To encode more detailed structure, the SemImputOnt uses primitive and defined concepts with
value-restriction and conjunctions as concept-forming operators. These value restrictions are enforced
through classifiable attributes (roles) and non-classifiable attributes (non-definitional roles) to model
HAR datasets. In SemImputOnt, primitive-concepts (Activities) provide necessary conditions for
membership, whereas defined concepts (Sensors, Objects, Data sources) provide both necessary and
sufficient conditions for membership as mentioned below:

ACCG 4)
A=C; (5)

where A is any Activity name, and C defines a primitive concept or a defined concept as mentioned in
Equations (4) and (5), respectively. These concepts are used to form an expression, which can be either
a sensor state, or conjunction of sensor states with or without a value-restriction as described below:

C—A;C— (VR.AZ I HR),‘C — C1 NGy 6)

Here, Ay, A are attribute, R is a conjoined predicate, and C;, C, are concept instances forming
expressions.

Utilizing the Description Logic (DL) notations, an example of Breakfast Activity from UCaml
dataset can be described in DL expression as:

Breakfast = Activities 1 3 hasBinarySensorObject.SensorKitchenMovement T
V hasBinarySensorState.(Movement LI NoMovement) M 3 hasAccelerometer.(x My M z) 1M 3 hasDevice.(Devicel
M Device2) 1M 3 hasFloorCapacitance.(C1 M C2 M C311C4 M1 C5M C6 M C7 1M C8) MY hasBLESensor.(Tap
M 3 hasRSSIL.RSSI U FoodCupboard M 3 hasRSSI.RSSI U Fridge M 3 hasRSSI.RSSI U WaterBottle
3 hasRSSI.RSSI) MV hasDaySession.Morning
whereas the same activity Breakfast using the DL attributes from UCI-ADL dataset is described as:
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Breakfast = UCI-ADL M 3 hasPlace Kitchen MV hasPlace Kitchen M 3 hasSensorLocation (Cooktop U
Cupboard U Fridge LI Microwave U Seat U Toaster) 1V hasSensorLocation (Cooktop U Cupboard LI Fridge LI
Microwave U Seat LI Toaster) M Y hasSensorType (Electric LI Magnetic U PIR U Pressure)

In both the expressions, the activity Breakfast is represented by different concept attributes modeled
into their corresponding ontologies in the SemImputOnt. It is evident that this activity is represented
by different sets of underlying ontological concepts depending upon the nature of sensors deployed
for acquiring the datasets for that activity. Keeping the same definition of each activity represented by
different underlying constructs may result in recognition performance degradation. For this reason,
they are defined separately, as the focus of the study is to fill in the gaps for missing sensor states.

The primitive concepts are mapped into partial concepts using Web Ontology Language (OWL),
which are encoded with rdfs:subClassOf construct (Equation (4)). In addition, the defined concepts are
mapped to complete concepts in OWL, which are encoded as class equivalence axioms represented as
owl:equivalentClass (Equation (5)). The concept names and concept conjunctions are mapped to class
names and class intersections in OWL, respectively, whereas roles are mapped with object properties.
These primitive and defined concepts definitions map the data instances into SemImputOnt models for
representing complex activities.

3.4.2. Conjunction Separation

The concepts expressed in the DL for Breakfast definition uses conjunctions for relating the sensor
state events [28]. The Breakfast equivalent class forming a complex activity with the involvement of
several Class concepts, relationships (object & data properties), and data instances. All the involved
Class concepts coupled with conjunctions defining the Activity equivalent classes are transformed into
independent entities by separating them based on involved conjunctions [14]. Conjunction separation
emphasizes the idea of concept (¢, ¥, w, x . . .) separation over the intention I such as:

EI(eApAwA)x...) = T(@)AT(P)ANT(w) NI (X)... (7)

These independent entities are transformed into multi-dimensional vectors representing the
features from all sensor states for a particular activity w.r.t. associated timestamps. The size of the
multi-dimensional vector may vary for each activity based on the conjunctive class concepts learned
through the data modeled over SemImputOnt.

3.4.3. Feature Transformation

The predicates separated in the previous step produces a row vector identified by a single activity
label, whereas column represents the class concepts with states as an instance. These predicates in
the feature space represent activities along with the timeline. These features ensure the reliability
of activities through mappings with the SemImputOnt [12,28]. In our case, SemImputOnt supports
essential properties while generating and validating the data into ABox A features as provided using
an example from the UCaml dataset.

A, < {BinSensy, BinSens, ... BinSenssy, BLEy, ...BLE15,C1,Cy,...Cs,x,y,z} (8)

where n = {1,2,...,24}, BinSens can have one of the states at a unit time Tig. from {Open, Close,
Present, No present, Pressure, No Pressure, Movement, No Movement }. These state mappings result into a
matrix representing each row with a single activity and every column with Class concepts. Each of the
separated concept supports modification of one segment independent of the others column-wise.

3.5. Semantic Data Imputation

The resulting n-dimension feature vector matrix has missing sensor states (Null), which lead to the
loss in efficiency for the activity classification model. Such losses can be dealt with suitable imputation
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techniques, which enriches the expanded data semantically by filling in the missing sensor states. We
propose a Semantic Imputation algorithm to capture the temporal missing sensor states semantically
and perform an overall feature vector matrix enrichment [29]. We adapt two similarity-based methods
and a time-series longitudinal imputation strategy to assess similarity of the concepts 7 and instances
A for imputation Z(A,,) as described in Algorithm 1.

Algorithm 1 Semantic Imputation Using Zss(Am), Zs;(Am), and Zp (Ay,) through SPARQL Queries
Input: Incomplete Segmented Data A,,, A, Dseq

Output: Complete Data with Imputation A,Iﬂm’[J > Segmented Imputed Dataset.
1: procedure SEMANTICIMPUTATION
2 for all timestamp t =1to T do
3 function ImputeBinSens(A,;, CQ, A, T) > BinSens i with their state imputation
4: for (cq;eCQ) do
5: BinSens pyyip, <— execute(cq;).filter(BinSens, Ay, ) > using SPARQL Queries
6 BinSenstyrger < execute(cq;).filter(BinSens aprip, T)
7 ABSm < BinSens guyip
8 Ags,,, < BinSenstyrget
9: max(Iss)  Compute Igg (ABSWI ABSM) > Equation (10)
10: Ags,, < Aps,, U (ABs,ar \ ABs,y,) > Update missing BinSens Attribute
11: BinSensyappings < retrieve.mappingsLists(BinSens;ocr, BinSensyocp)
12: while Agg , (state) = ¢ do > Load Updated BinSens attributes
13: if (Ags,, in BinSensList;ocr) then > based on BinSens characteristics
14: Aps,,,,, < execute(cq;).retrieveLastState.(Aps,,,)
15: Aps < T1.(ABS,r ABSyiare)
16: else if (Apg,,, in BinSensListyocp) then
17: Ags,,,,, < execute(cq;).retrieveNext, State.(Ags,,, )
18: Aps < T1(ABS,r ABSyiare)
19: Return Imputed Apg
20: function ImputeProximity(A,, CQ) > Imputation for Proximity Sensors and their values
21: for (cq;eCQ) do
22: Aprox < execute(cq;).filter(Proximity, Am)
23: Proxyay <+ maxValue(Apyoy)
24: Apyox < Update Apyox(ProXmax)
25: Return Imputed Apypx
26 function ImputeFloor(A,, CQ, A) > Imputation for Floor sensors and their values
27: for (cq;eCQ) do
28: Apifloor < execute(cq;). filter(Floor, Ay)
29: Atfloor < execute(cq;).filter (A fioor, A)
30: mean(floortuples) < Compute Lsi(A;fioor, Amfioor) > Equation (13)
31: Afioor <~Update Ay f1o0r U mean(floortuple) > update using mean for tuples
32: Return Imputed A,
33: function ImputeAccelerometer(A;, CQ, A) > Imputation for accelerometer values
34: for (cq;eCQ) do
35: Apace < execute(cq;).filter(Acc, Ap)
36: Atpce < execute(cq;).filter(Apmace, A)
37: mean(acctuples) < Compute Lsi(Atace, Amace)
38: Apcc < Update A,y acc Umean(acctuples) > update using mean for last 10 tuples
39: Return Imputed A 4.,

I
40: Ammp <« Aps || Aprox H Afloor || Adce
41: increment f by 3 sec
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3.5.1. Structure-Based Imputation Measure

The structural patterns in TBox (7) are identified and exploited using SPARQL queries over the
SemImputOnt. These queries could retrieve T assertions based on the query criteria to measure semantic
similarity with target activity patterns. However, choosing a suitable pattern from target activities and
selecting the appropriate sensor state to fill in the missing ones is addressed through structure-based
similarity measure. We define structural similarity function for a target set of description A, and
activity A, with missing attributes to identify maximum probability as:

Sitmss : Ap X Ap — [0...1] ©)

It returns semantically equivalent sensor states where the child nodes for two concepts are
similar [30]. We use the Tanimoto coefficient between A, and A,, for measuring the structural similarity.
Ay gives the binary description for the involved sensors and A, are the available sensor predicates for
the activity with missing predicates mentioned below:

ISS (Am) = Simgg (An/ Am)
Z;‘(:1 Ap X Ap (10)
(Thy A3+ Ty A% — T8 An x A

The Zgs( A ) function determines the structural similarity among the target A, and A, the higher
the numerical value is, a more closer structural description of A;, instance is with A, description [31,32].
As a result, structural attributes are suggested for a tuple A, with missing attributes.

3.5.2. Instance-Based Imputation Measure

The ABox A is comprised of a finite set of membership assertions A referring to the concepts
and membership roles to their respective TBox 7. The set of assertions A for the UCamI dataset is
represented as:

A < (ts, 15, Ri, Vi) (11)

Each of the assertion is a combination of sensors r; with their certain states V; at a timestamp fs.

(rs, Ri, Vi) < (binsensy, 30, Ra, Va) |J (ble1..15, Rp, Vg) | (c1..8, Re, Ve) | (accryz, R, Vo) (12)

where binsens; 3 are the object names referring to the concept BinarySensor in the SemImputOnt,
ranging from 1 and 30 with binary states [0, 1] represented as V,. ble; 15 refers object names, which
are members for Proximity concept having values Vg, Intelligent Floor concept having assertions c;__ g
with values V. and accelerometer SmartWatch concept having membership for with values as V.
Instance-based similarity Zs;(A;,) is measured [33] between target activity instance .4,, and instance
with missing states A, as:
Zsi(Am) = Simi(An, Am)
overlap (A, A, m) (13)
An ) Am

where m is the mapping between 4, and A, in conjunction with concept-to-concept and roles-to-roles.
In addition, A, |§ Ay represents the disjoint union of memberships pertaining to concepts and
their roles between them. Instance-based similarity exploits neighborhood similarity by measuring
similarity through Sim;j(.A,, Ay,) function. Thus, an instance with high similarity value is chosen for
attribute states to be imputed for a tuple .A;, with missing states.

= maxy
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3.5.3. Longitudinal Imputation Measure

The quality of data, resulting from structure and instance-based imputation in a matrix form, is
further improved by using classical techniques of Last Observation Carried Forward (LOCF) and Next
Observation Carried Backward (NOCB). LOCF and NOCB are applied to the data in an observable
manner by analyzing each longitudinal segment, as described in Equation (7), for activity states
retrieved through SPARQL queries. While observing the binary sensors and their states in a time series
longitudinal segments, it is observed that the sensor states are triggered once either for activation
or deactivation. For example, an object Washing Machine in UCaml dataset has a contact type sensor
with Open state at T7 = 2017-11-10 13:37:56.0 and Close state at T, = 2017-11-10 13:38:39.0. In this case,
while synchronizing this sensor data with other states per unit time, Null values appear after T till T,
as the states triggered for once. For this LOCF, a sample-and-hold method is activated, which carries
forward the last state and imputes the Null values with this last available sensor state. Similarly,
NOCB imputes the missing values from next available state, which is carried backwards. The missing
states for Proximity sensors in the case of the UCamI dataset are imputed in a slightly different way as
elaborated in Algorithm 1. It identifies the proximity sensors and their respective RSSI values within
the sliding window. The proximity sensor utilizes maximum value imputation in which the LOCF
method is applied until some other proximity sensor with a value greater than the already known
value is identified. For continuous data such as Floor and Acceleration, a statistical approach is adopted
to replace the missing states with the mean of corresponding observed attributes. Mean imputation
method tends to be robust and easy to substitute the missing values.

3.6. Classification

To cross examine the effectiveness for imputed datasets using proposed SemImput framework, we
used a Deep Learning-based Artificial Neural Network (ANN) classifier [34]. The experimental results
proved to be suitable for multimodal, multi-sensory, and multi-feature datasets for HAR. For this, an
ANN model is trained with the labeled 2D training matrix instances for the UCaml, Opportunity and
UCI-ADL datasets. The computational complexity and recognition accuracies are then assessed.

3.6.1. One-Hot Code Vectorization

It has been observed as advantageous to transform categorical variables using suitable feature
engineering before applying neural network [35]. For this, we used one-hot encoding, a robust feature
engineering scheme, for generating the suitable feature vector indices [16]. These categorical features
are mapped into sensor state vector indices representing the concurrent sensor activation patterns
for a particular activity. This scheme expands the dimension of the feature matrix for 2" possible
combinations based on the binary states for the “n” sensors involved in the feature vector. As described
in Algorithm 2, n-dimensional sparse vector per unit time is obtained for populating feature matrix
required for classification. The value 1 is encoded where the sensor has an active state and the value
0 is assigned for missing state in a row vector [35]. The missing value indicator r in the matrix is
represented as 7, , with ny, row and py, column:

Fup = {1, Yalue is _obse.rv_ed (14)
0, if value is missing

3.6.2. Artificial Neural Networks for HAR

We introduced a Semantic Deep Learning-based Artificial Neural Network (SemDeep-ANN) having
the ability to extract hierarchy of abstract features [36,37] using a stack of convolutional operators,
which are supported by Convolutional Neural Networks (CNN). SemDeep-ANN consists of three
layers namely input layer, hidden layers, and output layer, which use vectorized data to train model for
probability estimation over the test data. The estimated probabilities are obtained from the output
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layer through the soft_max activation function in addition to gradient descent algorithm. Further
details of the SemDeep-ANN are given in Algorithm 3.

Algorithm 2 Semantic Vectorization Using One-Hot Coding Technique

1:
2
3
4
5:
6
7
8
9

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

Input: AP > Extract scalar sequence (BinSens, Proximity)
Output: M > Vectorized feature Matrix.

procedure SEMANTICVECTORIZATION

for all timestamp t=1to T do
function BinSensVectorization(CQ, Afnmp)
for (cq;eCQ) do
BinSens au,i, < execute(cq;).filter(BinSens, Afnmp)) > using SPARQL Queries
BinSensstates <— execute(cq;).filter(BinSens asip))
while BinSenssates # ¢ do
BinSensy,, <— Map(BinSens, BinSens ayyip)
BinSenssco 4 Transform(n X p, BinSensy,:) > transform rows into columns
BinSensgyige <— StateReplace(BinSensy,:) > 1 for Active BinSens or 0, otherwise
Return BinSensgy,ige
function ProxVectorization(CQ, A )
for (cq;eCQ) do
Prox pyip < execute(cq;).filter(Prox, A)) > using SPARQL Queries
Proxstates < execute(cq;).filter(Prox gssrip))
while Proxsiares (state) # ¢ do
Proxyee <— Map(Prox, Prox asip)
Proxgco < Transform(n x p, Proxve) > transform rows into columns
Proxgige <— StateReplace(Proxvye) > Set 1 for highest RSSI and 0 for rest
Return Proxgyige
M <« BinSensstyige || Proxirige || Afloor || Adce
increment f by 3 sec

Algorithm 3 Semantic Deep Learning-based Artificial Neural Network (SemDeep-ANN)

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:

13:
14:

Input: Labeled Dataset M,;,Unlabeled Dataset M,,;;1,5, and labels > Scalar sequence Equation (8)

Output: Activity Labels A, for the M ;14 > HAR.
procedure DEEP LEARNING HAR
Forward Propagation
for all timestamp t=1to T do > Sliding Widow Process
Dp <+ My > Retrieve Data (Feature Vectors Matrix)
x < normalize(Dr) > Preprocessing, reordering, filtering examples with no missing labels
Sample, Split, FE, TV
Initialize random weights {wy, w1, ... wy, }T and biasness b
Yy =0 (X wrxx +b) > applying nonlinear transformation o using y = o (w'x + b)
fey < fully_connected_NN(y)
Ay < soft_max(fcy) > Update weights in the network
Backward Propagation
Compute Cross entropy gradient > Use trained network to predict Activity labels
Apply gradient descent > Update network parameters

Activity Labels < Use trained network model > Predict labels
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4. Results and Discussion

The performance evaluation for SemImput framework is measured using non-imputed and
semantically imputed HAR datasets. The results are compared with other popular methods, which
were investigated using the same datasets.

4.1. Data Description

To compare the HAR performance of the proposed SemlImput framework, firstly, the experiments
were performed on the UCamlI dataset. It offers recognition of 24 set of activities for non-imputed and
imputed datasets. Secondly, the Opportunity dataset contains manipulative gestures of short duration
such as opening and closing, of Doors, Dishwasher, and Drawers. These were collected for four subjects
who were equipped with five different body attached sensors for the tracking of static and dynamic
activities [38]. Due to the involvement of several sensors, data transmission problems among wireless
sensors lead to segments of data being missed represented by Null. For this reason, we analyzed
the data and performed the required imputation in order to complement the missing segments of
data [37,39]. Lastly, we tested SemImput framework on the UCI-ADL dataset, which was collected
while monitoring 10 different ADLs [40] using passive infrared, reed switches, and float sensors. These
sensors were used to detect motion, opening and closing binary states of the objects and activities such
as toileting, sleeping, Showering.

4.2. Performance Metrics

We measured the impact of imputation against the non-imputed datasets using commonly used
metrics, such as accuracy, precision, and f-measure. The SemDeep-ANN models were validated by
splitting the datasets independently into train and test sets using a leave one day out approach. During
the evaluation process, we retained one full day from each of the dataset for testing, whereas the
remaining samples are used as a training set. This process is repeated for each day, with the overall
average accuracy obtained as a performance measure.

4.3. Discussion

This study examines and evaluates the SemImput framework for HAR classification results for
which the precision and recall curves are shown in Figure 4a-h. The framework achieved an overall
accuracy of 71.03% for set of activities recognized from non-imputed UCam! dataset as mentioned
in Table 2. The activity Prepare breakfast (Act02) yielded the highest precision of 87.55%, but it was
also misclassified with the activities Breakfast (Act05) and Dressing (Act22) respectively. Similarly,
the activity Enter the Smartlab (Act10) was also classified with the highest precision, it was, however,
misclassified as the activity Put waste in the bin (Actl5). The activity Breakfast (Act05) with the lowest
precision 52.14% was mostly misclassified as activities Prepare breakfast (Act02) and Wake up (Act24).
Furthermore, the activity Eat a Snack (Act08) with lower precision of 57.95% was misclassified as
the activity Prepare Lunch (Act03) due to the involvement of similar sensors and floor area. The
activity Visit in the SmartLab (Actl4) and Wash dishes (Act19) was hard to detect as they have lessor
number of annotated examples. The experimental results indicate an increased recognition accuracy
to 92.62% after modeling the UCam! dataset into ontology-based complex activity structures and
by performing the semantic imputation as shown in Figure 4b. The plot for these illustrates that
the activity Breakfast (Act05) having the lowest recognition precision of 81.54% was most often
classified as the activity Prepare breakfast (Act02). The activities Play a videogame (Actll) and Visit
in the SmartLab (Actl4) were recognized with 100% accuracy, which were having lower accuracies
with the non-imputed data. Similarly, the activity Relax on the sofa (Act12) was also recognized
with the highest precision rate of 98.44% as shown in Table 2. This suggests that semantic data
imputation provided positive data values, which resulted in the increase of classification accuracies for
individual activities.
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Figure 4. Classification performance of SemImput framework: Precision & Recall.
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Table 2. Confusion matrix for per-class HAR using non-imputed & imputed UCamlI dataset.
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The Opportunity dataset represents 17 ADLs and is of complex nature by having missing samples
labeled as Null due to sensor disconnections. Figure 4c,d shows the per class precision and recall for
recognized ADLs with the Opportunity dataset. The presented framework evaluates the Opportunity
dataset without the 'Null’ class by obtaining an overall accuracy of 86.57%, and an increased
accuracy with the imputed dataset by 91.71%. The comparisons for both confusion matrices are
shown in Table 3.

As shown in Figure 4e,f for the UCI-ADL Ordoéiiez-A raw dataset, an overall classification result
with 82.27% accuracy was obtained. It included activities like Grooming, Spare_Time/TV, and Toileting
having the most number of instances and the activity Lunch with minimum number of instances.
However, the classification results as mentioned in Table 4 show that the activities Leaving and
Breakfast have the highest recognition accuracy as compared to the activity Grooming with the lower
classification accuracy. In order to verify the proposed SemImput framework, it was also tested on
the semantically imputed UCI-ADL Ordéiiez-A dataset. This resulted in an increased recognition
accuracy for activities such as Breakfast, Lunch, and Leaving significantly as shown in Figure 4f. It was
due to the introduction of the semantic structure understanding of events with respect to morning,
afternoon, and generalization of semantic rules for such activities for imputing missing values. The
improvement in statistical quality through imputation raised the recognition accuracy significantly up
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to 89.20%. Similarly, an increased performance is also observed for the UCI-ADL Ordéfiez-B dataset for
the overall activities with imputed data, especially for the Dinner and Showering as shown in Table 5.
The global accuracy for UCI-ADL Ordéiiez-B dataset was improved from 84.0% to 90.34%, which also
proves the significance of proposed framework as shown in Table 6.

Table 3. Confusion matrix for per-class HAR using non-imputed & imputed Opportunity dataset.
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Table 4. Confusion matrix for per-class HAR using non-imputed & imputed UCI-ADL (OrdéiiezA)
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Table 5. Confusion matrix for per-class HAR using non-imputed & imputed UCI-ADL (OrdoéiiezB)

dataset.
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Table 6. Recognition accuracy gain using the proposed SemImput framework (Unit: %).

Number of (Mean Recognition Accuracy) Standard

Method Datasets Activities = Non-Imputed Imputed Deviation
Opportunity [20] 17 86.57 91.71 +2.57
Pr d SemImput UCI-ADL OrdéiiezA [40] 9 82.27 89.20 +3.47
opose P UCL-ADL OrdéiezB [40] 10 84.0 90.34 +3.17
UCamlI [19] 24 71.03 92.62 +10.80

As shown in Table 7, the proposed SemImput framework along with SemDeep-ANN model not
only improved the recognition rate for individual activities within the datasets but also improved
the global accuracy over each dataset. We also compared the activity classification performance of
our framework with a different state-of-the-art methods. The presented results show the potential
of SemImput framework with significant accuracy gain. Although for the UCI-ADL Ordériiez-A and
Opportunity datasets, our methodology was worse, it still achieved significant recognition performance
score of 89.20% and 91.71%, respectively. These findings show that combining the ADLs classification
with semantic imputation can lead to comparatively better HAR performance.

Table 7. Comparison results of the proposed SemImput framework with state-of-the-art HAR Methods.

State-of-the-Art Datasets Number of Mean Recognition SemImput
Methods Activities Accuracy(%) Gain
Razzaq et al. [22] UCaml [19] 24 47.01 +45.61
Salomén et al. [41] UCaml [19] 24 90.65 +1.97
Lietal. [37] Opportunity [20] 17 92.21 —0.50
UCI-ADL OrdénezA [40] 9 95.78 —6.58
Salguero etal- [12391 {1c1 AL OrdérezB [40] 10 86.51 +3.83

5. Conclusions and Future Work

This paper proposed a novel SemImput framework to perform Semantic Imputation for missing data
using public datasets for offline recognition of ADLs. It leverages the strengths of both structure-based
and instance-based similarities while performing semantic data imputation. By using ontological
model SemImputOnt, it uses SPARQL queries executed over the ABox data for semantic data expansion,
conjunction separation, identification of missing attributes, and their instances leading towards
semantic imputation. In order to further increase the quality of the data, we also utilized time-series
longitudinal imputation. The obtained results and presented analysis suggest that gain in recognition
accuracy varies with the nature and quality of dataset through the SemImput. We validated it, over
UCaml, Opportunity, and UCI-ADL datasets. It achieves the highest accuracy of 92.62% for UCaml
dataset using a SemDeep-ANN pre-trained model. A substantial, comprehensive, and comparative
analysis with state-of-the-art methodologies for these three datasets were also performed and presented
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in this paper. Based on the empirical evaluation, it was shown that DeepSem-ANN consistently
performed well on semantically imputed data by achieving an improved overall classification accuracy.
Such a technique can be applied for HAR based systems, which generate data from obtrusive and
unobtrusive sources in a smart environment. In the future, we plan to explore, execute, and enhance the
SemImput framework for real-time HAR systems. Furthermore, we plan to extend our methodology for
improving longitudinal imputation as some accuracy degradation is observed while recognizing HAR.
We believe that our approach will help in increasing the quality of smart-home data by performing
missing data imputation and will increase the recognition accuracy. On the negative side, the SemImput
framework requires an ontology modeling effort for any activity inclusion or an introduction of a new
dataset. For this, we plan to explore a scheme for unified activity modeling ontology for representing
the same activities and investigate it further for HAR performance.
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Abbreviations

The following abbreviations are used in this manuscript:

ADL Activities of Daily Living

HAR Human Activity Recognition

OWL Web Ontology Language

SemImput Semantic Imputation

SemImputOnt  Semantic Imputation Ontology

LOCF Last Observation Carried Forward
NOCB Next Observation Carried Backward
SemDeep ANN  Semantic Deep Artificial Neural Network
BLE Bluetooth Low Energy
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