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RESUMEN

La explosión en el mercado de dispositivos wearables ha supuesto una

revolución en el ámbito de la monitorización de la salud. Gran parte

de la población, incluida la población no paciente, posee dispositivos de

pulsera capaces de detectar sus latidos a lo largo de todo el día. Junto

con las ventajas que esto supone, aparecen nuevos retos. Uno de ellos

es la estabilidad de la calidad de la señal. Los movimientos constantes

de estos dispositivos hacen que se produzcan grandes pérdidas de

datos, que pueden ocasionar un deterioro de las mediciones. Esto es

especialmente relevante en los dispositivos que analizan la variabilidad

de ritmo cardíaco, una técnica que permite inferir información del sistema

nervioso autónomo de forma no invasiva a partir del control que éste

ejerce sobre el sistema circulatorio. Esta técnica necesita que todos

los pulsos sean detectados para funcionar correctamente, por lo que la

pérdida de datos supone inevitablemente un deterioro. Este trabajo se

centra en investigar cómo se produce esta degradación para diferentes

métodos y qué técnicas se pueden utilizar para reducirla. Para ello, se ha

desarrollado un método de simulación de pérdida de pulsos que permite

analizar los dos tipos de errores que se suelen dar: errores aleatoriamente

distribuidos y en ráfagas. A su vez, se propone un nuevo método

de rellenado de pulsos como una posibilidad de preprocesado, que

obtiene mejores resultados que el método de referencia. Dependiendo

de la aplicación y de los requerimientos de los dispositivos, se sugieren

los métodos más robustos teniendo en cuenta también su coste y la

información que proveen. Los métodos se han probado en una base de

datos con 17 sujetos sometidos a una prueba de mesa basculante, que

permite provocar cambios en la activación del sistema nervioso autónomo

sin involucrar al sistema central o causar actividad en los músculos. Las

métricas se han comparado tanto en la degradación de sus valores como

en la capacidad para distinguir los cambios provocados por la prueba de

mesa basculante.
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ABSTRACT

The boom in the wearable device market has led to a revolution in

the field of health monitoring. A large part of the population, including

the non-patient population, has wrist devices capable of detecting their

heartbeats throughout the day. Along with the advantages this brings,

new challenges are emerging. One of them is the stability of the

signal quality. The constant movements of these devices cause large

data losses, which can lead to a deterioration of the measurements.

This is especially relevant in devices that analyze heart rate variability,

a technique that allows autonomous nervous system information to

be inferred in a non-invasive way from the control it exerts over the

circulatory system. This technique requires all pulses to be detected in

order to work properly, so loss of data inevitably leads to deterioration.

This work focuses on investigating how this degradation occurs for

different methods and which techniques can be used to reduce it. For

this purpose, a method of pulse loss simulation has been developed to

analyze the two types of errors that usually arise: randomly distributed

errors and bursts. At the same time, a new method for filling in pulses is

proposed as a preprocessing option, which obtains better results than the

reference method. Depending on the application and the requirements of

the devices, the most robust methods are suggested taking into account

also their cost and the information they provide. The methods have been

tested in a database with 17 subjects undergoing a tilt-table test, which

allows for changes in the activation of the autonomic nervous system

without involving the central system or causing activity in the muscles.

The metrics have been compared both in the degradation of their values

and in the ability to distinguish the changes caused by the tilt-table test.
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Chapter 1

Introduction

1.1 Context

This work has been realized within the Biomedical Signal Interpretation &
Computational Simulation group of the University of Zaragoza and the Centro de
Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina
(CIBER-BBN). The objectives and scope of this project are part of a wider research
on robust non-invasive ANS monitoring using wearable devices, within the
context of the Biomedical Engineering PhD program at University of Zaragoza.
The need for a research on the effects of missing data in Heart Rate Variability
(HRV) metrics is motivated by a previous work using a wrist device: Cajal et
al. Parasympathetic characterization guided by respiration from wrist peripheral
venous pressure waveform. Computing in Cardiology 2020.

1.2 Motivation

For several decades, HRV has been a widely researched field because
of its ability to evaluate Autonomic Nervous System (ANS) information in a
non-invasive way [1]. This information became very important following the
discovery that different cardiac pathologies, including sudden cardiac death, are
related to ANS impairments [2]. The ANS is a control system that innervates
internal organs and regulates body processes such as heart and respiratory rate,
blood pressure, urination and digestion. Its action on the organs is conducted
through two divisions: the sympathetic and the parasympathetic, each
specialized in situations of stress (sympathetic) and rest (parasympathetic), and
normally with opposite effects on the same organ. Although both sympathetic
and parasympathetic act simultaneously, one can predominate over the other.
For example, during a rest situation, the parasympathetic division slows the
heart rate, decreases the blood pressure and stimulates digestion. On the other
hand, during an acute stress situation (fight-or-flight response), there will be a
withdrawal of the parasympathetic activity followed by a sympathetic activation,
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which acts by increasing heart rate and blood pressure and slowing down less
important body processes at that time such as digestion, besides other effects
like pupils and airways dilation and sweat. Measuring the prevalence of one
division over the other has become critical, as it has been demonstrated that
an increase in sympathetic activity, or a reduction in vagal activity - the vagus
nerve is the main parasympathetic control of the heart - is associated with
cardiovascular diseases such as lethal arrhythmias [2]. The relative dominance
of one ANS branch over the other is called sympathovagal balance.

As mentioned, HRV is a powerful tool for assessing the autonomic state, since
both sympathetic and parasympathetic divisions act over the heart, controlling
aspects such as Heart Rate (HR) and contractility. Heart rate is modulated by
the Sinoatrial Node (SA node), located on the right atrium wall. This node is
the natural pacemaker of the heart, the place where the heartbeats begin. The
SA node is formed by cells with the capability to produce an electrical impulse,
called action potential, which travels along the heart tissue, provoking the heart
to contract. This action potential is triggered by the SA node cells themselves
in a rhythmic way, maintaining a more or less constant rate. However, the
innervation of the ANS over the SA node causes the action potentials to become
more or less frequents, thus provoking the increasing or the decreasing of the
heart rate. The sympathetic branch of the ANS causes an increase in HR,
meanwhile the parasympathetic, via vagus nerve, has the opposite effect. The
combined effect of both branches of the ANS modulates the HR over time trying
to adjust it to the physiological needs of blood supply to the tissues.

Taking advantage of this neural modulation of the heart rate, there are many
methods that can provide information about the ANS from HRV. Some are based
on the time dependence of the beats, others on the frequency, and even on
non-linear interrelationships or symbolic abstractions. A further explanation of
the methods examined in this thesis can be found in Chapter 3.

HRV can be easily obtained by placing electrodes on the patient skin to
obtain a signal proportional to the heart electrical activity. This well-known
technique is called electrocardiography (ECG). Once the ECG signal is obtained,
pulse detection is very straightforward (e.g., Pan–Tompkins algorithm, wavelet
methods, etc.). However, having a clean waveform to look for reference points
is not always assured. Noise induced by the electronics, artifacts caused by
movements, other noises like under skin muscles electrical activity, etc., can
dramatically distort the signals until it becomes impossible to find any fiducial
point in a beat period, downgrading the performance of the ANS assessment
methods. This has taken on a major significance in the last decade with the
massive use of wearables in health care applications. These devices allow for
the monitoring of large volumes of subjects, whether they suffer from health
disorders or not, in an uninterrupted manner without causing any discomfort
to the bearer. Often camouflaged as watches with an elegant design, wrist
devices dominate the market. However, such devices suffer from a very low
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signal quality compared to clinic monitoring techniques such as ECG. In fact, they
usually make use of photoplethysmography, a technique that measures changes
in blood volume, rather than the electrical activity of the heart. It is considered
that this signal is a good surrogate for the electrocardiographic signal to obtain
HRV but also much more sensitive to artifacts [3].

Although the use of wearables is widespread worldwide, most devices do not
allow HRV analysis but provide only the mean heart rate. The great advantage of
the mean heart rate is that it is a very robust metric, not sensitive to large data
losses suffered by wearables throughout the day due to constant movements of
the wearer. On the other hand, the information that can be obtained from this
metric is limited. Therefore, it is necessary to investigate and develop methods
for HRV analysis which are robust to large data losses.

1.3 Objectives

This work has three objectives:

− The evaluation of different HRV methods to compare their degradation due
to missing data, in order to obtain a general idea of its limitations.

− The proposal of a novel method to deal with missing data for robustness
improvement in HRV analysis derived from wearable devices.

− The development of a missing data simulation protocol. Two different
types of error distributions that may occur in the practical case will be
compared: random distributed errors and bursts of errors. These errors
will be simulated from detections in ECG signals to have a reference to
compare with.

1.4 Structure

This dissertation is organized in five chapters, not counting this one.

− The following chapter will explain the context of this work. It will try to
answer questions about what the ANS is, what its functions are and why it
is important to monitor it in an non-invasive way.

− Chapter 3 is dedicated to materials and methods. It will explain the
database and the different preprocessing and HRV methods used.

− Results will be shown in Chapter 4.

− Chapter 5 is dedicated to the discussion, where several issues about
methods and results will be addressed

− Finally, Chapter 6 is dedicated to the conclusions.
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Chapter 2

Theoretical framework

This chapter provides a brief explanation of the physiological concepts
discussed on the following pages: the autonomic nervous system and heart rate
variability, as well as their relation.

2.1 Autonomic nervous system

The autonomic nervous system is the division of the nervous system that
controls most visceral functions of the body: it can rapidly modify functions such
as heart rate, blood pressure, sweating and gastrointestinal motility. Its main
function is to assist in maintaining a constant internal environment, a complex
process which is called homeostasis [4]. The ANS provides sensory information
to the Central Nervous System (CNS, brain and spinal cord) about the situation of
the viscera. It is the responsible of evoking feelings like hunger, thirst, or nausea,
that helps the organism to maintain homeostasis by voluntary behaviours such
as drink or eat.

Although it can evoke this perceptions and behaviours, the main regulation
of the ANS is unconscious. Internal stimuli that are collected by different sensors
in the viscera lead to a compensatory mechanism, activated mainly by centres
in the spinal cord, brain stem and hypothalamus. The ANS can also operate
through visceral reflexes, connections that do not need to pass through the brain
and therefore act very quickly, triggering subconscious reflex responses [5].

The motor signals returning to the organs (efferent signals) are transmitted
by the ANS through two subdivisions, called sympathetic and parasympathetic
divisions.

2.1.1 Sympathetic and parasympathetic divisions

Both motor divisions, the sympathetic and the parasympathetic, are
connected to the organs through a two-neuron pathway. The first neuron
(preganglionic) has its body within the CNS, while the second neuron
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(postganglionic) has its body in an autonomic ganglion and it’s connected
to smooth muscle, cardiac muscle, glands or the walls of the gastrointestinal
tract, as depicted in Figure 2.1. Not all tissues are innervated by the two
divisions, e.g. most of the blood vessels, glands and smooth muscle are only
affected by the sympathetic one. Both sympathetic and parasympathetic stimuli
can cause inhibitory or stimulating effects, as shown in Table 2.1. However, they
usually have antagonistic effects on the same organ: if sympathetic innervation
stimulates an effect, normally the parasympathetic will produce an inhibition
and vice versa.
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Figure 2.1: Sympathetic and Parasympathetic Pathways (from [4]).

Despite the fact that they often have antagonistic effects (not always),
parasympathetic and sympathetic act in a coordinated manner, maintaining
internal balance. The examples shown in Table 2.1 may illustrate the idea
discussed above that the sympathetic has related a "fight or flight" response
while the parasympathetic has a "rest and digest" one. During rest, the
prevalence of the parasympathetic tone, maintains a low heart rate and relaxed
breathing while stimulating peristaltic movements of the gut and other parts of
the gastrointestinal tract, aiding digestion. On the other hand, during a sprint to
a bus stop when the bus is about to arrive, the sympathetic tone increases, thus
dilating the bronchi in the lungs and increasing the heart rate and contractility,
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in order to compensate the demand of oxygen and blood to the tissues. Also
the strength of the skeletal muscles is increased and peristaltic movements are
inhibited.

Organ Sympathetic effect Parasympathetic effect

Pupil Dilated Constricted
Heart Increased rate Slowed rate
Blood vessels Most often constricted Most often little or no effect
Bronchi Dilated Constricted
Gut Decreased peristalsis and tone Increased peristalsis and tone
Liver Glucose released Slight glycogen synthesis
Blood Increased coagulation None
Skeletal muscle Increased glycogenolysis and strenght None
Kidney Decreased urine output None
Glands Vasoconstriction and slight secretion Stimulation of copious secretion
Sweat glands Copious sweating Sweating on palms of hands

Table 2.1: Autonomic effects on various organs [5].

In spite of these various effects, this thesis will focus only on the control of
the heart, specifically on the control of the heart rate, since it allows to perform
an autonomic evaluation in a non-invasive way.

2.1.2 Autonomic control of the heart

Some cells in heart tissue have the ability to become self-excited. These cells
are mainly concentrated in the SA node, also known as sinus node, located in the
wall of the right atrium (see Figure 2.2a). In a physiological case, self-excitation
of the SA node cells produces electrical impulses in a rhythmic manner, which
are transmitted through fast conduction pathways along the atria. These
electrical impulses, called action potentials, cause the atrial muscle to contract,
a process known as atrial systole. Blood within the atria is pumped into the
ventricles. At this point, the action potential has reached the Atrioventricular
Node (AV node), where it is slightly delayed, allowing the atria to be completely
emptied. After this short delay, the action potential is rapidly transmitted
through the ventricles by the Purkinje system, causing ventricular systole, which
pumps blood out of the heart to the tissues. The final phase of the heartbeat
is diastole, which consists of heart muscle relaxation and cell repolarization,
allowing the cells to be activated by the next action potential to pump again.

Despite the fact that the heart can pump blood automatically - in fact, a
heart can beat outside the body due to its ability to self-excite - the human
body does not need the same blood supply throughout the day, so it requires a
certain control. For example, during emotional excitement or during exercise,
the HR increases, while it decreases during sleep. As depicted in Figure 2.2b,
the heart is innervated by the sympathetic and parasympathetic divisions
of the autonomic system. While the parasympathetic division, through vagi,
mainly innervates the SA node and the AV node, the sympathetic division is
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distributed along the entire heart. The parasympathetic branch decreases the
self-excitation of the cells of the SA node, decreasing HR. It also decreases the
excitability of the AV node, increasing the delay at this point, thus extending
the duration of the heartbeat. In contrast, the sympathetic branch causes
the opposite effects: it increases the HR by stimulating the SA node, and
increases the excitability of all the cells in the heart, aiding the electrical
impulse transmission. In addition, it enhances the strength of heart muscle
contraction.

A-V node

A-V bundle

Right
bundle
branch

Left 
bundle
branch

Sinus
node

pathways
Internodal

(a) Electrical conduction pathways.

S-A
node

Sympathetic

A-V
node

chain

Vagi

Sympathetic nerves

(b) Autonomic innervation.

Figure 2.2: Cardiac conduction and innervation (from [5]).

Both autonomic stimulations can act very quickly and with clear effects: the
parasympathetic can completely stop the rhythmic excitation of the SA node,
while the sympathetic can triple the normal HR and double the contraction [5].

2.2 Heart rate variability

Oscillatory patterns of heart rate and blood pressure, and their correlation
with respiratory cycle, are known since the 18th century [6]. Later, in the
19th century, cyclical changes in arterial pressure (10-second waves) were
discovered by Mayer [7]. However, the broad clinical relevance of heart
oscillations around a mean heart rate was not revealed until the 1960s, with
the application of computers. Several studies have shown that autonomic
monitoring has the ability to predict major body disorders, some of them lethal,
that can be prevented with minimally invasive devices and techniques since
HRV represents the integrated response of the cardiovascular system to several
different influences [8]. In addition, HRV helped to shed light on hitherto poorly
understood mechanisms of autonomic control. The following lines describe how
information is derived from cardiovascular signals.
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Typically, HRV is obtained from the Electrocardiography/Electrocardiogram
(ECG). Electrodes on the skin surface measure the electrical activity of the
heart, producing the known waveform shown in Figure 2.3. Each phase of
the heart cycle is related to a waveform in the ECG. At the beginning of the
heartbeat, the atrial systole produces the P wave, followed by a short rest
interval corresponding to the delay introduced by the AV node. Once the
electrical impulse leaves the AV node, it is transmitted to the ventricles, causing
ventricular systole. This can be seen on the ECG as a set of three waves: Q,
R and S; usually treated as a single group called QRS complex. Ventricular
systole, and therefore the QRS complex, has a very short duration due to the
rapid conduction of the Purkinje system; and a large amplitude compared to the
P wave due to the greater amount of cells forming the ventricles with respect to
the atria. The last waveform, the T wave, is produced by the repolarization of
the ventricles during diastole.
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Figure 2.3: Electrocardiogram: Waves, R-R interval and systole/diastole extension.

Although the complete ECG has huge information about the heart, HRV
methods rely only on QRS complex detections, which is the easiest wave to
detect due to its high energy concentrated in a short time period. Therefore, it
represents a reliable reference point of the periodic activity of the heart and its
variability. In order to obtain HRV indices, it is necessary to calculate the R-R
intervals as the difference between two consecutive R waves (i.e. the inverse
of the instantaneous heart rate). The representation of this signal is called
tachogram (Figure 2.4), where oscillations around a mean value are clearly
depicted. Note that the time axis is unevenly sampled due to the variability of
the heart rate, and therefore in the sampling rate.

Some variables of interest such as mean heart rate can be calculated directly
from the R-R interval series. Measures such as variance indicate aggregated
fluctuations of the HR around the mean, thus measuring total power of HRV,
regardless of the origin. Despite this limitation, simple time domain parameters
are still useful to evaluate HRV. During sympathetic activation the resulting
tachycardia is usually accompanied by a marked reduction in total power,
whereas the reverse occurs during vagal activation [2]. Tachycardia is reflected
in a higher mean HR (i.e., a reduced R-R interval), while reduction in total power
can be measured as a reduced variance. In [9], cardiac transplant recipients, and
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Figure 2.4: Tachogram. The R-R interval physiologically fluctuates around a mean heart
rate.

therefore non-innervated hearts, showed a 96% reduction in HRV, demonstrating
that heart rate fluctuations were modulated primarily by the ANS. This implies
that HRV mainly measures the neural modulations of the ANS.

More interesting variables can be found in the frequency domain. Many
methods, which are explained in more detail in the next chapter, can be used
to estimate the Power Spectral Density (PSD) either directly from the discrete
event series or by interpolating them in order to obtain an evenly sampled
signal. This spectrum has an upper limit of approximately half the average heart
rate, following the Nyquist-Shannon sampling theorem (around 0.5 Hz). Three
components can be distinguished in this band: a Very Low Frequency component
(VLF, < 0.04Hz); a Low Frequency component (LF, 0.04 − 0.15Hz), in the same
band of arterial pressure cyclic fluctuations (Mayer waves); and a High Frequency
component (HF, 0.14 − 0.4Hz), the same frequencies of Respiratory Sinus
Arrhythmia (RSA, i.e., shortened R-R intervals during inspiration and prolonged
during expiration). Depending on the respiratory rate, this bounds may not be
accurate. This will be addressed on the discussion. The meaning and relation of
these components to physiological processes has been widely studied by several
investigations since the 1980s, following the path initiated by Akselrod et al. in
1981 [10]. In this research, Akselrod demonstrated, by means of monitoring
the effects of selective autonomic blockade in dogs, that the HF component is
related to parasympathetic modulation, whereas the LF component is related to
both sympathetic and parasympathetic activity, in addition of renin-angiotensin
system. This novel approach allowed to distinguish modulations due to each
motor division of the ANS in a non-invasive way, previously known by means
of invasive methods [11]. Coherent results were found by Pomeranz et al. in
humans [12], showing that standing position increase the LF component of HRV
from supine values, suggesting a relation between postural movements and
autonomic control mediated by blood pressure and baroreflex in this frequency
range. They also showed that controlled respiration enhance the HF component,
demonstrating its relation with respiration. This increase in the HF component,
accompanied with a significant reduction of the LF one was also observed in
[13]. In the same decade, Sands et al. discovered that, in cardiac recipients
[9], the prominent peak at respiratory rate, i.e., the HF component, was absent
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or substantially diminished, suggesting that vagal innervation is a necessary
condition for RSA. Despite the efforts made by several researchers, VLF band
has not a well defined physiological relation yet, although it is suggested that
it is associated with cyclic fluctuations in peripheral vasomotor tone associated
with thermoregulation [14]. Furthermore, it requires long recordings where the
signal may not be stationary, thus conditioning the spectral estimation.

These researches lead to the conclusion that HRV has 1) a respiratory rhythm,
defined as the HF component, which is a marker of vagal modulation; 2) a rhythm
corresponding to vasomotor waves, defined as the LF component, which is a
marker of both sympathetic and vagal modulations; 3) these rhythms have a
reciprocal relation similar to that characterizing the sympathovagal balance [11].

Besides time and frequency-domain metrics, also non-linear and symbolic
metrics have been developed in recent times, in order to obtain hidden
information from HRV that classic methods are unable to provide. These
methods and metrics will be described in the following chapter.

2.2.1 Clinical applications of HRV

Several reviews about HRV have been made, relating many of the methods
of the state of the art with pathologies and clinical uses [2, 15]. Some of
these studies are commented in the following lines. In [8], it is shown that
patients have a depressed HRV early after myocardial infarction, significantly
associated with early mortality and major complications and supported by other
clinical parameters. The same study states that HRV may reflect haemodynamic
damage better than any of the other used parameters. In [16], a spectral
analysis over patients surviving an acute myocardial infarction showed an
increased LF and diminished HF in normalized units that would indicate a shift
of the sympathovagal balance towards sympathetic predominance, revealing
alterations in neural control mechanisms. In the previous cited research on
cardiac recipients [9], they also found that there was a significant increase in
HRV in patients showing histological evidence of rejection. Some diseases like
diabetic neuropathy can be preceded by a reduction in time-domain parameters
of HRV although without sympathovagal shift, suggesting that both efferent
autonomic branches are involved [17]. In [18], it was suggested that patients
with essential hypertension has an enhanced sympathetic and a reduced vagal
activity, since LF was greater and HF lesser than those observed in the control
group. Statistically significant differences in HRV were found in patients with
ischaemic heart disease, congestive heart failure and Chagas’s disease as stated
in [11]. These different situations would not be detectable by simple visual
inspection of ECG, proving the importance of computer-mediated HRV in a
clinical environment.
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2.2.2 HRV and wearables

Non-invasive assessment of the ANS has been extensively researched as a
potential tool for the prognosis, diagnosis and monitoring of diseases, mainly
in the clinical environment. However, in recent years the market for portable
(or wearable) smart devices has boomed, with an increase in their functionality
and a decrease in their cost. Because a larger part of the population has easy
access to these devices, monitoring the state of the ANS during daily life has
become a very attractive objective in the field of health and well-being. A recent
study by IDTechEx [19] showed that wrist devices are the most widespread and
accepted wearable devices for everyday use. The variety of designs they offer,
often camouflaged as watches, has made them an everyday object, allowing
non-invasive health monitoring even in the non-patient population.

Traditionally, HRV has been obtained from the electrocardiographic signal
which, despite advances in technology, still requires the use of contact
electrodes (adhesives, on a strip, on textiles, etc.). This limits their use and
acceptance for daily monitoring, particularly by the non-patient population.
Although there are different commercial wristband wearables that claim to
perform HRV measurements using the photoplethysmographic pulse signal (PPG)
on the wrist (which takes the name of pulse rate variabiliy), there are few studies
that have validated it with respect to the ECG-derived HRV [20], demonstrating
important limitations for robust estimation of classic HRV metrics. Therefore,
there is a gap in the market and a need for non-invasive systems, both robust in
their estimation of HRV, low cost and accepted by the non-patient population.

There are numerous wrist devices that provide heart rate information, most of
them from the PPG signal recorded by a light transmitter and receiver. However,
although several studies have validated the HRV obtained from the PPG signal
recorded on the finger and forehead [21], very few studies have validated the
HRV obtained from the PPG signal recorded on the wrist during daily life. Most
studies that extract heart rhythm information from the PPG signal recorded
on the wrist only analyze the mean heart rate. However, analysis of HRV
requires detection of every single pulse, which is compromised in ambulatory
conditions. The proliferation of wearable devices makes it necessary to
investigate the degradation of HRV metrics in the face of incomplete recordings,
where detections have been lost due to noise and movements.
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Chapter 3

Materials and methods

3.1 Database

The database used in this master’s thesis has been previously used in [22].
17 subjects (age 28.5±2.8 years, 11 males) underwent a tilt-table test consisting
in 4 min in supine position, 5 min at a 70º angle and 4 min back to supine
position. Several signals were recorded, including ECG, blood pressure, oxygen
saturation and respiratory signal. The HRV study in this work will use both
the respiratory signal and the ECG. Windows of 2 min length are used, where
stationarity is assumed [22]. For each phase, windows are selected trying to
avoid possible artifacts.

The tilt-table test is a common method used in the clinic to assess the
cause of unexplained fainting (syncope). During the test, the patient’s heart
is monitored by electrodes while it is held in a supine position. The patient
rests on a special table that has an automatic mechanism to eventually move
into an upright position. This table usually has a footboard and straps to hold
the patient. The goal of the test is to trigger symptoms that indicate abnormal
control of heart rate or blood pressure, which is necessary in the transition from
the supine to the upright position.

It is assumed that the slight tachycardia usually accompanying the upright
position is due to a sympathovagal shift towards sympathetic predominance
in the neural modulation of the SA node. Enhanced sympathetic drive to the
heart is associated with a marked increase in the LF and with a decrease in
the HF component of the beat-to-beat R-R variability and arterial pressure
[13]. Moreover, the grade of sympathovagal shift is strongly correlated with
the degree of tilt, as demonstrated in [23]. In Figure 3.1, it can be shown the
effects of the test in a healthy subject. Time-domain measurements indicate an
augmented HR during tilt, accompanied with a variability (variance) reduction.
Sympathovagal shift is evident in the frequency domain. Although there is an
absolute reduction in the power of both LF and HF components, the relative
power of each band follows opposite directions as expressed in normalized units
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(n.u.). Normalized units are calculated by dividing the power of each band by
the sum of the powers of the HF and LF bands, thus excluding the VLF band.

P[n] =
P[ms2]

σ[ms2] − PVLF[ms2]
∗100 (3.1)

This representation emphasizes the balanced behavior of the two branches of
the ANS, while minimizes the effect of the changes in total power that may mask
the sympathovagal shift [2]. The ratio between LF and HF component powers
(LF/HF ratio) can complement the information given by the two components
separately, taking into account the whole system interaction, thus giving
a quantitative index of sympathovagal balance. The increase in the LF/HF
ratio during tilt is a consequence of the balance shift towards sympathetic
predominance.
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Figure 3.1: Tilt test (adapted from [2]). Tachogram and PSD in supine rest (left) and
head-up tilt (right).
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Due to its properties, tilt-table test has become a popular method
for evaluating sympathovagal balance: passive tilt only entails a minimal
engagement of central drive and muscular activity and is compatible with
accurate stationary conditions, differing from physical exercise, which is
characterized by extreme reductions in HRV, nonlinearities, nonstationarities,
and by an enhanced respiratory activity [23]. For these reasons, a tilt-test
database is used in this thesis for inducing intra-subjects sympathovagal shifts.
Several balance markers will be compared in adverse conditions (i.e., missing
beats) in order to determine those with best performance.

3.1.1 R-wave detection

Heartbeats were annotated using a wavelet-based algorithm described in
[24]. All the marks have been automatically shifted to the R-wave instants,
the signal maxima in according to the lead used (lead IV), and then checked
manually, in order to avoid any detection bias in the following steps (see
Figure 3.2). At this point, the ECG signal is no longer needed. HRV metrics
will be obtained from the time series of beat occurrences for each record.
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Figure 3.2: Electrocardiogram (lead IV) with marks at R waves.

3.2 Missing data simulation

At this point, there are two windows of 2 minutes per subject, each one
characterizing each supine and tilt states. Computations over initial windows
yield a reference for each method under review. Later, missed beats are
simulated by removing detections directly from the time series. As the objective
of this work is to characterize the degradation of the different ANS assessment
methods due to missed pulses in the detection stage, simulation permits certain
level of losses and a control group using all the detections. Simulation is done in
two ways: through a random distribution or through deletion bursts.

3.2.1 Random distribution

This method simulates the effect of a low Signal to Noise Ratio (SNR).
Sometimes, signals have enough quality to perform detections, although an
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automatic detector can still miss some pulses (see Figure 3.3). In fact, they can
find pulses where there are none, but that case is not investigated in this thesis.
This is achieved using a binomial distribution with different probabilities, so
every pulse can be deleted or not with a p probability (i.e., every pulse deletion
is an independent Bernoulli trial). Different number of pulses are eliminated in
each series, depending on the mean heart rate. However, the proportion of
removed pulses will be the same.
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Figure 3.3: Noisy ECG with random missed beats. R-wave detections are marked with
red circles.

3.2.2 Bursts

On the other hand, signals with a high SNR can be affected by artifacts.
This kind of noise is mainly caused by movements and is characterized by a
finite duration and a total loss of the signal or a very low SNR. These events
cause a burst of missed detections, rather than those randomly distributed (see
Figure 3.4). It is a common problem in wearables. This effect has been simulated
by removing pulses from the center of the series to each side with windows of a
certain duration.
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Figure 3.4: ECG with a burst of missed beats due to artifacts. R-wave detections are
marked with a red circle.

3.3 Missing data detection

Some methods require missing pulses to be detected. This is a relatively
simple task when the error rate is low or distributed in bursts. It is sufficient
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to look for sharp increases in the R-R interval series that suggest that at least
one heartbeat is missing between two pulses. However, this task become more
complicated when errors are randomly distributed and their number begins to
grow, as the reference R-R is lost. A moving median threshold is used in all
methods to detect these jumps in the R-R series. This method also allows the
detection of false positives and ectopic beats, either by placing a lower threshold
(a false positive causes a sudden drop in the R-R interval), or by applying the
threshold to the absolute value of the series of differences in the R-R intervals.
In the case of missing pulse bursts, the R-R series will have only one outlier at
the end of the burst. It is very easy to detect even with fixed thresholds (e.g.
two seconds). The larger the bursts, the easier it is to distinguish the outlier from
the baseline. Once the gaps have been identified, two possible techniques are
proposed to deal with them. The first is to eliminate these outliers from the R-R
series. As some methods may present a strong degradation due to incomplete
R-R series, the second technique is to fill the gaps in with approximate pulses
inferred from the surrounding actual ones. The way this is done is explained in
the next section.

3.4 Filling in the gaps

Different insertion methods may be used to fill the gaps in. The ectopic
heartbeat corrector described in [25] is an excellent approach for small amounts
of missed detections and ectopic beats. First, when a gap is detected between
pulses tk and tk+1, the algorithm tries either to insert an intermediate beat; to
move tk to a intermediate position between tk−1 and tk; or to move tk+1 to
the intermediate position between tk+1 and tk+2. Then, the threshold condition
is checked with the new series. If the condition is not met at any of the
situations, it is extended by considering possible consecutive missed beats (two
consecutive insertions or movements), and so on until the condition is satisfied
by involving one more beat in each step. The criterion is to solve the anomaly by
modifying the minor number of original beats. It also tries to meet the condition
removing beats in order to deal with false positives or ectopic beats. The main
problem with this method for use as a gap-filling method is that it has difficulty
distinguishing how many pulses are missing from each gap. By allowing it to
move the pulses instead of forcing it to introduce new ones, it often causes
the solution to have a different number of beats than the actual ones. This
difference in the number of pulses may not affect methods that interpolate the
series before, such as some frequency methods, since it produces smooth series.
However, other methods such as temporal methods where the series are not
interpolated, will suffer some degradation. From now on this method will be
called the reference method.

A second method is proposed to overcome this problem, using an iterative
algorithm. First, it starts by interpolating the series with a single pulse per gap
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(a) Small gaps are filled first. Above: Original RR series. The moving median threshold is represented by a
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(b) A gap larger than a pulse still exceeds the threshold after correction. It will have to be filled in during the
subsequent iterations.
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(c) First iteration concluded. Most of the gaps are corrected but there are still gaps. Another iteration will be
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(d) Now the number of filling pulses is correct. The algorithm will continue to fill gaps until no R-R interval
exceeds the threshold.

Figure 3.5: Iterative method demonstration.
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(Figure 3.5a). Then, it is checked if the number of missing pulses was correct by
checking with the same moving median method if the threshold is exceeded. For
cases where there is still a peak (Figure 3.5b), the introduced pulse is eliminated
and the algorithm continue with the subsequent gaps (Figure 3.5c). A two-pulse
interpolation is tested in the following iteration (Figure 3.5d), and so on. The
use of an iterative algorithm aims to solve two problems of pulse correction: the
complication of distinguishing the reference series from the gaps and the lack
of knowledge of the number of pulses missing from each gap. Thus, it starts
by solving the "simple" gaps before those involving more than one pulse. The
interpolation method will greatly affect the results. Here, linear interpolation
is used. Interpolation methods with higher order polynomials, including cubic
splines, may have convergence problems by introducing unwanted oscillations.
From now on this method will be called the proposed method.

3.5 Time-domain metrics

Time-domain methods are the easiest and most direct to implement, since
they are simple statistical analysis performed directly on the series of R-R
intervals or on the differences between intervals. The simplest is probably the
mean heart rate (MHR), calculated as the mean of the inverses of the R-R
series. It is an important marker, since it is directly related to the degree of
activation of the sinus node. Also it is an accurate metric even from very short
segments (less than 1 min) [26].

Another easy to calculate metric is the standard deviation of the N-N
interval (SDNN). The N-N interval is the interval between QRS complexes
produced by depolarization of the sinus node, i.e. the R-R intervals after ectopic
heartbeats have been eliminated. This measure is equivalent to the square root
of the variance, so it is a measure of the total power of the variability. Therefore,
it also does not allow an assessment of what division of the autonomous system
is causing it.

Among the metrics that allow for better discrimination of the components
of variability are: the square root of the mean squared differences of
successive NN intervals (RMSSD), the standard deviation of successive
differences (SDSD) and the proportion of successive intervals that differ
by more than 50 ms (pNN50). They are all calculated from the difference
between intervals instead of from the R-R interval series itself. Since they all
measure in some way the magnitude of the changes, they all measure the speed
at which variability occurs. Therefore they are are roughly related to the HF band
of the spectrum and correlated with each other.

As time-domain metrics are computed over the R-R interval series, gaps will
produce a degradation by introducing outliers. The metrics will be computed
both without preprocessing, removing outliers, and filling in the gaps with both
the reference and proposed methods. In the case of removing outliers without
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interpolation, the outliers should be removed both in the R-R and the successive
differences series.

3.6 Frequency-domain metrics

As seen in the previous chapter, frequency analysis allows the separation
of neural control of the HRV into separate components. In particular, the LF
(0.04-0.15Hz) and HF (0.15-0.4Hz) bands are of interest for ANS characterization.
Regardless of the method for calculating the spectrum, only estimates can be
obtained. Methods are generally classified into parametric and non-parametric.
Non-parametric methods have the advantage of being simple to implement and
very fast to execute. They are usually based on Fast Fourier Transformation
(FFT). On the other hand, parametric methods produce smoother and easier to
process spectra [2]. The different components are already separated and have
a central frequency identified. Another major advantage is that they produce
an accurate estimate of the PSD with a small number of samples. This is why
they might be more suitable in a lossy environment like the one under study.
On the other hand, the order of the model, usually an autoregressive model,
has to be correctly estimated. Spectral estimation has been realized in this
work via Welch’s method, Lomb’s method and AR models. One example for
each method is shown in Figure 3.6. Note that there are significant differences
between estimates from the same recording.

As the HF component is related to respiratory rhythms, the classic 0.15-0.4Hz
band may not be accurate for all the cases. It is assumed that respiratory rate
is usually within this range but, in some cases, like supine rest, it may be out
of these bounds. If the respiratory rate is too low, the HF component would
overlap the LF one and the sympathetic and parasympathetic contributions
would not be distinguishable from the aggregate variability. For a correct
frequency separation, only subjects with respiratory rates within the HF band
(RR> 0.15Hz, 9 breaths per minute) have been used when the ability to
distinguish sympathovagal balance is measured (i.e., all subjects are included
when measuring metric degradation, but only those with a respiratory rate
within the classic HF band are included when comparing supine and tilt groups),
which reduces the population from 17 to 10 subjects. It has also been checked
that the respiratory rate does not exceed 0.4Hz in any case, which is the
case for all subjects. Four frequency metrics are computed: the LF and
HF power (PLF,PHF), LF power measured in normalized units (PLFn), see
Equation (3.1); and the ratio between LF and HF power (LF/HF ratio).

3.6.1 Welch´s method

Since Fourier-based methods expect evenly sampled signals, estimations are
made on the of the instantaneous R-R signal (dRR[n], evenly sampled) obtained
from the IPFM model [27]. This model assumes that the actions of the autonomic



Effects of Missing Data on Heart Rate Variability Metrics 21

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Frequency [Hz]

2000

4000

6000

8000

10000

P
S

D
W

e
lc

h
 [

m
s

2
/H

z
]

(a) PSD estimate obtained via Welch’s method.
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(b) PSD estimate obtained via Lomb’s method.
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(c) PSD estimate obtained using an AR model.

Figure 3.6: PSD estimates from the same record using different methods.

nervous system on the sinoatrial node can be represented as a band-limited
zero-mean modulating signal m(t), and that pulses are triggered when the
integral of this function reaches a threshold. For the kth heartbeat:

k =
∫ tk

0

1 +m(t)

T
dt (3.2)

tk is the time occurrence of the beat, and T the mean of the R-R intervals.
In [28] it is shown that this method yields more reliable spectra than those
estimated on the interpolated R-R series using classic interpolation methods
such as splines directly on the series, avoiding spurious components and
low-pass filtering effects. In addition, it permits the interpolation of the R-R
series when these include gaps as described in [25]. However, gaps must be
detected before. Welch’s method will be tested both detecting the gaps and
filling in the pulse series with the reference and proposed methods.

Welch’s method is a non-parametric method that estimates the spectral
density of a signal by means of periodogram averaging (Figure 3.6a). As the
PSD of a signal is the Fourier transform of its autocorrelation function, the
periodogram is defined as the Fourier transform of the biased estimate of the
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autocorrelation sequence. For a signal dRR[n] of length N, the periodogram S(ƒ )
is computed as

S(ƒ ) =
1

N

�

�

�

�

�

N−1
∑

n=0

dRR[n]e−j2πƒn
�

�

�

�

�

2

(3.3)

Averaging is performed by computing Nper periodograms per signal using
60-second Hamming windows with 50% overlap (Equation (3.4)). This allows a
reduction in the variance of the estimate at the cost of lower spectral resolution.
For 120-seconds signals: Nper = 3. Powers are computed using trapezoidal
integration and classic windows (0.04-0.15Hz for LF and 0.15-0.4Hz for HF).

SWech(ƒ ) =
1

Nper

Nper
∑

=1

S(ƒ ) (3.4)

3.6.2 Averaged Lomb´s method

Lomb PSD estimation method also makes use of Lomb’s periodograms, a
non-parametric spectral estimation based on a least-squares fit of sinusoids (sin
and cos rather than Fourier’s exponentials) to data samples [29]. The main
advantage of this method is that it can be used directly on the unevenly sampled
R-R series (RR[tn]), without the need for filling in the gaps. Lomb’s periodogram
is computed as

SLomb(F) =
[
∑N
n=1(RR[tn] − RR) cos(2πF(tn − τ))]

2

2σ2
∑N
n=1 cos

2(2πF(tn − τ))

+
[
∑N
n=1(RR[tn] − RR) sin(2πF(tn − τ))]

2

2σ2
∑N
n=1 sin

2(2πF(tn − τ))
(3.5)

where the value of τ is defined as

tn(4πFτ) =

∑N
n=1 sin(4πFtn)

∑N
n=1 cos(4πFtn)

(3.6)

being RR and σ2 the mean and variance estimates of RR[tn] respectively.
Although in the case of accurate detections the IPFM model has demonstrated
to outperform Lomb’s [28], it may be more reliable in case of missing data,
as no gap correction is needed and estimation is based only in actual pulses
(although it is necessary to eliminate outliers from the R-R series produced by
missing data). However, both proposed insertion methods will be tested as
well. Lomb’s periodograms are averaged using 60-second Hamming windows
with 50% overlap as well. The average is realized using the same formula
(Equation (3.4)). Powers are computed using trapezoidal integration and classic
windows as well.



Effects of Missing Data on Heart Rate Variability Metrics 23

The oscillatory pattern that appears at the estimate is remarkable
(Figure 3.6b) in comparison with the smooth spectra produced by the other two
methods. However, since HRV metrics are integral indexes of the spectrum,
no substantial effects will be induced in opposition with the low-pass filtering
induced by interpolation [29].

3.6.3 Autoregresive model

This is a parametric method where the R-R interval series is modeled as the
output of a causal, all pole, discrete filter of order P whose frequency response
is

H(z) =
1

1 +
∑P
k=1 kz

−1
=

1
∏P

k=1(1 − pkz
−1)

(3.7)

and whose input is white noise ([ ]) of variance equal to σ2 [15]:

RR[ ] = −
P
∑

k=1

kRR[  − k] + [ ] (3.8)

The model can be characterized by its parameters {1, 2, ..., P, σ2}.
Akaike’s criterion is used to find the optimal order. Once the parameters are
fitted, the power spectrum (Figure 3.6c) is computed as:

SAR(ƒ ) = σ2H(z)H∗(1/z∗) =
σ2

|1 +
∑P
k=1 ke

−j2πƒk |2
(3.9)

In this method the R-R series are indexed by beat order rather than by beat
occurrence time. The sampling frequency is approximated as the inverse of the
average R-R interval. However, it does require that the gaps be filled, so both
reference and proposed methods are used. Powers are not calculated integrating
the spectra as in non-parametric methods. Decomposition of the spectrum using
partial fraction expansion is performed instead [1]. PLF and PHF are computed as
the associated power to all partial spectra whose central frequency is within the
classic bands, using the residue theorem.

3.7 Poincaré plots

Poincaré plots are graphic methods of representing interbeat dynamics. Each
RR interval is represented as a function of the previous RR interval, generating a
scatterplot that represents the phase space of the series (Figure 3.7a). Poincaré
plots have become an integral part of HRV analysis, where they are shown to
provide prognostic information in myocardial infarction, chronic heart failure,
and sudden infant death syndrome [30]. Recently, Poincaré plots reliability
has been demonstrated in ultra-short term monitoring (less than 5 minutes)
[31]. The problem regarding Poincaré plots is the lack of obvious quantitative
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measures that characterize the salient features of the plot. Here, the ellipse
fitting method (Figure 3.7b) has been chosen. An ellipse is adjusted to the data
shape and geometric indexes are extracted. These indexes are:

− SD1: the standard deviation of the points projection on the ellipse axis
perpendicular to the line-of identity. This measure is related to the fast
beat-to-beat variability.

− SD2: the standard deviation of the projected points along the line-of
identity, that measures long term dynamics of HRV.

− SD1/SD2: the ratio, to describe the relationship between these
components.

− S: the area of the ellipse. S = π · SD1 · SD2.

− Md: the mean data distance to the ellipse centroid (Euclidean norm).

− Sd: the standard deviation to the ellipse centroid (Euclidean norm).

This technique will be tested both without preprocessing, eliminating the
outliers, and filling in the gaps by both proposed methods.
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(b) Ellipse fitting method.

Figure 3.7: Lagged Poincaré plots.

3.8 Symbolic metrics

A novel approach for the analysis of short-term HRV have recently appeared.
Costa et al. [32, 33] have developed a new method termed Heart Rate
Fragmentation (HRF), based on beat-to-beat R-R interval acceleration direction
(whether the R-R intervals increase or decrease) rather than its absolute values.
Based on this, they propose the following metrics:
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− Percentage of inflection points (PIP): A beat represents an inflection
point if is an instant of inversion of heart rate acceleration sign (from
acceleration to deceleration or vice versa). The higher the PIP, the higher
the fragmentation.

− Inverse of the average length of the acceleration/deceleration
segments (IALS): The length of a segment is the number of R-R intervals
between consecutive inflection points.

− Percentage of short segments (PSS): Proportion of segments having
only one or two R-R intervals over total segments.

− Percentage of R-R intervals in alternation segments (PAS): An
alternation segment is a sequence of at least four R-R intervals, for which
heart rate acceleration changes sign every beat.

Both insertion methods will be tested to compare degradations against no
preprocessing.

3.9 Statistical analysis

The Root Mean Square Error (RMSE) is computed to obtain a quantitative
measure of the degradation. Sometimes the RMSE will be calculated as a
normalized value by dividing the RMSE by the mean value of the metric without
degradation. Also, a Wilcoxon signed rank test is used to obtain a measure
of the degradation of HRV metrics, allowing to assess whether changes are
significantly different. A level of significance of 0.05 is used. Results have been
computed with tilt and supine together, pairing records from the same subject for
different input degradations. In this way, it is intended to observe degradations
when detection errors increase. On the other hand, for autonomic discrimination
results, the Wilcoxon test is computed over supine and tilt records as separate
samples, pairing supine and tilt estates from the same subject.





Effects of Missing Data on Heart Rate Variability Metrics 27

Chapter 4

Results

4.1 Randomly distributed missed beats

4.1.1 Time-domain metrics

Metric Missing beats [%]
5 10 15 20 25

MHR [bpm] 1.52 3.38 5.84 8.74 10.50
SDNN [ms] 154.15 265.70 363.88 446.89 578.34
SDSD [ms] 232.49 399.79 552.87 679.51 864.46
RMSSD [ms] 231.54 397.95 550.11 675.83 859.56
pNN50 [%] 6.05 13.65 22.18 31.52 36.71

(a) Without preprocessing.

Metric Missing beats [%]
5 10 15 20 25

MHR [bpm] 0.15 0.23 0.32 0.39 0.39
SDNN [ms] 2.10 2.76 3.40 4.53 4.31
SDSD [ms] 1.37 2.53 3.33 4.23 4.35
RMSSD [ms] 1.35 2.49 3.29 4.20 4.41
pNN50 [%] 1.27 1.93 2.55 3.80 3.46

(b) Removing outliers.

Metric Missing beats [%]
5 10 15 20 25

MHR [bpm] 0.14 0.26 1.53 1.66 1.20
SDNN [ms] 2.91 3.66 78.17 82.38 85.19
SDSD [ms] 5.51 6.94 19.71 26.37 38.02
RMSSD [ms] 5.49 6.91 19.70 26.29 37.82
pNN50 [%] 2.96 6.14 7.61 8.17 8.39

(c) Filling gaps with the reference method.

Metric Missing beats [%]
5 10 15 20 25

MHR [bpm] 0.10 0.14 0.16 0.27 0.46
SDNN [ms] 0.57 1.23 1.89 3.28 5.12
SDSD [ms] 1.80 2.25 2.08 5.54 5.59
RMSSD [ms] 1.80 2.24 2.08 5.52 5.56
pNN50 [%] 1.39 2.33 3.47 4.46 4.99

(d) Filling gaps with the proposed method.

Table 4.1: Degradation of time-domain metrics (RMSE) when missing beats are
randomly distributed.

Tables composing Table 4.1 present the degradation of time-domain metrics
in terms of root mean square error when missing beats are randomly distributed.
The need for some kind of preprocessing becomes evident in Table 4.1a, even
for low error rates. A RMSE of 10 beats per minute in MHR is a very important
deviation, since it is a metric that in this database varies between 40 and
100 beats per minute. Metrics related to beat-to-beat variability, SDNN, SDSD
and RMSSD, have errors more than double the duration of a QRS complex,
which is 60 to 100ms, with only a 5% of missed beats. Therefore, the use of
these metrics in noisy environments without preprocessing is not recommended.
Removing outliers (Table 4.1b) seems to be a robust technique for all the
metrics. The errors fall two orders of magnitude with respect to the errors
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without preprocessing except for pNN50, which falls only one. All errors are
one order of magnitude below the order of the metrics. Figure 4.1 shows the
distribution differences of the metrics and Wilcoxon results in the best scenario,
i.e., removing outliers without any interpolation. Results are presented by box
plots, using green boxes for metrics obtained from supine records and blue boxes
from tilt ones. An asterisk (*) indicates p-values lower than 0.05. Two asterisks
(**) mark p-values lower than 0.025. These distributions should be as different
as possible in order to distinguish the states, so asterisks are desirables.
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Figure 4.1: ANS discrimination of time-domain metrics removing outliers (without
interpolation) when missed beats are randomly distributed. Green for supine, blue for
tilt.

− MHR: Although it is the only metric that presents significant degradation in
median (i.e., p-values below 0.05 for the same recordings with different
degradations), it is clearly the most robust metric, as its RMSE never
exceeds a heartbeat per minute. A clear increase in the mean heart rate
from the supine to the tilted position can be seen at a glance, which is
confirmed by the Wilcoxon test with a p-value of less than 0.025. This test
allows to distinguish significant differences with up to 60% of randomly
distributed missed pulses.

− SDNN, SDSD, RMSSD: In all cases the error is much lower than the duration
of an average QRS complex, so the variation of these metrics could be
compared to the inaccuracy produced by a pulse detector. In terms of
their ability to discriminate the autonomic nervous system variation, both
SDSD and RMSSD behave similarly and are able to distinguish states with
up to 45% of pulses missing, since there is a reduction in tilted position
(remember that SDSD and RMSSD are associated with HF variability). On
the other hand, SDNN is not able to discriminate in any case.

− pNN50: It is a reliable measure both in value and in its ability to distinguish
states with up to 45% detection loss. The percentage of high variation
intervals is lower in the tilted position.

On the other hand, filling gaps does not improve results with respect to the
outlier-free case (Tables 4.1c and 4.1d), although the proposed method suffers
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a similar degradation for low missed pulse rates. Figure 4.2 shows that this
method fail for higher rates, specially above a 35%.
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Figure 4.2: ANS discrimination of time-domain metrics filling in the gaps with the
proposed method when missed beats are randomly distributed. Green for supine, blue
for tilt.

The good results, simplicity and low cost of the moving median method
without applying interpolation make it the most recommendable technique.

4.1.2 Welch’s method

Metric Missing beats [%]
5 10 15 20 25

PLF 0.342 0.356 3.012 4.374 12.741
PHF 0.405 0.484 0.782 3.576 19.976
PLFn 0.046 0.057 0.198 0.238 0.243
PLF/PHF 0.944 2.433 2.811 3.351 4.538

(a) Detecting gaps.

Metric Missing beats [%]
5 10 15 20 25

PLF 0.204 0.234 3.443 5.180 8.458
PHF 0.395 0.483 0.654 1.680 3.247
PLFn 0.051 0.071 0.207 0.265 0.272
PLF/PHF 0.937 2.136 3.959 4.639 4.371

(b) Filling gaps with the reference method.

Metric Missing beats [%]
5 10 15 20 25

PLF 0.076 0.095 0.162 0.251 0.264
PHF 0.084 0.170 0.215 0.360 0.290
PLFn 0.013 0.020 0.032 0.080 0.085
PLF/PHF 0.390 0.398 0.580 1.142 1.838

(c) Filling gaps with the proposed method.

Table 4.2: Degradation of Welch’s metrics (RMSE) when missing beats are randomly
distributed. RMSE is normalized for PLF and PHF.

Table 4.2 shows the degradation of Welch’s method metrics when missing
beats are randomly distributed. The proposed method for filling gaps (Table 4.2c)
outperforms both the reference method (Table 4.2b) and the case detecting gaps
(Table 4.2a). Note that RMSE is normalized for PHF and PLF as is not trivial to
understand the magnitude of the degradation in ms2.

Figure 4.3 shows an example for each method of how the spectra undergo
controlled degradation with increasing loss rates. Interpolation could be the
cause of a low-pass effect that can be observed in the spectra as a lower HF
peak with increasing loss rate, while LF is not systematically affected. This is
consistent with an increasing RMSE error of the LF to HF ratio when the loss rate
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(b) Filling gaps with the reference method.
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(c) Filling gaps with the proposed method.

Figure 4.3: Welch’s spectral estimates from the same record with different loss rates
randomly distributed.

is incremented. The proposed method seems to be more robust against this
effect and is reflected in both a lower decay of the HF peak and a lower error in
the LF/HF ratio.

0 5 10 15 20 25

Deletion probability [%]

0

500

1000

1500

2000

2500

3000

3500

P
H

F
 [
m

s
2
]

** **

** **
*

(a) PHF.

0 5 10 15 20 25

Deletion probability [%]

0

0.2

0.4

0.6

0.8

1

P
L

F
n

** ** ** ** *

(b) PLFn.

0 5 10 15 20 25

Deletion probability [%]

0

2

4

6

8

10

12

P
L
F
/P

H
F

**
** **

*

(c) PLF/PHF.

Figure 4.4: ANS discrimination of Welch’s metrics filling in the gaps with the proposed
method when missed beats are randomly distributed. Green for supine, blue for tilt.

Figure 4.4 shows the statistical results of the metrics obtained by the
proposed method. There is no significant degradation in median for the
normalized LF power and the LF/HF ratio distributions even with a 25% of missing
beats. Both these metrics and the power in the HF band are also robust in
discriminating between ANS states (up to 15-20% of missing beats). PLF cannot
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differentiate groups. PHF and PLF estimates are significantly different from their
reference value (0% missing beats) for all percentages of data loss.

4.1.3 Averaged Lomb’s method

Metric Missing beats [%]
5 10 15 20 25

PLF 0.100 0.179 0.305 0.465 0.583
PHF 0.284 0.520 0.985 1.594 1.998
PLFn 0.048 0.099 0.143 0.189 0.221
PLF/PHF 2.024 2.806 3.378 3.717 4.034

(a) Removing outliers.

Metric Missing beats [%]
5 10 15 20 25

PLF 0.163 0.235 1.706 2.784 3.930
PHF 0.319 0.441 4.288 12.256 14.115
PLFn 0.042 0.072 0.174 0.212 0.218
PLF/PHF 0.747 1.041 2.213 2.748 3.401

(b) Filling gaps with the reference method.

Metric Missing beats [%]
5 10 15 20 25

PLF 0.088 0.149 0.156 0.230 0.259
PHF 0.099 0.121 0.202 0.349 0.331
PLFn 0.014 0.026 0.034 0.082 0.086
PLF/PHF 0.586 0.627 0.577 1.345 1.807

(c) Filling gaps with the proposed method.

Table 4.3: Degradation of Lomb’s metrics (RMSE) when missing beats are randomly
distributed. RMSE is normalized for PLF and PHF.
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(a) Removing outliers.
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(b) Filling gaps with the reference method.
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(c) Filling gaps with the proposed method.

Figure 4.5: Lomb’s spectral estimates from the same record with different loss rates
randomly distributed.
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Again, the proposed method has the least amount of error (Table 4.3),
achieving a better frequency independence that can be seen in a lower error
in the LF/HF ratio. Errors are similar to Welch’s. This does not mean that they
are equally good estimates, but that they degrade similarly.

Figure 4.5 shows the spectra produced by each preprocessing technique,
where the effects are also similar to those of Welch. The main difference is
the overshoot that appears in the case without filling any gaps. This effect
becomes more evident as fewer samples are available to calculate the spectrum.
Therefore, it is not recommended to use this method without interpolation. This
will be especially important in the case of bursts. Again, the low-pass effect of
the reference method appears prominently, visible both quantitatively as a large
error in PHF and visually in the decrease of the HF peak in the spectrum.
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Figure 4.6: ANS discrimination of Lomb’s metrics filling in the gaps with the proposed
method when missed beats are randomly distributed. Green for supine, blue for tilt.

Figure 4.6 shows the results of the Wilcoxon test for the proposed method.
Neither PLFn nor the LF/HF ratio undergoes significant degradation from their
reference values up to 25% of pulses missing while PLF and PHF shows significant
degradations from a 5%. PLFn is able to distinguish the states of the ANS with
up to 25% of pulses missing. In this sense, the results are also similar to those
obtained by Welch. PLF cannot differentiate groups.

4.1.4 AR model

Metric Missing beats [%]
5 10 15 20 25

PLF 0.241 0.382 3.335 8.065 21.593
PHF 0.367 0.796 0.960 3.297 3.682
PLFn 0.090 0.166 0.216 0.267 0.287
PLF/PHF 2.524 11.783 16.594 21.510 29.667

(a) Filling gaps with the reference method.

Metric Missing beats [%]
5 10 15 20 25

PLF 0.307 0.321 0.367 0.406 0.435
PHF 0.172 0.398 0.430 0.558 0.415
PLFn 0.053 0.080 0.084 0.157 0.116
PLF/PHF 3.419 2.959 4.404 5.299 6.363

(b) Filling gaps with the proposed method.

Table 4.4: Degradation of AR metrics (RMSE) when missing beats are randomly
distributed. RMSE is normalized for PLF and PHF.

The performance difference of each interpolation method becomes very
evident when fitting autoregressive models. In the case of this frequency
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method, there is no doubt about the improvement that interpolating with the
proposed method implies. Interpolation by the reference method causes a clear
low-pass effect and significant distortion in the LF band. This is reflected both
in a large error in PLF and LF/HF ratio (Table 4.4), and visually in the spectra
(Figure 4.7). Also, a frequency shift is observed for the HF and LF components,
more evident in the reference method.
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(b) Filling gaps with the proposed method.

Figure 4.7: AR spectral estimates from the same record with different loss rates
randomly distributed.

Figure 4.8 shows the results of the Wilcoxon test for the proposed case. Only
PHF presents significant degradation from its reference values. Both PHF and PLFn
can distinguish positions with 15% of missing pulses, while the LH/HF ratio can
up to a 20%. PLF cannot distinguish groups.
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Figure 4.8: ANS discrimination of AR metrics filling in the gaps with the proposed
method when missed beats are randomly distributed. Green for supine, blue for tilt.
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4.1.5 Poincaré plots

Metric Missing beats [%]
5 10 15 20 25

SD1 [ms] 164.40 282.69 390.94 480.48 611.27
SD2 [ms] 148.19 255.89 344.54 422.61 557.75
SD12 0.553 0.604 0.637 0.644 0.646
S 19.34 50.16 86.31 121.03 199.42
Md [ms] 85.75 216.62 376.64 523.62 652.38
Sd [ms] 208.59 311.66 349.86 351.33 493.32

(a) Without preprocessing.

Metric Missing beats [%]
5 10 15 20 25

SD1 [ms] 0.971 1.794 2.355 2.991 3.076
SD2 [ms] 4.046 5.322 6.547 8.799 8.272
SD12 0.028 0.038 0.041 0.067 0.070
S 0.088 0.143 0.185 0.193 0.156
Md [ms] 2.595 3.879 5.357 6.185 5.833
Sd [ms] 3.515 4.125 4.504 6.153 5.950

(b) Removing outliers.

Metric Missing beats [%]
5 10 15 20 25

SD1 [ms] 3.900 4.911 13.937 18.646 26.884
SD2 [ms] 3.040 4.303 107.949 113.667 116.166
SD12 0.035 0.052 0.136 0.154 0.154
S 0.198 0.225 2.839 4.120 6.847
Md [ms] 2.859 4.093 61.620 60.181 54.089
Sd [ms] 4.006 4.242 95.273 105.444 113.524

(c) Filling gaps with the reference method.

Metric Missing beats [%]
5 10 15 20 25

SD1 [ms] 1.277 1.593 1.476 3.923 3.952
SD2 [ms] 0.698 2.110 2.928 4.633 6.816
SD12 0.011 0.023 0.024 0.051 0.049
S 0.070 0.082 0.086 0.199 0.194
Md [ms] 0.773 1.858 2.961 3.762 4.888
Sd [ms] 0.926 1.413 1.371 3.774 6.680

(d) Filling gaps with the proposed method.

Table 4.5: Degradation of Poincaré metrics (RMSE) when missing beats are randomly
distributed. RMSE is normalized for S

As with time-domain metrics, using Poincaré plots without preprocessing
causes a large error in all the metrics. Removing outliers from the R-R series
without interpolation produces the best results along with interpolating using the
proposed method. However, the results of the Wilcoxon test indicate significant
degradations from their reference values for SD2, S and Md using the proposed
method. This, added to the higher cost and complexity of the method, makes
the case removing outliers more recommendable. Errors are in the order of
milliseconds, so it can be considered that there is almost no degradation in the
metrics.

SD1, SD12 and S are the only metrics that achieve a supine-tilt differentiation
removing outliers (Figure 4.9). In addition, the combination of SD1 and SD2 in
SD12 separates more clearly the distributions belonging to the supine and tilt
groups. All three metrics include the information from SD1, related to rapid
pulse-to-pulse variations.
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Figure 4.9: ANS discrimination of Poincaré metrics removing outliers when missed
beats are randomly distributed. Green for supine, blue for tilt.
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4.1.6 Symbolic metrics

Metric Missing beats [%]
5 10 15 20 25

PIP [%] 3.781 7.489 11.010 15.318 16.953
IALS [bets−1] 0.039 0.0758 0.110 0.154 0.171
PSS [%] 9.952 17.819 23.618 28.915 29.968
PAS [%] 6.402 12.891 18.164 25.512 25.224

(a) Without preprocessing.

Metric Missing beats [%]
5 10 15 20 25

PIP [%] 3.077 5.189 8.559 11.371 13.761
IALS [bets−1] 0.029 0.053 0.089 0.117 0.140
PSS [%] 3.964 8.024 13.347 18.095 23.275
PAS [%] 3.698 6.998 8.773 10.207 12.962

(b) Filling gaps with the reference method.
Metric Missing beats [%]

5 10 15 20 25

PIP [%] 1.585 2.335 3.960 5.185 5.513
IALS [bets−1] 0.017 0.029 0.044 0.064 0.084
PSS [%] 3.718 7.170 10.675 15.174 19.513
PAS [%] 3.654 5.699 6.862 9.587 11.920

(c) Filling gaps with the proposed method.

Table 4.6: Degradation of symbolic metrics (RMSE) when missing beats are randomly
distributed.

Symbolic metrics have a particular response to detection losses. Just as in
other methods it is necessary to eliminate the outliers of the series or fill in the
gaps with some precision, in symbolic methods it is only important to obtain the
actual direction of the acceleration between each pulse. Perfect results could be
achieved with a series with absurd values from the physiological point of view
simply by making the series increase or decrease in the appropriate instants.
Therefore, it is possible that the preprocessing techniques used in the previous
methods are not the most appropriate.

In view of the results (Table 4.6), it seems that the most indicated for
randomly distributed missed pulses is the proposed method, whose results in
the Wilcoxon test are shown in Figure 4.10.
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Figure 4.10: ANS discrimination of symbolic metrics filling in the gaps with the
proposed method when missed beats are randomly distributed. Green for supine, blue
for tilt.

This method achieves an excellent robustness of PIP, which has no significant
variations from its reference values. The rest of the metrics do have them
(IALS and PSS starting at 5% and PAS at 10% of missed beats), although
they remain robust to discriminate the states of the ANS. Both PIP, IALS
and PSS are higher in the supine case, which means that there is a higher
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fragmentation. This is consistent to the higher HF modulation produced by
a parasympathetic predominance. The only metric that does not manage to
differentiate states is PAS. This probably occurs because it is a measure of
very extreme fragmentation, which occurs only in pathological cases, as in
coronary artery disease [32], rather than in mere increased sympathetic activity
situations.

4.2 Bursts of missed beats

4.2.1 Time-domain metrics

Metric Burst duration [s]
10 20 30 40 50 60

MHR [bpm] 0.61 0.78 0.96 1.30 1.54 1.91
SDNN [s] 1.02 2.03 3.15 4.43 5.91 7.66
SDSD [s] 1.49 2.93 4.54 6.38 8.51 11.05
RMSSD [s] 1.49 2.92 4.52 6.34 8.45 10.96
pNN50 [%] 2.05 2.65 3.48 4.64 4.90 4.61

(a) Without preprocessing.

Metric Burst duration [s]
10 20 30 40 50 60

MHR [bpm] 0.10 0.45 0.62 0.90 1.09 1.31
SDNN [ms] 2.24 3.64 4.37 4.64 6.53 8.37
SDSD [ms] 2.06 3.09 3.71 4.57 5.13 5.76
RMSSD [ms] 2.05 3.07 3.70 4.55 5.11 5.73
pNN50 [%] 1.56 2.31 3.03 4.29 4.68 4.29

(b) Removing outliers.

Metric Burst duration [s]
10 20 30 40 50 60

MHR [bpm] 0.28 0.52 0.82 1.54 1.52 2.21
SDNN [ms] 3.96 6.38 8.10 9.39 14.14 13.81
SDSD [ms] 7.05 8.87 10.35 12.54 15.27 17.51
RMSSD [ms] 7.02 8.83 10.31 12.49 15.20 17.43
pNN50 [%] 3.85 6.37 8.28 10.73 12.78 14.60

(c) Filling gaps with the reference method.

Metric Burst duration [s]
10 20 30 40 50 60

MHR [bpm] 0.96 1.80 2.72 3.86 4.88 6.30
SDNN [ms] 15.65 24.42 30.98 38.01 42.17 43.59
SDSD [ms] 4.83 5.56 5.98 6.79 8.23 8.48
RMSSD [ms] 4.80 5.54 5.96 6.76 8.20 8.46
pNN50 [%] 2.60 4.38 6.26 8.64 10.54 12.19

(d) Filling gaps with the proposed method.

Table 4.7: Degradation of time-domain metrics (RMSE) when missing beats are
distributed in bursts.

In this case there is no question about performing preprocessing, as there is
only one prominent peak to be eliminated in the R-R series. Leaving this peak
causes the degradation of SDNN, SDSD and RMSSD to increase proportionally
to the size of the burst, producing huge errors (Table 4.7a). Note that in this
case units are seconds instead of milliseconds. MHR and pNN50 are much less
affected, and the degradation is mainly due to the lack of information provided

0 10 20 30 40 50 60

Burst duration [s]

40

50

60

70

80

90

100

110

M
H

R
 [
b
e
a
ts

/m
in

]

** ** ** ** ** ** **

(a) MHR.

0 10 20 30 40 50 60

Burst duration [s]

0

20

40

60

80

100

120

R
M

S
S

D
 [
m

s
]

**
** ** ** * *

*

(b) RMSSD.

0 10 20 30 40 50 60

Burst duration [s]

0

20

40

60

80

p
N

N
5

0
 [

%
]

** ** ** ** ** **
**

(c) pNN50.

Figure 4.11: ANS discrimination of time-domain metrics removing outliers (without
interpolation) when missed pulses are distributed in bursts. Green for supine, blue for
tilt.
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by the missing pulses. The interpolation methods do not improve the results
in this case either, as expected, since the correction of such large gaps is
less accurate as the reference pulses are lost (Tables 4.7c and 4.7d). Even for
5-second bursts, better results are obtained without interpolation. Time-domain
methods do not depend as much on the size of the burst as on the number of
samples remaining and their representativeness of the whole series. For the
two-minute series discussed in this work, it can be seen from Table 4.7b and
Figure 4.11 that the results are hardly affected even by 60-second bursts, which
represent half of the sample, merely removing the peak from the R-R series.
There is no significant degradation for any metric from their reference values.
These results indicate that time-domain methods are robust against both types
of errors with simple preprocessing eliminating outliers.

4.2.2 Welch’s method
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(b) Filling gaps with the reference method.
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(c) Filling gaps with the proposed method.

Figure 4.12: Welch’s spectral estimates from the same record with different burst
durations.

In the case of bursts the differences between methods are not so clear. In
Figure 4.12, it can be seen how the reference method obtains almost identical
spectra to the case detecting gaps. The higher degradation of the LF band in
the proposed case is not consistent in the other examples. This can be seen
in Table 4.8c, where the LF error is even slightly lower than in the other two
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Metric Burst duration [s]
10 20 30 40 50 60

PLF 0.371 0.513 0.588 0.722 0.888 1.021
PHF 0.599 0.754 0.789 0.933 1.028 1.140
PLFn 0.062 0.080 0.073 0.095 0.108 0.133
PLF/PHF 0.830 1.205 1.252 1.509 1.812 2.718

(a) Detecting gaps.

Metric Burst duration [s]
10 20 30 40 50 60

PLF 0.306 0.478 0.581 0.706 0.865 1.016
PHF 0.620 0.747 0.790 0.943 1.032 1.150
PLFn 0.066 0.084 0.076 0.095 0.110 0.138
PLF/PHF 0.870 1.253 1.249 1.528 1.885 3.207

(b) Filling gaps with the reference method.

Metric Burst duration [s]
10 20 30 40 50 60

PLF 0.342 0.374 0.482 0.623 0.711 0.823
PHF 0.452 0.537 0.613 0.719 0.743 0.807
PLFn 0.098 0.091 0.090 0.135 0.158 0.144
PLF/PHF 2.193 2.426 1.953 2.498 2.985 2.723

(c) Filling gaps with the proposed method.

Table 4.8: Degradation of Welch’s metrics (RMSE) when missing beats are distributed
in bursts. RMSE is normalized for PLF and PHF.

methods. The proposed method achieves non-significant differences for all the
metrics from their reference values while the other two present differences in
PLF and PHF. PHF is the only robust metric in all cases for ANS discrimination
(Figure 4.13).
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Figure 4.13: ANS discrimination of Welch’s metrics filling in the gaps with the proposed
method when missed beats are distributed in bursts. Green for supine, blue for tilt.

4.2.3 Averaged Lomb’s method

The behavior of this method in presence of bursts is particular. In the case
without filling gaps, the error increases as the window grows until it reaches
the 60-second burst, where it falls suddenly. This is due to the periodogram
averaging. For samples like those in this work of 120 seconds, 3 periodograms
are averaged for each recording using 60-second windows with 30-second
overlap (from 0 to 60 , from 30 to 90 and from 60 to 120 seconds). In
the Welch’s method, the central window is always complete thanks to the
interpolation of the R-R series using the IPFM model. However, in the case of
Lomb removing outliers, the central window has fewer samples as the duration
of the burst increases, producing the oscillation shown in Figure 4.14 (note that
the oscillation reaches its maximum with the burst of 50 seconds instead of
60 seconds). When the 60-second burst is reached, the center window has no
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samples and therefore no spectrum is calculated. Averaging is done with the
other two windows. This makes the variance of the estimate greater than the
case without the burst, because averaging is done with two windows instead of
three, but the error is less than with three windows with missing samples.

Metric Burst duration [s]
10 20 30 40 50 60

PLF 0.198 0.366 0.661 1.038 1.569 0.546
PHF 0.318 0.521 0.892 1.692 4.026 0.534
PLFn 0.049 0.062 0.072 0.109 0.214 0.113
PLF/PHF 1.099 1.131 1.185 2.396 3.744 2.260

(a) Removing outliers.

Metric Burst duration [s]
10 20 30 40 50 60

PLF 0.229 0.391 0.519 0.587 0.847 0.836
PHF 0.528 0.669 0.713 0.876 0.993 1.057
PLFn 0.063 0.076 0.073 0.100 0.104 0.127
PLF/PHF 0.926 1.287 1.384 1.710 2.030 3.435

(b) Filling gaps with the reference method.

Metric Burst duration [s]
10 20 30 40 50 60

PLF 0.474 0.415 0.530 0.801 0.792 0.578
PHF 0.400 0.428 0.447 0.621 0.632 0.749
PLFn 0.103 0.089 0.105 0.147 0.140 0.129
PLF/PHF 1.755 2.142 1.949 2.751 2.636 2.160

(c) Filling gaps with the proposed method.

Table 4.9: Degradation of Lomb’s metrics (RMSE) when missing beats are distributed in
bursts. RMSE is normalized for PLF and PHF.
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(b) Filling gaps with the reference method.
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(c) Filling gaps with the proposed method.

Figure 4.14: Lomb’s spectral estimates from the same record with different burst
durations.

To better understand the burst effect, results have been recalculated using
120-second periodograms without averaging (Table 4.10). These results show
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lower degradation even for 10-second bursts. This is due to the strong
degradation of the periodogram calculated with the central window where the
burst is located. The conclusion to be drawn is that degradation becomes very
important when the burst duration is of the same order as the periodogram
window.

Metric Burst duration [s]
10 20 30 40 50 60

PLF 0.230 0.414 0.674 0.982 1.391 2.148
PHF 0.259 0.415 0.607 0.886 1.159 1.709
PLFn 0.041 0.045 0.046 0.067 0.081 0.099
PLF/PHF 0.974 0.919 1.002 1.698 1.942 1.909

(a) Removing outliers.

Metric Burst duration [s]
10 20 30 40 50 60

PLF 0.194 0.312 0.404 0.476 0.639 0.610
PHF 0.457 0.558 0.586 0.712 0.801 0.873
PLFn 0.058 0.063 0.061 0.081 0.089 0.110
PLF/PHF 0.929 1.187 1.356 1.668 2.244 3.174

(b) Filling gaps with the reference method.

Metric Burst duration [s]
10 20 30 40 50 60

PLF 0.238 0.227 0.362 0.446 0.517 0.436
PHF 0.287 0.330 0.337 0.457 0.467 0.498
PLFn 0.066 0.060 0.078 0.102 0.113 0.106
PLF/PHF 1.581 2.110 1.387 2.257 2.449 1.886

(c) Filling gaps with the proposed method.

Table 4.10: Degradation of Lomb’s metrics (RMSE) when missing beats are distributed
in bursts. RMSE is normalized for PLF and PHF. Using 120-second periodograms.

In this case, the proposed method is the best way to maintain controlled
degradation. Both PLFn and LH/HF ratio have a non-significant degradation from
their reference values with up to 60-second bursts. PHF is the best metric to
discriminate between tilt test positions, achieving significant differences with
bursts of up to 60 seconds (Figure 4.15). PLF cannot distinguish supine and tilt
groups.
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Figure 4.15: ANS discrimination of Lomb’s metrics filling in the gaps with the proposed
method when missed beats are distributed in burst. Using 120-second periodograms.
Green for supine, blue for tilt.

4.2.4 AR model

Both methods have strong degradations in the LF/HF ratio from its reference
values, less in the proposed method case. Figure 4.16 shows a degradation
example for each method. A shift in the HF component central frequency is
observed as for randomly distributed missed beats, higher in the proposed



Effects of Missing Data on Heart Rate Variability Metrics 41

Metric Burst duration [s]
10 20 30 40 50 60

PLF 0.380 0.424 0.544 0.546 0.482 0.712
PHF 0.753 0.679 0.835 0.748 0.797 0.900
PLFn 0.167 0.147 0.183 0.125 0.145 0.171
PLF/PHF 10.492 9.505 9.863 3.336 4.701 5.515

(a) Filling gaps with the reference method.

Metric Burst duration [s]
10 20 30 40 50 60

PLF 0.581 0.416 0.556 0.602 0.644 0.833
PHF 0.397 0.563 0.686 0.706 0.657 0.872
PLFn 0.141 0.147 0.169 0.172 0.193 0.232
PLF/PHF 5.671 5.628 5.371 6.843 7.666 5.533

(b) Filling gaps with the proposed method.

Table 4.11: Degradation of AR metrics (RMSE) when missing beats are distributed in
bursts. RMSE is normalized for PLF and PHF.

method. The Wilcoxon test shows this method achieve non-significant
differences in more cases: only PHF presents significant degradation from its
reference values starting at 30-second bursts. However, is the only metric
capable of distinguish positions in presence of bursts (Figure 4.17).
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(a) Filling gaps with the reference method.
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(b) Filling gaps with the proposed method.

Figure 4.16: AR spectral estimates from the same record with different burst durations.
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Figure 4.17: ANS discrimination of AR metrics filling in the gaps with the proposed
method when missed beats are distributed in bursts. Green for supine, blue for tilt.

4.2.5 Poincaré plots

The large outlier in the R-R series produces errors several orders of magnitude
higher than the metrics (Table 4.12, units are in seconds in the case without
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Metric Burst duration [s]
10 20 30 40 50 60

SD1 [s] 1.059 2.076 3.213 4.515 6.023 7.817
SD2 [s] 1.008 2.014 3.136 4.419 5.891 7.641
SD12 0.637 0.639 0.640 0.641 0.644 0.645
S 536.6 1983.8 4693.0 9163.3 16103 27103

Md [s] 0.287 0.635 1.068 1.616 2.330 3.28
Sd [s] 1.451 2.837 4.375 6.120 8.105 10.428

(a) Without preprocessing.

Metric Burst duration [s]
10 20 30 40 50 60

SD1 [ms] 1.462 2.185 2.626 3.236 3.628 4.078
SD2 [ms] 3.309 5.122 6.092 6.312 8.886 11.667
SD12 0.020 0.024 0.029 0.032 0.032 0.040
S 0.086 0.121 0.157 0.177 0.257 0.344
Md [ms] 2.855 4.309 5.212 5.701 8.054 10.297
Sd [ms] 2.392 4.186 4.794 5.238 6.256 7.999

(b) Removing outliers.

Metric Burst duration [s]
10 20 30 40 50 60

SD1 [ms] 4.987 6.273 7.321 8.873 10.799 12.382
SD2 [ms] 4.516 7.435 9.729 11.823 17.491 17.074
SD12 0.048 0.055 0.059 0.084 0.075 0.103
S 0.242 0.332 0.395 0.441 0.614 0.614
Md [ms] 5.114 7.975 11.716 13.738 22.196 20.932
Sd [ms] 4.642 5.790 6.569 6.663 7.883 8.848

(c) Filling gaps with the reference method.

Metric Burst duration [s]
10 20 30 40 50 60

SD1 [ms] 3.417 3.934 4.231 4.803 5.823 6.003
SD2 [ms] 23.271 36.353 46.395 56.911 62.725 64.878
SD12 0.105 0.142 0.175 0.202 0.209 0.221
S 0.456 0.555 0.691 0.776 0.914 0.817
Md [ms] 14.373 26.528 39.030 52.382 62.149 65.832
Sd [ms] 18.586 23.717 22.584 20.006 14.157 12.837

(d) Filling gaps with the proposed method.

Table 4.12: Degradation of Poincaré metrics (RMSE) when missing beats are distributed
in bursts. RMSE is normalized for S.
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Figure 4.18: ANS discrimination of Poincaré metrics removing outliers when missed
beats are distributed in bursts. Green for supine, blue for tilt.

preprocessing). In this case the error does increase in all metrics. Among
the preprocessing methods tested, the one that obtains the best results is
to eliminate the peak without interpolation. No metric suffers significant
degradation from its reference values even for 60-second bursts. Figure 4.18
shows the results of the Wilcoxon test for this case. Both SD1 and SD12 are
capable of distinguish positions for any burst duration. Again, greater differences
are achieved by SD12, with p-values below 0.025 in all cases. It is therefore the
most recommended metric in this task both with randomly distributed errors
and in bursts. S is also capable of distinguishing positions with up to 30-second
bursts.

4.2.6 Symbolic metrics

In the case of bursts, the option without preprocessing is the best one
(Table 4.13). Filling in the gaps introduces pulses without fragmentation using
either methods. Thus, the metrics suffer a strong degradation as fragmentation
represents a lower percentage of the total pulses. Without preprocessing,
degradation from its reference values is not significant except in the IALS case.
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Metric Burst duration [s]
10 20 30 40 50 60

PIP [%] 1.348 1.978 2.193 2.731 3.058 3.764
IALS [bets−1] 0.014 0.021 0.023 0.029 0.035 0.046
PSS [%] 3.501 5.020 5.670 6.389 7.225 9.830
PAS [%] 2.819 4.617 4.045 4.856 7.288 6.588

(a) Without preprocessing.

Metric Burst duration [s]
10 20 30 40 50 60

PIP [%] 4.523 7.649 11.237 14.871 18.462 21.377
IALS [bets−1] 0.048 0.080 0.119 0.157 0.193 0.225
PSS [%] 3.234 4.851 5.088 6.331 5.903 7.002
PAS [%] 4.141 5.181 7.109 8.477 9.055 10.404

(b) Filling gaps with the reference method.

Metric Burst duration [s]
10 20 30 40 50 60

PIP [%] 2.783 4.445 5.901 7.374 8.763 10.780
IALS [bets−1] 0.034 0.060 0.094 0.122 0.164 0.198
PSS [%] 8.476 14.809 19.471 23.520 28.321 30.903
PAS [%] 5.672 8.905 12.205 14.488 18.880 22.976

(c) Filling gaps with the proposed method.

Table 4.13: Degradation of symbolic metrics (RMSE) when missing beats are distributed
in bursts.

PIP and IALS are the best metrics to distinguish supine and tilt groups, with up
to 60 second bursts (Figure 4.19).
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Figure 4.19: ANS discrimination of symbolic metrics without preprocessing when
missed beats are randomly distributed. Green for supine, blue for tilt.
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Chapter 5

Discussion

Before moving on to the conclusions, a number of issues need to be
addressed. Firstly, time-domain metrics have demonstrated to be very robust
and low cost. However, despite the good differentiation of the tilt-table test
groups, these indexes are not very informative. For instance, an increase in
MHR is related to a stress response (it should be understood that this refers to a
persistent increase, not fluctuations over short periods, such as those that can
be caused by sinus arrhythmia) and to a change in the sympathovagal balance.
However, it is not possible to know by this measure alone whether there has
been an increase in sympathetic tone, a parasympathetic withdrawal or both at
the same time. In spite of their limitations, time-domain metrics may be a great
approach for wearable applications for which no further information is needed
and cost and power requirements are limited.

Frequency-domain metrics should be used for more information relating
sympathetic and parasympathetic activity. For random distributed errors, filling
gaps with the proposed method achieves the lowest degradation. However, this
preprocessing implies an additional cost. For low percentages of missing beats
(up to a 10%), the Lomb’s method removing outliers is an excellent approach,
achieving better results than Welch’s detecting gaps. It is worth to remember
that the latter performs a gap correction via the IPFM model. Filling the gaps at
Lomb eliminates its main advantage and is not an improvement over filling them
at Welch. AR models do not present any advantages in terms of cost-degradation
relation. In the case of bursts, Lomb without filling in the gaps present a high
degradation due to a total lack of signal and therefore is strongly recommended
not to use. Also the AR models present a strong degradation. The frequency
shift is probably due to a miscalculation of the sampling period from the R-R
series, which is calculated as the mean interval. This shift may not be a problem
in terms of power calculation. Although some methods manage to control
degradation, the error with a 10-second burst is greater than for 25% random
loss. The implementation of frequency methods should exclude bursts before
spectral estimation. Even so, Lomb provides good results for 10-second bursts.
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However, it presents the worst degradation with larger bursts.

Classical frequency analysis uses fixed bands where the different components
are normally found: 0.04 to 0.15Hz for LF and 0.15 to 0.4Hz for HF. Recent
studies have shown that respiratory information can be used to more accurately
determine the limits of the HF component, obtaining more reliable metrics [34].
It has been considered that analysing these methods is beyond the scope of
this thesis. In spite of the fact that the database has respiratory records, in
a real case with wearables this signal must be derived from the same noisy
signal where the pulses are detected. This implies a double degradation: that
of the spectrum and that of the window. A separate study must therefore
be made of the degradation of the respiratory estimate derived from the
photoplethysmogram, to which must be added the spectrum degradation seen
in this work. Frequency metrics are expensive in terms of computing, which
would limit their application in some wearables.

Poincaré plots behave similarly to temporal metrics. Eliminating outliers
is both necessary and sufficient to obtain robust results both for random
distributions and bursts. SD1 related metrics are the only ones able to
differentiate supine and tilt groups, being SD12 especially robust. It is
often suggested that Poincaré metrics are able to measure qualities of the
variability that are nonlinear and independent of the standard linear methods.
This is rejected in [35], as SD1 and SD2 are related to the autocovariance
function and standard time-domain measures like SDSD and SDRR (SDRR =
1p
2

p

SD12 + SD22). Several authors modified the chart by using a time lag of
more than one beat to get more informative parameters, since a heart beat
influences not only the beat immediately following it, but also 6 to 10 beats
downstream, possibly as a consequence of respiratory sinus arrhythmia [30].
When a lag is included, the plot takes the name of lagged Poincaré plot. Although
lagged Poincaré plots can achieve the desired HRV non-linear metrics, they are
difficult to relate to physiological processes. For this reason, no lag is included
in this work.

Although symbolic metrics present strong degradations in the random
case, they are robust in distinguishing tilt and supine groups. Filling in
the gaps with the proposed method improves the robustness. In the case
of bursts, degradation is lower and it is preferable not to preprocess. In
[32], fragmentation indices outperformed standard time and frequency-domain
measures in separating subjects from patients with coronary artery disease. The
authors argue that in pathological cases, such as this disease, changes in the
direction of acceleration are more frequent, i.e., there is more fragmentation.
In addition, these metrics have some advantages, among which are: they are
easy to implement, are independent of the mean heart rate and the amplitude
of the time series, are less affected by nonstationarities and are robust against
ectopic beats. Removing outliers caused by missed data is not as simple as it
is in time-domain metrics. The treatment of the gaps is not trivial and can be
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counterproductive, as the peaks may have the right acceleration. Despite being
designed to find impairments of the autonomic nervous system, they have been
proven to be also effective in distinguishing between physiological states such
as those of the tilt-table test.

In view of these results, choosing a method depends largely on the
application. It has been seen that the frequency methods are very informative,
but they imply an additional cost. Thus, for devices that require less processing,
time, symbolic and Poincaré parameters are a cheap and robust option simply by
eliminating outliers. However, the information they provide greatly limits their
scope of application. In devices with higher processing capacity, or in those
that perform processing outside the device, frequency methods will provide
additional information.

It must be remembered that the aim of this work is not to obtain a single,
general solution that works best in noisy environments. The objective is to
analyse different methods, commonly used and currently being studied as
non-invasive techniques for assessing the autonomic nervous system, in order
to study the different effects caused by missing data and set the limits where
measures are not longer reliable. This aims to provide a general idea of
the problems that may arise in each case and possible improvements in the
preprocessing phase. For each metric it should be assessed what improvements
it produces and what its limitations are.

The same happens to the application of these metrics. Besides degradations,
the ability to distinguish two specific groups in a controlled environment (supine
and tilt) has been tested. The metrics that have achieved the best results in this
task do not have to be the same when, for example, trying to separate groups
according to whether or not they have a disease. Therefore, once the overview
provided by this work is obtained, each technique should be investigated in the
context of a specific application. Moreover, it is expected for tilt-table test to
provoke a significant change in the ANS. Other contexts can lead to more subtle
changes, where some successful methods may fail.

One of the limitations of this work for direct application in the wearables
market is the use of an electrocardiographic signal as reference. Normally,
these devices use photoplethysmography instead. Thus, they do not measure
the pulse directly on the heart, but on the periphery. This makes the results
not completely transferable to the practical case. Nevertheless, they can be a
good approximation since it has been proven that pulse rate variability obtained
from this signal is a good substitute for heart rate variability obtained from the
ECG [36]. Intuitively, degradations can be assumed to be the same, since the
detection series are distinguished only by small variations and degradations are
first and foremost method-related.

Finally, this work is focused on observing the deterioration of HRV metrics
with missing data. The proposed methods are also capable of dealing with
pulses introduced by false positives, however, they have not been tested in this
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context. For example, in the case of device movement, it has been assumed
that the noise level causes no pulses to be detected for a few seconds (bursts).
Nonetheless, false detections in this segment may be mistaken for real pulses.
This is one of the worst possible scenarios, since losing the reference makes it
impossible to distinguish actual pulses from incorrect ones. Solving this requires
a previous stage of signal quality evaluation and/or detection of anomalies in
the metrics at the end of the process. However, this is beyond the scope of this
work.
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Chapter 6

Conclusions and future lines

The main HRV methods have been reviewed and both their degradation and
their ability to distinguish supine and tilt groups have been evaluated. A novel
approach for filling in the gaps has been proposed, obtaining better results
than the reference method. In addition, a simulation protocol for missing data
environments has been presented. Detecting outliers caused by missing data is
a common task to improve the robustness of all metrics. However, its further
treatment varies between methods:

− Time-domain metrics: the outliers from the R-R series cause large errors if
not processed. Removing outliers without filling them proves to be the best
option both for randomly distributed missed beats and bursts.

− Welch’s method: the proposed method improves the results for randomly
distributed errors. Significant degradations occurs even for 10-second
bursts. Discarding the window before averaging should be considered.

− Lomb’s method: the proposed method improves the robustness for all the
metrics when missed beats are randomly distributed. On the other hand,
it is strongly recommended not to average periodograms in presence of
bursts.

− AR model: the proposed method supposes a huge improvement against
the reference method in the case of random distributed losses. Differences
in the case of bursts are reduced, yet the proposed method is still
recommended due to a lower degradation of the LF/HF ratio. A frequency
shift is observed, especially in presence of bursts. This should be
considered in applications such as respiratory rate estimation.

− Poincaré plots: it is strongly recommended to remove outliers before,
although interpolation does not improve the results. Both for random
distributions and bursts.
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− Symbolic metrics: although large errors occur in all cases, the metrics are
robust in terms of their ability to distinguish ANS states. The proposed
method manages to maintain a more controlled degradation in the case of
random losses. For the case of bursts it is best to eliminate outliers without
interpolation.

As future lines, the methods must be tested in other databases, in order
to validate results and extract common problems of each method, preferably
recorded by wearables (although the ECG will also be required for validation).
In addition, different preprocessing methods, different implementations of HRV
methods and even other state-of-the-art metrics can be evaluated. Metrics
have been evaluated against errors and their possible improvements. In order
to use them in commercial devices, other parts of the process have to be
investigated as well. Thus, a stage before pulse detection where the signal
quality is evaluated will be very important to ensure a reference that can be
trusted. Likewise, once the metrics are obtained, a postprocessing can be
performed to discard those that are suspected to be wrong. Work should
also be done on possible improvements to the proposed method, taking into
account extreme cases that may not have appeared in this database. Finally,
it should be noted that only an overview of each method has been given. For
each specific application, a dedicated study should be made, since the different
implementations may imply significant differences.
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