

Learning Sensory Representations with Minimal Supervision

Citation for published version (APA):
Saeed, A. (2021). Learning Sensory Representations with Minimal Supervision. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.

Document status and date:
Published: 24/06/2021

Document Version:
Other version

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/dcabd056-e81d-4909-b354-80aa93426ea7

Learning Sensory Representations with
Minimal Supervision

THESIS

ter verkrijging van de graad van doctor aan de Technische
Universiteit Eindhoven, op gezag van de rector magnificus

prof.dr.ir. F.P.T. Baaijens, voor een commissie aangewezen door
het College voor Promoties, in het openbaar te verdedigen

op donderdag 24 juni 2021 om 13:30 uur

door

Aaqib Saeed

geboren te Hyderabad, Pakistan

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de promotiecom
missie is als volgt:

voorzitter: prof.dr. E.R. van den Heuvel
1e promotor: prof.dr. J.J. Lukkien
2e promotor: dr. T. Ozcelebi

Promotiecommissieleden: prof.dr. C. Mascolo (University of Cambridge)
prof.dr. F. Kawsar (Technische Universiteit Delft, Nokia Bell Labs)
prof.dr. F.D. Salim (RMIT University)
prof.dr. M. Pechenizkiy
dr. M. Funk

Het onderzoek of ontwerp dat in dit thesis wordt beschreven is uitgevoerd in overeenstemming
met de TU/e Gedragscode Wetenschapsbeoefening.

Learning Sensory
Representations with Minimal

Supervision

by Aaqib Saeed

A catalogue record is available from the Eindhoven University of Technology Library.
ISBN: 9789038653037

Keywords: deep learning, ubiquitous computing, selfsupervised learning, lowdata regimes,
audio recognition, sensors, timeseries, multitask learning, internetofthings, federated learn
ing

The work described in this thesis has been primarily carried out in the Interconnected Resourceaware
Intelligent Systems (IRIS) group within the Department of Mathematics and Computer Science of
the Eindhoven University of Technology and in part during internships at Google Research within
Brain and Cerebra. The research carried out at the Eindhoven University of Technology was funded by
SCOTT (www.scottproject.eu) project. It received funding from the Electronic Component Systems
for European Leadership Joint Undertaking under grant agreement No. 737422. This Joint Undertaking
received support from the European Union’s Horizon 2020 research and innovation programme and
Austria, Spain, Finland, Ireland, Sweden, Germany, Poland, Portugal, Netherlands, Belgium, Norway.

Copyright © 2021 by Aaqib Saeed, Eindhoven, the Netherlands.
Typeset using LATEX
Cover background image from vecteezy.com
Printed by ADC Dereumaux, ’sHertogenbosch.

vecteezy.com

Summary

The ubiquity of interconnected systems has given rise to a world enriched with ambient com
puting where computing is ingrained in our routine such that mostly we do not realize an
interaction with a computing platform. The proliferation of devices embedded with sophisti
cated sensors in our daily lives generates data at an unprecedented scale, providing valuable in
formation about the environment and the people. Effectively harnessing and getting insights
out of massive sensory data in a scaleable manner can unlock opportunities to provide inno
vative solutions to problems in various domains ranging from healthcare, humancomputer
interaction, wildlife monitoring, and more. Datadriven predictive models are now at the
core of embedded intelligence through leveraging advances in machine learning, especially
deep learning methods. These approaches utilize a massive amount of manually labeled data
to learn generalizable models. Despite the fact that deep learning consistently achieves and
even matches humanlevel performance on several tasks, deep neural networks lack the ability
to learn from only a few semantically labeled examples of a concept in a way as humans learn
continuously from unlabeled data (or without supervision). The requirement of providing
a large amount of wellannotated data is not just difficult due to cost, time constraints, and
domain expertise, but it is an unscalable path towards having intelligent computational de
vices that can continuously sense, learn and adapt. Similarly, another key challenge associated
with a wellfunctioning predictive system for ambient (or pervasive) sensing is to safeguard
it against catastrophic failures (e.g., due to sensor malfunctions, heterogeneous signals, do
main mismatch, interpersonal variations, and more) in a realworld environment. Despite
the growing body of literature to address the topic of learning robust and generalizable rep
resentations from multisensor data in a labelefficient manner, several challenges have yet to
be overcome to achieve effective generalization.

In this thesis titled, Learning Sensory Representations with Minimal Supervision, we intro
duce novel techniques that lie on the intersection of deep learning, ambient sensing, and
ubiquitous computing to address issues pertaining to learning from unlabeled data and mak
ing models robust to various input artifacts. Our focus is on representation learning with
deep neural networks to realize the vision of selflearning for embedded intelligence in ev
eryday devices, such as smartphones, wearables, earables, and more. Our proposed methods
are primarily based on the theme of selfsupervised learning to extract generic representations
from multimodal sensory inputs, such as electroencephalogram, audio, accelerometer and
more. We present learning approaches that do not require semantic labels from humans but
extract supervisory signals from the input itself, i.e., in a selfsupervised manner. Our strate

v

gies enable deep neural networks to learn broadly useful representations that perform well on a
spectrum of downstream tasks, are robust to noise and other artifacts and generalize also when
transferred to other domains. The developed techniques can also harness massive unlabeled
data to reduce the requirement of semantic labeling, effectively use multimodal signals, ex
ploit continuously growing decentralized (ondevice) data in a federated setting, and leverage
multitask learning to utilize shared structure among tasks.

We make several contributions in the thesis towards learning generalpurpose and robust
deep neural networks with minimal supervision. First, we study selfsupervised learning ap
proaches in the initial chapters to develop alternative strategies to supervising deep models
than using semantic labeling. We propose several auxiliary tasks to learn representations from
a wide variety of sensory data without any human involvement in the annotation process.
In particular, we introduce transformation recognition, feature prediction from a masked
window, blend detection, scalogramsignal correspondence learning, contrastive learning for
audio, and many other selfsupervised methods to pretrain deep neural networks with large
scale unlabeled data. We demonstrate stateoftheart performance compared with supervised
methods in lowdata regimes and transfer learning settings on a widerange of tasks. Second,
we show that selfsupervision can be effectively leveraged in federated learning to harness un
labeled decentralized data residing on users’ devices without aggregating it on a central server.
Third, we focus on techniques to make deep neural networks robust to input artifacts and
other forms of noises to have graceful degradation of predictive performance. We present a
novel attentionbased learning approach to map inputs with inconsistent channels to a fixed
canonical order to create models that are invariant to channel ordering. Likewise, we introduce
an adversarial autoencoderbased technique to handle multiple missing sensory modalities at
inference time with negligible to no loss in performance. We also provide an extension of the
adversarial model for generating classconditional synthetic data, which can be used for data
augmentation and other purposes. Fourth, we propose a subjectsastasks strategy to person
alize deep models with multitask learning, i.e., instead of learning different tasks, we learn
the same task with a distinct set of layers in the model focusing on particular individuals and
sharing layers across subjects. We also provide a simple yet effective approach for unsuper
vised domain adaptation based on joint inputreconstruction and taskspecific loss functions.
Finally, we present a multitask and multimodal network for learning representations from
crossdomain data (i.e., from different input modalities, sensors, users, data collection pro
tocols, and tasks) in both supervised and selfsupervised manners. The proposed approach
is effective in training a unified model across multiple tasks. It achieves similar performance
as individual taskspecific models but with better parameter utilization and exploitation of
shared structure among tasks.

vi

List of Publications

The work in this thesis is based on the following articles:

• Aaqib Saeed, Tanir Ozcelebi, Johan J. Lukkien, Jan.B van Erp, and Stojan Trajanovski
(2018). ‘Model adaptation and personalization for physiological stress detection.’ In:
IEEE International Conference on Data Science and Advanced Analytics (DSAA).

• Aaqib Saeed, Tanir Ozcelebi, and Johan J. Lukkien (2018). ‘Synthesizing and recon
structing missing sensory modalities in behavioral context recognition.’ In: Sensors,
18(9), p.2967.

• Aaqib Saeed, Tanir Ozcelebi, and Johan J. Lukkien (2019). ‘Multitask selfsupervised
learning for human activity detection.’ In: Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 3(2), pp.130.

• Aaqib Saeed, Flora D. Salim, Tanir Ozcelebi, and Johan J. Lukkien (2020). ‘Federated
SelfSupervised Learning of Multisensor Representations for Embedded Intelligence.’
In: IEEE Internet of Things Journal, 8(2), pp.10301040.

• Aaqib Saeed, Victor Ungureanu, and Beat Gfeller (2020). ‘Sense and Learn: Self
Supervision for Omnipresent Sensors.’ (Underreview). Preprint available on arXiv,
arXiv:2009.13233.

• Aaqib Saeed, David Grangier, and Neil Zeghidour (2021). ‘Contrastive Learning of
GeneralPurpose Audio Representations.’ In: IEEE International Conference on Acous
tics, Speech and Signal Processing.

• Aaqib Saeed, David Grangier, Olivier Pietquin, and Neil Zeghidour (2021). ‘Learning
from Heterogeneous EEG Signals with Differentiable Channel Reordering.’ In: IEEE
International Conference on Acoustics, Speech and Signal Processing.

• Aaqib Saeed, Shkurta Gashis, Shohreh Deldari, Flora D. Salim, Tanir Ozcelebi, Daniel
V. Smith, Silvia Santini, and Johan J. Lukkien. ‘Learning CrossDomain Sensing Tasks
with a Unified SelfSupervised Model.’ (Underreview).

The key ideas, implementation, experiments, and text originate from the work of the first au
thor except for the paper Learning from Heterogeneous EEG Signals with Differentiable Channel

vii

Reordering, where the last author coined the central idea. All other authors had advisory roles
and/or contributed to writing few individual sections of the papers listed above.

The author has also contributed to the following publications and preprints that go beyond
the scope of this thesis:

• Prince U.C Songwa, Aaqib Saeed, Sachin Bhardwaj, Thijs W. Kruisselbrink and Tanir
Ozcelebi (2021). ‘LumNet: Learning to Estimate Vertical Visual Field Luminance for
Adaptive Lighting Control.’ In: Proceedings of the ACM on Interactive, Mobile, Wear
able and Ubiquitous Technologies.

• Shkurta Gashi, Aaqib Saeed, Alessandra Vicini, Elena Di Lascio, Silvia Santini. ‘Hi
erarchical Classification and Transfer Learning to Recognize Head Gestures and Facial
Expressions Using Earbuds’. (Underreview).

• Zaharah Bukhsh, Aaqib Saeed and Remco M Dijkman (2021). ‘ProcessTransformer:
Predictive Business Process Monitoring with Transformer Network.’ arXiv preprint
arXiv:2104.00721.

• Aaqib Saeed, Ye Li, Tanir Ozcelebi, and Johan J. Lukkien (2020). ‘Multisensor data
augmentation for robust sensing.’ In: IEEE International Conference on Omnilayer
Intelligent Systems.

• Bram van Berlo, Aaqib Saeed and Tanir Ozcelebi (2020). ‘Towards federated unsu
pervised representation learning.’ In: Proceedings of the Third ACM International
Workshop on Edge Systems, Analytics and Networking.

• Aaqib Saeed, Tanir Ozcelebi, and Johan J. Lukkien (2018). ‘Learning behavioral con
text recognition with multistream temporal convolutional networks.’ arXiv preprint
arXiv:1808.08766 (2018).

viii

Contents

Summary v

List of Publications vii

1 Introduction 1
1.1 Sensing, Deep Learning and Challenges 1
1.2 Towards SelfLearning Systems for Embedded Intelligence 3
1.3 Objectives and Research Questions . 5
1.4 Thesis Organization . 8

2 Background 11
2.1 Notation . 11
2.2 Neural Networks and Representations . 12
2.3 Multitask Learning . 14
2.4 Knowledge Transfer . 15
2.5 SelfSupervision . 16
2.6 Modeling Signals and TimeSeries . 17

3 SelfSupervised Learning with Transformation Prediction 19
3.1 Introduction . 19
3.2 Approach . 21

3.2.1 Overview . 21
3.2.2 SelfSupervised Task: Signal Transformations 22
3.2.3 Network Architecture and Implementation 24

3.3 Experiments . 25
3.3.1 Datasets . 26
3.3.2 PreProcessing and Assessment Strategy 27
3.3.3 Results . 28

3.4 Related Work . 38
3.5 Conclusion . 41

4 Sense and Learn: SelfSupervision for Omnipresent Sensors 45
4.1 Introduction . 45
4.2 Approach . 48

4.2.1 Motivation and Overview . 48
4.2.2 Suite of Pretext Tasks . 49
4.2.3 Network Architecture Design . 52

4.3 Experiments . 54

4.3.1 Datasets . 54
4.3.2 Preprocessing and Evaluation . 56
4.3.3 Results and Discussion . 58
4.3.4 Impact and Limitations . 68

4.4 Related Work . 70
4.5 Conclusion . 72

5 Federated SelfSupervised Learning of MultiSensor Representations 75
5.1 Introduction . 75
5.2 Background . 76

5.2.1 Federated Learning . 77
5.2.2 Wavelet Transform . 78

5.3 Approach . 79
5.3.1 ScalogramSignal Correspondence Learning 79
5.3.2 Network Architecture . 81
5.3.3 Implementation Details . 82

5.4 Experiments . 83
5.4.1 Datasets and Preprocessing . 83
5.4.2 Results . 84

5.5 Conclusion . 88

6 Contrastive Learning of GeneralPurpose Audio Representations 89
6.1 Introduction . 89
6.2 Approach . 90
6.3 Experiments . 92

6.3.1 Datasets and Tasks . 92
6.3.2 Model Architecture and Implementation Details 94
6.3.3 Results . 94

6.4 Conclusion . 95

7 Differentiable Channel Reordering for Heterogeneous Signals 97
7.1 Introduction . 97
7.2 Approach . 98

7.2.1 Learnable Channel Remapping 99
7.2.2 CMSAugment: Shuffling and Masking Channels 101
7.2.3 Network Architecture Design and Implementation 101

7.3 Experiments . 102
7.3.1 Datasets . 102
7.3.2 Generalizing to Shuffled and Masked Channels 103
7.3.3 Performance in Structured Masking Conditions 103
7.3.4 Transfer Learning . 103

7.4 Conclusion . 104

8 Synthesizing and Reconstructing Missing Sensory Modalities 105
8.1 Introduction . 105
8.2 Approach . 107

8.2.1 Autoencoder . 107
8.2.2 Adversarial Autoencoder . 108

ii

8.2.3 Context Classification . 109
8.2.4 Model Architecture and Training 110
8.2.5 Implementation Details . 112

8.3 Experiments . 112
8.3.1 ExtraSensory Dataset . 112
8.3.2 Performance Evaluation . 113
8.3.3 Results . 114

8.4 Related Work . 121
8.5 Conclusion . 124

9 Model Adaptation and Personalization 127
9.1 Introduction . 127
9.2 Approach . 129

9.2.1 Problem Definition . 129
9.2.2 Unsupervised Model Adaptation 130
9.2.3 Personalization . 131

9.3 Dataset and PreProcessing . 133
9.4 Experiments . 135
9.5 Conclusion . 137

10 Unified Model for CrossDomain Sensing Tasks 139
10.1 Introduction . 139
10.2 Approach . 141

10.2.1 Problem Formulation . 141
10.2.2 Unified Sensorbased Multitask, Multimodal Learning 142
10.2.3 Multitask Contrastive Predictive Coding 143
10.2.4 SemiSupervised Learning for Sensing 144

10.3 Experiments . 144
10.3.1 Tasks and Datasets . 145
10.3.2 Implementation Details . 147
10.3.3 Results . 148

10.4 Related Work . 151
10.5 Conclusion . 152

11 Conclusion 155

Bibliography 165

Acknowledgements 189

Curriculum Vitae 191

iii

Chapter 1

Introduction

1.1 Sensing, Deep Learning and Challenges

Our ability to see, hear, and sense the environment provides us with remarkable prior knowl
edge to learn, reason, and adapt in an everchanging world. It also equips us with situational
awareness to better understand each other (e.g., through behavioral cues), places, things and
whereabouts for making sound decisions [1]. One of the key characteristics of human cogni
tion is the ability to learn from the world around us without explicit supervision [2]. Devel
oping systems that can foster such capabilities in computational devices to recognize context,
surroundings, human behavior, and other states of interest is a grand challenge in artificial
intelligence. Similarly, the objective of making (networked) devices intelligent has driven sig
nificant research in the sensing realm, particularly in pervasive sensing, ubiquitous computing,
and humancomputer interaction [3, 4, 5, 6, 7, 8, 9]. It also led to the development of tiny
and lowcost sensors with negligible power requirements, which can be reliably embedded in
devices of general use, such as wearables, earables, smartphones, and others [9, 10].

Nowadays, contemporary devices are equipped with a multitude of sensors to capture vari
ous physical phenomena and networking capabilities to significantly expand devices’ potential
for unobtrusive, passive, and contactless (or contactbased) multimodal data collection. Like
wise, the ubiquity of interconnected systems has given rise to a world enriched with ambient
(ubiquitous) computing where computing is ingrained in our routine such that mostly we
do not realize an interaction with a computing platform. The proliferation of such devices in
our daily lives generates data at an unprecedented scale, providing valuable information about
the environment and the people. Effectively harnessing and getting insights out of massive
sensory data in a scaleable manner is vital for recognizing certain events of interest and taking
appropriate actions on them. To this end, we need methods that can endow intelligence in
existing networked devices to address challenging problems in various domains and help in
discovering opportunities for novel applications e.g., in lifelogging, healthcare, safety, wildlife
surveillance, contextawareness, and more.

1

The advancements in wireless communication, embedded systems, artificial intelligence,
and humancomputer interaction realize the vision of the Internet of Things (IoT), revolu
tionizing several fields ranging from healthcare, manufacturing to agriculture [11]. IoT devices
with the capability to sense, compute and communicate over the Internet enable a broad set
of embedded intelligence applications, e.g., in consumer and industrial devices. At the core
of making distributed devices smart are the advances in machine learning, especially deep
learning. These advancements enable contemporary devices to understand their environment,
recognize events of interest and act on them by making optimal decisions. With the devel
opment of these methods to learn predictive models using a variety of input modalities, a
network of the ambient and personal devices becomes capable of performing complex sensing
and recognition tasks.

The work in this thesis is grounded in machine learning for ubiquitous computing and am
bient (or pervasive) sensing. The former is a subfield of artificial intelligence widely studied
to develop methods for recognizing patterns in a large amount of data. The latter is concerned
with augmenting everyday objects or devices with computational and communication capa
bilities to perform useful tasks for the users. The highlevel objective of machine learning is to
design algorithms that can learn from data to solve a specific task without the need of being
explicitly programmed to do it. It is ideal from the point that for solving many problems,
humans can not explain the procedure or write a comprehensive list of rules. For instance, a
clinician can examine an electroencephalogram to seemingly diagnose a brain disorder with
out much difficulty, but writing down the corresponding interpretation steps can be extremely
daunting, if not entirely impossible. Here, learning comes into play, which mainly involves
fitting a model on the observations or experiences from the past in order to learn patterns that
generalize well on unseen data.

Typically, machine learning models are built on top of a set of features extracted from raw
inputs, mostly determined based on domain expertise, for instance, computing basic summary
statistics, number of peaks, amplitude, and kurtosis from a 1D signal (e.g., skin conductance).
Similarly, for speech analysis, Melfrequency cepstral coefficients is another prime example of
a feature extracted from audio waveforms. The features provide discriminative information
about each example that a learning algorithm leverages to differentiate between instances, as
in classification problems, where data instances, for example audio clips are grouped under
specific categories. The procedure of designing sophisticated feature extraction techniques or
handcrafting them is referred to as feature engineering. Nevertheless, it became a major bot
tleneck in improving the predictive performance of the models as developing useful features
depended on human creativity, and classic approaches lack the power to capture underlying
explanatory factors in the milieu of lowlevel sensory inputs.

The field of deep learning provides a set of methods to overcome the limitations of prior
approaches and automate the discovery of disentangled features through jointly learning fea
tures (or representations) along with the predictive model in an endtoend manner [12]. The
key building block is a deep neural network, which is a composition of multiple parameter
ized nonlinear transformations stacked together to form a model. We learn parameters (or
weights) of the model through feeding raw input data to optimize an objective function using
gradient descent techniques. This process yields useful representations for solving complex
tasks without much human effort. Specifically, deep learning has achieved indisputable em

2

pirical success across a broad spectrum of problems over the last decade, such as in computer
vision, speech recognition, medical diagnosis, and chemical discovery. Likewise, the success
of deep learning has driven a large body of research in the sensing domain to address impor
tant problems, such as arrhythmia detection and analysis of electroencephalogram for seizure
recognition.

Behind the success of existing approaches are a) better inductive biases that prominently
come in the form of neural network architectures, training objectives, data augmentation,
and regularization strategies, b) increased availability of computation power, and c) datasets
of wellannotated samples. In spite of the fact that deep learning consistently achieves and
even matches the humanlevel performance on many tasks, deep neural networks lack the
ability to learn when there are only few semantically labeled examples available of a concept
in a way as humans learn continuously from unlabeled data (or without supervision) and can
also efficiently adapt to changing environments. Providing a massive amount of semantically
annotated input is not just difficult but an unscalable path towards having intelligent com
putational devices. Particularly, strong supervision that necessitates annotation of instances
with one or more labels to sufficiently describe the example for the deep neural networks is
hard due to following issues a) label granularity–it is unclear how coarse or finegrained the
labels should be–, b) task definition–if we want to use a model for many prediction problems,
the task selection is ambiguous–, c) expensive–the process of acquiring annotations for cer
tain important problems could be prohibitively costly and timeconsuming–, d) privacy–the
labeling of certain data can not be done due to privacy and safety concerns–, e) expertlevel
knowledge–in some domains the labels can only be provided by the expert through close in
spection of the input–, and f) decentralized nature–data on edge or distributed devices like
smartphones or other IoT devices can not be readily aggregated and labeled.

These observations motivate the introduction and design of techniques for training deep
neural networks from raw sensory data without explicit and semantic supervision; while being
robust to noise and other artifacts. We argue that one promising way of achieving this is to
exploit intrinsic supervision from the input itself to continuously learn and build a generalized
repertoire of highlevel concepts of the modalities and underlying phenomena. Then a model
can utilize the obtained knowledge to solve important tasks and develop applications ranging
from activity recognition, sleep stage scoring, WiFi sensing, physiological stress detection,
audio understanding, and more. This argument leads to a class of methods for learning models
named selfsupervision [13] and is a central theme of research in the thesis, in addition to
techniques that safeguard deep models against input artifacts.

1.2 Towards SelfLearning Systems for Embedded Intelligence

The key factor in the success of predictive systems based on modern deep neural networks is
largely attributed to the supervised learning paradigm. As described in the aforementioned
section, these methods utilize a large amount of carefully curated examples to learn general
izable specialist models of tasks. Briefly, to develop a classical supervised model in the sens
ing realm, such as for smartphonebased context recognition, there are several steps involved
in research and development. Firstly, the data are acquired from the sensors embedded in

3

IoT devices (e.g., smartphones and wearables) with a focus on solving a particular problem.
Secondly, the data are preprocessed and manually labeled by human annotators for the pro
cess of designing, learning, and evaluating deep neural network architectures. Finally, after
multiple iterations of the traintest phase, the optimal model is prepared for inference mode
and deployed to make predictions on the incoming stream of data. Along these lines, sig
nificant research efforts have been made in the last few years to design effective taskspecific
architectures, improving efficiency, reducing model size for resourceconstrained devices, and
developing better tools and frameworks for ondevice inference. Although devices equipped
with deep models can now actively sense and detect events of interest, the existing approaches
do not address issues relating to robustness, decentralized learning, privacy, personalization,
and exploiting unlabeled data. Furthermore, the model stays fixed, the devices have no op
portunity for learning on their own, and in case the model needs to be updated, the entire
procedure has to be followed again as defined earlier. These issues impose severe limitations
on learning models with supervised learning and restrict the ability of sensor rich devices to
learn generalist models capable of performing more than one task and that can rapidly acquire
new skills without huge amounts of labeled data.

Our work aims to harness the full potential of network technologies such as the IoT, which
enable embedded intelligence. Towards reaching this goal, we seek to develop novel meth
ods that can enable devices to sense, learn, and adapt the models in a selflearning manner
without requiring human intervention. In particular, we design strategies that can be uti
lized to learn from decentralized data residing on devices without aggregating it in a central
repository. Such approaches are now even more desirable as the computational power of the
edge devices is growing, and multimodal data are being generated at an unprecedented rate,
which makes the accumulation and labeling extremely expensive. In this thesis, we argue for
the introduction and design of techniques that exploit a massive amount of unlabeled sensory
data to learn generalpurpose representations and then use fewlabeled examples to finetune
a pretrained model on the task of interest. To this end, our core approach is selfsupervised
learning that leverages natural supervision available in the input without requiring semantic
labels. It opens up exciting possibilities for IoT devices to learn continuously without focus
ing on a specific task and adapting the models as needed on a chosen endtask of interest to
the user. For instance, a selfsupervised model of audio on a device (such as a smartphone
or virtual assistant device) can continuously learn from an audio stream inthewild without
requiring any interaction with the user for labels and extract representations that it later use
to solve the downstream task (e.g., keyword spotting) with few labeled audio examples.

Furthermore, there are other issues of high importance pertaining to a well functioning
intelligent IoT system to avoid it from failing catastrophically. Particularly, the robustness of
the models to input artifacts and sensor failures is crucial in a realworld setting. Similarly,
the models might become too general or not personalized at all for a specific user; hence, fail
to take into account interpersonal variations. To address these key concerns for any sensing
system and have reliable models, we propose methods that tackle input artifacts and missing
modalities while learning an endtask and that allow practitioners to incorporate inductive
biases via prior domain knowledge. These techniques can then also be readily combined with
selfsupervision to enrich IoT systems and provide the basis for ondevice continual learning
from heterogeneous sensory inputs.

4

1.3 Objectives and Research Questions

This thesis studies the problem of learning generalizable representations with deep neural
networks from a variety of sensory data to realize the vision of selflearning in smart devices
for pervasive sensing and other domains. The key focus is on developing methods for learning
deep models with raw multimodal data subject to the constraints deriving from the IoT
context: 1) utilize selfsupervision for pretraining to perform well on various downstream
tasks, 2) be robust to noise and other input artifacts, 3) transfer well across domains, i.e.,
on data from other devices, environments and users, 4) harness massive unlabeled data to
reduce the requirement of semantic labeling, 5) effectively use multimodal signals, 6) exploit
continuously growing decentralized (ondevice) data in a federated setting, and 7) leverage
multitask learning to utilize shared structures among tasks. The central guiding hypothesis of
the thesis is the following: A deep neural network that leverages intrinsic supervision from the raw
input itself to acquire groundtruth for learning, achieves performance that is better than or similar
to the models relying entirely on labeled data on a broad range of tasks, domains, and modalities.
In particular, we argue that selfsupervision outperforms classical supervised learning given
largescale unlabeled data for pretraining and in the lowdata (lowlabel, highdata) regime,
i.e., when few labeled examples are available to learn a model in a fullysupervised manner.
Furthermore, we address other important aspects to make sensing models generalize better,
including data augmentation, adaptation, personalization, and avoiding catastrophic failures
in case of inconsistent and missing modalities. Overall, these research themes provide a natural
division of the thesis relating to selfsupervised learning and devising techniques to tackle
challenging issues in learning better models from sensorbased data.

The core contributions of the thesis are based on the following topics and the corresponding
research questions:

How can we utilize largescale sensory data without semantic labels to learn
highlevel representations?

Research Question 1: Do selfsupervised pretext tasks enable learning useful representations with
deep neural networks from unlabeled sensor data that are competitive with the fullysupervised
counterparts?

To address the question, we introduce auxiliary tasks for pretraining deep temporal con
volutional networks in Chapters 3, 4 and in [14, 15]. Our tasks provide an effective way to
utilize a large amount of unlabeled data for learning without relying on labeling processes.
Notably, the transformation prediction task demonstrates significant improvement on human
activity recognition problems using signals from inertial measurement units embedded in
smartphones. Our devised pretext tasks within the sense and learn framework, especially,
feature prediction from masked windows, temporal shift, and fusion magnitude estimation,
provides a way to apply selfsupervised learning on other signals (e.g., electrocardiogram),
where using transformations may introduce unintended artifacts in the input or require care
ful selection of the transformations based on domain expertise. Specifically, the tasks provide
a simple and inexpensive process to acquire groundtruth (or supervisory signal) from raw

5

input for the deep neural network, which can be of high value for learning ondevice models
with limited computational power. We demonstrate the usefulness of our pretext tasks on
a broad range of problems (such as sleep stage scoring, stress detection, WiFi sensing, and
more) involving various signals, achieving generalization superior to autoencoding methods,
and competitive with fullysupervised counterparts.

Research Question 2: Does selfsupervised pretraining improve label efficiency to achieve bet
ter generalization on downstream tasks with fewlabeled examples and to induce inductive bias
required for transfer across the domain?

We investigate the effectiveness of network pretraining with selfsupervision to improve
the semisupervised learning capability of the models in Chapters 3, 4 and [14, 15]. We show
that our novel approaches provide an effective initialization of the deep model by harnessing
unlabeled data that, when finetuned with very few labeled examples on downstream tasks,
significantly improves predictive performance compared to training from scratch. Likewise,
in a realworld learning setup, there is a high chance that we are interested in a different
task than the one originating from the unlabeled data (with different distribution) accessible
for pretraining. For instance, the accelerometer data available for selfsupervised pretraining
could be acquired inthewild for human activity recognition but it can be used to pretraining
models for user authentication or transport mode detection tasks. To study knowledge trans
ferability, we further explore unsupervised transfer of learned representations across different
tasks and datasets in Chapters 3, 4, 6, 10 and in [14, 15, 16]. We demonstrate its applications
on various endtasks, including activity recognition, audio classification, and problems related
to electroencephalography. For sensorbased learning tasks, we highlight further that model
transfer is beneficial for learning in the lowdata regime of target tasks.

Research Question 3: Does learning general purpose representations from unlabeled data improve
performance on various recognition tasks? This question is investigated on sound recognition tasks.

Our contribution towards addressing this question is a technique that we term contrastive
learning for audio (COLA) and introduce it in Chapter 6 and in [16]. Our simple, lightweight,
and easytoimplement approach enables deep models to learn representations through assign
ing high similarity to audio segments extracted from the same recording (or clips) while at
tributing lower similarity to segments from different recordings. We present pretraining with
millions of unlabeled audio clips without relying on augmentation for an anchorpositive
generation or using a memory bank for negative mining. We show COLA embedding signif
icantly improves recognition rate over earlier work in unsupervised learning for audio across a
broad range of classification tasks, including keyword spotting, language identification, acous
tic scene detection, and more.

What are the effective ways to leverage unlabeled distributed data for train
ing deep neural networks without aggregating it in a centralized repository?

Research Question 4: How to perform selfsupervised federated learning to utilize decentralized
unlabeled data?

6

We introduce scalogramsignal correspondence learning (SSCL) technique in Chapter 5 and
in [17] to show learning multisensor representations is possible from unlabeled decentral
ized data residing on users’ devices without aggregating it on a central server. SSCL is a
selfsupervised method exploiting a multiview strategy to extract supervisory signals using a
wavelet transform [18]. It uses a contrastive objective for training a deep model to estimate
if a given pair of a raw signal and its complementary view (i.e., a scalogram) align with each
other or not. We demonstrate the capability of SSCL in learning useful representations across
several sensing tasks, where it achieves performance onpar with centralized models.

How to avoid catastrophic failure of deep neural networks on noisy inputs
with learningbased approaches?

Research Question 5: Can a learnable channel remapping be used to handle inconsistent inputs?
and what is a good strategy for tackling missing input modalities for a deep model at inferencetime?

To address first question, we develop channel reordering module in Chapter 7 and in [19]
that we refer to as CHARM. Here, a channel refers to a single source of information about a
certain phenomena. In case of an electroencephalogram, a signal acquired from a particular
electrode over the scalp acts as a channel. Likewise, for microphone array an audio waveform
of a single microphone can be treated as a channel. The signals from multiple sensors are com
bined (or stacked depthwise) to form a multichannel input that can be used as input to deep
neural networks. Our approach builds upon attention mechanisms [20] to estimate a latent
reordering matrix from each input signal (or channel) and maps inconsistent input channels
to canonical order. Our learnable module is differentiable and can be composed further with
architectures expecting a consistent channel ordering to build endtoend trainable classifiers
without requiring prior channel location information. We also introduce channel masking
and shuffling augmentation to improve the generalization of standard models to operate on
inconsistent inputs. We highlight the applicability of CHARM to electroencephalography,
where data collection protocols from different headsets result in varying channel ordering and
number, limiting the robustness and feasibility of transferring models [21] across headsets. To
answer the second question, we propose an adversarial autoencoderbased [22] technique in
Chapter 8 and in [23]. Here, the model pretraining via joint input reconstruction and adver
sarial training strategy aims to counter missing sensory modalities in natural conditions. We
also provide an extension to generate classconditional synthetic data similar to the original
examples. We demonstrate applications of our adversarial model to restore features from sev
eral modalities and generate highquality artificial samples on a multilabel classification task
of human context recognition.

How effective is a single deep neural network at learning shared representa
tions for multiple related tasks?

Research Question 6: Is it possible to effectively leverage multitask learning for model personal
ization and adaptation?

7

We present a subjectsastasks strategy for personalizing deep models with multitask learn
ing in Chapter 9 and in [24]. We substitute tasks with subjects in a standardsetting of jointly
learning to solve multiple tasks, but as opposed to learning different tasks, we learn the same
task with a distinct hierarchy of layers in the model focusing on a particular individual. Specif
ically, our model comprises a shared set of layers with hard weightsharing to extract features
common across subjects and utilize userspecific layers to learn representations that are per
sonalized or specialized towards a particular subject. We show the effectiveness of our method
on physiological stress detection, where personalization considerably improves the predictive
performance of the model. Likewise, for unsupervised domain adaptation in a crossdomain
and crossuser setting, we introduce a multistream architecture with a shared encoder be
tween source and target domains and jointly optimize network weights to reconstruct input
with a decoder on a target domain and solve a source task with a supervised bidirectional
recurrent network on labeled data. Our deep reconstruction and classification model success
fully adapts itself during training on data collected in a simulated (source) environment to a
realworld (target) unlabeled data.

Research Question 7: To what degree can a unified deep neural network learn to solve multiple
tasks using multimodal sensory data?

This question focuses on the development of one model that has the capability to learn
many tasks. In Chapter 10, we propose unified model or UniModel, in short, which is a
deep temporal convolutional network that is capable of learning representations for several
recognition problems from crossdomain data (i.e., from different input modalities, sensors,
users, data collection protocols and tasks) in both supervised and unsupervised manner. We
also introduce an extension of contrastive predictive coding [25] to a multitask setting for self
supervised learning with diverse types of multimodal inputs. We show that it is feasible to
train a single network shared across tasks achieving a similar performance as individual task
specific models but with better parameter utilization and exploiting shared structure among
tasks. It can also be trained effectively with unlabeled data to improve generalization in the
lowdata regime. Likewise, we demonstrate that UniModel introduces an inductive bias nec
essary for generalization on outofdomain data with a transfer of the learned model to other
tasks and datasets.

1.4 Thesis Organization

This thesis is organized around several publications, which take the form of chapters (see Fig
ure 1.1 for a highlevel overview of core research areas with a focus on corresponding chapters).
We lightly edited the papers to fit the format of the thesis. We provide a brief overview of
several important background topics in Chapter 2, which serves as a ground for the methods
introduced in the rest of the chapters. In rest of the chapters, we present novel techniques that
can be used to learn useful representations from a wide array of timeseries or signals using
selfsupervised learning 3, 4, 5, and 10. Particularly, in Chapter 5, we provide a method for
learning unsupervised sensory models in a federated setting without relying on semantic labels
from humans. In Chapter 6, we propose an approach to learning generalpurpose represen
tations from the audio waveform. Furthermore, in Chapters 7 we introduce a differentiable

8

channel reordering module to handle inconsistent channels in an endtoend manner without
ordering information. Similarly, in Chapter 8, we provide an effective way to handle missing
modalities at inference time with a generative model, which can also be utilized for generating
synthetic data. Chapter 9, we present an approach for unsupervised model adaptation and
personalization with multitask learning. Chapter 10, we study the problem of learning a uni
fied model for multiple tasks in a supervised and selfsupervised manner. Lastly, Chapter 11
describes conclusions where we summarize our findings with answers to the research questions
established in Chapter 1 and providing directions for future research.

Multi-task
Learning

Representation
Learning

Self-Supervised
Learning

Transfer Learning

Federated Learning

Low-data Regime

Synthesization

Learning from
Noisy Input

Model Adaptation and
Personalization (Chapter 9)

Self-Supervised Learning with
Transformation Prediction (Chapter 3)

Federated Self-Supervised Learning for
Multi-Sensor Representations (Chapter 5)

Contrastive Learning of General-Purpose
Audio Representations (Chapter 6)

Sense and Learn: Self-Supervision for
Omnipresent Sensors (Chapter 4)

Unified Model for Cross-Domain
Sensing Tasks (Chapter 10)

Synthesizing and Reconstructing
Missing Sensory Modalities (Chapter 8)

Differentiable Channel Reordering
for Heterogeneous Signals (Chapter 7)

Core Research
Areas

Dissertation

Figure 1.1: Overview of research areas that are the focus of the work in this thesis. Each chapter tackles specific problems within
the context of sensory representation learning and ubiquitous computing.

9

Chapter 2

Background

In this chapter, we provide a brief overview of key background topics, different machine learn
ing paradigms, notation, and other necessary information that is extensively used throughout
the thesis. We cover these subjects as they either serve as fundamental building blocks or
benefit from our developed techniques. We present additional background material in subse
quent chapters as necessary. In short, we review neural networks and representation learning
in Section 2.2, leaning multiple tasks in Section 2.3, knowledge transfer in deep networks in
Section 2.4, selfsupervised learning or learning without strong labels in Section 2.5, and lastly,
the processing of timeseries or signal data collected from sensors for learning deep models in
Section 2.6.

2.1 Notation

In this section, we present the most commonly utilized conventions across the thesis. We
use standard lowercase weight letters x, y, or z for scalar values, the lowercase bold letters x
to denote vectors, and the bold uppercase letters X to represent matrices. The bold letters
with subscripts xi refer to the row or an instance, whereas subscripts with standard letters
xi show a specific element. Likewise, the calligraphic letters Z denote sets, except L which
represents a loss or objective function. We introduce additional notation in each chapter
whenever necessary.

11

Notation Meaning

x Scalar value
x Vector
X Matrix
xi ith element of a vector
Xi,j i, jth element of a matrix
M Set of data instances
W Weight matrix
b Bias vector
T Learning task
D Domain or dataset
θ Model parameters
L Loss function
fθ(·) Parameterized function

2.2 Neural Networks and Representations

The invention of perceptron [26] in 1951—a simplistic pattern classification machine with a
single unit¹ lead to modern trainable computing architecture, which becomes widely known
as the deep neural network (NN). In a rudimentary form, we can think of it as a paramet
ric function approximator with a composition of affine transformations (or functions) f(.).
These functions are generally represented with a set of layers l ∈ {1, 2, . . . , L} each having
its own learnable parameters θ and are interleaved with nonlinear activation functions σ:

fθ(·) = fL ◦ σ ◦ fL−1 ◦ σ ◦ . . . ◦ f1, (2.1)

where ◦ denotes function composition. Here, we employ NN to learn a function f from data
with optimal values of the parameters w.r.t to a specific loss function. For instance, a classifier
y = f(x; θ) mapping an input x to a category y. Over the years, several variants of deep ar
chitectures have been proposed, which principally differ in their constituents to incorporate a
variety of inductive biases (which broadly refers to the set of assumption a learning algorithm
makes to solve a problem) depending on the input modalities with the aim of improving gen
eralization, e.g., dropout, data augmentation, choice of nonlinearity and the neural network
architecture are prominent examples, see [27] for a detailed discussion.

We largely utilize contemporary deep feedforward networks or multilayer perceptrons [28],
comprising of L layers that are chained together to form a network. The overall chain length
and dimensionality of the layers describe the depth and width of a model, respectively. In
these networks, the information flows in a forwardonly direction without feedback to itself
for processing an input x through computations of intermediate layers to produce an output
y. We define a typical network f(.) as follows:

¹it computes a weighted sum of its inputs

12

z1 = σ(W⊤
1 x+ b1)

· · ·
zL−1 = σ(W⊤

L−1zL−2 + bL−1)

y = softmax(W⊤
LzL−1 + bL),

(2.2)

where Wl and bl are learnable weight matrix and bias vector, respectively. The zl refers to
latent representations (or features or embeddings) in a network. For activation function σ,
we use ReLU(z) = max(0, z) or its variants, such as PReLU and ELU to enable a network
to learn nonlinear representations. For a classification task, the softmax operation provides
distribution over K classes through normalizing penultimate layer’s output or logits as:

softmax(z) =
exp (zi)∑
j exp (zj)

(2.3)

The central problem in machine learning is feature extraction or as also prominently known
as representation learning in the deep learning community. It describes a set of techniques for
designing (or deriving) features from the input that are suitable for an application domain or
learning problem. The quality of the representations, especially their discriminative power,
substantially influence the generalizability of a predictive model on any task of interest. In
the past, most of the efforts were spent on developing (and manually engineering) feature
extraction methods based on domain expertise with the aim of incorporating prior knowledge
in the learning process. However, these methods are found to be relatively limited because of
their reliance on human creativity to come up with novel features and to lack the power to
capture underlying explanatory factors in the domain of lowlevel sensory input.

The recent resurgence of deep neural networks with better architectures, improved train
ing strategies, and availability of computing power led to the proposal of utilizing them as
feature extractors. Particularly, to automate the discovery of useful features while learning to
solve a task, the neural networks based approaches are widely adopted. These techniques have
achieved indisputable empirical success across a broad spectrum of problems in both super
vised or unsupervised learning settings. Nevertheless, representation learning still stands as a
fundamental problem in machine intelligence and is an active area of research (see [29] for a
detailed survey).

In this thesis, we use specialized architectures known as convolutional network [30] (CNN)
to learn highlevel representations directly from raw inputs. We adopt CNNs as our focus is
on learning models from data with gridlike topology, e.g., multivariate timeseries (1D) or
images with a 2D grid of pixel values. These networks provide desirable properties of weight
sharing, sparse connectivity as well as efficiency in terms of training and ondevice deployment
through leveraging steaming convolutions. On a highlevel, the convolution operation is a
central building block in a CNN, which comprises convolutional layers having several kernels
(with learnable parameters) of a certain receptive field. The kernels are convolved over input
and passed through a nonlinear activation to produce feature maps z; ideally, each feature
map learning something distinctive about the input. The subsequent layers use feature maps

13

from preceding ones to learn even complex representations. Occasionally, a pooling layer
supplements to reduce input dimensionality and to help the representations become invariant
to small translation in the input. Depending on the pooling operator, it replaces values in a
neighborhood with their average or maximum value. Further, we compute the output using
a classification layer similar to Equation 2.2 through either flattening the representations or
using a global pooling function over the penultimate layer to aggregate the features.

For training NNs, we make use of backpropagation and variants of stochastic gradient
descent like Adam optimizer [31] to minimize a loss (or objective or cost) function L. Partic
ularly, in case of classification tasks, we optimize negative loglikelihood as:

Lc = −
1

M
∑
m

[ym log(f(xm))] (2.4)

and for regression problems, a mean squared error as:

Lr =
1

M
∑
m

(ym − f(xm))2 (2.5)

overM examples comprising a dataset D with xm and ym being the input and class label
or realvalued output, respectively. For a detailed treatment of neural networks and other key
elements, especially architectures, optimization, and regularization strategies, we recommend
an excellent book deep learning by Goodfellow et al. [12].

2.3 Multitask Learning

The field of multitask learning [32] (MTL) aims to enhance the learning efficiency and gen
eralization of the model through simultaneously optimizing objectives emerging from several
related tasks. Specifically, it acts as a form of regularization enforced on the model to use
shared intermediate representations and exploit relations among the tasks to lead the model’s
parameters towards a region of values that generalize well compared to individually learning
to solve each task. In addition to preventing overfitting, MTL is also beneficial for improv
ing data efficiency in supervised models through leveraging auxiliary tasks, as in a realworld
setting, we can encounter a situation where labeled data is fairly limited for some tasks. In a
practical setting, several domains, including ubiquitous computing, natural language process
ing, computer vision, and audio recognition, adopted MTL to improve model generalization
on respective applications.

Formally, given T learning tasks which could be either supervised or unsupervised along
with their corresponding datasets Ds,τ ∈ {(x,y)}Mm=1 and Du,τ = {x}Mm=1 respectively.
The goal of MTL is to improve the performance of the neural network on task Ti by using
knowledge from other Ti−1 tasks. Here, the model is normally divided into distinct blocks
with their associated parameters. One block comprises of taskspecific parameters θτ that
learn features important for a particular task with each task having its own set of parameters

14

(or model), and these could be either in high or lower layers of the neural network. The other
block has shared parameters that are used by all the tasks to learn generic representations; here,
parameter sharing could be either hard or soft depending on the problem. For model training,
we create a multiobjective loss through a weighted linear sum of the individual tasks’ losses
as:

Laggregated =
∑
τ∈T

ψτ × Lτ (2.6)

where ψ denotes a task weight and Lτ (generally between 0 and 1) is a taskspecific loss
function. It is important to note, MTL itself does not impose any restriction on the type
of loss for an individual task. Therefore, unsupervised and supervised tasks or tasks having
different objective functions can be conveniently combined for learning representations. We
reiterate that for learning numerous tasks together to be successful, we need to ensure the
task relatedness and how it will be encoded in the neural architecture design to capture linked
aspects of the input. We also need to consider several other factors to gain benefits from
joint training. For instance, we can not assume that training all tasks together is useful for all
the tasks as there can be task interference leading to degenerate models. A review of common
issues arising from applying MTL to realworld problems and potential solutions is beyond the
scope of this section, and we recommend an interested reader to consult [33]. We use multi
task learning in conjunction with selfsupervision in Chapters 3 and 10 and in Chapter 9 in
connection with model personalization.

2.4 Knowledge Transfer

The transfer learning describes a class of techniques that aims at leveraging and preserving
previously acquired knowledge from solving prior tasks to accelerate the learning of the fu
ture novel task. Importantly, depending on the tasks and input modalities, the knowledge
transfer can take on various forms. Relevant to our purpose throughout this thesis, it involves
learned representations and weights by the deep neural networks. We either use pretrained
models as fixed feature extractors or as model initialization to address the inadequacy of the
classical supervised learning paradigm in learning from fewlabeled data. The transfer learn
ing domain has seen a rapid rate of progress and diversity of methods in recent years. It has
shown remarkable improvement in performance on very challenging problems, especially in
areas where littlelabeled data are available, e.g., natural language understanding tasks [34].

In transfer learning, the broad objective is to reuse the learned knowledge from a source
domainDSRC to a target domainDTRG. Precisely, we refer to domain comprising an input space
X , a output spaceY , and associated probability distribution p, which describes a sample xi ∼
p is drawn from a particular domain. We can consider domainsDSRC andDTRG with learning
tasks TSRC and TTRG, respectively. The goal is to help improve the learning of a predictive
function fθ(·) in DTRG using knowledge extracted from DSRC and TSRC, where, DSRC 6= DTRG
and/or TSRC 6= TTRG, meaning that domains or tasks can be different. Specifically, when the
source and target tasks are the same, it is typically known as transductive transfer, while in the

15

inductive transfer the source task is different from the target. The earlier discussed multitask
setting is a prime example of inductive transfer learning. Given this learning formulation,
we can develop highquality models under different knowledge transfer scenarios (such as
features, instances, weights, architectures) from existing labeled or unlabeled data of some
related task or domain. For a detailed survey, we refer the interested reader to see [21]. We
extensively explore knowledge transfer in relation to selfsupervised learning in Chapters 3, 4,
as a joint learning scheme to solve multiple tasks in Chapter 10, and for personalization and
domain adaptation in Chapter 9.

2.5 SelfSupervision

Several chapters in this thesis explore selfsupervised learning, for which we provide a brief
introduction here. The field of selfsupervision describes a class of methods that exploits
the natural supervision available within the input to learn deep models without relying on
semantic annotations. In particular, we define a surrogate (or auxiliary or pretext) task for
which supervision can be acquired from the data itself, and importantly learning to solve
the specified task can force the network to learn broadlyuseful representations. It is ideal
for ambient sensing models (both incloud and ondevice) utilizing sensory inputs as getting
such data labeled for developing fullysupervised models is prohibitively expensive. Further, it
reduces the overhead of human intervention in the annotation process, providing a promising
way for learning representations from a huge amount of unlabeled data.

Formally, given an unlabeled data D = {x}Mm=1 and network fθ(.), the aim is to pre
train the network with a surrogate task, where, labels y for the standard objective functions
are extracted automatically from x. The learned model is then utilized either as a fixed fea
ture extractor or as an initialization for rapidly learning an endtask of interest. To that end,
very recently, numerous pretext tasks are proposed in different domains. Most prominently,
geometric transformation detection [35], colorization of grayscale images [36], solving jig
saw puzzle [37], masked language modeling [38], audiovisual synchronization [39], arrow of
time in videos [40], and many more. Among them, techniques based on noise contrastive es
timation [41, 42] and deep metric learning [43] have seen significant research interest due to
their applicability on several modalities (such as images, audio, text, and timeseries). Briefly,
the core idea of contrastive learning is to learn representations through maximizing similarity
between semantically related data pairs (x,x+) while minimizing it among unrelated ones
(x,x−). The selection of positive and negative input pairs is essential to the success of con
trastive learning. The common approach is to generate positive pairs via augmentation, such
as cropping in the case of images, whereas negative pairs can be generated by randomly sam
pling from other instances. Thus, a typical objective function that is minimized to determine
correct positives from a set of negatives takes on the form:

L = − log
exp(s(x,x+))∑

x−∈X−(x)∪{x+} exp(s(x,x
−))

(2.7)

where X− refers to the set of negative distractors. The s denotes a similarity score be

16

tween instances e.g., cosine or bilinear similarity applied over embeddings from an encoder
fe(·) and projection head g(·). Specifically, in case of bilinear score, s becomes s(x,x′) =
g(fe(x))

⊤Wg(fe(x
′)). This objective function, unlike the triplet loss [44], leverages multi

ple distractors at a time. Likewise, a closely related area of metric learning employs a distance
metric, such as squared Euclidean distance d(xi,xj) = ||xi − xj ||2 to ensure greater sim
ilarity between embedding of alike pairs (also called anchorpositive) as compared to others
through optimizing a type of hinge loss Equation 2.8 with α being a margin hyperparameter
which is enforced between positive and negative samples.

L = y||f(xi)− f(xj)||2 + (1− y)max(α− ||f(xi)− f(xj)||2, 0) (2.8)

We review additional prior work and provide additional descriptions of the related methods
in subsequent chapters as required. We develop several pretext tasks for the selfsupervision
of deep networks across a wide range of modalities and problems in ambient, personal and
embedded intelligence.

2.6 Modeling Signals and TimeSeries

The modern IoT devices are embedded with a multitude of sensors that have the capabilities to
constantly monitor various physical phenomena and record them in digital format for further
analysis. Here, the majority of our work concerns learning representations from the sensory
streams or timeseries collected from a wide variety of sensors; we provide a brief description
of timeseries processing for deep models, sensing, and related applications. The overview is
important to put things into perspective for motivating subsequently developed methods to
augment IoT devices with selflearning capabilities. Timeseries modeling has a broad range
of applications in several domains, from healthcare to industrial and consumer applications.
We can categorize timeseries input into two classes a) univariate, where only a single variable
is available at each timestep and b) multivariate, which can have more than one variable
sampled uniformly for each time interval. For instance, when a wearable device collects heart
rate at a sampling rate of 1Hz for a minute, it results in a univariate timeseries with 60 data
samples. Additionally, if we choose to collect electrodermal activity (or skin conductance)
and temperature at the same interval, we will have a multivariate timeseries. This sequential
data or timeseries intrinsically exhibits temporal dependencies among samples, which we can
model efficiently with deep models (such as with temporal convolutional networks) to learn
highlevel representations solely using raw data as input and without requiring any manual
feature engineering.

We focus primarily on using a deep model for timeseries classification (and regression)
problems, but our developed techniques can be potentially used for other similar tasks, e.g.,
change point detection, retrieval and alignment. We define D = {(x1, y1, . . . , (xm, ym)},
where xi = [x1,i, . . . , xT,i] is a segment of a longer sequence or an instance generated
through a segmentation operation with xt,i ∈ Rd being a data point at tth timestep, T
denoting the total length of the segment and d representing the number of multivariate sig
nals. For classification tasks, each segment x has an associated class label y ∈ Y from a

17

predefined label set with |Y| the number of total classes. Similarly, in the case of regression
problems, y is a realvalued scalar value. For our purpose, we consider segmented data given
as inputlabel pairs, where we create input subsequences through applying a sliding window
with a window length of T and stride (stepsize) of µ on a stream of incoming data. Likewise,
in cases where fixed wellaligned labels per segment are not available, we create them by taking
the mode (i.e., a value that appears most often) of the values falling within a corresponding
window unless specified otherwise. This process is widely used in timeseries data processing
for machine learning tasks as it avoids manual semantic segmentation, which is both costly
and timeconsuming. Now, given a dataset D, the objective of the timeseries learning task
is to train a classifier or regression model fθ(x)→ y to predict the class label or scalar value
depending on the problem.

18

Chapter 3

SelfSupervised Learning with
Transformation Prediction

This chapter is based on our paper Multitask SelfSupervised Learning for Human Activity Recog
nition published in ACM IMWUT 2019 [14].

3.1 Introduction

In light of these challenges, we pose the question whether it is possible to learn semantic
representations in an unsupervised way to circumvent the manual annotation of the sensor
data with strong labels, e.g., activity classes. In particular, the goal is to extract features that are
on par with those learned with fullysupervised methods. There is an emerging paradigm for
feature learning called selfsupervised learning that defines auxiliary (also known as pretext
or surrogate) tasks to solve, where labels are readily extractable from the data without any
human intervention, i.e., selfsupervised. The availability of strong supervisory signals from
the surrogate tasks enables us to leverage objective functions as utilized in a standard supervised
learning setting [45]. For instance, the vision community proposed a considerable number
of selfsupervised tasks for advancing representation learning¹ from static images, videos, and
audio (see Section 3.4). Most prominent among them are: colorization of grayscale images [36,
46], predicting image rotations [35], solving jigsaw puzzles [37], predicting the direction of
video playback [40], temporal order verification [47], odd sequence detection [48], audio
visual correspondence [39, 49], and curiositydriven agents [50]. The presented methodology
for sensor representation learning takes inspiration from these methods and takes leverage of
signal transformations to extract highly generalizable features for the downstream² task, i.e.,
HAR.

¹also known as feature learning
²or an endtask

19

Task-specific
Layers

Shared
Temporal

CNN
Large

Unlabeled
Accelerometer

Data

t1

t2

t|T|

Extracting
Multi-task

Self-Supervised
Data

Small Labeled
Activity

Recognition
Data

Activity
Classification

Layers

Frozen
Network

Self-Supervised Pre-Training

Activity Detection Model Training/Fine-tuning

1

2

Figure 3.1: Illustration of the proposed multi-task self-supervised approach for feature learning. We train a temporal convolu-
tional network for transformation recognition as a pretext task as shown in Step 1. The learned features are utilized
by (or transferred to) the activity recognition model (Step 2) for improved detection rate with a small labeled dataset.

Our work is motivated by the success of jointly learning to solve multiple selfsupervised
tasks [32, 45] and we propose to learn accelerometer representations (i.e., features) by training
a temporal convolutional neural network (CNN) to recognize the transformations applied to
the raw input signal. Particularly, we utilize a set of signal transformations [51, 52] that are
applied on each input signal in the datasets, which are then fed into the convolutional net
work along with the original data for learning to differentiate among them. In this simple
formulation, a group of binary classification tasks (i.e., to recognize whether a transformation
such as permutation, scaling, and channel shuffling was applied on the original signal or not)
act as surrogate tasks to provide a rich supervisory signal to the model. In order to extract
highly generalizable features for the endtask of interest, it is essential to utilize transforma
tions that exploit versatile invariances of the temporal data (further details are provided in
Section 3.2). To this end, we utilize eight transformations to train a multitask network for
simultaneously recognizing each of them. The visual illustration of the proposed approach is
given in Figure 3.1. In the pretraining phase, the network consisting of a common trunk with
a separate head for each task is trained on selfsupervised data, and in the second step, the
features learned by the shared layers are utilized by the HAR model. Importantly, we want
to emphasize that in order for the convolutional network to recognize the transformations,

20

it must learn to understand the core signal characteristics through acquiring knowledge of
underlying differences in the accelerometer signals for various activity categories. We support
this claim through an extensive evaluation of our method on six publicly available datasets
in unsupervised, semisupervised and transfer learning settings, where it achieves noticeable
improvements in all the cases while not requiring manually labeled data for feature learning.

Our main contributions are as follows:

• We propose to utilize selfsupervision from large unlabeled data for human activity
recognition.

• We design a signal transformation recognition problem as a surrogate task for annota
tion free supervision, which provides a strong training signal to the temporal convolu
tional network for learning generalizable features.

• We demonstrate through extensive evaluation that the selfsupervised features perform
significantly better in the semisupervised and transfer learning settings on several pub
licly available datasets. Moreover, we show that these features achieve performance that
is superior to or comparable with the features learned via the fullysupervised approach
(i.e., trained directly with activity labels).

• We illustrate with SVCCA [53], saliency mapping [54], and tSNE [55] visualizations
that the features extracted via selfsupervision are very similar to those learned by the
fullysupervised network.

• Our method substantially reduces the labeled data requirement, effectively narrowing
the gap between unsupervised and supervised representation learning.

3.2 Approach

In this section, we present our selfsupervised representation learning framework for HAR.
First, we provide an overview of the methodology. Next, we discuss various learning tasks (i.e.
transformation classification) and their benefits for generic features extraction from unlabeled
data. Finally, we provide a detailed description of the network architecture, its implementa
tion, and the optimization process.

3.2.1 Overview

The objective of our work is to learn generalpurpose sensor representations based on a tem
poral convolutional network in an unsupervised manner. To achieve this goal, we introduce
a selfsupervised deep network named Transformation Prediction Network (TPN), which si
multaneously learns to solve multiple (signal) transformation recognition tasks as shown in
Figure 3.1. Specifically, the proposed multitask TPN Mθ(.) is trained to produce estimates
of the transformations applied to the raw input signal. We define a set of distinct trans
formations (or tasks) {Jt(.)}t∈T , where Jt(.) is a function that applies a particular signal

21

alteration technique t to the temporal sequence x ∈ R(N,C) to yield a transformed ver
sion of the signal Jt(x). The network Mθ(.) that has a common trunk and individual head
for each task, it takes an input sequence and produces a probability of the signal being a
transformed version of the original, i.e. P (Jt|x) = Mθ(x). Note, that given a set of unla
beled signals (e.g. of accelerometer), we can automatically construct a selfsupervised labeled
dataset D = {{(Jt(xi), T rue), (xi, False)}t∈T }mi=1. Hence, given this set of m training
instances, the multitask selfsupervised training objective that a model must learn to solve is:

min
θ

∑
t∈T

ψt

[
− 1

mt

mt∑
i=1

(yti log(Mθ(x
t
i)) + (1− yti) log(1−Mθ(x

t
i)))

]
(3.1)

where Mθ(x
t) is the predicted probability of x being a transformed version t and θ are the

learnable parameters of the network. mt represents the number of instances for a task (which
can vary but are equal in our case) and ψt is the lossweight of task t.

We emphasize that, although the network has a separate layer to differentiate between
original and each of the T transformations it can be extended in a straightforward manner
to recognize multiple transformations applied to the same input signal or for multilabel clas
sification. In the following subsection, we explain the types of signal transformations that are
used in this work.

3.2.2 SelfSupervised Task: Signal Transformations

The aforementioned formulation requires the signal transformations J to define a multitask
classification that enables the convolutional model to learn disentangled semantic represen
tations useful for downstream tasks, e.g. activity detection. We aimed for conceptually sim
ple, yet diverse tasks to possibly cover several invariances that commonly arise in temporal
data [52]. Intuitively, a diverse set of tasks should lead to a broad spectrum of features, which
are more likely to span the featurespace domain needed for a general understanding of the
signal’s characteristics. In this work, we propose to utilize eight straightforward signal trans
formations (i.e. |T | = 8) [51, 52] for the selfsupervision of a network. More specifically,
when transformations are applied on an input signal x, they result in eight variants of x. As
mentioned earlier, the temporal convolutional model is then trained jointly on all the tasks’
data to solve a problem of transformation recognition, which allows the model to extract high
level abstractions from the raw input sequence. The transformations utilized in this work are
summarized below:

• Noised: Given sensor readings of a fixed length, a possible transformation is the addi
tion of random noise (or jitter) in the original signal. Heterogeneity of device sensors,
software, and other hardware can cause variations (noisy samples) in the produced data.
A model that is robust against noise will generalize better as it learns features that are
invariant to minor corruption in the signal.

• Scaled: A transformation that changes the magnitude of the samples within a window
through multiplying with a randomly selected scalar. A model capable of handling

22

scaled signals produces better representations as it becomes invariant to amplitude and
offset invariances.

• Rotated: Robustness against arbitrary rotations applied on the input signal can achieve
sensorplacement (orientation) invariance. This transformation inverts the sample signs
(without changing the associated classlabel) as frequently happens if the sensor (or
device) is, for example, held upside down.

• Negated: This simple transformation is an instance of both scaled (scaling by −1) and
rotated transformations. It negates samples within a time window, resulting in a vertical
flip or a mirror image of the input signal.

• Horizontally Flipped: This transformation reverses the samples along the temporal
dimension, resulting in a complete mirror image of an original signal as if it were evolved
in the opposite time direction.

• Permuted: This transformation randomly perturbs the events within a temporal win
dow through slicing and swapping different segments of the timeseries to generate a
new one, hence, facilitating the model to develop permutation invariance properties.

• TimeWarped: This transformation locally stretches or warps a timeseries through a
smooth distortion of time intervals between the values (also known as local scaling).

• ChannelShuffled: For a multicomponent signal such as a triaxial accelerometer, this
transformation randomly shuffles the axial dimensions.

There are several benefits of utilizing transformations recognition as auxiliary tasks for fea
ture extraction from unlabeled data.

Enabling the learning of generic representations: The primary motivation is that the
abovedefined pretext tasks enable the network to capture the core signal characteristics. More
specifically, for the TPN to successfully recognize if the signal is transformed or not, it must
learn to detect highlevel semantics, sensor behavior under different device placements, time
shift of the events, varying amplitudes, and robustness against sensor noise, thus, contributing
to solving the ultimate task of HAR.

Task diversification and elimination of lowlevel input artifacts: A clear advantage of
using multiple selfsupervised tasks as opposed to a single one is that it will lead to a more
diverse set of features that are invariant to lowlevel artifacts of the signals. Had we chosen to
utilize signal reconstruction, e.g. with autoencoders, this would learn to compress the input,
but due to a weak supervisory signal (as compared to selfsupervision), it may discover trivial
features with no practical value for the activity recognition or any other task of interest. We
compare our approach against other methods in Section 3.3.3.

Transferring knowledge: Furthermore, with our approach, the unlabeled sensor data that
are produced in huge quantity can be effectively utilized with no human intervention to pre
train a network that is suitable for semisupervised and transfer learning settings. It is par
ticularly of high value for training networks in a realworld setting, where very little or no
supervision is available to learn a model of sufficient quality from scratch.

23

Other benefits: Our selfsupervised method has numerous other benefits. It has an equiv
alent computational cost to supervised learning but with better convergence accuracy, making
it a suitable candidate for continuous unsupervised representation learning inthewild. More
over, our technique neither requires a sophisticated preprocessing (apart from znormalization)
nor needs a specialized architecture (which also requires labeled data) to exploit invariances.
We will show in Section 3.3.3 through extensive evaluation that the selfsupervised models
learn useful representations and dramatically improve performance over other learning strate
gies. Despite the simplicity of the proposed scheme, it allows utilizing data collected through
a wide variety of devices from a diverse set of users.

3.2.3 Network Architecture and Implementation

We implement the TPNMθ(.) as a multibranch temporal convolutional neural network with
a common trunk (shared layers) and a distinct head (private layers) for each task with a separate
loss function. Hard parameter sharing is employed between all the taskspecific layers to
encourage strong weight utilization from the trunk. Figure 3.2 illustrates the TPN containing
three 1D convolutional layers consisting of 32, 64, and 96 feature maps with kernel sizes of
24, 16 and 8 respectively, and having a stride of 1. Dropout is used after each of the layers with
a rate of 0.1, and L2 regularization is applied with a rate of 0.0001. Global max pooling is
used after the last convolution layer to aggregate highlevel discriminative features. Moreover,
each taskspecific layer is comprised of a fullyconnected layer of 256 hidden units followed
by a sigmoidal output layer for binary classification. We use ReLU as nonlinearity in all the
layers (except the output) and train a network with Adam optimizer [31] for a maximum of
30 epochs with a learning rate of 0.0003, unless stated otherwise. Furthermore, the activity
recognition model has a similar architecture to the TPN except for a fullyconnected layer that
consists of 1024 hidden units followed by a softmax output layer with units depending on the
activity detection task under consideration. Additionally, during training of this model, we
apply earlystopping, if the network fully converges on the training set to avoid overfitting.

The motivation for keeping the TPN architecture simple arises from the fact that we want
to show the performance gain does not come from the number of parameters (or layers) or
due to the utilization of other sophisticated techniques such as batch normalization but the
improvement is due to selfsupervised pretraining. Likewise, the choice of multitask learning
setting, where each task has an additional private layer manifests in letting the model push
pretext taskspecific features to the last layers and let the initial layers extract generic repre
sentations that are important for a wide variety of endtasks. Moreover, our architectural
specification allows for a straightforward extension to add other related tasks, if needed, such
as input reconstruction. Although, we do not explore applying multiple transformations to
the same sequence or train models for their recognition the network design is intrinsically
capable of performing this multilabel classification task.

During the training process, for every instance, we first generate transformed versions of
a signal for the selfsupervised pretraining of the network. At each training iteration of the
TPN model, we feed the data from all tasks simultaneously, and the overall loss is calculated
as a weighted sum of the losses of different tasks. Once pretraining converges, we transfer
the weights of convolutional layers from model Mθ to an activity recognition network Cθ

24

for learning the final supervised task. Here, either all the transferred layers are kept frozen,
or the last convolutional layer is finetuned depending on the learning paradigm. Figure 3.2
depicts this process graphically, where shaded convolutional layers represent frozen weights,
while others are either trained from scratch or optimized further on the endtask. To avoid
ambiguity, in the experiment section, we explicitly mention when the results are from a fully
supervised or selfsupervised (including finetuned) network.

Co

nv
1D

 +
 R

eL
U

G
lo

ba
l M

ax
 P

oo
lin

g

D
ro

po
ut

In
pu

t

3x

FC
 -

 1
02

4
-

Re
LU

FC
 -

 S
of

tm
ax

A
ct

iv
ity

 R
ec

og
ni

tio
n

D
at

a

Weights Frozen

In
pu

t |T
|

t1

t2

t|T|

Se
lf-

Su
pe

rv
is

ed
 D

at
a

Co

nv
1D

 +
 R

eL
U

D
ro

po
ut

3x

G
lo

ba
l M

ax
 P

oo
lin

g

FC
 -

 S
ig

m
oi

d
FC

 -
 S

ig
m

oi
d

FC
 -

 S
ig

m
oi

d

FC
 -

 2
56

 -
 R

eL
U

FC
 -

 2
56

 -
 R

eL
U

FC
 -

 2
56

 -
 R

eL
U

In
pu

t 2
In

pu
t 1

Figure 3.2: Detailed architectural specification of transformation prediction and activity recognition networks. We propose a
framework for self-supervised representation learning fromunlabeled sensor data (such as an accelerometer). Various
signal transformations are utilized to establish supervisory tasks, and the network is trained to differentiate between
an original and transformed version of the input. The three blocks of Conv + ReLU and Dropout layers, which is
followed by a Global Max Pooling are similar across both networks. However, the multi-task model has a separate
head for each task. Likewise, the activity recognizer has an additional densely connected layer. The TPN is pretrained
on self-supervised data, and the learned weights are transferred (depicted by a dashed arrow) and kept frozen to the
lower model, which is then trained to detect various activities.

3.3 Experiments

In this section, we conduct an extensive evaluation of our approach on several publicly avail
able datasets for human activity recognition (HAR) in order to determine the quality of
learned representations, transferability of the features, and benefits of this in the lowdata
regime. The selfsupervised tasks (i.e., transformation predictions) are utilized for learning
rich sensor representations that are suitable for an endtask. We emphasize that achieving
high performance on these surrogate tasks is not our focus.

25

Table 3.1: Summary of datasets used in our evaluation. These datasets are selected based on the diversity of participants, device
types and activity classes. Further details on the pre-processing of each data source and the number of users utilized
are discussed in Section 3.3.1.

Dataset No. of users No. of activity classes
HHAR 9 6
UniMiB 30 9
UCI HAR 30 6
MobiAct 67 11
WISDM 36 6
MotionSense 24 6

3.3.1 Datasets

We consider six publicly available datasets to cover a wide variety of device types, data collec
tion protocols, and activity recognition tasks performed with smartphones in different envi
ronments. Some important aspects of the data are summarized in Table 3.1. Below, we give
brief descriptions of every dataset summarizing its key points.

HHAR

The Heterogeneity Human Activity Recognition (HHAR) dataset [56] contains signals from
two sensors (accelerometer and gyroscope) of smartphones and smartwatches for 6 different
activities, i.e. biking, sitting, standing, walking, stairsup and stairsdown. The 9 participants
executed a scripted set of activities for 5 minutes to get equal class distribution. The subjects
had 8 smartphones in a tight pouch carried around their waist and 4 smartwatches, 2 worn on
each arm. In total, they used 36 different smart devices of 13 models from 4 manufacturers
to cover a broad range of devices for sampling rate heterogeneity analysis. The sampling rate
of signals varied significantly across phones with values between 50200Hz.

UniMiB

This dataset [57] contains triaxial accelerometer signals collected from a Samsung Galaxy
Nexus smartphone at 50Hz. Thirty subjects participated in the data collection process form
ing a diverse sample of the population with different height, weight, age, and gender. The
subject placed the device in her trouser’s front left pocket for a partial duration and in the right
pocket for the remainder of the experiment. We utilized the data of 9 activities of daily living
(i.e., standing up from sitting, standing up from lying, walking, running, upstairs, jumping,
downstairs, lying down from sitting, sitting).

UCI HAR

The UCI HAR dataset [58] is obtained from a group of 30 volunteers with a waistmounted
Samsung Galaxy S2 smartphone. The accelerometer and gyroscope signals are collected at

26

50Hz when subjects performed the following six activities: standing, sitting, laying down,
walking, downstairs and upstairs.

MobiAct

The MobiAct³ dataset [59] contains signals from a smartphone’s inertial sensors (accelerometer,
gyroscope, and orientation) for 11 different activities of daily living and 4 types of falls. It
is collected with a Samsung Galaxy S3 smartphone from 66 participants of different gender,
age group, and weight through more than 3200 trials. The device is placed in a trouser’s
pocket freely selected by the subject in any random orientation to capture everyday usage
of the phone. We used the data from 61 participants who have data samples for any of the
following 11 activities: sitting, walking, jogging, jumping, stairs up, stairs down, stand to sit,
sitting on a chair, sit to stand, car stepin, and car stepout.

WISDM

The dataset from the Wireless Sensor and Data Mining (WISDM) project [60] was collected
in a controlled study from 29 volunteers, who carried the cell phone in their pockets. The
data were recorded for 6 different activities (i.e., sit, stand, walk, jog, ascend stairs, descend
stairs) via an app developed for an Android phone. The accelerometer signal was acquired
every 50ms (sampling rate of 20Hz). We use the data of all the users available in the raw data
file with user ids ranging from 1 to 36.

MotionSense

The MotionSense dataset [61] comprises an accelerometer, gyroscope, and altitude data from
24 participants of varying age, gender, weight, and height. It was collected using an iPhone6s,
which is kept in the user’s front pocket. The subjects performed 6 different activities (i.e.,
walking, jogging, downstairs, upstairs, sitting, and standing.) in 15 trials under similar en
vironments and conditions. The study aimed to infer physical and demographics attributes
from timeseries data in addition to the detection of activities.

3.3.2 PreProcessing and Assessment Strategy

We applied minimal preprocessing on the accelerometer signals as deep neural networks are
very good at learning abstract representations directly from raw data [62]. We segmented the
signals into fixed size windows that have 400 samples with 50% overlap, for all the datasets
under consideration. The appropriate window size is a taskspecific parameter and could
be tuned or chosen based on prior knowledge for improved performance. Here, we utilize
the same window size based on earlier exploration across datasets and to keep experimental
evaluation impartial towards the effect of this hyperparameter. Next, we divide each dataset

³second release

27

into training and test sets through randomly selecting 20−30% of the users for testing and the
rest for training and validation; depending on the dataset size. We used the ceiling function
to select number of users, e.g. from HHAR dataset 3 users are used for evaluation out of 9.
The training set users’ data are further divided into 80% for training the network and 20%
for validation and hyperparameter tuning. Importantly, we also evaluate our models through
usersplit based 5folds crossvalidation, wherever it is appropriate. Finally, we normalize the
data by applying znormalization with summary statistics calculated from the training set. We
generate selfsupervised data from an unlabeled training set that is produced as a result of the
processing as mentioned earlier. We utilize the data generation procedure as explained earlier
in Section 3.2.3.

Furthermore, due to the large size of the HHAR dataset and in order to reduce computa
tional load, we randomly sample 4000 instances from each users’ data to produce transformed
signals. Likewise, in the case of UniMiB because of its relatively small size, we generate 5 times
more transformed instances. We evaluate the performance with Cohen’s kappa, a weighted
version of precision, recall and fscore metrics to be robust against inherent imbalanced nature
of the datasets. It is important to highlight that, we use a network architecture with the same
configuration across the datasets to evaluate models’ performance in order to highlight improvement
is indeed due to selfsupervision and not due to architectural modifications.

3.3.3 Results

Quantifying the Quality of Learned Feature Hierarchies

We first evaluate our approach to determine the quality of learned representations versus the
model depth (i.e., the layer number from which the features come). This analysis helps in
understanding whether the features coming from different layers vary in quality concerning their
performance on an endtask and if so, which layer should be utilized for this purpose. To this end,
we first pretrain our TPN in a selfsupervised manner and learn classifiers on top of ConvA,
ConvB, and ConvC layers independently, for several activity recognition datasets. These
classifiers (see Figure 3.2) are trained in a supervised way while keeping the learned features
fixed during the optimization process. Figure 3.3 provides kappa values on test sets averaged
across 10independent runs to be robust against differences in weight initializations of the
classifiers. We observe that for a majority of the datasets the model performance improves with
increasing depth apart from HHAR, where features from ConvB layer results in improved
detection rate with a kappa of 0.774 compared to 0.679 of ConvC. It may be because the
representation of the last layer starts to become too specific on the transformation prediction
task or it may also be because we did not utilize the entire dataset for the selfsupervision.
To be consistent, in the subsequent experiments we used features from the last convolutional
layer for all the considered datasets. For a new task or recognition problem, we recommend
performing a similar analysis to identify layer/block of the network that gives optimal results
on the particular dataset.

28

HHAR UniMiB UCI HAR MobiAct WISDM MotionSense
Dataset

0.0

0.2

0.4

0.6

0.8
Ka

pp
a

ConvA
ConvB
ConvC

Figure 3.3: Evaluation of activity classification performance using the features learned based on self-supervision (per layer). We
train an activity classifier on-top of each of the temporal convolution blocks (ConvA, ConvB, and ConvC) that
are pretrained with self-supervision. The reported results are averaged over 10 independent runs (i.e., training an
activity classifier from scratch). ConvA, ConvB, and ConvC have 32, 64, and 96 feature maps, respectively.

Comparison against FullySupervised and Unsupervised Approaches

In this subsection, we assess our selfsupervised representations learned with TPN against
other unsupervised and fullysupervised techniques for feature learning. Table 3.2 summa
rizes the results with respect to four evaluation metrics (namely, precision, recall, fscore, and
kappa) for 10independent runs on the six datasets described earlier. For the Random Init.
entries, we keep the convolutional network layers frozen during optimization and train only
a classifier in a supervised manner. Likewise, for an Autoencoder, we keep the network ar
chitecture the same and pretrain it in an unsupervised way. Afterward, the weights of the
encoder are kept frozen, and a classifier is trained on top as usual. The SelfSupervised entries
show the result of the convolutional network pretrained with our proposed method, where a
classifier is trained on top of the frozen network in a supervised fashion. Furthermore, Self
Supervised (FT) entries highlight the performance of the network trained with selfsupervision
but the last convolution layer, i.e. ConvC is finetuned along with a classifier during training
on the activity recognition task. Training an activity classification model on top of randomly
initialized convolutional layers poorly performs as expected, which is evidence that the perfor
mance improvement is not only because of the activity classifier. These results are followed by a
widely used unsupervised learning method, i.e. an autoencoder. The selfsupervised technique
outperforms existing methods and achieves results that are on par with the fullysupervised
model. It is important to note that, for our proposed technique, only the classifier layers
are randomly initialized and trained with activity specific labels (the rest is transferred from
the selfsupervised network). We also observe that finetuning the last convolutional layer
further improves the classification performance of the downstream tasks on several datasets
such as UniMiB, HHAR, MobiAct, and UCI HAR. The results show that TPN can learn highly
generalizable representations, thus reducing the performance gap of feature learning with the

29

(endtoend) supervised case. For a more rigorous evaluation, we also performed 5folds (user
split based) crossvalidation for every method on all the datasets. The results are provided in
Table 3.4, which also shows that the selfsupervised method reduces the performance gap with
the supervised setting.

Table 3.2: Task Generalization: Evaluating self-supervised representations for activity recognition. We compare the proposed
self-supervised method for representation learning with fully-supervised and unsupervised approaches. We use the
same architecture across all the experiments. The self-supervised TPN is trained to recognize transformations applied
on the input signal while the activity classifier is trained on top of these learned features where Self-Supervised (FT)
entry provides results when the last convolution layer is fine-tuned. The Random Init. entries present results when the
convolution layers are randomly initialized and kept frozen during the training of the classifier. The results reported
are averaged over 10 independent runs to be robust against variations in theweight initialization and the optimization
process.

(a) HHAR
P R F K

Random Init. 0.3882±0.0557 0.3101±0.0409 0.2141±0.0404 0.1742±0.0488
Supervised 0.7624±0.0312 0.7353±0.0308 0.7276±0.0297 0.6816±0.0371
Autoencoder 0.7317±0.0451 0.6657±0.0663 0.6585±0.0724 0.5994±0.0784
SelfSupervised 0.7985±0.0155 0.777±0.0199 0.7666±0.0234 0.731±0.0243
SelfSupervised (FT) 0.8218±0.0256 0.797±0.0211 0.7862±0.0187 0.7555±0.025

(b) UniMiB
P R F K

Random Init. 0.4256±0.0468 0.3546±0.037 0.2775±0.0491 0.2243±0.0474
Supervised 0.8276±0.0148 0.8096±0.0266 0.8097±0.0248 0.7815±0.0299
Autoencoder 0.5922±0.0191 0.5557±0.0232 0.5376±0.0339 0.4824±0.0275
SelfSupervised 0.8133±0.0077 0.7954±0.014 0.7929±0.016 0.7642±0.0162
SelfSupervised (FT) 0.8506±0.007 0.8432±0.0049 0.8425±0.0054 0.8197±0.005

(c) UCI HAR
P R F K

Random Init. 0.6189±0.0648 0.4392±0.0692 0.3713±0.0952 0.3133±0.0866
Supervised 0.9059±0.0133 0.8998±0.0139 0.8981±0.0148 0.8789±0.0168
Autoencoder 0.8314±0.0590 0.7877±0.1112 0.7772±0.1306 0.7425±0.1359
SelfSupervised 0.9100±0.0081 0.9011±0.0139 0.8987±0.0155 0.8803±0.0169
SelfSupervised (FT) 0.9057±0.0121 0.897±0.0185 0.8946±0.019 0.8754±0.0222

(d) MobiAct
P R F K

Random Init. 0.4749±0.1528 0.3452±0.1128 0.2813±0.0982 0.1915±0.1017
Supervised 0.908±0.0066 0.895±0.0167 0.8975±0.0133 0.8665±0.0202
Autoencoder 0.7493±0.0328 0.7581±0.0354 0.7293±0.0452 0.6772±0.0517
SelfSupervised 0.9095±0.0035 0.9059±0.0059 0.906±0.0053 0.8795±0.0073
SelfSupervised (FT) 0.9194±0.0057 0.9102±0.0114 0.9117±0.0093 0.8855±0.014

(e) WISDM
P R F K

Random Init. 0.5942±0.0599 0.3543±0.077 0.358±0.0837 0.2224±0.0656
Supervised 0.9024±0.0076 0.8657±0.0206 0.8764±0.0168 0.8211±0.0258
Autoencoder 0.6561±0.2775 0.6631±0.1623 0.6358±0.2355 0.5106±0.288
SelfSupervised 0.8894±0.0096 0.8484±0.0269 0.8593±0.0225 0.7986±0.0334
SelfSupervised (FT) 0.8999±0.0111 0.8568±0.0375 0.8686±0.0314 0.8106±0.0466

(f) MotionSense
P R F K

Random Init. 0.5999±0.0956 0.5029±0.0931 0.4681±0.1105 0.376±0.1176
Supervised 0.9164±0.0053 0.8993±0.0091 0.9027±0.0085 0.8763±0.011
Autoencoder 0.8255±0.0132 0.8116±0.0195 0.8109±0.0169 0.7659±0.0226
SelfSupervised 0.8979±0.0073 0.8856±0.0087 0.8864±0.0083 0.8589±0.0106

30

SelfSupervised (FT) 0.9153±0.0088 0.8979±0.0092 0.9005±0.0094 0.8744±0.0112
Table 3.2 – continued from previous page

Assessment of Individual SelfSupervised Tasks in Contrast with Multiple Tasks

In Figure 3.4, we show comparative performance analysis of single selfsupervised tasks with
each other and importantly with a multitask setting. This assessment helps us in understand
ing whether selfsupervised features extracted via jointly learning to solve multiple tasks are any
better (for activity classification) than independently solving individual tasks and whether multi
task learning helps in learning more useful sensor semantics. To achieve this, we pretrain a TPN
on each of the selfsupervised tasks and transfer the weights for learning an activity recogni
tion classifier. We observe in all the cases that learning representations via solving multiple
tasks lead to far better performance on the endtask. This further highlights that the features
learned through various selfsupervised tasks have different strengths and weaknesses. There
fore, merging multiple tasks results in an improvement in learning a diverse set of features.
However, we notice that some tasks (such as Channel Shuffled, Permuted, and Rotated) con
sistently performed better compared to others across datasets; achieving a kappa score above
0.60 as evaluated on different activity recognition problems. It highlights an important point
that there may exist a group of tasks, which are reasonably sufficient to achieve a model of
good quality. Furthermore, in Figure 3.10, we plot the kappa score achieved by a multitask
TPN on transformation recognition tasks as a function of the number of training epochs.
This analysis highlights that task complexity varies greatly from one dataset to another and
may help with the identification of trivial auxiliary tasks that may lead to nongeneralizable
features.

In addition to activity classification, for any learning task involving timeseries sensor data
(e.g., as encountered in a various Internet of Things applications), we recommend extracting
features through first solving individual tasks and later focusing on the multitask scenario;
discarding low performing tasks or assigning lowweights to the loss functions of the respective
tasks. Another approach could be to autotune the taskloss weight by taking homoscedastic
uncertainty of each task into account [63].

Effectiveness under SemiSupervised Setting

Our proposed selfsupervised feature learning method attains very high performance on dif
ferent activity recognition datasets. This brings up the question, whether the selfsupervised
representations can boost performance in the semisupervised learning setting as well or not. In
particular, can we use this to perform activity detection with very little labeled data? In
trigued by this, we also evaluate the effectiveness of our approach to semisupervised learning.
Specifically, we initially train a TPN on an entire training set for transformation prediction.
Subsequently, we learn a classifier on top of the last layer’s feature maps with only a subset of
the available accelerometer samples and their corresponding activity labels. For training an ac
tivity classifier, we use for each category (class) 2, 5, 10, 20, 50, and 100 examples. Note that,
210 samples per class represent a realworld scenario of acquiring a (small) labeled dataset
from human users with minimal interruption to their daily routines, hence, making self

31

F K P R
Metrics

Jittered
Permuted

Rotated
Horizontal Flipped

Negation
Channel Shuffled

Time Warped
Scaled

All

Ta
sk

s
0.1293 0.0465 0.2566 0.2060
0.6357 0.5924 0.6896 0.6633
0.6602 0.5962 0.6718 0.6641
0.7605 0.7205 0.7834 0.7686
0.1650 0.0886 0.2866 0.2422
0.6407 0.5668 0.6954 0.6396
0.6909 0.6355 0.6994 0.6971
0.6102 0.5417 0.6682 0.6186
0.7666 0.7309 0.7985 0.7770

HHAR

F K P R
Metrics

Jittered
Permuted

Rotated
Horizontal Flipped

Negation
Channel Shuffled

Time Warped
Scaled

All

Ta
sk

s

0.1164 0.0325 0.1414 0.2002
0.7571 0.7210 0.7744 0.7584
0.5864 0.5416 0.6169 0.6067
0.5048 0.4559 0.5475 0.5365
0.7000 0.6587 0.7322 0.7048
0.5847 0.5327 0.6111 0.5983
0.5352 0.4911 0.5791 0.5638
0.4845 0.4483 0.5684 0.5292
0.7929 0.7642 0.8133 0.7954

UniMiB

F K P R
Metrics

Jittered
Permuted

Rotated
Horizontal Flipped

Negation
Channel Shuffled

Time Warped
Scaled

All

Ta
sk

s

0.6680 0.6644 0.6844 0.7242
0.8881 0.8686 0.9012 0.8914
0.8624 0.8374 0.8923 0.8656
0.8854 0.8617 0.8905 0.8856
0.8042 0.7636 0.8363 0.8048
0.7387 0.6961 0.8040 0.7479
0.6991 0.6380 0.7952 0.6994
0.8456 0.8114 0.8551 0.8441
0.8987 0.8803 0.9100 0.9011

UCI HAR

F K P R
Metrics

Jittered
Permuted

Rotated
Horizontal Flipped

Negation
Channel Shuffled

Time Warped
Scaled

All

Ta
sk

s

0.3993 0.3116 0.5377 0.4698
0.8538 0.8166 0.8569 0.8581
0.8926 0.8628 0.8994 0.8927
0.8640 0.8224 0.8792 0.8606
0.7386 0.6816 0.7387 0.7586
0.8544 0.8122 0.8646 0.8529
0.8330 0.7783 0.8596 0.8248
0.8655 0.8242 0.8817 0.8614
0.9060 0.8795 0.9095 0.9059

MobiAct

F K P R
Metrics

Jittered
Permuted

Rotated
Horizontal Flipped

Negation
Channel Shuffled

Time Warped
Scaled

All

Ta
sk

s

0.7512 0.6315 0.8066 0.7220
0.8180 0.7353 0.8686 0.7996
0.8074 0.7266 0.8504 0.7931
0.7619 0.6620 0.8286 0.7391
0.4729 0.3170 0.4818 0.5469
0.7651 0.6663 0.8142 0.7440
0.7597 0.6541 0.8314 0.7322
0.8011 0.7153 0.8309 0.7860
0.8384 0.7718 0.8732 0.8274

WISDM

F K P R
Metrics

Jittered
Permuted

Rotated
Horizontal Flipped

Negation
Channel Shuffled

Time Warped
Scaled

All

Ta
sk

s

0.8096 0.7634 0.8341 0.8086
0.8789 0.8476 0.8921 0.8763
0.8756 0.8413 0.8897 0.8713
0.8345 0.7907 0.8591 0.8297
0.2747 0.1651 0.3858 0.3362
0.8384 0.7997 0.8482 0.8381
0.8521 0.8159 0.8757 0.8507
0.8641 0.8344 0.8803 0.8673
0.8864 0.8589 0.8979 0.8856

MotionSense

Figure 3.4: Comparison of individual self-supervised tasks with the multi-task setting. The TPN is pretrained for solving a par-
ticular task and the activity classifier is trained on-top of the learned features. We report the averaged results of
evaluation metrics for 10 independent runs, where F, K, P, and R refer to F-score, Kappa, Precision and Recall, respec-
tively. We observe that multi-task learning improves performance in all the cases with tasks such as Channel Shuffled,
Permuted, and Rotated consistently performed better compared to other tasks across datasets.

supervision from unlabeled data of great value. Likewise, we believe, our analysis of learning
with very few labeled instances across datasets is the first attempt in quantifying the amount
of labeled data required to learn an activity recognizer of decent quality. For selfsupervised
models, as earlier, we either kept the weights frozen or only finetune the last ConvC layer.

In Figure 3.5, we plot the average kappa of 10independent runs as a function of the number
of available training examples. For each run, we randomly sample desired training instances
and train a model from scratch. Note that, we utilize the same instances for evaluating both

32

2 50 100
Training instances per class

0.4

0.5

0.6

0.7
Ka

pp
a

HHAR

Supervised
Ours: Semi-Supervised
Ours: Semi-Supervised (FT)

2 50 100
Training instances per class

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ka
pp

a

UniMiB

Supervised
Ours: Semi-Supervised
Ours: Semi-Supervised (FT)

2 50 100
Training instances per class

0.5

0.6

0.7

0.8

0.9

Ka
pp

a

UCI HAR

Supervised
Ours: Semi-Supervised
Ours: Semi-Supervised (FT)

2 50 100
Training instances per class

0.3

0.4

0.5

0.6

0.7

0.8

Ka
pp

a

MobiAct

Supervised
Ours: Semi-Supervised
Ours: Semi-Supervised (FT)

2 50 100
Training instances per class

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ka

pp
a

WISDM

Supervised
Ours: Semi-Supervised
Ours: Semi-Supervised (FT)

2 50 100
Training instances per class

0.4

0.5

0.6

0.7

0.8

0.9

Ka
pp

a

MotionSense

Supervised
Ours: Semi-Supervised
Ours: Semi-Supervised (FT)

Figure 3.5: Generalization of the self-supervised learned features under semi-supervised setting. The TPN is pretrained on an
entire set of unlabeled data in a self-supervised manner and the activity classifier is trained from scratch on 2, 5, 10,
20, 50, and 100 labeled instances per class. The blue curve (baseline) depicts the performancewhen an entire network
is trained in a standard supervised way while the orange curve shows performance when we keep the transferred
layers frozen. The green curve illustrates the kappa score when the last layer is fine-tuned along with the training of
a classifier on the available set of labeled instances. The reported results are averaged over 10 independent runs for
each of the evaluated approaches. The results with weighted f-score are provided in Figure 3.11 of the Appendix.

supervised baseline and our proposed method. The fullysupervised baseline (blue curve)
shows network performance when a model is trained only with the labeled data. The proposed
selfsupervised pretraining technique, in particular, the version with finetuning of the last
ConvC layer, tremendously improved the performance. The difference in the performance
between supervised and selfsupervised feature learning is significant on MotionSense, UCI
HAR, MobiAct, and HHAR datasets in lowdata regime (i.e. with 210 labeled instances per
class). More notably, we observe that pretraining helps more in a semisupervised setting when
the data are collected from a wide variety of devices; simulating a reallife setting. Finally,
we highlight that a simple convolutional network is used in our experiments to show the
feasibility of selfsupervision from unlabeled data. We believe a deeper network trained on
a bigger unlabeled dataset will further improve the quality of learned representations for the
semisupervised setting.

Evaluating Knowledge Transferability

We have shown that representations learned by the selfsupervised TPN consistently achieve
the best performance as compared to other unsupervised/supervised techniques and also in a
semisupervised setting. As we have utilized the unlabeled data from the same data source for
selfsupervised pretraining, a next logical question that arises is can we utilize a different (yet

33

similar) data source for selfsupervised representation extraction and gain a performance improve
ment on a task of interest (also in a lowdata regime)? In Table 3.3, we assess the performance
of our unsupervised learned features across datasets and tasks by finetuning them on HAHR,
UniMiB, UCI HAR, WISDM, and MotionSense datasets. For selfsupervised feature learning,
we utilized the unlabeled MobiAct dataset as it is collected from a diverse group of users that
performed twelve activities; highest among other considered datasets both in terms of the
number of users and activities. This makes MobiAct a suitable candidate to perform transfer
learning as it encompasses all the activity classes in other datasets. Of course, we do not utilize
activity labels in MobiAct for selfsupervised representation learning. We begin by pretraining
a network on MobiAct dataset and utilize the learned weights for initialization of an activity
recognition model. Moreover, the latter model is trained in a fullysupervised manner on an
entire training set of a particular dataset (e.g., UniMiB). In comparison with supervised train
ing of the network (from scratch), the weights learned through our technique from a different
and completely unlabeled data source improved the performance in all the cases. On WISDM
and HHAR our results are 3 percentage points better in terms of kappa score. Similarly, on
UniMiB we obtained 4 percentage points improvement over supervised model, i.e. kappa
score increase from 0.781 to 0.821.

Table 3.3: Task and Dataset Generalization: Quantifying the quality of transferred self-supervised network. We pretrain a TPN
onMobiAct dataset with the proposed self-supervised approach. The classifier is added on the transferred model and
trained in an end-to-end fashion on a particular activity recognition dataset. We chose MobiAct for transfer learning
evaluation because of the large number of users and activity classes it covers. The reported results are averaged over
10 independent runs, where P , R, F , and K refer to Precision, Recall, F-score, and Kappa, respectively.

Supervised (From Scratch) Transfer (SelfSupervised)
Dataset

F K F K
HHAR 0.7276±0.0297 0.6816±0.0371 0.7549±0.0452 0.7130±0.0560
UniMiB 0.8097±0.0248 0.7815±0.0299 0.8445±0.0185 0.8214±0.0217
UCI HAR 0.8981±0.0148 0.8789±0.0168 0.9065±0.0152 0.8879±0.0175
WISDM .8764±0.0168 0.8211±0.0258 0.8946±0.0108 0.8517±0.0153
MotionSense 0.9027±0.0085 0.8763±0.011 0.9096±0.0126 0.8843±0.016

Further, we determine the generalization ability in a lowdata regime setting, i.e., when
very few labeled data are attainable from an endtask of interest. We transfer selfsupervised
learned representations on the MobiAct dataset as initialization for an activity recognizer. The
network is trained in a supervised manner on the available labeled instances of a particular
dataset. Figure 3.6 shows average kappa score of 10independent runs of a fullysupervised
(learned from scratch) and transferred models for 2, 5, 10, 20, 50, and 100 labeled instances.
For each training run, the desired instances are randomly sampled, and for both techniques,
the same instances are used for learning the activity classifier. In the majority of the cases,
transfer learning improves the recognition performance especially when the number of labeled
instances per class are very few, i.e. between 2 to 10. In particular, on HHAR the performance
of a model trained with weights transfer is slightly lower in lowdata setting but improves
significantly as the number of labeled data points increases. We think it may be because
of the complex characteristics of the HHAR dataset as it is particularly collected to show
heterogeneity of devices (and sensors) having varying sampling rates and its impact on the
activity recognition performance.

34

2 50 100
Training instances per class

0.3

0.4

0.5

0.6

0.7
Ka

pp
a

HHAR

Supervised
Transfer

2 50 100
Training instances per class

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ka
pp

a

UniMiB

Supervised
Transfer

2 50 100
Training instances per class

0.5

0.6

0.7

0.8

0.9

Ka
pp

a

UCI HAR

Supervised
Transfer

2 50 100
Training instances per class

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ka
pp

a

WISDM

Supervised
Transfer

2 50 100
Training instances per class

0.4

0.5

0.6

0.7

0.8

Ka
pp

a

MotionSense

Supervised
Transfer

Figure 3.6: Assessment of the transferred self-supervised learned features from a different but related dataset (MobiAct) under
semi-supervised setting. We evaluate the performance of the self-supervised approach when different unlabeled
data are accessible for representation learning but very few labeled instances are available for training a network on
the task of interest. The TPN is pretrained initially on MobiAct data and the activity classifier is added on-top; later
an entire network is trained in an end-to-end fashion on few labeled instances. The reported results are averaged
over 10 independent runs for each of the evaluated approaches when we randomly sample 2, 5, 10, 20, 50, and 100
for learning an activity classifier. The results with weighted f-score are provided in Figure 3.12 of the Appendix.

Determining Representational Similarity

The previous experiments establish the effectiveness of selfsupervised sensor representations
for activity classification that are significantly better than unsupervised and onpar with fully
supervised approaches. The critical question that arises is whether the selfsupervised repre
sentations are similar to those learned via direct supervision, i.e., with activity labels. The
interpretability of the neural networks and deciphering of the learned representations have
recently gained significant attention, especially, for images (see [64] for an excellent review).
Here, to better understand the similarity of the extracted representation from TPN and the
supervised network, we utilize singular vector canonical correlation analysis (SVCCA) [53],
saliency maps [54] and tdistributed stochastic neighbor embedding (tSNE) [55].

Insights on Representational Similarity with Canonical Correlation

The SVCCA allows for a comparison of the learned distributed representations across different
networks and layers. It does so through identifying optimal linear relationships between two
sets of multidimensional variates (i.e., neuron activation vectors) arising from an underlying
process (i.e., a neural network being trained on a specific task) [53]. Figure 3.7 provides a
mean similarity of top 20 SVCCA correlation coefficients for all pairs of layers for a self

35

supervised (trained to predict transformations) and a fullysupervised network. We averaged
20 coefficients as SVCCA implicitly assumes that all CCA vectors are equally crucial for the
representations at a specific layer. However, there is plenty of evidence that highperforming
deep networks do not utilize the entire dimensionality of a layer [65, 66, 67]. Due to this,
averaging over all the coefficients underestimates the degree of representational similarity. To
apply SVCCA, we train both the networks as explained earlier and produce activations of each
layer. For a layer, where the number of neurons is larger than the layer in comparison, we
randomly sample neuron activation vectors to have comparable dimensionality. In Figure 3.7
each grid entry represents a mean SVCCA similarity between two layers of different networks.
We observe a high correlation among temporal convolution layers trained with two different
methods across all the evaluated datasets. In particular, a strong gridlike structure emerges
between the last layers of the networks, which is because those layers are learned from scratch
with activity labeled data and result in identical representations.

i c1 c2 c3 gp fc o

i
c1

c2
c3

gp
fc

o

HHAR

i c1 c2 c3 gp fc o

i
c1

c2
c3

gp
fc

o

UniMiB

i c1 c2 c3 gp fc o

i
c1

c2
c3

gp
fc

o

UCI HAR

i c1 c2 c3 gp fc o

i
c1

c2
c3

gp
fc

o

MobiAct

i c1 c2 c3 gp fc o

i
c1

c2
c3

gp
fc

o

WISDM

i c1 c2 c3 gp fc o

i
c1

c2
c3

gp
fc

o

MotionSense

0.2

0.4

0.6

0.8

Fu
lly

-S
up

er
vis

ed

Self-Supervised

Figure 3.7: CCA similarity between fully-supervised and self-supervised networks. We employ the SVCAA technique [53] to de-
termine the representational similarity between model layers trained with our proposed approach and standard
supervised setting. Each pane is a matrix of size layers × layers with each entry showing mean similarity (i.e., an
average of top-20 correlation coefficients) between the two layers. Note that there is a strong relation between
convolutional layers even though the self-supervised network is pretrained with unlabeled data; showing that fea-
tures learned by our approach are very similar to those learned directly via supervised learning, with activity classes.
Likewise, a grid-like structure appears between the last layers of the networks depicting high similarity as those layers
are always (randomly initialized and) trained with activity labels.

Visualizing Salient Regions

To further understand the predictions produced by both models, we use saliency maps [54]
for the highestscoring class on randomly selected instances from the MotionSense dataset.
Saliency maps highlight which time steps largely affect the output through computing gradient
of the loss function with respect to each input time step. More formally, let x = [x1, . . . , xN]
be an accelerometer sample of length N and Cθ(x) be the class probability produced by a

36

network Cθ(.). The saliency score of each input element xk indicating its influence on the
prediction is calculated as:

Sk = | ∂L
∂xk

|

where L is the negative loglikelihood loss of an activity classification network for an input
example x.

Figure 3.8 provides a saliency mapping of the same input produced by the two networks
for a class with the highest score. To aid interpretability of the saliency score, we calculate
a magnitude of each triaxial accelerometer sample, effectively combining all three channels.
The actual input is given in the topmost pane, the magnitudes with varying color intensity
are shown in the bottom panes. The dark color illustrates the regions that contribute most
to the network’s prediction. We observe that the saliency maps of both selfsupervised and
fullysupervised networks hint towards similar regions that are crucial for deciding on the class
label.

Interestingly, for the Sitting class instance both network mainly focus on a smaller region of
the input with slightly more variation in the values. We think it could be because one thing
that a network learns is to find periodic variations in the signal (such as peaks and slopes).
Hence, it pays more attention even to slightest fluctuation, but it decides on the Sitting label
as the signal remains constant (before and after minor changes) which is an entirely different
pattern as compared to the instances of other classes. This analysis further validates the point
that our selfsupervised network learns generalizable features for activity classification.

Visualization of HighLevel Feature Space through tSNE

tSNE is a nonlinear technique for exploring and visualizing multidimensional data [55]. It
approximates a lowdimensional manifold of a highdimensional counterpart through mini
mizing KullbackLeibler divergence between them with a gradientbased optimization method.
More specifically, it maps multidimensional data onto a lower dimensional space and dis
covers patterns in the input through identifying clusters based on the similarity of the data
points. Here, the activations from global maxpooling layers (of both selfsupervised and
fullysupervised networks) with 96 hidden units are projected on to a 2D space. Figure 3.9
provides the tSNE embeddings showing high semantic relevance of the learned features for
various activity classes. We notice that the selfsupervised features largely correspond to those
learned with the labeled activity data. Importantly, the clusters of data points across two fea
ture learning strategies are similar, e.g. in UCI HAR, the activity classes like Upstairs, Down
stairs and Walking are grouped. Likewise, in HHAR, the data points for Walking, Upstairs, and
Downstairs are closeby as opposed to others in the embeddings of both networks. Finally, it
is important to note that tSNE is an unsupervised technique which does not use class labels;
the activity labels are just used for final visualization.

37

Signal

Self-Supervised

Fully-Supervised

Downstairs
Signal

Self-Supervised

Fully-Supervised

Jogging

Signal

Self-Supervised

Fully-Supervised

Sitting
Signal

Self-Supervised

Fully-Supervised

Standing

Signal

Self-Supervised

Fully-Supervised

Upstairs
Signal

Self-Supervised

Fully-Supervised

Walking

Figure 3.8: Saliency maps [54] of randomly selected instances from MotionSense dataset. The input signal is illustrated in the
top pane with themagnitude computed from the sample shown in the bottom panes for better interpretability. The
strong colored intensities exhibit the regions that substantially affect the model predictions. The saliency mapping
of both networks focus on similar input areas which shows that the self-supervised representations are useful for the
end-task.

3.4 Related Work

Deep learning methods have been successfully used in several applications of ubiquitous com
puting, pervasive intelligence, health, and wellbeing [3, 68, 69, 70, 71, 72] and eliminate the
need of handcrafted feature engineering. Convolutional and recurrent neural networks have
shown dominant performance in solving numerous highlevel recognition tasks from tempo
ral data such as activity detection and stress recognition [69, 73, 74]. In particular, CNNs are
becoming increasingly popular in sequence (or timeseries) modeling due to their ability of
weight sharing, translation invariance, scale separation and localization of filters in space and
time [62, 75]. In fact, (1D) temporal CNNs are now widely used in the area of HAR (see [73]
for a detailed review), but the prior works are mostly concerned with supervised learning ap
proaches. The training of deep networks requires a huge (carefully) curated dataset of labeled
instances, which in several domains is infeasible due to required manual labeling effort or can
only be possible on a smallscale in a controlled lab environment. This inherent limitation of
the fullysupervised learning paradigm emphasizes the importance of unsupervised learning
to leverage a large amount of unlabeled data for representation learning [29] that can be easily
acquired in a realworld setting.

38

Figure 3.9: t-SNE visualization of the learned representations. We visualize the features from Global Max Pooling layers of fully-
supervised and self-supervised networks by projecting them on 2D space. The clusters show high correspondence
among the representations across datasets. For instance, in UniMiB embeddings the samples belonging to the same
class are close-by as opposed to those from a different class, such as Running and Walking are alongside each other
while data point from SittingDown class are very far. Note that t-SNE embeddings do not use activity labels, they are
only used for final visualizations.

Unsupervised learning has been wellstudied in the literature over the past years. Before
the era of endtoend learning, manual feature design strategies [76] such as those that em
ploy statistical measures have been used with clustering algorithms to discover a latent group
of activities [77]. Although deep learning techniques have almost entirely replaced hand
crafted feature extraction with directly learning rich features from data, representation learn
ing still stands as a fundamental problem in machine learning (see [29] for an indepth review).
The classical approaches for unsupervised learning include autoencoders [78], restricted Boltz
mann machines [79], and convolutional deep belief networks [80]. Another emerging line of
research for unsupervised feature learning (also studied in this work), which has shown promis
ing results and does not require manual annotations, is selfsupervised learning [81, 82, 83].

39

These methods exploit the inherent structure of the data to acquire a supervisory signal for
solving a pretext task with reliable and widely used supervised learning schemes.

Selfsupervision has been actively studied recently in the vision domain, and several surro
gate tasks have been proposed for learning representations from static images, videos, sound,
and in robotics [35, 36, 37, 39, 45, 46, 47, 48, 49, 50, 84, 85, 86, 87]. For example, in images
and videos, spatial and temporal contexts, respectively, provide forms of rich supervision to
learn features. Similarly, colorization of grayscale images [36, 46], rotation classification [35],
odd sequence detection [48], frame order prediction [47], learning the arrow of time [40],
audiovisual correspondence [39, 49] and synchronization [87, 88] are some of the recently ex
plored directions of selfsupervised techniques. Furthermore, multiple such tasks are utilized
together in a multitask learning setting for solving diverse visual recognition problems [45].
These selfsupervised learning paradigms have shown to extract highlevel representations that
are on par with those acquired through fullysupervised pretraining techniques (e.g., with Im
ageNet labels) and they tremendously help with transfer and semisupervised learning scenar
ios. Inspired from this research direction, we explore multitask selfsupervision for learning
representations from sensory data through utilizing transformations of the signals.

Some earlier works on timeseries analysis have explored transformations to exploit invari
ances either through architectural modifications (to automatically learn taskrelevant varia
tions) or less commonly with augmentation and synthesis. In [51] taskspecific transforma
tions (such as added noise and rotation) are applied to wearable sensor data to augment and
improve the performance of Parkinson’s disease monitoring systems. Saeed et al. [23] utilized
an adversarial autoencoder for classconditional (multimodal) synthetic data generation for
the behavioral context in a reallife setting. Moreover, Oh et al. [89] focused on learning
invariances directly from clinical timeseries data with specialized neural network architec
ture. Razavian et al. [90] used convolution layers of varying size filters to capture different
resolutions of temporal patterns. Similarly, through additional preprocessing of the origi
nal data Cui et al. [91] used transformed signals as extra channels to the model for learning
multiscale features. To summarize, these works are geared towards learning supervised net
works for specific tasks through exploiting invariances, but they do not address the topics of
semisupervised and unsupervised learning.

To the best of our knowledge, the work presented here is the first attempt of selfsupervision
for sensor representation learning, in particular for HAR. Our work differs from the afore
mentioned works in several ways as we learn representations with selfsupervision from com
pletely unlabeled data and without using any specialized architecture. We show that when
training a CNN to predict generally known (timeseries) transformations [51, 52] as a surro
gate task, the model can learn features that are on a par with a fullysupervised network and
far better than unsupervised pretraining with an autoencoder. We also demonstrate that the
learned representations from a different (but related) unlabeled data source can be successfully
transferred to improve the performance of diverse tasks even in the case of semisupervised
learning. In terms of transfer learning, our approach also differs significantly from some ear
lier attempts [92, 93] that were concerned with features transferability from a fullysupervised
model learned from inertial measurement units data, as our approach utilizes widely available
smartphones and does not require labeled data. Finally, the proposed technique is also dif
ferent from previously studied unsupervised pretraining methods such as autoencoders [94],

40

restricted Boltzmann machines [95] and sparse coding [96] as we employ an endtoend (self)
supervised learning paradigm on multiple surrogate tasks to extract features.

3.5 Conclusion

We present a novel approach for selfsupervised sensor representation learning from unlabeled
data with a focus on smartphonebased human activity recognition (HAR). We train a multi
task temporal convolutional network to recognize potential transformations that may have
been applied to the raw input signal. Despite the simplicity of the proposed selfsupervised
technique (and the network architecture), we show that it enables the convolutional model to
learn highlevel features that are useful for the endtask of HAR. We exhaustively evaluate our
approach under unsupervised learning, semisupervised learning and transfer learning settings
on several publicly available datasets. The performance we achieve is consistently superior to or
comparable with fullysupervised methods, and it is significantly better than traditional unsu
pervised learning methods such as an autoencoder. Specifically, our selfsupervised framework
drastically improved the detection rate under semisupervised learning setting, i.e., when very
few labeled instances are available for learning. Likewise, the transferred features learned from
a different but related unlabeled dataset (MobiAct in our case), further improves the perfor
mance in comparison with merely training a model from scratch. Notably, these transferred
representations even boost the performance of an activity recognizer in semisupervised learn
ing from a dataset (or task) of interest. Finally, canonical correlation analysis, saliency map
ping, and tSNE visualizations show that the representations of the selfsupervised network
are very similar to those learned by a fullysupervised model that is trained in an endtoend
fashion with activity labels. We believe that, through utilizing more sophisticated layers and
deep architectures, the presented approach can further reduce the gap between unsupervised
and supervised feature learning.

Various icons used in the figures are created by Anuar Zhumaev, Korokoro, Gregor Cresnar, Becris, Hea Poh
Lin, AdbA Icons, Universal Icons, and Baboon designs from the Noun Project.

41

Appendix

Table 3.4: Evaluating self-supervised representation with (user-split based) 5-folds cross-validation for activity recognition. We
perform this assessment based on user-split of the data with no overlap between training and test sets i.e. distinct
users’ data are used for training and testing of the models. The reported results are averaged over 5-folds.

(a) HHAR
P R F K

Random Init. 0.3429±0.1395 0.302±0.0465 0.2023±0.0333 0.1611±0.0536
Supervised 0.8403±0.0349 0.816±0.0518 0.8076±0.0612 0.7788±0.0624
Autoencoder 0.6068±0.2149 0.594±0.1858 0.5474±0.2182 0.5159±0.2208
SelfSupervised 0.8454±0.0378 0.8239±0.0462 0.8153±0.053 0.7881±0.0556
SelfSupervised (FT) 0.8439±0.0753 0.8101±0.1004 0.8038±0.1072 0.7719±0.1204

(b) UniMiB
P R F K

Random Init. 0.416±0.0307 0.3615±0.0503 0.2875±0.0722 0.2281±0.0622
Supervised 0.805±0.0095 0.7899±0.0153 0.7866±0.0165 0.7576±0.0181
Autoencoder 0.5989±0.0313 0.5743±0.0192 0.5494±0.0227 0.5009±0.0242
SelfSupervised 0.77±0.0211 0.7618±0.0191 0.7577±0.0208 0.724±0.0218
SelfSupervised (FT) 0.8396±0.0226 0.8311±0.0269 0.8285±0.0283 0.8046±0.0309

(c) UCI HAR
P R F K

Random Init. 0.6147±0.1845 0.5019±0.0999 0.4297±0.1141 0.3872±0.1277
Supervised 0.9068±0.0332 0.9035±0.0366 0.903±0.0377 0.8827±0.0446
Autoencoder 0.8745±0.0367 0.8485±0.0604 0.8461±0.0642 0.8161±0.0734
SelfSupervised 0.9054±0.0273 0.8919±0.0388 0.889±0.0444 0.8688±0.0472
SelfSupervised (FT) 0.9125±0.0403 0.906±0.0473 0.9046±0.049 0.8859±0.0573

(d) MobiAct
P R F K

Random Init. 0.4814±0.1405 0.3828±0.0417 0.3018±0.0422 0.191±0.0435
Supervised 0.9121±0.0118 0.9029±0.016 0.9043±0.0153 0.876±0.0198
Autoencoder 0.7488±0.0402 0.749±0.0398 0.7323±0.0408 0.6692±0.0542
SelfSupervised 0.8977±0.0128 0.8838±0.0133 0.8868±0.013 0.8521±0.0165
SelfSupervised (FT) 0.9185±0.0056 0.9129±0.0077 0.9127±0.0067 0.8883±0.0101

(e) WISDM
P R F K

Random Init. 0.6074±0.0555 0.3231±0.0958 0.3318±0.0885 0.1828±0.0623
Supervised 0.8983±0.0185 0.8799±0.0331 0.8846±0.0297 0.8359±0.0452
Autoencoder 0.6878±0.093 0.6868±0.0715 0.6671±0.0797 0.5571±0.1125
SelfSupervised 0.8711±0.0389 0.8369±0.0636 0.8462±0.0556 0.7802±0.0826
SelfSupervised (FT) 0.8842±0.0285 0.8518±0.048 0.8597±0.0409 0.7995±0.0645

(f) MotionSense
P R F K

Random Init. 0.5152±0.0997 0.4237±0.1006 0.3451±0.1069 0.2713±0.1246
Supervised 0.9332±0.0144 0.9219±0.0186 0.9242±0.0172 0.9034±0.0231
Autoencoder 0.8297±0.0658 0.8194±0.0734 0.818±0.075 0.7767±0.0892
SelfSupervised 0.9261±0.0189 0.9176±0.0195 0.9189±0.019 0.8979±0.0244
SelfSupervised (FT) 0.9476±0.0174 0.9373±0.028 0.9391±0.0254 0.9225±0.0345

42

5 10 15 20 25 30
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ka
pp

a

HHAR

5 10 15 20 25 30
Epochs

0.2

0.4

0.6

0.8

1.0

Ka
pp

a
UniMiB

5 10 15 20 25 30
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ka
pp

a

UCI HAR

5 10 15 20 25 30
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ka
pp

a

MobiAct

5 10 15 20 25 30
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ka
pp

a

WISDM

5 10 15 20 25 30
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ka
pp

a
MotionSense

5 10 15 20 25 30
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ka
pp

a

MobiAct
Jittered
Scaled
Rotated

Permuted
Time Warped
Negation

Horizontal Flipped
Channel Shuffled
Average

Figure 3.10: Convergence analysis of transformation recognition tasks. We plot the kappa score of self-supervised tasks (i.e.
transformation prediction) as a function of the training epochs. In order to produce the kappa curves, the TPN
model’s snapshot is saved every second epoch until the defined number of training epochs. For each saved network,
we evaluated its performance on the self-supervised data obtained through processing the corresponding test sets.
Note that the TPN never sees a test set data in any way during its learning phase.

43

2 50 100
Training instances per class

0.4

0.5

0.6

0.7

0.8
F-

Sc
or

e

HHAR

Supervised
Ours: Semi-Supervised
Ours: Semi-Supervised (FT)

2 50 100
Training instances per class

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F-
Sc

or
e

UniMiB

Supervised
Ours: Semi-Supervised
Ours: Semi-Supervised (FT)

2 50 100
Training instances per class

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

F-
Sc

or
e

UCI HAR

Supervised
Ours: Semi-Supervised
Ours: Semi-Supervised (FT)

2 50 100
Training instances per class

0.4

0.5

0.6

0.7

0.8

F-
Sc

or
e

MobiAct

Supervised
Ours: Semi-Supervised
Ours: Semi-Supervised (FT)

2 50 100
Training instances per class

0.4

0.5

0.6

0.7

0.8

F-
Sc

or
e

WISDM

Supervised
Ours: Semi-Supervised
Ours: Semi-Supervised (FT)

2 50 100
Training instances per class

0.5

0.6

0.7

0.8

0.9

F-
Sc

or
e

MotionSense

Supervised
Ours: Semi-Supervised
Ours: Semi-Supervised (FT)

Figure 3.11: Weighted F-score: Generalization of the self-supervised learned features under semi-supervised setting. The re-
ported results are averaged over 10 independent runs for each of the evaluated approaches, for more details see
Section 3.3.3.

2 50 100
Training instances per class

0.4

0.5

0.6

0.7

0.8

F-
Sc

or
e

HHAR

Supervised
Transfer

2 50 100
Training instances per class

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F-
Sc

or
e

UniMiB

Supervised
Transfer

2 50 100
Training instances per class

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

F-
Sc

or
e

UCI HAR

Supervised
Transfer

2 50 100
Training instances per class

0.4

0.5

0.6

0.7

0.8

0.9

F-
Sc

or
e

WISDM

Supervised
Transfer

2 50 100
Training instances per class

0.5

0.6

0.7

0.8

0.9

F-
Sc

or
e

MotionSense

Supervised
Transfer

Figure 3.12: Weighted F-score: Assessment of the transferred self-supervised learned features from a different but related
dataset (MobiAct) under semi-supervised setting. The reported results are averaged over 10 independent runs for
each of the evaluated approaches, for more details see Section 3.3.3.

44

Chapter 4

Sense and Learn: SelfSupervision
for Omnipresent Sensors

This chapter is based on the material from our paper Sense and Learn: SelfSupervision for Om
nipresent Sensors underreivew. This work was done during an internship at Google Research,
Zurich under the supervision of Victor Ungureanu and Beat Gfeller.

4.1 Introduction

In the previous chapter, we show that the emerging paradigm of selfsupervised learning offers
an effective way for learning semanticallymeaningful representations from accelerometer data
that can be used for solving a diverse set of human activity recognition tasks. In this chapter,
we provide a suite of simple yet effective auxiliary tasks that are broadly useful for a spectrum
of downstream tasks and learning representations from different input modalities.

The selfsupervised approaches exploit the inherent structure of the input to derive a su
pervisory signal. The central idea is to define a pretext task, for which annotations can be
acquired without human involvement (directly from the raw data) and can be solved using
some form of unsupervised learning techniques. This intriguing property essentially renders a
deep sensing model, that is developed based on the earlier described principle of ”selflearning”
in nature: a system that can be trained continuously on massive, readilyaccessible data in an
unsupervised manner [13]. However, in this case, the challenge lies in designing complex aux
iliary tasks that can force the deep neural network to capture meaningful features of the input,
while avoiding shortcuts [97] (i.e., simple unintended ways to trivially solve the auxiliary task
without learning anything useful that generalizes beyond the auxiliary task).

In this chapter, we present a principled framework for selfsupervised learning of multisen
sor representations from unlabeled data. Our objective is to have numerous tasks, with each

45

perhaps imposing a distinct prior on to the learning process, resulting in varying quality fea
tures that may differ across sensing datasets. Specifically, as proxy tasks and modalities could
be of more or less relevance to the downstream task’s performance, it is essential to explore and
compare several pretext tasks so as to discover the ones with better generalization properties.
The broad aim is to have many auxiliary tasks in a user’s toolbox such that, either experimen
tally or based on prior knowledge, a relevant task can be selected for training deep models.
Particularly, the objective is to have proxy tasks that enable learning of representations invari
ant to several input deformations that commonly arise in the temporal data, such as sensor
noise and samplingrate disparities, or that can be used jointly in a multitask learning setting.
To this end, we develop eight novel auxiliary tasks that intrinsically obtain supervision from
the unlabeled input signals to learn generalpurpose features with a temporal convolutional
network, such that the pretrained model generalizes well to the end tasks.

Our approach comprises of pretraining a network through selfsupervision with unlabeled
data so that it captures highlevel semantics and can be used either as a feature extractor¹
or utilized as initialization for making successive tasks of interest easier to solve with few la
beled data. To develop the auxiliary tasks, we take advantage of the synchronized multisensor
(or multimodal) data as it belongs to the same underlying phenomena and we exploit it to
create proxy tasks that can capture broadly useful features. Specifically, it can substantially
help in learning powerful representations of each modality, and ultimately learn more abstract
concepts in a jointembedding space. Thus, we use a multistream neural network architec
ture to solve proxy tasks so that it can learn modalityspecific features with a distinct encoder
per modality and subsequently learn a shared embedding space with a modalityagnostic en
coder. The fundamental structure of our framework is illustrated in Figure 4.1. We adopt
a small model architecture in this work to highlight a) effectiveness of selfsupervised tasks
(i.e. improvement is not due to complex architecture) and b) potential of deployment on
resourceconstrained devices for training and inference. The further investigation of resource
usage is beyond the scope of our work and we leave it for future work

We demonstrate that a relatively straightforward suite of auxiliary tasks results in meaning
ful features for diverse problems, including: activity recognition, stress detection, sleep stage
scoring, and WiFi sensing. First, we show that the selfsupervised representations are highly
competitive with those learned with a fullysupervised model, by training a linear classifier on
top of the frozen network, as it is a standard evaluation protocol for assessing the quality of
selfsupervised tasks [42, 98]. Second, we explore finetuning the last layer of the encoder to
gain further improvements over training from scratch. Third, we investigate the effectiveness
of the learned representations in lowdata regime². Using our pretrained network as initial
ization, we achieve a significant performance boost with as little as 5 to 10 labeled instances
per class, which clearly highlights the value of selfsupervised learning. Lastly, we evaluate
the transferability of the features across related datasets/tasks to show the generality of our
method in an unsupervised transfer learning setting.

In summary, our main contributions are as follows:

• We propose Sense and Learn, a generalized selfsupervised learning framework compris

¹i.e. leveraging representations from intermediate layers of the deep neural network
²or in a semisupervised setting

46

Temporal Convolutional
Network

Latent Embeddings

Auxiliary Output

Self-Supervised Data Generator

Omnipresent Sensors

Temporal Convolutional
Network

Latent Embeddings

End-task Output

Pretrained
Network

Unlabeled
Data

Labeled Data
(Downstream Task)

Selected Multisensory Input
(e.g., accelerometer & gyroscope)

Pretraining Phase Learning End-task

Figure 4.1: Illustration of our Sense and Learn representation learning framework. A deep neural network is pretrained with
self-supervision using input modalities from large unlabeled sensory data, such as inertial measurements (or elec-
troencephalogram, heart rate, and channel state information). The learned network can then be utilized as a feature-
extractor or initialization for rapidly solving downstream tasks of interest with few labeled data.

ing several surrogate tasks to extract semantic structural concepts inherent to diverse
types of sensory or timeseries data.

• We extensively evaluate our selfsupervised tasks on various problems (e.g. sleep stage
scoring, activity recognition, stress detection, and WiFi sensing) and learning settings
(i.e. transfer and semisupervised) to significantly improve the data efficiency or lower
the requirement of collecting largescale labeled datasets.

• Our results demonstrate that selfsupervision provides an effective initialization of the
network (and powerful embeddings) that improves performance significantly with min
imal finetuning, and works well in a lowdata regime, which is of high importance for
realworld use cases.

• The developed auxiliary tasks require an equivalent computational cost as standard su
pervised learning and has fewer parameters than autoencoding methods, but provide
better generalization with greatly improved sample efficiency.

• We utilize a small network architecture to show the capability of selfsupervision and
its prospective usage on resourceconstrained devices in future. In particular, the ma
jority of our proposed tasks are designed around the principle that selfsupervised data
generation should not be computationally expensive; thus, it can be readily used for
ondevice learning.

47

4.2 Approach

In this section, we begin with a motivation and an overview of our selfsupervised framework
for learning sensory representations. Next, we provide a formalization of the auxiliary tasks
and discuss an endtoend approach for multimodal learning. Subsequently, we describe the
network architecture design, its implementation, and the optimization procedure.

4.2.1 Motivation and Overview

The key insight behind our technique is that the selfsupervised pretraining acts as a prior
that can give rise to varying quality representations that encode underlying signal semantics at
different levels, which may or may not be useful for a downstreamtask of interest. Therefore,
it is vital to employ multiple auxiliary tasks to discover the suitable inductive bias necessary
to obtain optimal performance on the desired endtask. This intuition is important consid
ering that the timeseries (or sensory) data shows peculiar characteristics (e.g. signaltonoise
ratio, amplitude variances, and sampling rates) depending on the nature of phenomena be
ing recorded. Likewise, there should be an array of tasks to choose from depending on the
learning problem and device type (e.g. available resources, sensor types etc.). Importantly,
we want the selfsupervised model to learn generic features rather than focusing on lowlevel
input details, as a pretrained network has to provide a strong initialization for learning with
limited labeled data and generalize to other related tasks. Thus, instead of relying on a sin
gle auxiliary task, we learn latent representations with a broad set of tasks based on different
objective functions.

We propose a generalized framework comprising of eight pretext tasks that can be used
to learn features from heterogeneous multisensor data. To achieve this, we utilize a tempo
ral convolutional network (TCN) Fθ with a distinct encoder em for each input modality
Im and a shared encoder es for multimodal representation extraction. We choose to use
TCN as an embedding network for sequence modeling due to its effectiveness in captur
ing longterm dependencies and parallelizability at a significantly lower cost than recurrent
networks [75]. For every learning problem, we consider unlabeled multisensor (or multi
modal) data D = {(u1, v1), (u2, v2), . . . (un, vn)} consisting of N examples. Here, un and
vn denote the samples of different modalities (e.g. accelerometer and gyroscope) of the nth
example. The defined pretext tasks exploit the inherent properties of the data to obtain su
pervision from the input pairs without requiring any manual annotation to optimize a certain
loss function. Specifically, each surrogate task employs its own loss function Lt for learning
Fθ differently. For instance, an input reconstruction task employs meansquare error loss,
while another task, concerning the detection of odd segments within a signal, uses negative
loglikelihood; we discuss these in detail in the subsequent section. At a highlevel, we utilize
these objectives as necessary proxies for sensory representation learning without focusing on
how well the model performs on them but on an endtask. After pretraining, Fθ captures a
joint embedding space of the inputs, and thus it can be utilized either as a feature extractor or
as initialization for rapidly learning to solve other problems.

48

4.2.2 Suite of Pretext Tasks

In order to achieve selfsupervised learning of disentangled semantic representations from
unannotated sensory data, we develop several auxiliary tasks for the network. To solve these
tasks, we assume u = {u1, u2, . . . , ul} and v = {v1, v2, . . . , vl} denote multichannel sig
nals of length l from different modalities (e.g. accelerometer and gyroscope). Let zu = eu(u)
and zv = ev(v) be the lowdimensional embeddings computed from the corresponding in
put signals with respective encoders. Likewise, zs = es(eu(u), ev(v)) provides a shared em
bedding of the inputs through fusion that may capture more abstract features. A highlevel
illustration of the selfsupervised learning procedure is shown in Figure 4.1. A selfsupervised
data generation module produces annotated input from unlabeled multisensor data for learn
ing Fθ. We utilize this formulation to define the selfsupervised objectives in the following
subsections.

Blend Detection

To take advantage of the multisensor signals, we define an auxiliary task of detecting in
put blending as a multiclass classification problem. Given an unlabeled input batch B =

∪|B|
i=1{(u, v)}i, we generate three types of instances. First, we keep the original samples as

belonging to a class ca. Second, we perform a weighted blending of an instance from one
modality with another randomly selected example from a different modality as class cb. Third
and last, the instances of the same modalities are blended to have instances for a class cc. The
blending weight µ is sampled from a uniform distribution, i.e. µ ∼ U(0, 1). The network is
trained with a negative loglikelihood lossLNL for learning to differentiate between examples
of blended and clean classes (yk) on the entire training set Dtrain:

LNL = − 1

K

K∑
k=1

yk × log(Fθ(u, v)) (4.1)

Fusion Magnitude Prediction

We create a variant of the earlier defined task that uses a similar data generation strategy but
differs fundamentally in terms of the objective it optimizes. Here, we task the network with
predicting the magnitude µ, which defines the blending (or weighting) factor of the signals.
We assign µ = 0 to the clean examples, while assigning weight µ ∼ U(0, 1) to the blended
examples, as earlier. In this case, a natural choice is to adopt meansquare loss as learning
objective. However, we experimentally discovered that utilizing binary crossentropy with a
logistic function in the network’s output layer results in better generalization; thus the network
is trained to minimize the following loss LBCE for each input modality:

LBCE = −(y × log(Fθ(u, v)) + (1− y)× log(1− Fθ(u, v))) (4.2)

49

Feature Prediction from Masked Window

It is observed that networks which try to reconstruct every bit of the input waste capacity
on modeling lowlevel details [42]. Instead, in this auxiliary task we ask the network to
approximate summary statistics of a masked temporal segment within a signal. To gener
ate the data, we randomly sample the segment length sl ∼ U(nlow, nhigh) and starting
point sp ∼ U(0, l − sl). From the selected subsequence, we extract 8 basic features: mean,
standard deviation, maximum, minimum, median, kurtosis, skewness, number
of peaks; and then mask the segment with zeros. The multihead network is trained with
Huber loss LHL to predict statistics of a missing sequence as:

LHL =

{
1
2 × o

2, if |o| ≤ δ
δ × (|o| − δ

2), otherwise |o| > δ
,where o = Fθ(u, v)− y (4.3)

Transformation Recognition

The signal transformation recognition is presented in [14] and in Chapter 3 as an auxiliary task,
where it is posed as a set of binary classification problems solved with a multitask network
to determine whether a signal is a transformed version or not. Here, we simplify the problem
formulation and treat the task as multiclass classification, to learn a network that can directly
recognize the applied transformation on an input from one out of K classes. The benefits of
our formulation are that it does not require specifying weights for taskspecific losses and the
network can be efficiently optimized with categorical crossentropy objective LNL. Another
key difference is that we address the problem of learning from multimodal data as opposed
to a unimodal signal. To produce taskspecific data, we generate transformed versions of
each instance utilizing eight transformation functions: permutation, channel shuffle,
timewarp, scale, noise, rotation, flip, negation), and an identity operation while
assigning the function type as the corresponding class. During network training, we feed a
batch of data consisting of examples for all the classes (inclusive of originals) and optimize a
separate loss function for each input signal.

Temporal Shift Prediction

This conceptually straightforward task consists of estimating the number of steps by which
the samples are circularlyshifted in their temporal dimension. We pose this problem such
that it can be treated either as a classification or as a regression task. We define a range of shift
intervals, depending on the input resolution. For instance, in the activity recognition task,
the considered ranges are: [(0, 5), (6, 10), (11, 20),
(21, 50), (51, 100), (101, 200), (201, 300)]. For producing shifted inputs, we first select a
pair at random from the defined ranges, and second we sample a shifting factor within the
defined boundary of the selected range. Last, we temporally shift the values of an input
segment with the sampled factor. The network can be trained to predict either the range index
(treating each entry as a class, with 7 classes in total) or regress the factor. In our experiments,
we notice that solving it as a regression problem results in better generalization on the end

50

task. Thus, the network is trained by minimizing meansquared error loss LMSE for each
sensing modality:

LMSE =
1

m

m∑
i=1

(yi − Fθ(u, v))2 (4.4)

Modality Denoising

This task’s objective is to decompose a signal for obtaining a clean target through input re
construction, i.e. isolating the mixed noise. It is similar in spirit to source separation in au
dio [99, 100] and a denoising autoencoder [101]. The fundamental intuition here is that if the
network is tasked to reconstruct the original input from corrupted or mixed modality signals,
then it forces the network to identify core signal characteristics while learning usable represen
tations in the process. In our case, instead of mixing arbitrary noise, we exploit the availability
of multisensor data to generate instances that might be of sufficient difficulty for the network
to denoise. Specifically, we utilize a weighted blending operation u× (1−µ)+v×µ to
mix instances of different modalities, i.e. we produce samples through combining the clean
instances of accelerometer with gyroscope and vice versa while keeping the original samples as
additional data points. The encoderdecoder network is trained endtoend to minimize the
meansquare error loss LMSE between ground truth and corrupted input pairs.

Odd Segment Recognition

The goal of odd segment recognition is to identify the unrelated subsegment that does not be
long to the input under consideration, where the rest of the sequences are in the correct order.
The highlevel idea behind the task is that if the network can spot artifacts in the signal, it
should then also learn about useful input features. Similar ideas have been employed in video
representation learning [48] to spot invalid frame detection in video. There are multiple ways
to generate examples with odd subsegments; we approach it as an input consisting of an irreg
ular segment of fixed length so that is selected randomly from a different input modality. To
generate proxy task examples, we begin with splitting an instance into equallength sequences
(e.g. of length 100). Then, 2 sequences from different modalities are randomly selected, that
are either directly swapped or blended before applying a substitution operation. The index of
the interchanged slices is used as the class, where valid inputs are assigned a distinct class. The
network is asked to predict an index id of the odd sequence in each input modality. For this
task, we minimize a categorical crossentropy loss LNL to train a multihead network.

Metric Learning with Triplet Loss

As we are interested in learning from multisensor data, we take advantage of multiple input
modalities to formulate a metric learning objective. For this purpose, we utilize a symmetric
triplet loss [102], which encourages the representations of similar inputs but different modali
ties to be closer, while the representations of dissimilar inputs to be further apart. To optimize
the specified loss, we need to generate input triplets consisting of an anchor, which can be
an original instance, a positive sample that should be related (i.e. provides a complementary

51

D
en

se
 -

 5
12

G
lo

ba
l P

oo
lin

g

1
x

4
Co

nv
 -

 1
28

Co
nc

at
en

at
e

So
ft

m
ax

 o
r L

in
ea

r

1
x

24
 C

on
v

-
32

M
ax

 P
oo

lin
g

D
ro

po
ut

In
pu

t

Ra
w

 s
en

so
ry

va

lu
es

La
te

nt
 e

m
be

dd
in

gs

Pretraining-specific layers

D
en

se
 -

 #
O

ut
pu

t

1
x

4
Co

nv
 -

 6
4

Distinct modality-specific network
for each input modality

M
ax

 P
oo

lin
g

1
x

16
 C

on
v

-
64

1
x

8
Co

nv
 -

 9
6

Encoder network

Modality A

Modality B

Shared layers

Figure 4.2: A multistream neural network architecture for learning representations from multiple sensory inputs. A distinct
stream (with an identical architecture) is used for each modality, as depicted on the right.

view of the input) to the anchor, and a negative sample which must be entirely different from
the former pair. The loss then minimizes the distance between the anchor and the positive
samples, while maximizing the distance of the negative samples from the anchor and the posi
tive samples. For metric learning under this formulation, we generate the examples as follows:
the actual instances are treated as anchors, and positive instances are generated by applying
selected transformations at random [14] on each anchor; whereas the negative instances are
sampled from a different modality (i.e. for accelerometer, we treat samples from gyroscope
as negatives). We then optimize Fθ with triplet loss LTL to produce a smaller distance on
associated samples and a more considerable distance on unrelated ones:

LTL = max[0, D(za, zp)−
1

2
× (D(za, zn) +D(zp, zn)) + α], (4.5)

where za, zp, zn are the embeddings of anchor, positive and negative samples respectively, α
represents the distance margin, and D denotes squaredeuclidean distance.

4.2.3 Network Architecture Design

We implement the learning network Fθ as a multistream temporal convolutional model
(TCN). The part of the motivation to use TCN came from [75] where it has been shown
that convolutional networks perform remarkably well on sequence modeling tasks. Likewise,
they have a low footprint for training and inference as compared to other methods and can be
pruned easily to further compress the network [103]. Our model consists of a distinct learning
stream for each input to extract modalityspecific features. The subnetworks share the same
architecture, which is followed by a modalityagnostic network that fuses and learns a shared
representation from the multimodal input. Jointly, we refer to these modules as encoder e,
which is embedded within Fθ. Importantly, we add an extra block connected to e, which
is discarded after selfsupervised pretraining. The intuition behind this strategy is that the
model’s last layers capture features that are primarily taskspecific and do not generalize well
on the endtask of interest. Therefore, the additional layers allow the base encoder to capture
more generic features, while solving the auxiliary tasks.

52

Figure 4.2 illustrates the architecture design by precisely highlighting these main building
blocks. The modalityspecific encoder consists of three 1D convolutional layers with 32,
64, and 96 feature maps and a kernel size of 24, 16, and 8, respectively. The maxpooling
layer, with a pooling size of 4 and a stride of 2, is added after the initial convolutional layers.
A dropout is used with a rate of 0.1 at the end of the block. The shared encoder consists
of a single convolutional layer with 128 feature maps and a kernel size of 4, which takes
concatenated features as input. The supplementary layers in the pretraining block consist of
a convolutional layer with 64 feature maps and a kernel size of 4 and a dense layer having
512 hidden units. Importantly, a separate output layer is used for each input modality for all
the surrogate tasks except ‘sensor blend,’ which, based on its formulation, does not require
this. Likewise, we use global pooling as the last layer in the representation learning network
that aggregates discriminative features. L2 regularization with a rate of 0.0001 is applied
to the weights of all the layers to avoid overfitting. Moreover, we employ SELU as non
linearity except on the output layer; the network is trained with a learning rate of 0.0001 for
a maximum of 30 epochs unless stated otherwise.

We utilize a fixed network architecture for all the considered tasks (both auxiliary and
downstream), the intuition behind this choice being threefold. Firstly, we want to minimize
the architectural differences to discover the true potential of selfsupervision, i.e. it can be used
with minimal effort on architecture tuning to extract semantic representations across diverse
datasets. Secondly, our aim is to show that selfsupervision has a huge prospect to be utilized
for ondevice learning. Having a smaller architecture and given the annotationfree nature of
the proposed approach opens several exciting avenues in learning and inference with devices
having limited processing capabilities. However, the further investigation of this is beyond
the scope of our work and we leave it for future work. Lastly, our multimodal architectural
specification provides the flexibility to incorporate other modalities effortlessly. Furthermore,
we highlight that in this work our focus is on individual task proposal and evaluation, but the
framework can be used for jointly solving proxy tasks (i.e. in multitask learning setting) as
they share the same architecture, but differ fundamentally in terms of the loss function being
optimized.

Given an unlabeled data DU and a specified auxiliary task At, we optimize Fθ with task
specific data that is generated onthefly, as described in the preceding section. Once pretrain
ing converges, the layers specific to selfsupervised learning are discarded, and the encoder e
is saved. Then, the second round of training on a downstream task of interest begins with
labeled data DL. Depending on the evaluation criteria, the following can be done: a) the
network is either kept frozen and used as a generic feature extractor for learning a linear clas
sifier³, b) the modalityagnostic encoder es is finetuned during learning an endtask, or c)
the selfsupervised network is used as initialization for rapidly solving the finaltask, e.g., fine
tuning a model with little labeled data. The encoder network shown in Figure 4.2 represents
the module that is kept frozen, while depending on the learning setting the shared layers are
further finetuned.

³logistic regression

53

4.3 Experiments

We perform a comprehensive evaluation of our framework on four different application do
mains: a) activity recognition, b) sleepstage scoring, c) stress detection, and d) WiFi sensing.
For every area, we train the selfsupervised networks with each proposed task and determine
the quality of the learned representation with either a linear classifier or by finetuning with
few labeled instances. Furthermore, we also examine the knowledge transferability between
related datasets. In the following, we describe the utilized datasets, preprocessing steps, and
assessment strategy, including the baselines.

4.3.1 Datasets

We assess the performance of Sense and Learn on 8 publicly available multisensor datasets
from diverse domains. The brief description of each utilized data source is provided below,
with Table 4.1 summarizing their major characteristics.

Table 4.1: Key characteristics of the datasets used in the experiements.

Dataset #Subjects #Classes Task Inputs
HHAR 9 6

Activity/Context
Recognition

Accelerometer
&

Gyroscope

MobiAct 66 11
MotionSense 24 6
UCI HAR 30 6

HAPT 30 12
SleepEDF 20 5 Sleep Stage Scoring EEG & EOG

MIT DriverDb 17 2 Stress Detection Heart Rate &
Skin Conductance

WiFi CSI 6 7 Activity (Behavior)
Recognition CSI Amplitude

Activity Recognition

For smartphonebased human activity recognition, we select 5 datasets containing accelerom
eter and gyroscope signals, namely: HHAR, MobiAct, UCI HAR, MotionSense, and HAPT.
The Heterogeneity Human Activity Recognition (HHAR) dataset [56] is collected from 9 par
ticipants, each performing 6 basic activities (i.e. sitting, standing, walking, stairsup, stairs
down and biking) for 5 minutes. A broad range of devices is used for the systematic analysis
of sensor, device, and workloadspecific heterogeneities across manufacturers. Specifically,
each user carried 8 smartphones on different body locations that were selected from a pool of
36 devices of different models and brands. Likewise, the sampling rate differs considerably
across phones with values ranging between 50Hz200Hz. The MotionSense dataset [61] is
recorded with the aim of inferring personal attributes, such as physical and demographics, in
addition to the activities. The iPhone6s is placed in the users’ front pocket during the collec
tion phase, while they performed 15 trials of 6 activities in the same experimental setting. In

54

total, 24 subjects of varying height, weight, age and gender performed the following 6 activ
ities: walking, jogging, sitting, standing, downstairs and upstairs. We use this data only for
the detection of activities without concerning with the identification of other attributes. UCI
HAR [58] comprises data obtained from 30 subjects with waistmounted Samsung Galaxy S2
devices sampling at 50Hz. Each participant completed 6 activities of daily living (i.e. stand
ing, sitting, lying down, walking, downstairs and upstairs) during 2 trials with a 5 seconds
resting condition inbetween. The MobiAct [104] contains inertial sensors data collected from
66 participants with Samsung Galaxy S3 phones through more than 3200 trails. The subjects
freely placed the device in their trouser’s pocket to mimic reallife phone usage and placement.
We utilize the data of 61 subjects for whom data of any of the following 11 activity classes
is available: walking, jogging, jumping, upstairs, downstairs, sitting, stand to sit, sit to stand,
sitting on a chair, car stepin and car stepout. The Human Activities and Postural Transitions
(HAPT) dataset [105] is collected from a group of 30 volunteers with Samsung Galaxy S2 de
vices sampling at 50Hz. The phone was mounted on the waist of each subject who completed
3 dynamic activities (walking, upstairs, downstairs), 3 static posture activities (lying, sitting,
standing), and 6 postural transitions (sittolie, lietosit, standtosit, sittostand, standto
lie, and lietostand); resulting in 12 classes.

Sleep Stage Scoring

We use the PhysioNet SleepEDF⁴ dataset [106, 107] consisting of 61 polysomnograms (PSGs)
from 20 subjects. It is comprised of participants from 2 different studies: a) effect of age on
sleep and b) Temazepam effect on sleep. We use the 2 wholenight PSGs sleep recording sam
pled at 100Hz from the former study. Each record contains 2 electroencephalogram (EEG)
signals from FpzCz and PzOz electrode locations, electrooculography (EOG), electromyo
graphy (EMG) and event markers. Some instances also have oronasal respiration and body
temperature. The hypnograms (30seconds1 epochs) were manually annotated by sleep expert
with one of the 8 sleep classes (Wake, N1, N2, N3, N4, Rapid Eye Movement, Movement,
Unknown), based on the R&K standard. We utilize EEG (FpzCz) and EOG signals in our
evaluation. Following previous work [108], we merged N3 and N4 into a single class N3 and
discarded Movement and unscored samples, to have 5 sleep stages.

Stress Detection

For physiological stress recognition, we utilize the MIT DriverDb dataset [107, 109], which
is collected during a realworld driving experiment in a city, on a highway and in a resting
condition. The publiclyavailable version on PhysioNet consists of 17 drives out of 24, each
lasted between 11.5 hours. The following physiological signals are recorded: EMG, elec
trocardiography (ECG), galvanic skin response (GSR) from hand and foot, heart rate (HR;
derived from ECG), and breathing rate. The signals were originally sampled at different rates
but downsampled to 15.5Hz. The ‘marker’ signal provided in the dataset is used to derive
the binary ground truth, indicating a changeofdrive (i.e. resting, city or highway driving),
which is found to be correlated with distress level through postdriving video analysis by ex

⁴version 1

55

perts [109]. We use the following 10 drives 04, 05, 06, 07, 08, 09, 10, 11, 12 and 16 in
our experiments, which have HR and GSR (from hand), given collection of other signals in
reallife is quite problematic.

WiFi Sensing

Devicefree context recognition with WiFi is an emerging area of research. To show the ro
bustness of our selfsupervised methods on this task, particularly on a unimodal signal, we
utilize the WiFi channel state information (CSI) dataset [110] for activity recognition. This
dataset is collected in a controlled office environment, where the transmitting (router) and
receiving (Intel 5300 NIC) devices were 3m apart, and the channel state information (CSI)
was recorded at 1kHz. The 6 subjects performed 20 trials for each of the following 7 activities:
lying down, falling, walking, running, sitting down, standing up and picking something up.
The ground truth was obtained from videos recorded during the data collection process, and
CSI amplitude is used for learning a model.

4.3.2 Preprocessing and Evaluation

To prepare the data for sequence modeling with a temporal convolutional network, we utilize
a sliding window approach to segment the signals into fixedsized inputs. In the case of the
activity recognition task, we choose a window size of 400 samples with a 50% overlap, except
for the HAPT dataset where a segment size of 200 samples is used, due to the short duration
of posturetransition activities. We found these windows sizes to be optimal based on earlier
experiments, as each activity dataset has a different sampling rate. We did not perform re
sampling as the sampling rate differences among phones does not vary significantly and 1D
convolutional layers with wide kernel sizes learn to adapt to the specific characteristics of the
input signal. However, if the sampling rate varies considerably it might be essential to do
resampling. For SleepEDF, we applied minimal preprocessing based on existing work [108]
to formulate the problem as a 5stage sleep classification and used the 30 seconds epochs as
model input.

In the WiFi sensing task, we process the input in the same way as the original work that
opensourced the data and utilize a downsampled CSI signal of 500Hz as [110], which cor
responds to an input window of 1 second. The heart rate and skin conductance signals from
MIT DriverDb are processed to remove artifacts and these signals are mean normalized using
the ‘mean’ and ‘standard deviation’ calculated from the baseline (or resting phase) of the data
collection following [69] for each subject. We use a window size of 30 seconds with 50%
overlap to generate input segments for the model. We randomly split the datasets based on
subjects into train and test sets withholding 70% users for training and the rest 30% for test
ing. We further divide the training set to obtain a validation set of size 20%, which is used
for hyperparameter tuning and early stopping. Most importantly, we also perform 5fold
crossvalidation for thorough performance analysis whenever it is applicable. Furthermore,
we znormalize the samples with mean and standard deviation calculated from the training
set. For selfsupervision, we pretrain the models using only the training set, including for the

56

Table 4.2: Performance evaluation (weighted F-score) of self-supervised representations with a linear classifier. The unsupervised
pretrained networks achieve competitive performance with the fully-supervised networks. In WiFi-CSI sub-table, the
entries with hyphen indicate auxiliary tasks that cannot be applied to unimodal signals. See Table 4.6 in the appendix
of this chapter for kappa scores.

Method HHAR MobiAct MotionSense UCI HAR
Fully Supervised 0.794±0.014 0.934±0.005 0.952±0.007 0.962±0.006
Random Init. 0.218±0.062 0.383±0.109 0.246±0.090 0.221±0.079
Autoencoder 0.777±0.003 0.726±0.001 0.675±0.019 0.782±0.042
Sensor Blend 0.823±0.006 0.912±0.001 0.911±0.009 0.902±0.010

Fusion Magnitude 0.848±0.005 0.905±0.001 0.925±0.011 0.895±0.010
Feature Prediction 0.817±0.005 0.902±0.001 0.849±0.010 0.899±0.010
Transformations 0.854±0.005 0.911±0.002 0.869±0.013 0.906±0.011
Temporal Shift 0.834±0.008 0.909±0.003 0.851±0.016 0.747±0.027

Modality Denoise. 0.807±0.006 0.817±0.004 0.675±0.019 0.798±0.035
Odd Segment 0.835±0.006 0.901±0.001 0.869±0.012 0.888±0.010
Tripet Loss 0.773±0.005 0.841±0.002 0.910±0.008 0.905±0.011

Method HAPT SleepEDF MIT DriverDb WiFi CSI
Fully Supervised 0.899±0.009 0.825±0.005 0.824±0.029 0.964±0.007
Random Init. 0.119±0.041 0.149±0.127 0.321±0.198 0.153±0.04
Autoencoder 0.669±0.003 0.679±0.012 0.876±0.002 0.767±0.005
Sensor Blend 0.818±0.006 0.779±0.004 0.890±0.002

Fusion Magnitude 0.815±0.004 0.782±0.006 0.892±0.004
Feature Prediction 0.822±0.002 0.671±0.022 0.866±0.000 0.837±0.005
Transformations 0.841±0.003 0.778±0.006 0.908±0.001 0.768±0.007
Temporal Shift 0.782±0.004 0.707±0.012 0.883±0.005 0.731±0.011

Modality Denoise. 0.738±0.002 0.784±0.002 0.902±0.001
Odd Segment 0.790±0.003 0.772±0.003 0.885±0.002 0.774±0.008
Tripet Loss 0.815±0.002 0.775±0.003 0.891±0.001 0.749±0.009

transfer learning experiments. The selflabeled examples are generated for each task onthefly
during the learning phase, as defined earlier in Section 4.2.2.

For each recognition problem, we treat a fullysupervised model directly trained (in an
endtoend manner) with the annotated data of an endtask as a ‘baseline.’ Likewise, we also
compare selfsupervised tasks against pretraining with a autoencoder as a baseline. As ex
plained earlier, we assess the quality of the selfsupervised representation (including in the
transferlearning setting) through training a linear classifier or finetuning the last convolu
tional layer of the encoder on the downstream tasks. For learning in the lowdata regime,
we use a selfsupervised network as initialization to quickly learn a model with few labeled
examples. In all the cases, we assess the network performance with a weighted version of F
score and Cohen’s kappa (see appendix of [15]); as these metrics are robust to unbalanced class
distributions while being sensitive to misclassifications.

57

4.3.3 Results and Discussion

Linear separability and effects of finetuning the shared encoder

For assessing the quality of the selfsupervised embeddings, we conduct experiments with
a linear classifier on the endtasks. Linear separability is a standard way of measuring the
power of selfsupervisedlearned features in the literature [35, 42, 98], i.e., if the representa
tions disentangle factors of variations in the input, then it becomes easier to solve subsequent
tasks. Here, we train a linear classifier (i.e. logistic regression) 10times on top of a frozen
network (pretrained with selfsupervision) using annotated data of the downstream task. Ta
ble 4.2 summarizes the results on eight benchmark datasets from four application domains.
We compare the performance against a fullysupervised network that is trained in an endto
end manner (directly with annotated data). We also consider unsupervised pretraining with
a standard autoencoder to analyze the improvements of selfsupervision. Likewise, a linear
model is also trained with random features (i.e. from a randomly initialized frozen network)
to estimate its learning capacity.

On the activity recognition problem, the selfsupervised features achieve very close results
on multiple benchmarks to training an entire network with annotated instances. On the
HHAR dataset, the transformation and fusion magnitude prediction tasks improve the F
score by 7 points. On other datasets with a large number of classes, such as HAPT and
MobiAct, our simple proxy tasks learn features that are generalizable to endtasks. In the case
of sleep stage scoring, linear layers trained with features from the modality denoising and the
fusion magnitude tasks achieve a kappa of 0.70, which is impressive given that the representa
tions are learned from completely unlabeled data. Similarly, in a stress classification problem,
the selfsupervised networks outperform a fullysupervised model with a large margin. The
transformations and modality denoising tasks achieve kappa scores of 0.80 and 0.79, respec
tively. We believe it is because pretraining results in generic features, whereas a model trained
directly on the endtask suffers from overfitting. Lastly, we evaluate on the devicefree sensing
problem using the amplitude of WiFi CSI. Although we designed the auxiliary tasks for mul
tisensorinput, we find a subset of these to be applicable for selfsupervision with a unimodal
input. We achieve good results with selfsupervised features even though the dataset size is
relatively small, and input is noisy, complex and highdimensional. The linear layer trained
on top of the featureprediction task representations achieves an Fscore of 83% compared to
the endtoend training Fscore of 96%.

In Table 4.3, we notice a substantial improvement on the downstream tasks if the last con
volutional layer of the encoder (see Figure 3.2) is finetuned while training the linear classifier.
Comparing with the results given in Table 4.2, it can be seen that the recognition rate of
the models improved significantly, achieving similar results as the fullysupervised baselines;
while features learned by input reconstruction with an autoencoder scored low compared to
our proposed surrogate tasks even after finetuning, except for the WiFi sensing task. On
the MobiAct dataset, transformations and sensor blend tasks gain 2 points improvement in
kappa. Likewise, for MotionSense, HAPT and UCI HAR, we bridge the gap between fully
supervised and selfsupervised models. Interestingly, finetuning did not help much with
MIT DriverDb compared to training a linear classifier. These results agree with our intuition

58

Table 4.3: Improvement in recognition rate (weighted F-score) by fine-tuning the shared layers of the encoder while training on
the end-task. We observe a significant increase in performance across datasets with self-supervised networks, either
surpassing or achieving results on-par with the baseline. See Table 4.7 in the appendix of this chapter for kappa scores.

Method HHAR MobiAct MotionSense UCI HAR
Fully Supervised 0.794±0.014 0.934±0.005 0.952±0.007 0.961±0.008
Random Init. 0.218±0.062 0.383±0.109 0.246±0.090 0.221±0.079
Autoencoder 0.835±0.003 0.927±0.003 0.938±0.002 0.943±0.004
Sensor Blend 0.841±0.009 0.943±0.004 0.937±0.004 0.956±0.003

Fusion Magnitude 0.831±0.006 0.938±0.005 0.945±0.002 0.946±0.002
Feature Prediction 0.840±0.007 0.937±0.002 0.951±0.003 0.943±0.003
Transformations 0.828±0.006 0.946±0.004 0.951±0.005 0.954±0.006
Temporal Shift 0.831±0.008 0.939±0.002 0.934±0.006 0.909±0.008

Modality Denoise. 0.840±0.003 0.938±0.002 0.928±0.006 0.941±0.001
Odd Segment 0.826±0.003 0.938±0.005 0.935±0.006 0.953±0.003
Tripet Loss 0.835±0.013 0.912±0.006 0.955±0.003 0.950±0.002

Method HAPT SleepEDF MIT DriverDb WiFi CSI
Fully Supervised 0.899±0.009 0.825±0.005 0.824±0.029 0.964±0.007
Random Init. 0.119±0.041 0.149±0.127 0.321±0.198 0.153±0.048
Autoencoder 0.881±0.002 0.805±0.008 0.877±0.002 0.898±0.025
Sensor Blend 0.895±0.003 0.809±0.003 0.881±0.014

Fusion Magnitude 0.898±0.002 0.813±0.003 0.882±0.011
Feature Prediction 0.893±0.003 0.748±0.006 0.859±0.003 0.832±0.037
Transformations 0.898±0.002 0.822±0.005 0.890±0.005 0.823±0.028
Temporal Shift 0.876±0.007 0.779±0.005 0.883±0.005 0.736±0.063

Modality Denoise. 0.885±0.003 0.819±0.002 0.889±0.001
Odd Segment 0.899±0.003 0.804±0.003 0.853±0.023 0.860±0.030
Tripet Loss 0.887±0.005 0.805±0.003 0.884±0.002 0.755±0.022

that training on an endtask directly in this case results in overfitting.

In summary, the evaluation with a linear classifier trained on top of a pretrained (self
supervised) feature extractor highlights that the representations learned with auxiliary tasks are
broadly useful and better than autoencodingbased approaches. It also confirms our hypoth
esis that generalpurpose representations can be learned directly from raw input without any
strongly (taskspecific) labeled data. It is important to note we did not aim to surpass fully
supervised approaches in this setting. Supervised methods will be better because they have
direct access to taskspecific labels, while selfsupervised objectives train a network without
any foresight of the endtask. It can also be seen from the results of finetuning the encoder,
as presented in Table 4.3, that the network performance matches the supervised methods or
improves upon, when shared layers are further trained on the downstream tasks. Likewise, it
might be possible to improve generalization of selfsupervised models through pretraining on
larger unlabeled datasets in a realworld setting.

59

Impact on learning in lowdata regime

We next investigate the performance of our approach in a semisupervised (or lowdata)
setting. For this purpose, we pretrain an encoder using unlabeled instances for each self
supervised task and utilize it as initialization for efficiently learning with few labeled instances
on the endtask; for the endtask, we add a randomlyinitialized dense layer with 1024 hidden
units before a linear output layer. The nonlinear classifier is then learned and the encoder is
finetuned with the specified number of instances per class. Specifically, for the defined aux
iliary tasks and datasets, we use 5 and 10 examples for each category. We want to highlight
that in reallife setting, a few labeled instances can be pooled from multiple users quite easily
(e.g. 23 examples per user) as compared to accumulating several hundred for learning fully
supervised models. Likewise, personalization can also be achieved through precisely asking
for a few labels for targeted classes. In Figure 4.3, we provide an average weighted Fscore
of 10 independent experiment runs, comparing training from scratch (FS) with the pretrain
ing as an effective initialization for learning a robust classifier. We show that in contrast to
the purely supervised approach, leveraging unlabeled data for learning network parameters
improves the performance on the endtask. Specifically, our selfsupervised models greatly
improve the Fscore in the lowdata setting, in some cases achieving Fscores nearly as good
as networks trained with the entire labeled data. Similarly, the selfsupervised trained models
perform better than the autoencoder, which shows that, despite the simplicity, our proposed
auxiliary tasks force the network to learn highlygeneralizable features. For each experiment
run, we randomly sample the stated number of annotated instances and use these to train all
the networks, including fullysupervised baselines.

On activity recognition, our methodology significantly improves the performance in low
data; for example, on the HHAR dataset with 5 and 10 instances, temporal shift and transfor
mations tasks gain 4 and 7 points over the fullysupervised models’ Fscore of 0.60 and 0.68.
respectively. Similarly, for MobiAct, pretraining with the temporal shift task helps achieve an
Fscore of 0.75 (5 instances) and 0.82 (10 instances), compared to 0.61 and 0.73 respectively
for networks learned from scratch. Furthermore, we achieve identical improvements on UCI
HAR, HAPT, and MotionSense with 5 instances per class. The attained Fscores are 0.91,
0.77 and 0.83 in contrast to 0.90, 0.59, and 0.77 of fullysupervised models, respectively.
Our method represents a 26 points increase in Fscore on the challenging problem of sleep
stage scoring. Likewise, on physiological stress detection and devicefree sensing problems,
the benefit of pretraining with auxiliary tasks is further apparent, where the presented meth
ods achieve 12 points improvement in Fscore over the baseline. These results suggest that
selfsupervision can greatly help with learning generalpurpose representations that work well
in the lowdata regime. We also want to highlight that although the selection of an equal
number of instances results in a balanced training set, we use the full test sets (as in earlier
experiments) for evaluation, which could be imbalanced. Importantly, utilizing even big
ger unlabeled datasets and combining weaksupervision methods can boost the quality of the
learned representations.

We emphasize that the broader objective of selfsupervised methods is to learn highlevel
semantic features that can be used to solve an array of downstream tasks with minimal la
beled data. The evaluation of our presented auxiliary tasks clearly highlights the benefit of
pretraining the network with unlabeled data to achieve better generalization on the tasks of

60

interest, with very few labeled instances. To the best of our knowledge, we, for the first time,
evaluate selfsupervised methods in a semisupervised setting for problems involving multi
sensor data as earlier work developed fullysupervised network architectures or used classical
autoencodingbased approaches for pretraining, followed by network finetuning with the en
tire labeled data. Overall, our approach provides a base for future work in developing sensing
techniques that can achieve ondevice personalization and perform continual, and fewshot
learning, as the presented framework considerably reduces the requirement of labeled data
from human annotators to learn the endtask models.

Effectiveness in a transfer learning setting

In a realworld learning setup, there is a high chance that we are interested in a different
dataset and downstream task than the one originating from the unlabeled data accessible for
pretraining. A broadly useful auxiliary task is thus one that produces generalizable represen
tations that transfer well to other related end tasks. To examine the transferability property
of the features learned with our proxy tasks, we evaluate their performance on the activity
recognition datasets. To this end, we pretrain the feature extractor with each selfsupervised
objective (i.e. by discarding the semantic class labels) for all the five datasets (see Section 4.3.1)
and investigate their performance through a) training a linear classifier with the entire target
annotated data and b) finetuning it endtoend with few labeled data (i.e. learning an activity
classifier with 5 and 10 instances of each class from target dataset). Figure 4.4 provides the
results of the sourcetotarget transfer of selfsupervised models trained with nine different
auxiliary losses. The diagonal entries of each subplot represent the Fscores when the source
and target datasets are the same. In comparison with autoencoder pretraining, features learned
with our tasks transfer well between datasets. We observe that even leveraging smaller unla
beled datasets produces useful features, as with sensorblendtasklearned features on UCI
HAR scored 0.91 Fscore on the HHAR dataset. On the HAPT dataset of low input reso
lution (i.e. a segment size of 200 samples) and complex postural activities, transfer learning
improves the performance with approximately 8 percentage points in Fscore over pretraining
on the same dataset. Importantly, our results are also competitive with the fullysupervised
baselines on the respective datasets.

We further examine if the transferred selfsupervised models are beneficial in learning from
lowdata; i.e. few labeled instances are available from the target data, but separate unanno
tated data is available for pretraining. We utilize the same network configuration as discussed
earlier for lowdata experiments and we finetune the model endtoend. We randomly sam
ple a specified number of instances and perform experiments 10 times while utilizing the same
instances for both types of networks (i.e. pretrained and baseline) and report average Fscore.
In Figure 4.5, we present the results of optimal auxiliary tasks for each combination of the
source to target transfer, where graycolored bars show a fullysupervised baseline. Our ex
periments show that the features learned from different but related datasets do transfer well
and improve the recognition rate even when as little as 5 examples per class are available. On
the MobiAct dataset, our approach with HAPT as source data results in an Fscore of 0.68
and 0.78 compared to the training from scratch Fscore of 0.61 and 0.73, respectively. Simi
larly, with HAPT as a target, transferring from the UCI HAR using the sensor blend task, the
Fscore improved from 0.59 to 0.68 and 0.72 to 0.78. Interestingly, on UCI HAR and Mo

61

0.0 0.2 0.4 0.6 0.8 1.0

F-score

FS

AE

SB

FM

FP

TP

TS

MD

OS

TL
Ta

sk
s

0.601

0.582

0.64

0.615

0.619

0.618

0.65

0.598

0.616

0.564

5 labeled instances per class

0.0 0.2 0.4 0.6 0.8 1.0

F-score

0.689

0.701

0.715

0.726

0.682

0.746

0.721

0.712

0.695

0.664

10 labeled instances per class

(a) HHAR

0.0 0.2 0.4 0.6 0.8 1.0

F-score

FS

AE

SB

FM

FP

TP

TS

MD

OS

TL

Ta
sk

s

0.619

0.639

0.741

0.71

0.709

0.706

0.755

0.677

0.695

0.651

5 labeled instances per class

0.0 0.2 0.4 0.6 0.8 1.0

F-score

0.737

0.763

0.808

0.789

0.781

0.774

0.828

0.77

0.786

0.739

10 labeled instances per class

(b) MobiAct

0.0 0.2 0.4 0.6 0.8 1.0

F-score

FS

AE

SB

FM

FP

TP

TS

MD

OS

TL

Ta
sk

s

0.778

0.795

0.818

0.824

0.789

0.811

0.786

0.768

0.783

0.833

5 labeled instances per class

0.0 0.2 0.4 0.6 0.8 1.0

F-score

0.88

0.893

0.89

0.893

0.892

0.888

0.858

0.878

0.874

0.876

10 labeled instances per class

(c) MotionSense

Figure 4.3: Cont’d

62

0.0 0.2 0.4 0.6 0.8 1.0

F-score

FS

AE

SB

FM

FP

TP

TS

MD

OS

TL
Ta

sk
s

0.904

0.904

0.906

0.905

0.905

0.915

0.812

0.88

0.914

0.911

5 labeled instances per class

0.0 0.2 0.4 0.6 0.8 1.0

F-score

0.916

0.917

0.919

0.92

0.914

0.928

0.872

0.903

0.926

0.921

10 labeled instances per class

(d) UCI HAR

0.0 0.2 0.4 0.6 0.8 1.0

F-score

FS

AE

SB

FM

FP

TP

TS

MD

OS

TL

Ta
sk

s

0.593

0.587

0.615

0.641

0.651

0.659

0.623

0.642

0.647

0.631

5 labeled instances per class

0.0 0.2 0.4 0.6 0.8 1.0

F-score

0.72

0.736

0.751

0.771

0.771

0.778

0.737

0.764

0.75

0.748

10 labeled instances per class

(e) HAPT

0.0 0.2 0.4 0.6 0.8 1.0

F-score

FS

AE

SB

FM

FP

TP

TS

MD

OS

TL

Ta
sk

s

0.41

0.538

0.607

0.663

0.509

0.611

0.583

0.654

0.596

0.635

5 labeled instances per class

0.0 0.2 0.4 0.6 0.8 1.0

F-score

0.523

0.585

0.677

0.695

0.602

0.68

0.643

0.683

0.661

0.682

10 labeled instances per class

(f) SleepEDF

63

Figure 4.3: Cont’d

0.0 0.2 0.4 0.6 0.8 1.0

F-score

FS

AE

SB

FM

FP

TP

TS

MD

OS

TL

Ta
sk

s

0.779

0.869

0.868

0.858

0.86

0.874

0.841

0.889

0.843

0.819

5 labeled instances per class

0.0 0.2 0.4 0.6 0.8 1.0

F-score

0.837

0.87

0.883

0.881

0.878

0.881

0.884

0.891

0.859

0.867

10 labeled instances per class

(g) MIT DriverDb

0.0 0.2 0.4 0.6 0.8 1.0

F-score

FS

AE

FP

TP

TS

OS

TL

Ta
sk

s

0.453

0.476

0.485

0.435

0.441

0.47

0.404

5 labeled instances per class

0.0 0.2 0.4 0.6 0.8 1.0

F-score

0.521

0.546

0.586

0.531

0.567

0.555

0.511

10 labeled instances per class

(h) WiFi CSI

TL: triplet loss, OS: odd segment, MD: modality denoising, TS: temporal shift,
TP: transformation prediction, FP: feature prediction, FM: fusion magnitude,
SB: sensor blend, AE: autoencoder, FS: fully-supervised

Figure 4.3: Contribution of self-supervised pretraining for improving end-task performance with few labeled data. We utilize
pretrained self-supervised models as initialization for learning in a semi-supervised setting. The subplots provide the
mean F-score of 10 independent runs, where randomly selected instances are used to train the models. The bars with
gray color represent the results of the networks trained only on the labeled instances while vertical black line shows
results of fully-supervised model trained with entire data.

tionSense, the performance attained with our approach is very close to the purely supervised
models trained with entirely labeled data (see Table 4.2).

Learning generalizable representations that can be reused for solving related tasks is an im
portant property to have in a learning system. Our investigation of transferring unsupervised
pretrained models consistently highlights substantial performance improvements, indicating
that the selfsupervised features are broadly useful across different subjects, devices, environ
ments and data collection protocols. In particular, the data efficiency enabled by our method
in a lowdata regime provides further evidence of semantic feature learning without merely

64

HHAR
MobiAct

MotionSense
UCI HAR

HAPT

HHAR

MobiAct

MotionSense

UCI HAR

HAPT

0.777 0.772 0.816 0.810 0.801

0.735 0.726 0.819 0.809 0.761

0.620 0.572 0.675 0.768 0.672

0.704 0.599 0.818 0.782 0.794

0.702 0.669 0.735 0.775 0.669

(a) Autoencoder

HHAR
MobiAct

MotionSense
UCI HAR

HAPT

0.823 0.843 0.820 0.823 0.802

0.864 0.912 0.871 0.846 0.867

0.902 0.930 0.911 0.922 0.880

0.911 0.884 0.908 0.902 0.903

0.805 0.808 0.802 0.823 0.818

(b) Sensor Blend

HHAR
MobiAct

MotionSense
UCI HAR

HAPT

0.848 0.774 0.812 0.835 0.814

0.885 0.905 0.879 0.873 0.877

0.924 0.925 0.925 0.921 0.910

0.915 0.872 0.893 0.895 0.904

0.807 0.823 0.791 0.813 0.815

(c) Fusion Magnitude

HHAR
MobiAct

MotionSense
UCI HAR

HAPT

HHAR

MobiAct

MotionSense

UCI HAR

HAPT

0.817 0.816 0.838 0.841 0.825

0.872 0.902 0.863 0.845 0.853

0.921 0.890 0.849 0.891 0.906

0.896 0.904 0.835 0.899 0.913

0.770 0.775 0.760 0.780 0.823

(d) Feature Prediction

HHAR
MobiAct

MotionSense
UCI HAR

HAPT

0.854 0.786 0.834 0.836 0.797

0.868 0.911 0.883 0.837 0.849

0.869 0.860 0.869 0.890 0.871

0.849 0.842 0.869 0.906 0.890

0.813 0.768 0.784 0.8283 0.841

(e) Transformations

HHAR
MobiAct

MotionSense
UCI HAR

HAPT

0.834 0.759 0.653 0.715 0.774

0.889 0.909 0.830 0.803 0.818

0.811 0.834 0.851 0.848 0.867

0.820 0.841 0.852 0.747 0.873

0.780 0.744 0.610 0.656 0.782

(f) Temporal Shift

HHAR
MobiAct

MotionSense
UCI HAR

HAPT

HHAR

MobiAct

MotionSense

UCI HAR

HAPT

0.807 0.840 0.747 0.743 0.827

0.812 0.817 0.817 0.798 0.816

0.718 0.711 0.675 0.719 0.724

0.790 0.719 0.739 0.798 0.841

0.759 0.767 0.723 0.750 0.738

(g) Modality Denoising

HHAR
MobiAct

MotionSense
UCI HAR

HAPT

0.835 0.815 0.844 0.824 0.819

0.878 0.901 0.873 0.837 0.833

0.885 0.890 0.869 0.912 0.816

0.916 0.836 0.871 0.888 0.772

0.817 0.775 0.789 0.781 0.790

(h) Odd Segment

HHAR
MobiAct

MotionSense
UCI HAR

HAPT

0.773 0.649 0.768 0.748 0.802

0.860 0.841 0.833 0.834 0.897

0.922 0.875 0.910 0.925 0.907

0.947 0.875 0.871 0.905 0.878

0.740 0.719 0.701 0.726 0.815

(i) Triplet Loss

Figure 4.4: Generalization of the self-supervised representations under transfer learning setting. We evaluate the features trans-
ferability on activity recognition task by pretraining networks with each auxiliary task for every dataset. For solving
downstream tasks, we train a linear classifier on-top of the frozen feature extractor 10 times, independently, and
report the average F-score. The diagonal entries denote the numbers when the source and target datasets are the
same with the x-axis and y-axis representing target and source datasets, respectively.

overfitting on the source dataset. It is also important to note that compared to earlier work
which focuses on supervised transfer or jointtraining on source and target datasets, we provide
evaluation of unsupervised transfer and its ability to boost performance even with fewlabeled
data. Likewise, selfsupervised learning has other benefits as it has been shown to improve ad
versarial robustness and uncertainty of deep models as compared to purely supervised meth
ods [111]. Although we did not study these aspects explicitly in this work, the results of transfer
learning across domains hint that our auxiliary tasks also enhance the model’s robustness; we
leave an indepth study for future work.

Crossvalidation to determine robustness against subject variations

To validate the stability of our methodology against variations in subjects’ data utilized for pre
training and downstream task evaluation, we perform 5fold crossvalidation based on user
split (i.e. the train and test division (80− 20) is based on users with no overlap among them;

65

train/test users are entirely independent); and we follow the same experimental setup as earlier.
For each fold’s data and surrogate task, we pretrain the models and train a linear classifier on
top of the frozen network. The fullysupervised baseline is trained in an endtoend manner,

0.00 0.25 0.50 0.75 1.00

F-score

HHAR-FS

HAPT-MD

MotionSense-OS

MobiAct-MD

UCI_HAR-FM

D
at

as
et

s
-

Ta
sk

s

0.601

0.617

0.633

0.636

0.645

5 labeled instances per class

0.00 0.25 0.50 0.75 1.00

F-score

HHAR-FS

HAPT-OS

MobiAct-MD

MotionSense-OS

UCI_HAR-OS

D
at

as
et

s
-

Ta
sk

s

0.689

0.706

0.731

0.731

0.74

10 labeled instances per class

(a) HHAR

0.00 0.25 0.50 0.75 1.00

F-score

MobiAct-FS

UCI_HAR-FM

MotionSense-SB

HHAR-TS

HAPT-TL

D
at

as
et

s
-

Ta
sk

s

0.619

0.656

0.665

0.682

0.684

5 labeled instances per class

0.00 0.25 0.50 0.75 1.00

F-score

MobiAct-FS

UCI_HAR-FM

MotionSense-TP

HHAR-TS

HAPT-TL
D

at
as

et
s

-
Ta

sk
s

0.737

0.76

0.761

0.77

0.781

10 labeled instances per class

(b) MobiAct

0.00 0.25 0.50 0.75 1.00

F-score

MotionSense-FS

HAPT-FP

HHAR-FP

MobiAct-FM

UCI_HAR-FM

D
at

as
et

s
-

Ta
sk

s

0.778

0.818

0.826

0.84

0.853

5 labeled instances per class

0.00 0.25 0.50 0.75 1.00

F-score

MotionSense-FS

HHAR-FP

HAPT-FP

UCI_HAR-OS

MobiAct-FM

D
at

as
et

s
-

Ta
sk

s

0.88

0.897

0.897

0.905

0.912

10 labeled instances per class

(c) MotionSense

0.00 0.25 0.50 0.75 1.00

F-score

UCI_HAR-FS

MotionSense-TL

HAPT-FP

HHAR-TL

MobiAct-SB

D
at

as
et

s
-

Ta
sk

s

0.904

0.911

0.913

0.914

0.916

5 labeled instances per class

0.00 0.25 0.50 0.75 1.00

F-score

UCI_HAR-FS

MobiAct-FP

HAPT-FP

HHAR-TL

MotionSense-TL

D
at

as
et

s
-

Ta
sk

s

0.916

0.927

0.928

0.928

0.933

10 labeled instances per class

(d) UCI HAR

Figure 4.5: Cont’d

66

0.00 0.25 0.50 0.75 1.00

F-score

HAPT-FS

HHAR-OS

MotionSense-SB

MobiAct-FM

UCI_HAR-SB

D
at

as
et

s
-

Ta
sk

s

0.593

0.651

0.658

0.666

0.682

5 labeled instances per class

0.00 0.25 0.50 0.75 1.00

F-score

HAPT-FS

HHAR-OS

MobiAct-SB

UCI_HAR-SB

MotionSense-SB

D
at

as
et

s
-

Ta
sk

s

0.72

0.76

0.766

0.776

0.78

10 labeled instances per class

(e) HAPT

TL: triplet loss, OS: odd segment, MD: modality denoising, TS: temporal shift,
TP: transformation prediction, FP: feature prediction, FM: fusion magnitude,
SB: sensor blend, AE: autoencoder, FS: fully-supervised

Figure 4.5: Contribution of self-supervised learning, and fine-tuning of the transferred networks in learning from few-data.
We utilize a pretrained model on each source data and train a non-linear classifier on the target task to assess the
effectiveness of self-supervision for improving the recognition rate. The networks are fine-tuned with a specified
number of instances per class 10 times. For each source data, we provide mean results only of the best performing
auxiliary task in order to improve readability.

directly with the semantic labels. Table 4.4 summarizes the results averaged across 5 folds on
eight considered datasets. We observe that the results achieved with selfsupervision are con
sistent with earlier experiments. This highlights that our approach for sensory representation
learning works well with different users’ data and it is robust to subjects’ differences. On the
MobiAct dataset, the feature prediction and transformation recognition tasks achieve 0.90
Fscore, which is very close to a fullysupervised model’s Fscore of 0.91. Likewise, on MIT
DriverDb, selfsupervision provides an impressive improvement over training from scratch.

To summarize, these results suggest that the learned representations with unlabeled data
learn useful features that can be used to a large extent for solving the endtask with a simple
linear layer. Furthermore, we explore finetuning the last convolutional layer of the encoder
while training a linear layer on downstream tasks. In Table 4.5, we show that finetuning
a shared layer leads to a better performance than the fullysupervised model training from
scratch on most of the datasets. The feature prediction task on the HHAR dataset achieved
an Fscore of 0.87, which is 5 points above the baseline. Likewise, on other datasets and tasks,
our technique either bridges the gap or achieves broadly similar results as the supervised mod
els. We think that careful finetuning of the architecture and related hyperparameters could
further improve the recognition rate of selfsupervised networks. We note that a direct com
parison of our approach with existing methods is not feasible as we learn representations from
unlabeled data and evaluate through training a linear classifier, whereas, prior methods focus
on fullysupervised learning with different architectures and evaluation strategies. However,
to be comparative, we summarize related results here, which are only indicative. On Motion
Sense, our sensor blend task achieves an Fscore of 0.92 compared to 0.95 and 0.86 accuracy
for trial and subjectwise evaluation in [61]. For SleepEDF, our fusion magnitude task scores
a kappa of 0.72 compared to 0.76 of a sophisticated fullysupervised model [108]. Likewise,
on WiFi sensing task, feature prediction proxy task results in an Fscore of 0.85 compared to
the 0.90 accuracy of an LSTMbased model [110] over six classes.

We wondered whether pretraining with our auxiliary tasks is invariant to utilized subjects’

67

data, as it is critical for learning in a realworld setting due to the noncurated nature of the
data. We found that proxy tasks are highly stable and result in a similar performance as earlier,
when a linear classifier is trained on top of selfsupervised feature extractors. This analysis fur
ther shows that the selfsupervised features are not necessarily subjectspecific, but are general
in nature. Moreover, our evaluation demonstrates there is a room for improvement through
selecting problem or taskspecific network architectures and using larger unlabeled datasets
for unsupervised learning. Specifically, it would be valuable to explore unifying supervised
and selfsupervised objectives in a multitask setting to personalize or adapt sensing models
directly on user devices.

Table 4.4: Comparison of self-supervised representation learning to fully-supervised approach with 5-fold cross-validation based
on user-split. We pretrain the feature extractors for each fold’s data and learn a linear classifier for the end-task as
usual. We report weighted F-score averaged over the 5 folds, highlighting the robustness of our method to subject
variations. See Table 4.4 in the appendix of this chapter for kappa scores.

Method HHAR MobiAct MotionSense UCI HAR
Fully Supervised 0.844±0.090 0.917±0.017 0.960±0.007 0.951±0.025
Random Init. 0.199±0.047 0.394±0.086 0.284±0.086 0.268±0.208
Autoencoder 0.722±0.085 0.736±0.021 0.752±0.050 0.831±0.041
Sensor Blend 0.829±0.061 0.886±0.010 0.920±0.019 0.915±0.038

Fusion Magnitude 0.841±0.040 0.889±0.014 0.924±0.025 0.899±0.049
Feature Prediction 0.820±0.068 0.900±0.016 0.900±0.025 0.896±0.043
Transformations 0.822±0.059 0.900±0.011 0.898±0.013 0.916±0.018
Temporal Shift 0.811±0.057 0.890±0.017 0.889±0.027 0.793±0.030

Modality Denoise. 0.798±0.077 0.834±0.029 0.780±0.058 0.829±0.056
Odd Segment 0.812±0.079 0.890±0.015 0.901±0.014 0.861±0.015
Tripet Loss 0.749±0.065 0.822±0.013 0.917±0.022 0.893±0.036

Method HAPT SleepEDF MIT DriverDb WiFi CSI
Fully Supervised 0.897±0.053 0.822±0.025 0.789±0.122 0.959±0.005
Random Init. 0.155±0.061 0.072±0.021 0.206±0.015 0.214±0.044
Autoencoder 0.818±0.064 0.701±0.026 0.850±0.054 0.793±0.014
Sensor Blend 0.855±0.044 0.788±0.014 0.824±0.106

Fusion Magnitude 0.840±0.040 0.795±0.025 0.859±0.061
Feature Prediction 0.859±0.040 0.777±0.033 0.843±0.045 0.855±0.024
Transformations 0.863±0.045 0.788±0.028 0.860±0.060 0.770±0.032
Temporal Shift 0.837±0.042 0.753±0.027 0.844±0.082 0.729±0.015

Modality Denoise. 0.835±0.050 0.797±0.029 0.864±0.061
Odd Segment 0.821±0.043 0.767±0.037 0.839±0.071 0.793±0.018
Tripet Loss 0.845±0.044 0.789±0.027 0.860±0.059 0.769±0.022

4.3.4 Impact and Limitations

Our Sense and Learn framework shows that it is possible to use unlabeled data, in addition to
smaller amounts of labeled data, when learning features for varied classification problems. We
believe our method is useful in practice, where obtaining labeled data is difficult and costly.
Since the same approach, with a fixed neural network structure, provides gains for quite differ
ent application areas, ranging from activity recognition to sleep stage scoring, we also believe

68

Table 4.5: The effect of fine-tuning modality-agnostic encoder while learning downstream task under 5-folds cross-validation as
evaluated through weighted F-score. See Table 4.9 in the appendix of this chapter for kappa scores.

Method HHAR MobiAct MotionSense UCI HAR
Fully Supervised 0.844±0.090 0.917±0.017 0.960±0.007 0.951±0.025
Random Init. 0.199±0.047 0.394±0.086 0.284±0.086 0.268±0.208
Autoencoder 0.891±0.049 0.914±0.019 0.961±0.010 0.936±0.051
Sensor Blend 0.893±0.062 0.919±0.011 0.964±0.011 0.949±0.036

Fusion Magnitude 0.885±0.054 0.918±0.011 0.961±0.013 0.942±0.039
Feature Prediction 0.894±0.050 0.930±0.014 0.962±0.003 0.943±0.047
Transformations 0.893±0.052 0.933±0.0126 0.968±0.007 0.949±0.033
Temporal Shift 0.885±0.055 0.920±0.014 0.941±0.012 0.915±0.050

Modality Denoise. 0.886±0.061 0.929±0.015 0.966±0.011 0.933±0.054
Odd Segment 0.894±0.067 0.927±0.011 0.962±0.004 0.951±0.030
Tripet Loss 0.856±0.055 0.904±0.020 0.957±0.006 0.944±0.044

Method HAPT SleepEDF MIT DriverDb WiFi CSI
Fully Supervised 0.897±0.053 0.822±0.025 0.789±0.122 0.959±0.005
Random Init. 0.155±0.061 0.072±0.021 0.206±0.015 0.214±0.044
Autoencoder 0.883±0.059 0.764±0.028 0.804±0.132 0.911±0.032
Sensor Blend 0.892±0.052 0.801±0.020 0.793±0.149

Fusion Magnitude 0.884±0.051 0.808±0.023 0.788±0.148
Feature Prediction 0.893±0.055 0.794±0.031 0.795±0.143 0.857±0.040
Transformations 0.896±0.051 0.801±0.029 0.806±0.127 0.805±0.051
Temporal Shift 0.890±0.052 0.781±0.027 0.805±0.133 0.758±0.048

Modality Denoise. 0.882±0.051 0.796±0.028 0.858±0.051
Odd Segment 0.888±0.048 0.778±0.035 0.849±0.050 0.854±0.032
Tripet Loss 0.888±0.056 0.792±0.031 0.806±0.128 0.765±0.022

the method is applicable in practice. While it is true that a practitioner cannot be certain
which selfsupervised task will work best for a new application, the range of experiments we
present should provide a valuable starting point as to which tasks are most promising. More
over, our finetuning experiments (Table 4.3) show that e.g. the Transformations task provides
significant gains across all datasets even when using all available supervised data. Finally, self
supervised tasks do not need any labels while learning the representations, which opens up the
possibility of using our framework for ondevice Federated Learning [112], where the sensor
data never leaves the users’ device (e.g., smartphone).

Selfsupervised learning provides a scalable, inexpensive, and data efficient way to learn
highlevel features with deep neural networks without requiring strong labels, which could
be unclear, noisy or limited for many realworld problems. However, there are limitations of
these approaches which are also applicable to our methodology. First, deep neural networks
are prone to learning via shortcuts through exploiting lowlevel cues in the input e.g. object
textures and other local artifacts in image classification [97]. The unintended cue learning is
not limited to supervised methods, but is a problem for selfsupervised methods too, as net
works can use shortcuts to solve proxy task without learning anything useful (e.g. chromatic
aberration in vision models [113]). For timeseries or multisensor inputs discovering, a model
relying on shortcuts is an unsolved problem and could be challenging to detect. Second, as

69

getting access to large unlabeled and labeled sensory datasets is difficult, evaluating how auxil
iary tasks will perform on noncurated data or learning in an openworld environment needs
further exploration. Third and last, interpretability and understanding the decision mecha
nism of deep models is another open area of research to address issues of model uncertainty,
bias and fairness. The features learned with deep network could be noninterpretable, but
we think that unifying shallow models using handcrafted features with deep networks con
suming raw input through knowledge distillation [114] might shed light on the importance of
certain features.

4.4 Related Work

Unsupervised and SelfSupervised Learning

Deep learning has revolutionized several areas of research with an intuitive property of learn
ing discriminative features directly from the raw data and eliminating the need of manual
feature extraction[3, 74, 115, 116]. The success of deep learning is largely attributed to the mas
sive labeled datasets apart from other factors, such as availability of computational power and
better neural architectures. Obtaining semantically labeled data required for training super
vised models is an expensive and timeconsuming process. Therefore, unsupervised learning
has seen growing interest in the last couple of years as unlabeled data is available in huge
quantities, especially on decentralized edge devices. A classical illustration of unsupervised
feature learning is the autoencoder, which learns to map an input onto a lowerdimensional
embedding so that reconstructing the original input from such a space incurs a lower error.
However, the decodingbased strategies deplete the network capacity through attending to
lowlevel details instead of capturing semantically meaningful features. Therefore, the focus
of recent studies is on providing an alternative form of supervision, where annotations can be
intrinsically extracted from the data itself.

The field of selfsupervised learning exploits the natural supervision available within the
input signal to define a surrogate task that can force the network to learn broadlyusable repre
sentations. To that end, numerous pretext tasks are proposed in different domains. [37] estab
lished the task of predicting the relative position of randomly cropped image patches. [117, 118]
inferred color values for grayscale pictures, [119] utilize timecontrastive loss as a way to min
imize the embedding distances of the same scene recorded from multiple viewpoints, while
maximizing the distances for those captured at different timesteps. A similar technique is
proposed in [120] to learn from multiple views of the data. [98] defined selfsupervised tasks
for audio, inspired by word2vec [121]. [88] showed that video representations could be learned
by exploiting audiovisual temporal synchronization. Timecontrastive learning is suggested
in [122] for extracting features from timeseries, in an unsupervised manner, through pre
dicting segment IDs. Likewise, autoregressive modeling has been combined with predictive
coding to learn compact latent embeddings for various domains [42].

For natural language modeling, selfsupervised objectives, such as predicting masked tokens
from surrounding ones and predicting the next sentence, turn out to be powerful methods
for learning generic representations of text [38]. Similarly, for learning inertial sensory fea

70

tures, [14, 123, 124] presented a signal transformation recognition task. Lately, selfsupervised
learning has been shown to be beneficial for semisupervised learning, through jointly op
timizing supervised and selfsupervised losses [125]. In this work, we develop several self
supervised tasks for learning representations from a wide range of sensory data such as elec
troencephalography, electrodermal activity and inertial signals. We show that pretraining
with selfsupervision using unlabeled data helps in learning highly generalizable features that
improve data efficiency and transfer well to a related set of tasks.

Learning Sensing Models with Machine Learning

An understanding of human contexts, activities and states is an important area of research
in ambient computing and pervasive sensing due to the fact that it can play a central role in
several application domains including: health, wellness, assistance, monitoring, and human
computer interaction. To achieve the earlier described objective, the data is collected from
users through wearables or other sensors, under varied environments, for learning a task
specific model. For instance, prior work on activity recognition explored various methodolo
gies with inertial sensors embedded in smartphones or smartwatches [56, 74, 126]. Emotional
state recognition is widely achieved with physiological signals, such as skin conductance and
heart rate variability [24, 115, 127]. Similarly in sleep analysis, the electrical brain activity is
captured with an electroencephalogram to classify sleep into different stages [108, 128, 129].
Importantly, for devicefree sensing systems, channel state information from WiFi is utilized
to infer participants’ activities in a nonintrusive manner [110]. Earlier developed methods for
these problems heavily relied on manual feature extraction from sensory data to infer a user’s
activity, emotional state or sleep score and these methods were limited depending on the do
main knowledge available to extract discriminative features. With the tremendous progress
in endtoend supervised learning via deep networks, it has been shown that the features
can be learned directly from data instead of handcrafting them based on domain knowledge
[3, 74, 115, 116].

Consequently, 1D convolutional and recurrent neural networks have become standard tech
niques for achieving stateoftheart performance on problems involving temporal data [24,
74, 108, 116]. Nevertheless, these approaches have heavily relied on the availability of large
annotated datasets, which are notoriously difficult to acquire in the realworld. Due to this,
in recent years, few work explored unsupervised feature learning to exploit the availability
of vast amounts of unlabeled data, while mainly focusing on input reconstruction via au
toencoders and related variants, such as restricted Boltzmann machines and sparse coding
[94, 95, 96, 115]. There has also been work on utilizing generative adversarial networks for
modeling data distributions without supervision [130, 131] and in semisupervised learning for
sensing models [72]. Furthermore, transfer learning has also been leveraged to improve neural
network generalization in domains where large labeled data is difficult to obtain, but focused
on transfer from supervised models [132, 133].

More recently, [14] proposed a selfsupervised task of signal transformation recognition for
feature learning that achieved significant improvement in activity recognition over autoen
coding, though focusing only on unimodal input and the activity recognition problem. As
opposed to earlier works, we present a general framework for learning multimodal represen

71

tations from a diverse set of sensors in a selfsupervised way and compared to [14] we simplify
the problem formulation of transformation recognition (see Section 4.2.2); our novel proxy
tasks work onpar and can be used when transforming the input is not desirable or when it
may lead to unintended outcomes (e.g. ECG signals). Furthermore, pretraining models with
our auxiliary tasks significantly lower the amount of labeled data required to achieve better
generalization and opens up the possibility of ondevice learning from decentralized unlabeled
data.

4.5 Conclusion

We proposed a selfsupervised framework for multisensor representation learning from un
labeled data, produced by the omnipresent sensors. To realize the vision of unsupervised
learning for sensing systems and IoT in general, we developed eight novel auxiliary tasks that
acquire their supervision signal directly from the raw input, without any human involve
ment. The defined proxy objectives are utilized to learn general and effective deep models for
a wide variety of problems. Through extensive evaluation on eight publicly available datasets
from four application domains, we demonstrate that the selfsupervised networks learn use
ful semantic representations that are competitive with fullysupervised models (i.e. trained
endtoend with labeled data). In summary, we demonstrated that the straightforward and
computationallyinexpensive surrogate tasks perform well on downstream tasks of interest
by learning a linear classifier on top of frozen feature extractors. We further showed that
finetuning a pretrained modalityagnostic encoder further improved the detection rate of a
network. As the key objective of leveraging unannotated data is to reduce the labeled data
required for the endtasks, we have also shown that our approach significantly improves the
performance in the lowdata regime. In particular, with as few as 5 to 10 labeled examples per
class, the selfsupervised initialized networks achieve an Fscore between 0.700.80. Further
more, we examined the effectiveness of learned representations in an unsupervised transfer
setting with linear separability analysis and semisupervised learning, achieving much better
results than training from scratch.

Various icons used in the figure are created by Sriramteja SRT, Berkah Icon, Ben Davis, Eucalyp, ibrandify,
Clockwise, Aenne Brielmann, Anuar Zhumaev, and Tim Madle from the Noun Project.

72

Appendix

Table 4.6: Performance evaluation of self-supervised representations with a linear classifier. See Section 4.3.3 for more details.

Method HHAR MobiAct MotionSense UCI HAR
Fully Supervised 0.758±0.019 0.915±0.007 0.941±0.010 0.955±0.007
Random Init. 0.115±0.069 0.254±0.122 0.153±0.086 0.157±0.104
Autoencoder 0.732±0.004 0.696±0.002 0.654±0.011 0.749±0.041
Sensor Blend 0.785±0.007 0.890±0.001 0.890±0.011 0.881±0.013

Fusion Magnitude 0.815±0.006 0.880±0.002 0.907±0.014 0.874±0.013
Feature Prediction 0.780±0.007 0.878±0.002 0.824±0.012 0.878±0.012
Transformations 0.826±0.006 0.890±0.002 0.838±0.016 0.888±0.013
Temporal Shift 0.801±0.010 0.884±0.004 0.818±0.019 0.708±0.027

Modality Denoise. 0.771±0.007 0.789±0.004 0.656±0.017 0.758±0.043
Odd Segment 0.801±0.008 0.877±0.002 0.837±0.015 0.871±0.010
Tripet Loss 0.727±0.006 0.802±0.002 0.888±0.011 0.888±0.012

Method HAPT SleepEDF MIT DriverDb WiFi CSI
Fully Supervised 0.883±0.011 0.760±0.007 0.637±0.054 0.955±0.009
Random Init. 0.041±0.039 0.026±0.068 0.077±0.206 0.012±0.042
Autoencoder 0.646±0.004 0.566±0.014 0.736±0.005 0.713±0.005
Sensor Blend 0.792±0.007 0.695±0.005 0.766±0.004

Fusion Magnitude 0.789±0.005 0.700±0.008 0.771±0.010
Feature Prediction 0.800±0.002 0.548±0.021 0.715±0.001 0.798±0.006
Transformations 0.820±0.003 0.696±0.008 0.804±0.003 0.715±0.009
Temporal Shift 0.753±0.004 0.599±0.014 0.751±0.011 0.670±0.013

Modality Denoise. 0.717±0.003 0.702±0.002 0.792±0.003
Odd Segment 0.758±0.004 0.689±0.004 0.758±0.004 0.722±0.009
Tripet Loss 0.789±0.003 0.690±0.005 0.769±0.003 0.690±0.012

Table 4.7: Improvement in recognition rate by fine-tuning the shared layers of the encoder while training on the end-task. See
Section 4.3.3 for more details.

Method HHAR MobiAct MotionSense UCI HAR
Fully Supervised 0.758±0.019 0.915±0.007 0.941±0.010 0.953±0.01
Random Init. 0.115±0.069 0.254±0.122 0.153±0.086 0.157±0.104
Autoencoder 0.808±0.003 0.907±0.004 0.923±0.003 0.932±0.004
Sensor Blend 0.815±0.011 0.927±0.005 0.921±0.006 0.948±0.004

Fusion Magnitude 0.806±0.008 0.920±0.007 0.932±0.003 0.935±0.003
Feature Prediction 0.816±0.008 0.919±0.003 0.940±0.004 0.931±0.003
Transformations 0.802±0.007 0.932±0.005 0.940±0.006 0.944±0.007
Temporal Shift 0.805±0.009 0.922±0.002 0.919±0.008 0.893±0.009

Modality Denoise. 0.816±0.003 0.920±0.003 0.910±0.008 0.930±0.001
Odd Segment 0.799±0.004 0.920±0.006 0.919±0.008 0.944±0.004
Tripet Loss 0.806±0.014 0.886±0.008 0.944±0.004 0.940±0.003

Method HAPT SleepEDF MIT DriverDb WiFi CSI
Fully Supervised 0.883±0.011 0.760±0.007 0.637±0.054 0.955±0.009
Random Init. 0.041±0.039 0.026±0.068 0.077±0.206 0.012±0.042
Autoencoder 0.863±0.002 0.732±0.010 0.740±0.004 0.875±0.030
Sensor Blend 0.880±0.003 0.739±0.005 0.748±0.029

Fusion Magnitude 0.882±0.002 0.741±0.004 0.752±0.024
Feature Prediction 0.878±0.003 0.652±0.010 0.702±0.006 0.791±0.048
Transformations 0.882±0.003 0.755±0.005 0.767±0.011 0.783±0.0334
Temporal Shift 0.857±0.008 0.696±0.004 0.751±0.011 0.678±0.070

Modality Denoise. 0.868±0.004 0.752±0.007 0.764±0.003
Odd Segment 0.883±0.003 0.730±0.007 0.691±0.048 0.828±0.037
Tripet Loss 0.870±0.006 0.732±0.004 0.755±0.006 0.699±0.030

73

Table 4.8: Comparison of self-supervised representation learning to fully-supervised approach with 5-fold cross-validation based
on user-split. See Section 4.3.3 for more details.

Method HHAR MobiAct MotionSense UCI HAR
Fully Supervised 0.820±0.098 0.891±0.024 0.950±0.008 0.941±0.030
Random Init. 0.107±0.072 0.272±0.084 0.202±0.082 0.190±0.223
Autoencoder 0.672±0.104 0.703±0.029 0.719±0.058 0.805±0.041
Sensor Blend 0.796±0.074 0.855±0.014 0.902±0.024 0.898±0.048

Fusion Magnitude 0.809±0.047 0.859±0.018 0.906±0.030 0.877±0.063
Feature Prediction 0.787±0.083 0.876±0.020 0.878±0.030 0.875±0.051
Transformations 0.789±0.071 0.876±0.015 0.873±0.017 0.900±0.022
Temporal Shift 0.776±0.069 0.859±0.022 0.863±0.032 0.756±0.038

Modality Denoise. 0.762±0.092 0.802±0.036 0.750±0.065 0.799±0.059
Odd Segment 0.777±0.090 0.862±0.019 0.877±0.017 0.843±0.012
Tripet Loss 0.707±0.077 0.777±0.018 0.897±0.027 0.873±0.043

Method HAPT SleepEDF MIT DriverDb WiFi CSI
Fully Supervised 0.880±0.063 0.760±0.037 0.577±0.219 0.949±0.006
Random Init. 0.075±0.046 0.004±0.006 0.0±0.0 0.042±0.049
Autoencoder 0.789±0.077 0.603±0.031 0.677±0.118 0.745±0.019
Sensor Blend 0.832±0.053 0.715±0.026 0.636±0.203

Fusion Magnitude 0.816±0.049 0.724±0.033 0.696±0.132
Feature Prediction 0.837±0.048 0.701±0.034 0.661±0.100 0.821±0.029
Transformations 0.842±0.051 0.712±0.026 0.698±0.134 0.716±0.039
Temporal Shift 0.812±0.047 0.664±0.035 0.667±0.170 0.669±0.019

Modality Denoise. 0.810±0.060 0.728±0.046 0.708±0.134
Odd Segment 0.793±0.053 0.690±0.049 0.655±0.151 0.745±0.023
Tripet Loss 0.820±0.052 0.715±0.037 0.698±0.128 0.715±0.027

Table 4.9: The effect of fine-tuning modality-agnostic encoder while learning downstream task under 5-folds cross-validation.
See Section 4.3.3 for more details.

Method HHAR MobiAct MotionSense UCI HAR
Fully Supervised 0.820±0.098 0.891±0.024 0.950±0.008 0.941±0.030
Random Init. 0.107±0.072 0.272±0.084 0.202±0.082 0.190±0.223
Autoencoder 0.871±0.058 0.890±0.025 0.952±0.012 0.922±0.064
Sensor Blend 0.873±0.072 0.895±0.015 0.956±0.014 0.939±0.043

Fusion Magnitude 0.864±0.063 0.893±0.016 0.951±0.016 0.930±0.047
Feature Prediction 0.875±0.059 0.910±0.019 0.953±0.004 0.931±0.057
Transformations 0.874±0.061 0.912±0.019 0.960±0.008 0.938±0.040
Temporal Shift 0.864±0.065 0.895±0.020 0.926±0.017 0.900±0.059

Modality Denoise. 0.865±0.072 0.909±0.020 0.957±0.013 0.919±0.066
Odd Segment 0.875±0.078 0.906±0.016 0.953±0.005 0.940±0.037
Tripet Loss 0.832±0.063 0.877±0.028 0.946±0.008 0.932±0.055

Method HAPT SleepEDF MIT DriverDb WiFi CSI
Fully Supervised 0.880±0.063 0.760±0.037 0.577±0.219 0.949±0.006
Random Init. 0.075±0.046 0.004±0.006 0.0±0.0 0.042±0.049
Autoencoder 0.864±0.070 0.688±0.043 0.603±0.252 0.891±0.039
Sensor Blend 0.875±0.061 0.730±0.031 0.591±0.268

Fusion Magnitude 0.866±0.060 0.741±0.034 0.585±0.263
Feature Prediction 0.876±0.065 0.726±0.033 0.596±0.257 0.824±0.048
Transformations 0.880±0.059 0.732±0.041 0.610±0.239 0.764±0.054
Temporal Shift 0.873±0.061 0.709±0.032 0.603±0.254 0.703±0.070

Modality Denoise. 0.864±0.060 0.727±0.043 0.694±0.112
Odd Segment 0.870±0.058 0.705±0.054 0.677±0.111 0.826±0.036
Tripet Loss 0.869±0.067 0.724±0.043 0.608±0.242 0.709±0.031

74

Chapter 5

Federated SelfSupervised Learning
of MultiSensor Representations

This chapter is based on our paper Federated SelfSupervised Learning of MultiSensor Represen
tations for Embedded Intelligence published in IEEE Internet of Things Journal 2020 [17] and it
was a joint work with Flora D. Salim.

5.1 Introduction

In Chapters 3 and 4, we have introduced selfsupervised auxiliary tasks for learning models
from wide variety of sensory data. Here, we introduce a general contrastive approach based
on multiview inputs for learning representations without any hand crafted pretext tasks. We
use it especially for unifying selfsupervision with federated learning in this chapter.

The wealth of sensory data from Internet of Things (IoT) devices are only recently be
ing leveraged for tackling important problems in understanding context, user monitoring,
health, and other predictive analytics tasks e.g., for emotional wellbeing [134, 135], sleep
tracking [108], and physical activity detection [14]. The success is mainly attributed to the
supervised methods that utilize labeled datasets for training models in a central environment,
while learning models from unlabeled decentralized data still presents a major challenge. Ob
taining large, wellcurated sensory data from edge devices is especially difficult owing to issues
like user privacy, the prohibitive cost of labeling, bandwidth limitations, network connectiv
ity and the diversity of device types. These factors make it significantly challenging to harness
abundant data on remote devices for learning semantic features with standard supervised ap
proaches.

We hypothesize that the fusion of selfsupervision with federated learning could result in an
effective method for learning from unlabeled, private and diverse types of sensory data which is

75

crucial for several embedded (personalized) machine learning tasks. To achieve this objective,
we develop a novel auxiliary task based on a wavelet transform, which we call scalogramsignal
correspondence learning (SSCL). A deep temporal convolution network is trained to solve the
specified task so as to learn representations from a variety of sensory inputs (e.g., electroen
cephalography, inertial measurement unit’s sensors (IMUs), and WiFi channel state infor
mation). We name it a scalogram contrastive network (SCN). Specifically, the selfsupervised
scheme is designed to contrast between a raw signal (timeseries) and its complementary view,
which in our case, is a scalogram, extracted with continuous wavelet transform [136]. How
ever, we note that other views, such as spectrogram derived with fast Fourier transform can
also be used in combination but in this work, we opt only for wavelet transformation due to
its better capability at localizing timefrequency properties [18] of the signal.

The core idea behind our pretext task is to determine if a given pair of scalogramsignal
inputs are aligned or misaligned, i.e., whether a scalogram is the transformation of a given
signal. The presented auxiliary task can formally be seen as a binary classification problem,
and we employ a contrastive objective inspired by [43] for optimizing it (see Figure 5.1 for
an overview) in both central and federated settings without involving a human in the data
labeling process. Importantly, we would like to highlight that for the model to successfully
solve the defined task, it should learn the core semantics in shared input views through possibly
relating frequency, scale, and other information present in the signal. The network captures
important latent relationships through correlating scalogramsignal inputs in the embedding
space. Mainly, the representations that could emerge from the learning process are form of
invariances (such as sensor noise, subjectspecific variations), which are essential in several
tasks involving sensory data, e.g., stress detection with physiological signals.

The key contributions of this work are threefold: First, we propose a scalogramsignal
correspondence learning framework for selfsupervised learning from diverse sensory data.
Second, to the best of our knowledge, we for the first time propose to unify federated learn
ing with selfsupervision to learn from unlabeled and private data on edge devices. Third,
we extensively assess the proposed method on several publicly available datasets from differ
ent domains with linear classification protocol in central and federated contexts, lowdata
regime (i.e., semisupervised setting), and transfer learning including crossvalidation. The
SCN achieves competitive performance in comparison with fullysupervised networks that
are trained entirely on labeled data and works significantly better than other approaches. Par
ticularly, SCN finetuning with few labeled data, e.g., five or ten instances per class, improves
the Fscore by as much as 5%6% than training from scratch. Our approach also works better
than transferring supervised features, learned from the source data, between the related tasks.

5.2 Background

We consider learning sensory features from raw unlabeled data with a deep neural networkFθ

(parameterized by θ), which transforms an input from X into an output in Z . Here, we refer
to a vector obtained through applying a mapping function F : X 7→ Z from an arbitrary
intermediate or penultimate layer of the network as ‘representation’ or ‘feature.’ Our objective
is to learn generalpurpose representations that can make subsequent tasks of interests easier

76

to solve. To this end, numerous unsupervised methods are developed to leverage a large
amount of unlabeled data for achieving better generalization. Moreover, the data required for
model development could not only be unannotated but also distributed, without the option
to accumulate it in a centralized repository due to privacy concerns and its everincreasing
size. To tackle the issue of learning models from decentralized user data, the field of federated
learning [137] is rapidly gaining momentum. Our work is intended to unify selfsupervision
with federated learning to realize the vision of ondevice learning, with a focus on multisensor
inputs. We provide an overview of federated learning and wavelet transform in the subsequent
sections, the other essential background information can be found in Chapter 2.

5.2.1 Federated Learning

The number of Internet of Things (IoT) devices embedded with sophisticated sensors is grow
ing at an unprecedented rate. On the one hand, the distributed devices are producing a mas
sive amount of data about the environment, dailyliving, health, wellbeing, manufacturing,
and more; at the same time, the computational power of edge devices is significantly improv
ing. As the work in the thesis is on learning representations for sensors, it is of high value to
address a class of methods that allow us to learn models in a collaborative manner on what is
usually called edge devices, or the edge of the network. This refers to fairly powerful devices
nearby where the data is generated. We briefly introduce an exciting subfield of machine
learning that enables training over decentralized data residing on devices that could be dis
persed over the globe but without the need to move such data to a centralized location; hence,
effectively addressing issues of data ownership and privacy.

Traditionally, machine learning models are developed with data located in a centralized (or
controlled) environment, such as a data center, where the data is divided across machines in a
classbalanced and independent and identically distributed (i.i.d) manner. Due to the factors
mentioned earlier, the idea of learning models on distributed devices without aggregating data
in a central repository is rapidly gaining momentum. The nascent area of federated learning
(FL) [138] explores developing methods to achieve the goal of learning from highly distributed
and heterogeneous data through aggregating locally trained models on remote devices (such
as wearables, smartphones, and other ambient sensors) in cooperation with the central server.
Optionally, edge device can collect data from user devices with embedded sensors and serves
as federate: compute and communicate local model to the server. We can think of FL as an
instance of distributed learning to move computation closer to the data instead of the other
way around. It provides an exciting opportunity to harness the power of edge devices that
otherwise merely sense and transmit the data to the server for further analysis. Nevertheless,
FL poses numerous challenges in system design, asynchronous or synchronous training, un
reliable communication, limited storage, device availability, noni.i.d (and unbalanced) data,
secure model aggregation, importantly, a general lack of annotations for learning supervised
models.

For our purpose, we use a synchronous model update strategy which is a central element of
the federated averaging [138] algorithm. Considering the supervised learning formula
tion with data D ∈ {(x,y)}Mm=1, a neural network fθ(.) with parameters θ, a loss function
L, we assume ℓm(θ) = L(xm,ym; θ) the loss of prediction on an instance m made with a

77

model fθ(·). We further assume in a federated setting data is partitioned over C clients, each
having mc local instances with mT =

∑
cmc being the set of total instances. Then, the

federated optimization objective can be specified as follows:

min
θ
ℓ(θ), where ℓ(θ) def

=

C∑
c=1

mc

mT
×Fc(θ) with

Fc(θ) =
1

mc

mc∑
i=1

ℓi(θ)

(5.1)

In a nutshell, the federated learning proceeds for t ∈ {1, . . . , T} communication rounds
as follows: At the beginning, a model is randomly initialized with parameters θ0 and a fixed
architecture on a central server. A set of c clients are selected from a pool C, which could
be based on certain parameters or conditions, e.g., battery power. The server shares a model
fθt−1 with the chosen devices for training round t, which perform model updates locally using
stochastic gradient descent with local learning rate, batch size, and a number of epochs. The
devices send updated models back to the server once local training is finished. Finally, the
server computes an update for the global model through aggregation as:

θt+1 ← θt−1 −
C∑

c=1

mc

mT
θc,t (5.2)

This process is repeated for several training rounds until convergence. We use federated
averaging in conjunction with selfsupervised learning to tackle the issue of learning from
unlabeled distributed data in Chapter 5. For a detailed treatment of the FL, associated chal
lenges, and open problems, we refer to [139].

5.2.2 Wavelet Transform

While the Fourier Transform (FT) sheds light on the frequency properties of the transformed
signal, the input signal’s time properties are not directly accessible from the Fourier represen
tation. An alternative to this, which provides information about the time properties of the
input signal (time locality of signal variations) is the Wavelet Transform (WT) [18]. The WT,
similarly to the Shortterm Fourier Transform (STFT), divides the input signal into time win
dows of a certain size and operates on each time window separately. Choosing a larger time
window of WT gives better frequency resolution of the WT output signal, while this reduces
the time resolution. Precisely, the Wavelet series gives individual coefficients of a set of or
thonormal functions (wavelets, e.g., Morlet, Haar, Daubechies). Like its counterparts, this
representation effectively decomposes the input signal into combinations of wavelets. Due
to these compelling properties, WT has been widely used in a myriad of domains [136]. In
particular, continuous WT gained significant popularity as compared to discrete counterpart
since it is better at localizing timefrequency properties. A wavelet transform of a signal x(t)

78

is defined as follows:

T (a, b) =
1√
a

∫ +∞

−∞
x(t) · ψ

(
t− b
a

)
dt (5.3)

where ψ represents a wavelet function, a and b denote scaling and translation factors, respec
tively. It is important to note that although we utilize WT in this work but other approaches
like STFT could also be used in conjunction to possibly improve the performance along with
segmentation [140].

5.3 Approach

Learning multisensor representations with deep networks requires a large amount of well
curated data, which is made difficult by the diversity of device types, environmental factors,
interpersonal differences, privacy issues, and annotation cost. We propose a selfsupervised
auxiliary task whose objective at a high level is to contrast or compare raw signals and their
corresponding scalograms (which are a visual representation of the wavelet transform) so that
a network learns to discriminate between aligned and unaligned scalogramsignal pairs. The
rationale of the proposed approach is similar in spirit to crossview learning in the audio
visual domain [87] but differs in a core way that we obtain aligned and unaligned views¹
from the same modality with wavelet transform. In the absence of the semantic labels, our
methodology can be leveraged to generate an endless stream of labeled data. Therefore, it can
train the network without any human involvement which is particularly attractive for the on
device learning. In subsequent sections, we describe details of the correspondence learning,
sample generation, preference of a loss function, and key network architectural properties.

5.3.1 ScalogramSignal Correspondence Learning

The idea behind scalogramsignal correspondence learning (SSCL) is to learn network param
eters with a selfsupervised objective that determines whether a raw signal and a scalogram cor
respond (or align) with each other or not. Given a multisensor dataset with fixedlength input
segments of multiple modalities D = {(x, . . . , x)1, . . . , (x, . . . , x)M} ofM instances, we
train a multimodal contrastive network to achieve the above specified objective. Specifically,
a timeseries is segmented into a fixed size input with a sliding window having a certain overlap
between samples. Afterward, the scalogram s of a signal x can be generated with a specified
wavelet transformation Ψ [18]. This procedure results in synchronized pairs for each xm and
sm of mth instance. These cooccurring pairs of inputs are assigned a class label ym = 1,
i.e., representing insync examples. Likewise, for generating negative samples ym = 0, for
a particular xm, a randomly selected sm is assigned, which in principle represents that these
scalogramsignal pairs do not align with each other. Here, we sample a negative scalogram
from the same input modality. However, it can also be selected from a different modality, e.g.,
for accelerometer, the scalogram of the gyroscope can also be utilized. Importantly, we utilize

¹or insync and outofsync samples

79

Contrastive Loss

Raw Signal

Signal Network

Scalogram Network
4 x 1 conv, 128

3 x 3 conv, 128

4 x 1 conv, 128

global max pooling

3 x 3 conv, 128

fc 256

fc 256

global max pooling

x N

Raw Signal

10 x 1 conv, 32

8 x 1 conv, 64

6 x 1 conv, 96

4, 2, max pooling

4, 2, max pooling

Dropout

x N

Scalogram

5 x 5 conv, 32

4 x 4 conv, 64

3x 3 conv, 96

2 x 2, max pooling

2 x 2, max pooling

Dropout

Dropout

Dropout

(b)

(c)

(a)

Wavelet Transform Module

Scalogram

Figure 5.1: Scalogram contrastive network. We design a dual-stream architecture to learn from the raw input signal and its
complementary view i.e. a scalogram. We map the original signal fragments into another domain and train the
network to recognize which pairs belong together. Within this work, we use a wavelet transform. The high-level
overview of the method is illustrated in (a) where signal and scalogram networks are also multi-stream networks with
a distinct stream for each input modality. The architecture of these modality-specific signal and scalogram networks
is shown in (b) and (c), respectively.

an equal number of positive and negative instances for training the network. As described ear
lier, a wavelet transform provides a better multiresolution analysis of nonstationary signals
than shorttime Fourier transform [136]. Hence, we extract a scalogram which is an absolute
and squared value of a WT operation. It is achieved using a continuous Morlet WT function
which is expressed as follows:

ψ(t) = exp
−t2

2 · exp−jw0t (5.4)

where w0 denotes a central frequency of the mother wavelet.

80

In the broadest sense, the SSCL task requires a semantic understanding of how time
frequency information presented in a scalogram relates to a raw input signal, thus enabling
the model to learn generalpurpose embedding with a complementary view on the original
input. We give a highlevel overview of our approach in Figure 5.1. The aim here is to learn
a classifierH(.) that can minimize an empirical loss, soH(xm, sm) = ym. A natural choice
is to cast the specified problem as a binary classification task p(y|x, s) and hence, optimize
a crossentropy loss. Nevertheless, we achieve better convergence through employing a con
trastive loss that pulls together embedding of positive pairs and pushes different pairs apart,
as it is also shown to be improving generalization in earlier work [43]:

L =
1

M

M∑
m=1

(ym)||FX (xm)−FS(sm)||22 +

(1− ym)max(α− ||FX (xm)−FS(sm)||2, 0)2 (5.5)

where α is a margin hyperparameter which is enforced between positive and negative samples,
FX , andFS are signal and scalogram networks, respectively. The contrastive loss optimization
solves the proposed selfsupervised task through the integration of not just different views
of the same underlying signal, but it also aligns samples across multiple sensory modalities.
This labelfree correspondence learning approach results in rich representations that may be
invariant to sensor noise, amplitude (or scale) variations, userspecific differences, and other
factors.

5.3.2 Network Architecture

To tackle the SSCL task, we design a dualstream architecture named scalogram contrastive
network, as illustrated in Figure 5.1. It is composed of two distinct parts: the scalogram network
and the signal network, each extracting features from its respective inputs. As the aim here is
to learn representations from multiple sensors, each network consists of modalityspecific and
fusion layers to learn specialized and joint embedding, respectively. In particular, we utilize
the same network architecture for learning on different datasets unless mentioned otherwise.
Likewise, only the features from the signal network are used for evaluation; discarding the
scalogram network after pretraining.

The scalogram network consists of three 2D convolution layers with kernel sizes of 5, 4,
3, and 32, 64, 96 feature maps, respectively. Dropout is applied after every layer and max
pooling after the initial two convolutional layers with a pooling size of 2. We use the same
design for each input modality, followed by the fusion layer consisting of 128 feature maps
with a kernel size of 3. To learn from raw signals, we use 1D convolutional network with the
same structure as scalogram network but with crucial differences in kernel sizes which are 10,
8, and 6 for sensorspecific layers and 4 in case of a shared layer with a dropout layer at the
end. Moreover, we use additional pretraining related layers for both networks, comprising of
a convolutional layer with 128 features maps and a dense layer with 256 hidden units. These
layers are discarded after the selfsupervised learning phase as we hypothesize that they might
learn features relevant to the auxiliary task (i.e. SSCL). We use Mish [141] activation function
in all the layers except the last, which has either linear or softmax activation. Finally, the input

81

......

End-task
Network

Configuration
Details

Central
Aggregation

Server

Sensory
Data

Local
Models

On-Device
Learning

Figure 5.2: Overview of federated learning framework. A central server dispatches a randomly initialized model and other train-
ing configuration details to the selected clients’ devices. The clients trained local models on their private data and
send the models back to the server. The models are aggregated to produce a unified model that is used for end-task.

to our scalogram network are coefficients of the wavelet transform with a size (h × w × c),
each representing height, width, and the number of channels, respectively. The signal network
directly processes raw input of size (w × c).

5.3.3 Implementation Details

For pretraining, we sample the noncorresponding scalogramsignal examples through ran
domly selecting scalograms from outside the current input batch while keeping the raw input
fixed for positives and negatives. We preprocess the signals before computing scalogram or
initiating network training as done in the previous works for each considered dataset; fur
ther details are provided in Section 5.4.1. We calculate summary statistics for znormalization
from the training set. We use an Adam optimizer with a fixed learning rate of 0.0001 for
pretraining and 0.01 or 0.02 in case of learning a linear classifier, which could also be decayed
based on performance on the validation set. The network is trained with a batch size of 24, a
dropout rate of 0.1, and L2 regularization rate of 0.0001. Importantly, for federated learning
simulation, we use the Tensorflow federated learning framework². In this case, the networks
are trained with a batch size of 12 for 5 local epochs using data of n randomly selected users at

²https://www.tensorflow.org/federated

82

Table 5.1: Summary of datasets.

Task Dataset #Users #Outputs
Sleep Stage Scoring SleepEDF 20 5

Activity Recognition HHAR 9 6
MobiAct 61 11

DeviceFree Sensing WiFiCSI 6 7
Stress Detection WESAD 15 3

each training round with 30−50 rounds in total, depending on the dataset size. A highlevel
overview of federated learning is illustrated in Figure 5.2.

5.4 Experiments

We evaluate the effectiveness of our approach in multiple ways with several publicly available
datasets from different domains. First, we probe the quality of representations with a linear
classifier trained ontop of a frozen feature extractor in both central and federated learning
settings. Second, we examine whether scalogramsignal correspondence learning could be
used to improve the recognition rate in the lowdata regime. Finally, we determine the trans
ferability of features on related datasets, followed by an evaluation with crossvalidation to
determine robustness against subject variations.

5.4.1 Datasets and Preprocessing

We experimented with learning models on 5 datasets from the following application areas:
sleep stage scoring, human activity recognition, WiFi sensing, and physiological stress detec
tion.

The electroencephalogram (EEG) and electrooculography (EOG) signals are used from
the PhysioNet SleepEDF dataset [106, 107] for classifying sleep into five stages (i.e., Wake,
N1, N2, N3, and Rapid Eye Movement). We preprocess these signals, which are recorded at
100Hz, as done in earlier work [108] and utilize 30second epochs (segments). For activity
classification with smartphones, accelerometer and gyroscope signals from HHAR [56] and
MobiAct [142] datasets are used, which have 6 and 11 output classes, respectively. We segment
the raw signals through a sliding window into a segment size of 400 samples with a 50% over
lap between them. For devicefree sensing of daily activities, we use the WiFi channel state
information data [110] and follow identical preprocessing steps with [110]. Notably, the signals
are resampled from 1kHz to 500Hz through uniform temporal downsampling with a rate of
2 for each of the 90 channels (i.e., 30 subcarriers per antenna) to classify them into 7 classes.
The WESAD dataset [134] is used for the detection of stress, normal, and amusement phys
iological states. Here, we use blood volume pulse, electrodermal activity, and temperature
signals collected from a wrist wearable device at 64Hz, 4Hz, and 4Hz, respectively. Follow
ing [134], we extract 30seconds segments and independently normalize each subject’s data
before the model development phase.

83

Table 5.2: Performance evaluation of self-supervised representations learned in a standard central setting with a linear classifier.

SleepEDF HHAR MobiAct WiFiCSI WESAD
Fscore Kappa Fscore Kappa Fscore Kappa Fscore Kappa Fscore Kappa

Random Init. 0.67 0.54 0.64 0.58 0.65 0.63 0.36 0.24 0.73 0.58
Supervised 0.82 0.76 0.73 0.69 0.95 0.93 0.96 0.95 0.85 0.75

Autoencoder 0.75 0.66 0.69 0.63 0.80 0.78 0.84 0.81 0.83 0.72
SCN 0.78 0.70 0.82 0.79 0.91 0.88 0.84 0.81 0.84 0.73

5.4.2 Results

In all the cases, we use a random 70%−30% split of the dataset (based on users such that there
is no overlap in terms of user’s data) for training and evaluation, respectively. We also a pick
20% from training split as a validation set for hyperparameter tuning and model selection.
Moreover, we also evaluate the performance of our approach with crossvalidation based on
user split i.e., leaveoneuserout. Table 5.1 summarizes the key characteristics of the datasets
used in our evaluation.

Quality assessment of the learned features with separability analysis

In Table 5.2 and Table 5.3, we provide our key evaluation results in central and federated
learning settings. First, we compare the performance of our approach with a) supervised
network trained endtoend, b) an autoencoder, and c) a randomly initialized network in
a central setting i.e., when entire data are available for learning on a server. We measure
the quality of learned representations through a linear classifier trained ontop of the frozen
extractor which is a standard evaluation protocol used in earlier work. In the federated setting
(table 5.3, the supervised network is learned for each user and the weights are aggregated
to create a unified model. For an autoencoder and SCN, the pretraining is performed in a
federated setting to learn representations, and a classifier is trained in a standard way i.e. as
if the data of endtask are available on the server. In addition, we also assess the performance
when unsupervised networks are kept frozen and classifier is also learned in a federated setting.
In Table 5.2 these entries are represented with FC which is an abbreviation of a federated
classifier.

On the evaluated datasets, we observe that the classifiers learned ontop of a fixed randomly
initialized network achieves Fscore above 60% in most of the cases. It highlights the repre
sentational capacity of our architecture design that, without seeing any samples, the encoder
can provide reasonable embedding for a linear classifier. Notably, the SCN surpasses results
of pretraining with the autoencoder and on HHAR achieves better Fscore (82.7) than a su
pervised baseline (73.0). Particularly, we notice that the results obtained in a federated setting
are close to those achieved with learning endtoend models in a central setting which hints
towards the robustness of our approach in a federated environment. Similarly, when a linear
classifier is also trained in federated setting the performance of SCN is largely consistent with
the centralized classifier, which is simply not the case for an autoencoder. Moreover, in Fig
ure 5.3 we provide the tSNE embedding of SCN on 1000 randomly selected instances from a
test set of SleepEDF, WiFiCSI, and HHAR. The distinct clusters of data points can be seen
that are discovered entirely in an unsupervised manner. This further highlights the ability of

84

Table 5.3: Assessing performance in a federated learning setting to determine SCN’s ability to learn representations from dis-
tributed data. The entries marked with FC (federated classifier) denotes metrics when both representations and clas-
sifier are learned in a federated context.

SleepEDF HHAR MobiAct WiFiCSI WESAD
Fscore Kappa Fscore Kappa Fscore Kappa Fscore Kappa Fscore Kappa

Supervised 0.82 0.76 0.77 0.73 0.94 0.92 0.92 0.90 0.85 0.75
Autoencoder 0.76 0.68 0.71 0.66 0.86 0.83 0.85 0.81 0.82 0.70

SCN 0.78 0.70 0.80 0.77 0.90 0.88 0.85 0.82 0.83 0.73
Autoencoder (FC) 0.68 0.56 0.51 0.44 0.54 0.47 0.67 0.60 0.80 0.67

SCN (FC) 0.77 0.69 0.80 0.76 0.82 0.79 0.69 0.63 0.82 0.70

SCN in learning meaningful representations.

In Figure 5.4, we compare the performance of downstream task classifiers trained on em
bedding from two different parts of the network. The representations from the encoder e and
the features from the penultimate layer of SCN h(e) are used for this purpose. It can be seen
that the classifier trained on the output of e performs significantly better than the one learned
using the last layer’s features. We think it could be because that layers at the end might learn
auxiliary taskspecific features which are not useful enough for the endtask.

Improving generalization in lowdata regime and transfer learning

We explore the effectiveness of the proposed technique for improving performance with a few
labeled data. We pretrain a scalogramcontrastive network with the entire unlabeled data and
use the model as initialization for learning a downstream task. We compare the performance
with a standard supervised network trained only with certain labeled instances. Specifically,
we use 5, 10, 20, and 40 labeled instances per class to learn the endtask model. Figure 5.5
and Table 5.4 show an average Fscore of 100 independent runs, where, at each run, different
examples are sampled to train the network. In all the cases, the results obtained with utilizing a
selfsupervised network are better than the baseline even when small labeled data are available.
This highlights that the SCN efficiently harnesses unlabeled data to learn generalized features.

Similarly, the selfsupervised networks are also evaluated in terms of their usefulness in a
transfer setting. Generally, this is achieved by treating a pretrained model as a fixed feature ex
tractor, and a linear model is trained on top of it using a different dataset. Here, we assess the
performance on activity recognition tasks with HHAR and MobitAct datasets. Table 5.5 pro
vides these results and compares with the supervised network, transfer from supervised (Sup.),
and SCN trained on the same source instances. In both cases, we see that the recognition rate
improves if transferred embedding is from SCN compared to a supervised network. Finally,
we also assess the performance of SCN when fewlabeled instances are available for finetuning
but different unlabeled data are available for pretraining in Table 5.6. Similar to earlier semi
supervised evaluation, we finetune a pretrained network endtoend with 5, 10, 20, and 40
examples of each class from the target dataset. We notice a 2%−3% improvement in Fscore
over the supervised network when an SCN encoder is utilized.

85

Upstairs

Standing
Cycling

Sitting

DownstairsWalking

HHAR

Sit Down

Pick Up

On Bed

RunStand
Up

Walk

Fall

WiFi-CSI

Wake

N1

REM

N3

N2

Sleep-EDF

Figure 5.3: t-SNE embedding learned with scalogram contrastive network on a random subset of test subjects. Note, t-SNE does
not utilize class labels, the colors are added during post-hoc analysis for better interpretability.

Sleep-EDF HHAR MobiAct WiFi-CSI WESAD
0

20

40

60

80

100

F-
sc

or
e

e
h(e)

Figure 5.4: Performance comparison of linear classifiers trained on-top of representations from encoder (e) and penultimate
layer’s projection h(e) of SCN denoted with fc 256 in Figure 5.1.

Table 5.4: Generalization improvement in semi-supervised setting with self-supervised pretraining.

SleepEDF HHAR MobiAct WiFiCSI WESAD
Supervised SCN Supervised SCN Supervised SCN Supervised SCN Supervised SCN

5 0.58±0.05 0.62±0.05 0.50±0.07 0.55±0.06 0.56±0.06 0.61±0.07 0.48±0.03 0.52±0.03 0.71±0.06 0.73±0.06
10 0.64±0.03 0.67±0.04 0.57±0.06 0.62±0.05 0.65±0.05 0.70±0.05 0.57±0.02 0.61±0.02 0.74±0.03 0.77±0.03
20 0.68±0.05 0.71±0.02 0.62±0.05 0.69±0.04 0.74±0.04 0.78±0.04 0.67±0.02 0.70±0.02 0.77±0.03 0.80±0.03
40 0.72±0.03 0.74±0.02 0.68±0.04 0.75±0.04 0.82±0.02 0.84±0.02 0.77±0.02 0.79±0.02 0.81±0.02 0.83±0.02

Robustness against subject variation with crossvalidation

To determine the robustness of network pretraining with the proposed approach against sub
ject variation, we perform crossvalidation (CV) based on user split. For SleepEDF, HHAR,
and WESAD leaveonesubjectout CV is employed, whereas for MobiAct and WiFiCSI, a
10fold stratified CV is used due to a large number of users in the former and unavailability of
subject ID’s in the latter. We follow the same evaluation strategy as earlier, i.e., training a lin

86

5 10 20 40
Instances per class

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750
F-

sc
or

e
Sleep-EDF

Fully Supervised
Self-Supervised

5 10 20 40
Instances per class

0.50

0.55

0.60

0.65

0.70

0.75

F-
sc

or
e

HHAR

5 10 20 40
Instances per class

0.55

0.60

0.65

0.70

0.75

0.80

0.85

F-
sc

or
e

MobiAct

5 10 20 40
Instances per class

0.50

0.55

0.60

0.65

0.70

0.75

0.80

F-
sc

or
e

WiFi-CSI

5 10 20 40
Instances per class

0.72

0.74

0.76

0.78

0.80

0.82

F-
sc

or
e

WESAD

Figure 5.5: Effectiveness of self-supervised learning in a low-data regime. The SCN is pretrained on unlabeled data and fine-tuned
end-to-end with few labeled data points (i.e, 5, 10, 20, and 40 instances per class). On all the evaluated datasets, we
notice a significant performance improvement over a supervised baseline network which is trained only with labeled
inputs.

Table 5.5: Evaluation of self-supervised representation in a standard transfer learning setting.

HHAR → MobiAct MobiAct → HHAR
Fscore Kappa Fscore Kappa

Supervised 0.95 0.93 0.73 0.69
Source (SCN) 0.91 0.88 0.82 0.79
Transfer (Sup.) 0.86 0.83 0.62 0.54
Transfer (SCN) 0.87 0.84 0.75 0.71

Table 5.6: Fine-tuning transferred model with few-labeled data to improve recognition rate. We report weighted F-score aver-
aged over 100 independent runs. T denotes a transfer learning.

HHAR → MobiAct MobiAct → HHAR
Supervised SCN (T) Supervised SCN (T)

5 0.50 0.51 0.56 0.59
10 0.56 0.59 0.65 0.69
20 0.62 0.65 0.74 0.75
40 0.68 0.70 0.82 0.82

ear classifier to assess the quality of representations as compared to the fullysupervised model
and an autoencoder. Table 5.7 summarizes mean and standard deviation of metrics averaged
over folds. Overall, we notice that SCN is stable despite the changes of subject data in a train

87

Table 5.7: Comparison of self-supervised representations to a fully-supervised network and pretraining with autoencoder using
cross-validation.

Supervised Autoencoder SCN
Fscore Kappa Fscore Kappa Fscore Kappa

SleepEDF 0.83 ± 0.05 0.77 ± 0.06 0.73 ± 0.08 0.65 ± 0.10 0.82 ± 0.03 0.83 ± 0.03
HHAR 0.82 ± 0.12 0.80 ± 0.13 0.62 ± 0.13 0.59 ± 0.15 0.78 ± 0.11 0.76 ± 0.12
MobiAct 0.94 ± 0.02 0.92 ± 0.03 0.79 ± 0.04 0.75 ± 0.06 0.90 ± 0.02 0.87 ± 0.03
WiFiCSI 0.97 ± 0.0 0.97 ± 0.0 0.85 ± 0.01 0.82 ± 0.02 0.85 ± 0.01 0.82 ± 0.01
WESAD 0.76 ± 0.11 0.63 ± 0.17 0.71 ± 0.14 0.56 ± 0.25 0.75 ± 0.13 0.63 ± 0.19

ing set and achieves significantly better results than an autoencoder. Notably, on SleepEDF,
our methods achieve a mean kappa score of 0.83 as compared to 0.77 of a supervised network
and 0.76 as reported in [108]. Likewise, our selfsupervised technique performs better than
the handdesigned features from wrist physiological signals on WESAD by achieving Fscore
of 75.7± 0.13 as compared to 66.33± 0.36 [134]. Furthermore, we would like to highlight
that a direct comparison of existing approaches on other datasets used in our study is not fea
sible due to the differences in reported metrics and used sensing modalities. Nevertheless, our
results with crossvalidation further indicate that selfsupervised learning can be effectively
utilized for sensor modeling tasks on a largescale and it can be combined with active learning
methods [143].

5.5 Conclusion

We propose a selfsupervised method for learning representations from unlabeled multisensor
input data, which is typical in the IoT setting. Our method utilizes wavelet transform to gen
erate a complementary view of the input (i.e., a scalogram) to define an auxiliary task of
scalogramsignal correspondence. This procedure is specifically designed to work in a fed
erated learning setting to allow training networks with widely distributed and unannotated
data as the labels can be readily extracted from the data without humanintheloop. We show
the efficacy of the developed technique on several publicly available datasets involving diverse
sensory streams, such as electroencephalogram, blood volume pulse, and IMUs. Particularly,
we evaluate the quality of learned features with a linear classifier on an endtask and compare
the performance with a fullysupervised network and pretraining with an autoencoder in both
federated and central settings. Furthermore, we demonstrate an improved generalization in
the lowdata regime with selfsupervision, i.e., when few labeled instances are used for fine
tuning network on the desired endtask. Our generic selfsupervised approach can be used
efficiently for learning generalpurpose deep feature extractors entirely ondevice without the
need of transmitting the actual data to the server. In future work, we plan to combine self
supervision with architecture search on larger datasets and evaluate our method in a non i.i.d
setting for federated learning.

Various icons used in the figure are created by Andrejs Kirma, Stefan Traistaru, Graphic Tigers, Icon Lauk, Olena
Panasovska and others from the Noun Project.

88

Chapter 6

Contrastive Learning of
GeneralPurpose Audio
Representations

This chapter is based on the material from our paper Contrastive Learning of GeneralPurpose
Audio Representations accepted at IEEE ICASSP 2021 [16] and a joint work with David Grangier
and Neil Zeghidour. This work was done during an internship at Google Research within Brain
team, Paris.

6.1 Introduction

Having explored representation learning for multivariate timeseries (or signals) acquired from
sensors embedded in smartphones and other wearable devices in preceding chapters, in this
chapter we focus on extracting useful representations from unlabeled audio to solve diverse
set of sound recognition problems.

Selfsupervised pretraining has recently emerged as a successful technique to leverage un
labeled data to learn representations beneficial to supervised problems. This success spans a
wide range of tasks and modalities [38, 42, 87, 144]. Among these methods, Discriminative
pretraining (DPT) is particularly effective. This approach learns a representation from pairs
of similar inputs from unlabeled data, exploiting e.g. temporal consistency [87, 145, 146] or
data augmentation [147] and trains a model to recognize similar elements among negative
distractors. In contrast with generative encoderdecoder approaches [148, 149, 150, 151, 152],
DPT is computationally efficient as it avoids input reconstruction entirely.

Amidst DPT models for audio, [146] used a metric learning approach with a triplet loss
to minimize the distance between embeddings of anchor and positive pairs and maximize it

89

among the negatives. The instance generation is achieved through noise injection, shifting
along timefrequency dimensions, and extracting samples in temporally close neighborhoods.
Along similar lines, [153] proposed a benchmark for comparing speech representations on
nonsemantic tasks. Through utilizing a triplet loss as an unsupervised objective with a subset
of AudioSet [154] for model training, they showed improved performance on several down
stream speech classification tasks. Inspired from seminal work in NLP [155], the work in [98]
adopted a similar approach to learn audio representations (i.e. AuDIO2VEc) along with an
other “pretext” task of estimating temporal distance between audio segments. The pretrained
models are tested on several downstream tasks, from speaker identification to music recog
nition. Despite recent progress, most work on learning representations of audio focuses on
speech tasks [156, 157, 158] (with the exception of [98, 146]) and ignores other audio tasks
such as acoustic scene detection or animal vocalizations. Moreover, tripletbased objectives
heavily rely on the mining of negative samples, and the quality of learned features can vary
significantly with the sample generation scheme.

In this work, we propose COLA (COntrastive Learning for Audio), a simple contrastive
learning framework to learn generalpurpose representations of sounds beyond speech. We
build upon recent advances in contrastive learning [42] for computer vision (SIMCLR [147],
MOCO [159]) and reinforcement learning (CURL [160]). We generate similar pairs by simply
sampling segments from the same audio clip, which avoids exploring augmentation strategies
entirely unlike SIMCLR, MOCO, CURL and others [161]. Our dissimilar pairs simply associate
segments from different clips in the same batch, which does not require maintaining a memory
bank of distractors as in MOCO. Our approach allows us to consider a large number of
negatives for each positive pair in the loss function and bypass the need for a careful choice
of negative examples, unlike tripletbased approaches [146, 153]. COLA is also different from
CPC [42] as it does not predict future latent representations from past ones.

We demonstrate the effectiveness of COLA over challenging and diverse downstream tasks,
including speech, music, acoustic scenes, and animal sounds. After pretraining on the large
scale AudioSet database [154], we show that a linear classifier trained over a COLA embedding
gets close to the performance of a fullysupervised indomain convolutional network and ex
ceeds it when using finetuning. Moreover, our system outperforms previous unsupervised
approaches on most downstream tasks. These experiments demonstrate that COLA offers
a simple, easytoimplement method to learn generalpurpose audio representations without
supervision.

6.2 Approach

We learn generalpurpose audio representations from unlabeled data by pretraining a neural
network with a contrastive loss function. Our objective function maximizes an agreement
between the latent embedding of segments extracted from the same audio clip while using
different audio clips as negative classes, as shown in Figure 6.1. This objective pretrains a
convolutional feature extractor on unlabeled audio data. After pretraining, we combine our
feature extractor with an additional classification layer for solving various audio understanding
tasks across several datasets.

90

Figure 6.1: Overview of the contrastive self-supervised learning for audio.

Contrastive learning extracts a latent space in which the similarity between an anchor exam
ple and a related example should be greater than the similarity between the same anchor and
unrelated examples. In our case, an anchor and its corresponding positive are audio segments
from the same clip. This contrasts with approaches that generate positives as perturbations of
the anchor [161, 162]. For negative examples, we take segments from different audio clips in
the current training batch. This strategy allows to consider a large number of negatives and
is efficient since batch examples are used both as positives and negatives without additional
computation.

COLA computes the similarity between audio segments in two steps. First, an encoder f
maps a logcompressed melfilterbanks x ∈ RN×T , with N and T the number of frequency
bins and time frames respectively, into a latent representation h = f(x) ∈ Rd. This is
the representation that we will transfer to downstream classification, after pretraining. Then,
a shallow neural network g maps h onto a space z = g(h), where bilinear comparisons are
performed. If we denote withW the bilinear parameters, the similarity between two segments
(x, x′) is, therefore:

s(x, x′) = g(f(x))⊤ W g(f(x′)). (6.1)

Bilinear similarity has been used in the past [42] but is less common than cosine similarity, e.g.
SIMCLR and MOCO. In Section 6.3, we perform an ablation study on the choice of similarity
measure. Table 6.3 shows that a bilinear similarity outperforms a simple cosine similarity
(g(f(x))⊤·g(f(x′))
∥g(f(x))∥∥g(f(x′))∥) on all downstream tasks. In the rest of this chapter, we use this method

unless stated otherwise.

As an objective function, we rely on multiclass cross entropy applied to similarities, i.e.

L = − log
exp (s(x, x+))∑

x−∈X−(x)∪{x+}
exp (s(x, x−))

(6.2)

91

where x+ is the positive associated to anchor x, while X−(x) refers to the set of negative
distractors. This loss, unlike the triplet loss [163], leverages multiple distractors at a time.

As mentioned earlier, we train our model with positive segment pairs sampled from the
same audio clip. For each pair, we use one segment as the anchor and the other element
as the positive. Positive segments are used as negatives for all other anchors in the batch.
This strategy is more efficient than keeping a memory bank of negatives [159, 162] since the
representation of an example is paired with every anchor in the batch either as a positive or as
a negative segment. In particular, we experiment with batch sizes varying from 256 to 2048,
as shown in Table 6.4. A large batch size allows the model to see many negative samples per
anchor and helps accuracy on end tasks. It is important to note that we sample segment pairs
onthefly and reshuffle the data at each training epoch to maximize the diversity of positive
and negative pairs seen during training. The sample generation procedure is illustrated in
Figure 6.1.

6.3 Experiments

We evaluate our method by pretraining COLA embeddings on a largescale audio dataset and
then transferring it to downstream tasks in the following ways: 1) training a linear classifier on
top of a frozen embedding, used as a feature extractor and 2) finetuning the entire network on
the endtask. Importantly, we assess the performance on several diverse datasets to determine
the transferability of learned representations across audio domains and recording conditions.

6.3.1 Datasets and Tasks

We pretrain COLA embeddings on the diverse, largescale Audioset [154]. It contains 2 mil
lions excerpts of 10 seconds audio from YouTube videos that are annotated in a multilabel
fashion with over 500 classes. This dataset has been used by [98, 153, 164] for selfsupervised
pretraining. Since our method is selfsupervised, we never use Audioset labels. As described
earlier, we randomly sample audio clips to generate examples. Likewise, for the extraction of
anchors and positives, segments of audio are selected uniformly at random inside a sequence.

We perform downstream evaluation on a variety of tasks, including both speech and non
speech. To allow for comparison with previous methods, we rely on datasets that have been
previously used by [98, 153, 164]. For speaker identification, we use a 100hours subset of
LibriSpeech (LBS) [165] that contains audio of books read by 251 speakers, as well as the Vox
celeb [166] subset used in [153], with 1, 251 speakers. For keyword spotting, we use Speech
Commands (SPC) [167] V1 and V2 to recognize 11 and 35 spoken commands (classes) from
one second of audio, respectively. For acoustic scene classification, we use TUT Urban Acous
tic Scenes 2018 (TUT) [168], consists of labeled audio segments from 10 different acoustic
scenes. For animal vocalizations, we use the Bird Song Detection (BSD) dataset [169] from
DCASE 2018 Challenge to solve a binary classification problem. For music recognition, we
use MUSAN [170] that differentiates audio samples across 3 classes (speech, music and noise),
as well as the NSynth dataset [171] of musical notes, labeled with the family of the instrument

92

Table 6.1: Test accuracy (%) on downstream tasks.

Random Supervised COLA
Task Init. Frozen Finetuned

Speaker Id. (LBS) 0.4 100.0 100.0 100.0
Speech commands (V1) 62.9 97.2 71.7 98.1
Speech commands (V2) 4.0 94.3 62.4 95.5
Acoustic scenes 8.6 98.2 94.1 99.2
Speaker Id. (Voxceleb) 0.0 31.7 29.9 37.7
Birdsong detection 49.6 79.4 77.0 80.2
Music, Speech and Noise 56.8 99.3 99.1 99.4
Language Id. 59.1 85.0 71.3 82.9
Music instrument 20.8 70.7 63.4 73.0

Average 29.1 83.9 74.3 85.1

(11 classes). For language identification, we use the Voxforge dataset [172] to categorize audio
clips into six classes based on the spoken language.

Table 6.2: Test accuracy (%) of a linear classifier trained on top of COLA embeddings or baseline pretrained representations.

CBoW [98, 164] SG [98, 164] TemporalGap [98, 164] Triplet Loss [98, 164] TRILL [153] COLA

Speaker Id. (LBS) 99.0 100.0 97.0 100.0 100.0
Speech commands (V2) 30.0 28.0 23.0 18.0 62.4
Acoustic scenes 66.0 67.0 63.0 73.0 94.1
Birdsong detection 71.0 69.0 71.0 73.0 77.0
Music, Speech and Noise 98.0 98.0 97.0 97.0 99.1
Music instrument 33.5 34.4 35.1 25.7 63.4
Speech commands (V1) 74.0 71.7
Speaker Id. (Voxceleb) 17.7 29.9
Language Id. 88.1 71.3

Average (TRILL tasks) 59.9 57.6
Average (nonTRILL) 66.25 66.0 64.3 64.4 82.5

Table 6.3: Test accuracy (%) with different similarity functions.

Cosine Similarity Bilinear Similarity

Speaker Id. (LBS) 99.9 100.0
Speech commands (V1) 64.5 71.7
Speech commands (V2) 42.4 62.4
Acoustic scenes 87.5 94.1
Speaker Id. (Voxceleb) 15.2 29.9
Birdsong detection 76.5 77.0
Music, Speech and Noise 99.0 99.1
Language Id. 62.3 71.3
Music instrument 58.3 63.4

Average 67.2 74.3

93

6.3.2 Model Architecture and Implementation Details

Given an audio input sequence, we extract logcompressed melfilterbanks with a window
size of 25 ms, a hop size of 10 ms, and N = 64 melspaced frequency bins in the range
60–7800 Hz for T = 96 frames, corresponding to 960 ms. These features are passed through
an encoder f based on EfficientNetB0 [173], a lightweight and highly scalable convolutional
neural network. Even though EfficientNetB0 has been originally proposed for computer
vision, the 2D structure of melfilterbanks allows using this architecture without any adjust
ment. We apply a global maxpooling to the last layer of the encoder to get an embedding
h of size 1280. During pretraining, we pass h through the projection head g, which con
tains a fullyconnected layer with 512 units followed by a Layer Normalization [174] and a
tanh activation. We discard the projection head for the downstream tasks and train a linear
classifier on top of the encoder directly. We pretrain all our models with ADAM [31] and a
learning rate of 10−4, for 500 epochs. We explore the impact of the batch size and report the
results in Table 6.4. We train the downstream classifiers with a batch size of 64 and a learning
rate of 10−3, on randomly selected 960ms segments, as for pretraining. However, we eval
uate downstream classifiers on entire sequences using the following procedure: we split the
sequence into nonoverlapping 960ms segments, pass them through the encoder and linear
classifier, and average the predictions.

6.3.3 Results

Table 6.1 reports the accuracy on the 9 downstream datasets. We compare our approach
against multiple baselines: a linear classifier trained on a randomly initialized fixed encoder
and a fullysupervised model trained directly on downstream datasets which indicates the
performance achievable with EfficientNetB0 on these datasets. First, we evaluate pretrained
COLA embeddings with a linear classifier on top of frozen representations, following the same
procedure as [42, 98, 147, 159]. This outperforms drastically the performance of a linear clas
sifier trained on a random embedding (74.3% against 29.1% on average), showing that the
encoder has learned useful representations. This is remarkable as we pretrain a single COLA
embedding, which performs well across many tasks. Next, we also use a pretrained COLA as
initialization and finetune one model per downstream task. Table 6.1 shows that on all tasks
but language identification, initializing a supervised model with COLA improves the perfor
mance over training from scratch (85.1% against 83.9% on average), which demonstrates the
benefits of transferring COLA representations even in a fully supervised setting.

We then compare COLA to prior selfsupervised methods proposed in [98, 164], including
a standard triplet loss, AuDIO2VEc (CBoW and SG) and temporal gap prediction models.
Here, the CBoW and SG are generative models inspired from WORD2VEc, trained to recon
struct a randomly selected temporal slice of logmel spectrograms given the rest or vice versa.
Likewise, TemporalGap trains a model to predict the temporal distance between two pairs of
audio segments. Table 6.2 shows that COLA embeddings consistently outperform all these
methods. In particular, on acoustic scene classification, we obtain a competitive accuracy of
94% compared to 73% achieved with a triplet loss in [98]. We also considerably improve the
performance on speech commands and musical instrument classification by an absolute 30%

94

Table 6.4: Impact of pretraining batch size on downstream test accuracy (%), using a bilinear similarity.

256 512 1024 2048

Speaker Id. (LBS) 99.9 99.9 100.0 99.9
Speech commands (V1) 66.9 69.4 71.7 72.9
Speech commands (V2) 44.4 54.2 62.4 64.2
Acoustic scenes 86.4 90.7 94.1 90.2
Speaker Id. (Voxceleb) 17.6 21.6 29.9 22.8
Birdsong detection 75.9 76.9 77.0 76.4
Music, Speech and Noise 98.8 99.1 99.1 98.8
Language Id. 65.6 64.0 71.3 68.4
Music instrument 62.3 57.3 63.4 56.6

Average 68.6 70.3 74.3 72.2

margin on both tasks. We also compare with the recent selfsupervised learning framework
TRILL [153] on three speechrelated tasks, benchmarking against TRILL19 (the best self
supervised system of [153]). Our generalpurpose COLA embeddings are competitive with
TRILL, despite the fact that TRILL is pretrained specifically on the part of Audioset that
contains speech, and is evaluated only across speech tasks, while we train and evaluate COLA
across speech, music, acoustic scenes, and animal sounds.

To investigate the role of the similarity measure in the quality of learned representations, we
perform an ablation study to compare model pretraining with cosine and bilinear similarity.
With the cosine similarity, we use a temperature τ = 0.2 to normalize the scores before
computing the loss. Table 6.3 reports the results obtained on downstream classifiers using
encoders pretrained with each of the similarity estimation techniques. We observe that the
best results are obtained using bilinear similarity in all cases. We also conduct an experiment
to measure the impact of pretraining batch size, as larger batch sizes result in more negative
samples and facilitate convergence [147]. Table 6.4 shows that, on average, a batch size as large
as 1024 provides better representations compared to smaller ones. However, increasing the
batch size up to 2048 worsens the performance in most cases.

6.4 Conclusion

We introduce COLA, a simple, easytoimplement, selfsupervised contrastive algorithm for
generalpurpose audio representation learning. Our approach achieves remarkable perfor
mance improvements over earlier unsupervised methods on a wide variety of challenging
downstream tasks in a linear evaluation protocol as well as significantly improves results over
supervised baselines through finetuning. We believe that the simplicity of our system, com
bined with its strong transferability across audio tasks, will pose it as a goto baseline for future
work in selfsupervised learning for audio.

95

Chapter 7

Differentiable Channel Reordering
for Heterogeneous Signals

This chapter is based on the material from our paper Learning from Heterogeneous EEG Signals
with Differentiable Channel Reordering accepted at IEEE ICASSP 2021 [19] and a joint work with
David Grangier, Olivier Pietquin and Neil Zeghidour. This work was done during an internship
at Google Research within Brain team, Paris under the supervision of Neil Zeghidour and David
Grangier.

7.1 Introduction

In the previous chapters, we explored the problem of learning representations from unlabeled
data acquired from different types of sensors. Here, we focus on the robustness aspect of the
deep neural network in the face of inconsistent input channels i.e., a multichannel input
whose channels are permuted, missing or have noise, e.g., a electroencephalogram record
ing. Our approach is generalpurpose and can be applied to any type of signal for handling
inconsistent channel ordering in an endtoend manner while learning the task, we use Elec
troencephalography (EEG) as the application domain in this chapter.

EEG is the measurement of the brain’s electrical activity, which informs about neural func
tions and related physiological manifestations [175]. It is generally collected along the scalp
in a noninvasive way for a wide array of tasks, including for clinical purposes and Brain
Computer Interface (BCI) systems. Automatic classification of EEG signals with machine
learning has been widely adopted to study, diagnose, and treat neurological disorders such as
seizures, epilepsy, Alzheimer’s, and sleeprelated problems [108, 176, 177]. In BCI tasks, EEG
is used to capture motor imagery signals and recognize user’s intents [178] and eventrelated
potential [179]. Likewise, it is also used to estimate mental workload or task complexity for
monitoring cognitive stress and performance [180].

97

Over the last years, automatic EEG classification has moved from using handcrafted fea
tures [181, 182] towards learning highlevel representations from raw EEG signals with deep
neural networks [183, 184]. In particular, Convolutional Neural Networks (CNNs) have be
come the standard architecture to process EEG signals and have been used for many tasks in
cluding motor imagery [185, 186, 187], seizure prediction [188, 189], Parkinson diagnosis [190]
and sleep stage scoring [108]. Nevertheless, EEG measurements remain notoriously subject to
intra and intersubject variability, which makes generalization particularly challenging, for
a same subject between sessions, or between different subjects. and led to numerous works
focusing on the reduction of this generalization gap [191, 192, 193]. A less explored problem
is the variability due to differences in measuring devices: different EEG headsets have a vary
ing number of electrodes (from a few to dozens) and different electrical specifications [194].
Moreover, it is not rare that headset malfunctions lead to noisy or even missing channels.
Consequently, available EEG datasets are heterogeneous, and the majority of them are very
small.

Scaling EEG training data seems, therefore, only feasible by aggregating heterogeneous
datasets. This requires devising novel classification methods that are robust to permuted and
missing channels since classical CNNs assume a fixed number of input channels, ordered
consistently across data examples. With this objective, we introduce a new framework for
training a single CNN across varying EEG collections that can differ both in number and
location of electrodes. Our CHAnnel Reordering Module (CHARM) ingests multichannel
EEG signals, identifies the location of each channel from their content, and remaps them to
a canonical ordered set. After this remapping, the channels are ordered consistently and can
be further processed by a standard neural network, regardless of the actual variations in the
input data. We evaluate CHARM on three tasks: seizure classification, detection of abnormal
EEGs and detection of artifacts (e.g. eye movement). We show that CHARM is significantly
more robust to missing and permuted channels than a standard CNN. We also introduce a
data augmentation technique that further improves the robustness of the model. Moreover,
we show for the first time that pretraining representations of EEG on a large dataset transfers
to another, smaller dataset collected with a different headset.

Consistent Placement Randomly Missing Spatially Shifted Inconsistent & MissingFixed Cutout

Figure 7.1: Illustration of various forms of inconsistencies that can arise in EEG recordings.

7.2 Approach

Our proposal is a differentiable reordering module that maps inputs with inconsistent chan
nels to a fixed canonical order. It can be composed with further modules expecting consistent
channel placement to be trained endtoend on data without channel ordering information.

98

As inputs, we consider EEG signals with an unknown channel ordering and potentially miss
ing channels, (Figure 7.1). Our module takes these channels and reorders them to a canonical,
consistent order prior to further processing. Precisely, our reordering module outputs a soft
reordering matrix p.

The input signal x ∈ RN×T is a recording overN channels for a duration T . Considering
M canonical channels, the reordering matrix p(x) is an N × M matrix. Precisely, each
canonical output is estimated as a weighted sum of the input channels, i.e.,

x̂i,t =

N∑
j=1

p(x)i,j xj,t , i = 1, . . . ,M, t = 1, . . . , T. (7.1)

x̂ ∈ RM×T then serves as input to a standard neural network expecting a consistent input
ordering across data samples. Since p is differentiable, the reordering module parameters can
be learned jointly with the rest of the architecture (Figure 7.2). Training optimizes the cross
entropy classification loss with no extra supervision on the channel order.

7.2.1 Learnable Channel Remapping

Using CHARM as the first layers of the model allows us to train a single deep architecture over
different EEG recording headsets. We consider three variants of our reordering method.

Convolutional Reordering

CHARMbase represents the signal of each channel as a vector,

hi = mconv(xi,:) (7.2)

where mconv composes a 1D convolution layer with d filters and an aggregation operation
(global maxpooling) to map a singlechannel temporal signal into a fixed dimensional vector
of dimension d. Since this step convolves channels independently, its predictions are invariant
to a reordering of the input channels.

Each vector is then compared to learned embeddings of dimension d that represent each
of the M canonical channels, c ∈ RM×d, yielding the matrix p for channel remapping,

pi,j = softreorder(c, h)i,j =
exp(ci · hj)∑
j′ exp(ci · hj′)

. (7.3)

Attentive Reordering with Canonical Keys and Values

CHARMCKV builds upon residual attention [20]. We build a query vector representing each
input channel as qi = mconv(xi,:). Each query vector attends over canonical channels, i.e.

99

CNN

 Learnable
Channel

Remapping
(CHARM)

Inconsistent EEG Channels
Placement

Remapped Canonical
Channels

Classifier Attention
Module

Figure 7.2: Overview of CHARM with a 1D convolutional classifier for EEG classification tasks.

each input channel query is mapped to a weighted sum of canonical channel value vectors
according to their similarity to canonical key vectors,

hi =
∑
j

ai,jvj where ai,j =
exp(qi · kj)∑
j′ exp(qi · kj′)

, (7.4)

and k, v are key and value embeddings representing the canonical channels. These layers can
be stacked after a residual connection,

ql+1
i = layernorm(qli +mlpl(hli)) (7.5)

where ql, hl are the query and attentive representations of layer l. The layernorm denotes
a layer normalization module [174] and mlp denotes a multilayer perceptron with a single
hidden layer. We denote the residual attention compactly as

ql+1
i = attn(qli, k, v) (7.6)

At the last layer, we compute p = softreorder(c, ql).

Compared to our base convolutional model, this model can use many channel predictions
to refine each individual prediction. For instance, it can be confident only for a few channels
at the first layer and refine its decision for the other channels in the next layers.

Attentive Reordering with Canonical Queries

CHARMCQ reverses the role of canonical and input channels, using input keys and values
and relying on canonical queries. Input keys and values result from an independent channel
wise convolution with 1D filters,

(ki, vi) = mconv(xi,:) (7.7)

and initial canonical queries q are learned embeddings. Each query can be attended over to
represent each canonical channel as a weighted sum of input values, as in Equation 7.6. Several
layers of attention can be stacked. Finally, p = softreorder(ql, kl). In our experiments, we
found it beneficial to share keys and values across layers, i.e. (kl, vl) = (k0, v0).

100

Table 7.1: Test accuracy (± std) averaged over 10-folds for model generalization to shuffled and masked input channels. The
entries with Noisy-n% represent the results when a fixed ratio of n% of the channels are masked after shuffling.

Dataset Channels Classes Method Clean Noisy Noisy25% Noisy50% Noisy75%

TUH Abnormal 22 2

Baseline 0.830 ± 0.030 0.566 ± 0.025 0.581 ± 0.025 0.589 ± 0.027 0.548 ± 0.028
CHARMbase 0.766 ± 0.016 0.742 ± 0.014 0.760 ± 0.015 0.743 ± 0.016 0.731 ± 0.014
CHARMCKV 0.772 ± 0.019 0.751 ± 0.011 0.767 ± 0.013 0.756 ± 0.013 0.747 ± 0.015
CHARMCQ 0.751 ± 0.014 0.743 ± 0.022 0.744 ± 0.026 0.744 ± 0.024 0.741 ± 0.028

TUH Artifact 19 6

Baseline 0.711 ± 0.009 0.243 ± 0.016 0.245 ± 0.026 0.176 ± 0.018 0.263 ± 0.022
CHARMbase 0.618 ± 0.011 0.514 ± 0.028 0.566 ± 0.029 0.517 ± 0.028 0.466 ± 0.028
CHARMCKV 0.628 ± 0.016 0.481 ± 0.028 0.521 ± 0.034 0.491 ± 0.026 0.452 ± 0.019
CHARMCQ 0.607 ± 0.009 0.524 ± 0.044 0.538 ± 0.043 0.531 ± 0.046 0.505 ± 0.043

TUH Seizure 21 5

Baseline 0.950 ± 0.010 0.289 ± 0.040 0.368 ± 0.037 0.297 ± 0.052 0.171 ± 0.046
CHARMbase 0.906 ± 0.021 0.663 ± 0.015 0.818 ± 0.026 0.693 ± 0.034 0.502 ± 0.027
CHARMCKV 0.912 ± 0.027 0.713 ± 0.030 0.842 ± 0.041 0.756 ± 0.043 0.591 ± 0.046
CHARMCQ 0.890 ± 0.021 0.770 ± 0.041 0.857 ± 0.028 0.808 ± 0.045 0.704 ± 0.058

CHBMIT 17 2

Baseline 0.658 ± 0.009 0.371 ± 0.014 0.296 ± 0.014 0.363 ± 0.012 0.439 ± 0.029
CHARMbase 0.554 ± 0.006 0.504 ± 0.010 0.523 ± 0.012 0.503 ± 0.013 0.487 ± 0.016
CHARMCKV 0.562 ± 0.009 0.518 ± 0.011 0.543 ± 0.009 0.529 ± 0.007 0.504 ± 0.009
CHARMCQ 0.576 ± 0.009 0.541 ± 0.009 0.560 ± 0.010 0.550 ± 0.010 0.530 ± 0.014

7.2.2 CMSAugment: Shuffling and Masking Channels

Data augmentation is another strategy to improve the generalization to inconsistent inputs.
As an orthogonal contribution to our remapping module, we propose a CHANNEL MASkINg
AND SHuffLINg AugMENTATION (CMSAugment) strategy. During training, CMSAugment
first shuffles the channels and next samples a binary mask over channels to drop some chan
nels entirely, with a uniform distribution from 0 masked channels to N − 1. In Section 7.3,
we show how it significantly helps a simple CNN becoming robust to missing and incon
sistent channel placements, with the best results being obtained by combining CHARM and
CMSAugment.

7.2.3 Network Architecture Design and Implementation

Our main architecture is a 1DCNN that takes raw EEG signals as input and cascades four
blocks of 1D convolutions. Each block has a LayerNormalization [174] and PReLU [195] as
activation along with a maxpooling layer for downsampling. We use a kernel size of 8 with
stride 1 and pooling size of 2 and stride 2 with 256 feature maps for the first three blocks, and
512 in the last one. To aggregate the features, we use global maxpooling , which then feeds
into a single linear classification layer. We apply L2 regularization with a rate of 10−4 on all the
layers but the last. Given an input sequence, we first apply an InstanceNormalization [196],
which normalizes each channel independently. Then our baseline model (Baseline) passes the
output through the 1DCNN directly. On the other hand, CHARM first passes the waveforms
through the remapping module, which then feeds into the 1DCNN.

Channel Remapping Networks

CHARM uses 24 canonical channels, regardless of the actual number of channels in an input
sequence (from 17 to 22 in our experiments). We represent each canonical channel with an

101

embedding of dimension d = 32. CHARMbase contains three convolutional layers with
32 feature maps and a filter size of 8 with a stride of 1. The residual attentive modules are
inspired by Transformers [20]. Queries, keys and values have a dimension of 32, and the mlp
has a single hidden layer of dimension 64. For all models, we apply L1 regularization onto p
with a weight of 10−4 to promote sparse reordering matrices.

Training Details

We train on 500sample windows dynamically sampled from an entire EEG sequence. The
CHARM is trained jointly with the 1DCNN to minimize a categorical crossentropy loss,
using ADAM [31] with a learning rate of 10−4 and a batch size of 64 for 100 epochs. For
imbalanced datasets (see Section 7.3.1), we use a weighted crossentropy loss to minimize error
across rare and frequent classes equally.

7.3 Experiments

7.3.1 Datasets

Our evaluation focuses on the Temple University Hospital EEG Corpus (TUH) [197] and
CHBMIT dataset [198]. The TUH corpus is the most extensive publicly available corpus with
over 15000 subjects; it comprises several datasets analyzed and annotated by expert clinicians
where the majority of EEG is sampled at 250Hz [197]. The CHBMIT contains intractable
seizures collected from 23 pediatric subjects at a sampling rate of 256Hz. Here, we focus
on the tasks of recognizing abnormal EEG (TUH Abnormal), detection of artifacts such as
eye movement or chewing (TUH artifacts) as well as determining the presence and type of
seizures (TUH Seizure, CHBMIT). Each dataset has a different number of EEG channels, as
shown in Table 7.1. We employ a 10folds stratified crossvalidation technique for assessing the
model performance. Our evaluation metric is the accuracy averaged over ten folds, weighted
for imbalanced datasets (TUH Artifacts, TUH Seizure) to account for minority classes.

Table 7.2: Performance when masking half of the brain, along a vertical or horizontal axis.

Augmentation Method Clean
Horizontal Vertical

GroupA GroupB GroupA GroupB

None
Baseline 0.951 ± 0.007 0.631 ± 0.050 0.430 ± 0.043 0.486 ± 0.028 0.586 ± 0.052
CHARMCKV 0.900 ± 0.034 0.790 ± 0.032 0.600 ± 0.023 0.683 ± 0.033 0.762 ± 0.041
CHARMCQ 0.899 ± 0.018 0.839 ± 0.030 0.707 ± 0.056 0.751 ± 0.040 0.824 ± 0.028

CMSAugment
Baseline 0.873 ± 0.024 0.823 ± 0.037 0.762 ± 0.02 0.779 ± 0.036 0.783 ± 0.03
CHARMCKV 0.829 ± 0.038 0.850 ± 0.029 0.778 ± 0.034 0.794 ± 0.037 0.853 ± 0.022
CHARMCQ 0.734 ± 0.224 0.750 ± 0.217 0.702 ± 0.200 0.711 ± 0.203 0.739 ± 0.213

102

Table 7.3: Out of domain transfer results on CHB-MIT with a model pretrained on TUH Seizure dataset.

Method Fixed Finetuned

Baseline (indomain) 0.891 ± 0.038
Baseline (transfer) 0.757 ± 0.004 0.963 ± 0.015
CHARMCKV 0.805 ± 0.008 0.942 ± 0.020
CHARMCQ 0.795 ± 0.006 0.915 ± 0.026

7.3.2 Generalizing to Shuffled and Masked Channels

Table 7.1 compares CHARM to a baseline 1DCNN when generalizing to noisy conditions.
The models are trained on clean (no masking, no shuffling) channels, but the evaluation is
done under different forms of noise injection. To this end, the Noisy entries in Table 7.1 in
dicate performance when the test input channels are shuffled and 0 to N − 1 channels are
uniformly masked. Similarly, Noisyn% represents the results when a fixed ratio of n% chan
nels are masked at random after shuffling. We first observe that when evaluating on clean
inputs, the baseline model performs better. This can be explained by the fact that CHARM
sees channels independently and cannot exploit groundtruth channel location, which is use
ful when training and evaluating on identical channels. On the other hand, CHARMbased
remapping techniques perform significantly better in handling permuted and masked chan
nels across all four datasets. Even when 50% to 75% channels are missing, our proposed
approach maintains high accuracy. In particular, on TUH Seizure/Noisy75% CHARMCQ
attains 0.704 accuracy, against 0.171 for the baseline.

7.3.3 Performance in Structured Masking Conditions

Table 7.2 reports the performance on TUH Seizure when only a subset of the channels from
a specific half of the brain is active, a more tangible setting than random masking. We split
the electrodes along a vertical or horizontal axis and evaluate on each half separately (GroupA
and GroupB). We train the models either on clean inputs or with CMSAugment, and do not
report results for CHARMbase since it performed worse than alternatives in previous experi
ments. When training without augmentation, CHARM significantly outperforms the baseline
in most cases, reaching its best results when combined with CMSAugment. Interestingly, the
robustness of the baseline system significantly improves when trained with CMSAugment.
This shows that, independently of CHARM, data augmentation is also a promising avenue for
robust EEG classification.

7.3.4 Transfer Learning

Until now, we assessed the performance individually for each task, simulating different head
sets with random shuffling and masking. Now, we evaluate the proposed methods in han
dling inconsistent channels in a real crossdataset transfer learning setting. In [194], authors
propose an algorithm to handle transfer between headsets, for a same subject, and using the

103

common subset of channels shared between headsets. In contrast, CHARM does not require
any knowledge about channel placement and exploits all channels of each headset. Moreover,
we experiment in a more challenging setting: we transfer trained representations to a new
headset, on new subjects. We pretrain the models with clean inputs on the TUH Seizure
dataset in a standard way and discard the classification head. We then reuse the other layers
for learning either a linear classifier ontop of a fixed network or finetune it entirely on the
CHBMIT dataset. Importantly, as the number of channels in CHBMIT is lower than TUH
Seizure, we pad them with zero channels. In Table 7.3, we report the results of the baseline
CNN along with channel remapping modules, where the indomain baseline is the model
directly trained on the CHBMIT dataset, i.e., no transfer is performed. We observe that
the representations learned with CHARM transfer better than the baseline when freezing the
transferred layers. This shows that our system allows for pretraining and transfer of embed
dings across heterogeneous datasets. Interestingly, if we finetune the entire network, then the
baseline (transfer) is able to relearn lowlevel representations and improves significantly over
the indomain baseline. To the best of our knowledge, this is the first time that a deep EEG
classifier demonstrates outofdomain transfer to a dataset recorded with a different headset
over different subjects.

7.4 Conclusion

We introduce CHARM, a channel remapping model for training a single neural network
across heterogeneous EEG data. Our model identifies the location of each channel from their
content and remaps them to a canonical ordering by predicting a reordering matrix. This al
lows further processing by standard classifiers that expect a consistent channel ordering. Our
differentiable reordering module leverages attention mechanisms and can be trained on data
without information on the channel placement. We complement this model with a new data
augmentation technique and demonstrate the efficiency of our approach over three EEG clas
sification tasks, where various types of headsets can result in inconsistent channel orderings
and numbers. In particular, we successfully transfer parameters across datasets with different
collection protocols. This is an important result since available EEG data are currently frag
mented across a wide variety of heterogeneous datasets. We believe that the robustness of our
method will pave the way to training a single model across largescale collections of heteroge
neous data. Moreover, our approach is general enough to benefit other domains with varying
sensor placements and numbers, including weather modeling, seismic activity monitoring and
speech enhancement from microphone arrays.

104

Chapter 8

Synthesizing and Reconstructing
Missing Sensory Modalities

This chapter is based on our paper Synthesizing and Reconstructing Missing Sensory Modalities in
Behavioral Context Recognition published in MDPI Sensors 2018 [23].

8.1 Introduction

In last chapter, we explored the problem of handling inconsistent input channels with a learn
able remapping module that can be trained in an endtoend manner with while learning de
sired task. In a reallife setting, a model can also encounter other types of noises, artifacts and
in a extreme case required input modalities can be missing entirely. In this chapter, we focus
on learning to reconstruct features with a generative model, i.e., an adversarial autoencoder
that can impute and synthesize data samples. Our developed technique is generalpurpose
but we focus on user context recognition as a concrete application domain.

The automatic recognition of human activities along with inferring the associated context
is of great importance in several areas, such as intelligent assistive technologies. A minute
tominute understanding of person’s context can enable immediate support e.g. for elderly
monitoring [199], timely interventions to overcome addictions [200], voluntary behavior ad
justment for living a healthy lifestyle [201, 202], coping with physical inactivity [203] and in
industrial environments to improve workforce productivity [204]. The ubiquity of sophis
ticated sensors integrated into smartphones, smartwatches and fitness trackers provides an
excellent opportunity to perform a human activity and behavior analysis as such devices have
become an integral part of our daily lives [205]. However, context recognition in a reallife
setting is very challenging due to the heterogeneity of sensors, variation in device usage, a
different set of routines, and complex behavioral activities [206].

105

Concretely, to predict people’s behavior in their natural surroundings, a system must be
able to learn from multimodal data sources (such as an accelerometer, audio, and location
signals) that are often noisy with missing data. In reality, a system is likely to encounter
missing modalities due to various reasons such as a user not wearing a smartwatch, a sen
sor malfunction or a user not granting permission to access specific data because of privacy
concerns. Moreover, due to large individual differences, the training data could be highly im
balanced, with very few (sparse) labels for certain classes. Hence, for a context recognizer to
perform well in unconstrained naturalistic conditions; it must handle missing data and class
imbalance in a robust manner while learning from multimodal signals.

There are a variety of techniques available for dealing with missing data [207, 208]. Some
naive approaches are, mean substitution or simply discarding instances with missing values. In
the former, replacing by average may lead to bias (inconsistency would arise e.g. if the number
of missing values for different features are excessively unequal and vary over time) [207]. In the
latter, removal leads to a substantial decrease in the number of samples (mostly labeled) that are
otherwise available for learning. It can also introduce bias in the model’s output if data are not
missing completely at random [208]. Similarly, principal component analysis (PCA) approach
could be to utilize through inverse transformation on the reduced dimensions of the original
data to restore lost features but the downside is PCA can only capture linear relationships.
Another approach might be training a separate model for each modality, where the decision
can be made on the basis of majority voting from the available signals. Though in this scheme,
the distinct classifiers will fail to learn the correlation that may exist between different sensory
modalities. Besides, this approach is inefficient as we have to train and manage a separate
classifier for every modality available in the dataset.

An autoencoder is an unsupervised representation learning algorithm that reconstructs its
own input usually from a noisy version, which can be seen as a form of regularization to avoid
overfitting [29]. Generally, the input is corrupted by adding a Gaussian noise, applying
dropout [209] or randomly masking features as zeros [210]. The model is then trained to
learn a latent representation that is robust to corruption and can reproduce clean samples
from partially destroyed features. Therefore, denoising autoencoders can be utilized to tackle
reconstruction, while learning discriminative representations for an end task e.g. context
classification. Furthermore, the adversarial autoencoder (AAE) extends a typical autoencoder
to make it a generative model that is able to produce synthetic data points by sampling from an
arbitrarily chosen prior distribution. Here, a model is trained with dual losses−reconstruction
objective and adversarial criterion to match the hidden code produced via the encoder to
some prior distribution [211]. The decoder then acts as a deep generative model that maps the
enforced prior distribution to the data distribution. We address the issues of missing data and
augmenting synthetic samples with an adversarial autoencoder (AAE) [22].

We present a framework based on AAE to reconstruct features that are likely to go missing
all at once (as they are extracted from the same modality) and augment samples to enable syn
thetic data generation (see Figure 8.1). We demonstrate the representation learning capability
of AAE through accurate reconstruction of missing values and supervised multilabel classi
fication of behavioral context. In particular, we show AAE is able to provide a more faithful
imputation as compared to techniques such as PCA and show strong predictive performance
even in case of several missing modalities. We analyze the performance of the decoder trained

106

with supervision enabling the model to generate class conditional artificial training data. Fur
ther, we show that AAE can be extended with additional layers to perform classification; hence
leveraging the complete dataset including labeled and unlabeled instances. The primary con
tributions of this work are the following: a) demonstration of a method to restore missing
sensory modalities using an adversarial autoencoder, b) systematic comparison with other
techniques to impute lost data, c) leveraging learned embedding and extending the autoen
coder for multilabel context recognition, and d) generating synthetic multimodal data and
its empirical evaluation through visual fidelity of samples and classification performance on a
real test set.

Multi-label Classification
Network

Walking,
Outside,

With-Friends,
...

Multimodal
Sensory Features

Detected
User Context

Adding Noise
to Emulate

Missing Sensors

Adversarial
Autoencoder

Clean
Reconstructed

Features

Synthesizing
and

Reconstructing

Classification

Figure 8.1: Overview of the proposed framework for robust context classification with missing sensory modalities.

8.2 Approach

8.2.1 Autoencoder

An autoencoder is an unsupervised representation learning technique in which a deep neural
network is trained to reconstruct its own input x such that the difference between x and the
network’s output x′ is minimized. Briefly, it performs two transformations: encoding fθ(x) :
Rn → Rd and decoding gθ(z) : Rd → Rn through deterministic mapping functions,
namely, encoder and decoder. An encoder transforms input vector x to a latent code z, where,
a decoder maps the latent representation z to produce an approximation of x. For a single
layer neural network these functions can be written as:

fθ(x) : z = σ(Wex+ be) (8.1)

gθ′(z) : x′ = σ(Wdz+ bd) (8.2)

parameterized by θ = {We, be} and θ′ = {Wd, bd}, where σ is a nonlinear activation
function (e.g. rectified linear unit), W represents a weight coefficient matrix and b is a bias
vector. The model weights are sometimes tied for regularization such that Wd =WT

e .

107

Learning an autoencoder is an effective approach to perform dimensionality reduction and
can be thought of as a strict generalization of PCA. Specifically, a 1layer encoder with linear
activation and mean squared error (MSE) loss (see Equation 8.3) should be able to learn PCA
transformation [212]. Nonetheless, deep models with several hidden layers and nonlinear
activation functions can learn better highlevel and disentangled features from the original
input data.

LMSE(X,X
′) = ‖X −X ′‖2 (8.3)

The classical autoencoder can be extended in several ways (see for a review [29]). For handling
missing input data, a compelling strategy is to train an autoencoder with artificially corrupted
input x̃, which acts as an implicit regularization. Usually, the considered corruption includes
isotropic Gaussian noise, salt and pepper noise and masking (setting randomly chosen features
to zero) [210]. In this case, a network learns to reconstruct a noisefree versionx′ from x̃, hence
called a denoising autoencoder (DAE). Formally, the DAE is trained with stochastic gradient
descent to optimize the following objective function:

JDAE = min
θ

EX [L(x, gθ′(fθ(x̃)))] (8.4)

where L represents a loss function like squared error or binary cross entropy.

8.2.2 Adversarial Autoencoder

The adversarial autoencoder (AAE) [22] combines adversarial learning [211] with classical au
toencoders so it can be used for both learning data embedding and generating synthetic sam
ples. The generative adversarial network (GAN) introduced a novel framework for developing
generative models by simultaneously training two networks: a) the generator G, it learns the
training instances’ distribution to produce new samples emulating the original samples, and
b) the discriminator networkD, which differentiates between original and generated samples.
Hence, this formulation can be seen as a minimax game betweenG andD as shown in Equa
tion 8.5, where z represents a randomly sampled vector from a certain distribution p(z) (e.g.
Gaussian), and x is a sample from the empirical data distribution pdata(x) i.e. training data.

min
G

max
D

EX∼pdata
[logD(x)] + Ez∼p(z)[log(1− D(G(z)))] (8.5)

In AAE, an additional discriminator network is added to an existing autoencoder architec
ture to force the encoder output q(z|x) to match a specific target distribution p(z) as depicted
in Figure 8.2; hence enabling the decoder to act as a generative model. Its training procedure
consists of three sequential steps:

• The encoder and decoder networks are trained simultaneously to minimize the recon
struction objective (see Equation 8.6). Additionally, the class label information with
latent code z can also be provided to the decoder as supervision. Thus, the decoder then
uses both z and label information y to reconstruct the input. In addition, conditioning
over y enables the decoder to produce class conditional samples.

JAE = min
θ

EX [L(x, gθ(fθ(x)))] (8.6)

108

 In
pu

t

Re
co

ns
tr

uc
te

d
 In

pu
t

Encoder Decoder

z ~ q(z)

x x'

Sampling from
Gaussian Distribution

p(z)

Input

Discriminator

Negative
Sample

-

Differentiating between
positive samples p(z) and

negative samples q(z)
Adversarial Loss

y

Positive
Sample

+

Figure 8.2: An illustration of Adversarial Autoencoder Network [22].

• The discriminator network is then trained to distinguish between true samples from a
prior distribution and fake data points (z) generated by an encoder.

• Subsequently, the encoder, whose goal is to deceive the discriminator by minimizing a
separate loss function, is updated.

8.2.3 Context Classification

The context recognition under consideration is a multilabel classification problem, where a
user’s context at any particular time can be described by a combination of various labels. For
instance, a person might be in a meeting, indoor, and with a phone on a table. Formally, it
can be defined as follows: X ∈ IRn (i.e a design matrix) is a set of m instances each being
ndimensional feature vector having a set of labels L. Every instance vector x ∈ X has a
corresponding subset of L labels, also called relevant labels; other labels might be missing or
can be considered irrelevant for the particular example [213, 214]. The goal of the learner is to
find a mapping function fc : xn → {0, 1}L that assigns labels to an instance. Alternatively,
the model predicts a onehot encoded vector y ∈ {0, 1}L, where, yi = 1 (i.e. each element
in y) indicates the label is suitable and yi = 0 represents inapplicability.

The feedforward neural network can be directly used for multilabel classification with
sigmoid activation function in the last layer and binary crossentropy loss (see Equation 8.7);
as it is assumed that each label has an equal probability of being selected independently of
others. Thus, the binary predictions are acquired by thresholding the continuous output at

109

0.5.
LCE(ŷ, y) = −[(y log(ŷ) + (1− y) log(1− ŷ))] (8.7)

As mentioned earlier that in realworld datasets the available contextual labels for each
instance could be very sparse (i.e. few yi = 1). It may happen as, during data collection
phase, a user might quickly select a few relevant labels and overlook or intentionally not
provide other related labels about the context. In such a setting, just considering an absence
of labels as irrelevant may introduce bias in the model, and simply discarding the instance
without complete label information limits the opportunity to learn from the available states.
Moreover, the positive labels could be very few with a large number of negatives, resulting in
an imbalanced dataset. To tackle these issues, we employ a similar instance weighting strategy
to [213] while learning a multilabel classifier. In this situation the objective function becomes:

JC =
1

NC

N∑
i=1

C∑
c=1

(Ψi,c · LCE(ŷi,c, yi,c)) (8.8)

where Lce is the binary crossentropy loss, and Ψ is an instanceweighting matrix of size N
x C (i.e. number of training examples and total labels, respectively). The instance weights in
Ψ are assigned by inverse class frequency. The entries for the missing labels are set to zero, to
impose no contribution in the overall cost from such examples.

8.2.4 Model Architecture and Training

The multimodal AAE is developed to alleviate two problems: a) the likely issue of losing
features of the same modality all at once, and b) synthesizing new labeled samples to increase
training dataset size, data augmentation might be helpful to resolve imbalance (in addition to
instance weighting), facilitate better understanding of the modeling process, and enable data
sharing when original dataset cannot be distributed directly, e.g. due to privacy concerns.

We start the model training process by normalizing continuous features in the range [0, 1]
with summary statistics calculated from the training set. Next, all the missing features are
filledin with a particular value i.e. −1. It is essential to represent missing data with a distinct
value that could not occur in the original. After this minimal preprocessing, a model is trained
to reconstruct and synthesize from the clean samples (with all the features available) to provide
noisefree ground truth X . During reconstruction training, each feature vector x ∈ X is
corrupted with a structured noise [210, 215] to get a corrupted version x̃ as 1) masked noise is
added to randomly selected 5% of the features, 2) all the features from three or more randomly
chosen modalities are set to−1, hence emulating missing data, and 3) dropout is applied. The
goal of the autoencoder is then to reproduce clean feature vector x from a noisy version x̃ or in
other words to predict reasonably close values of the missing features from the available ones.
For example, the model may choose an accelerometer signal from the phone to interpolate
smartwatch’s accelerometer features or phone states and accelerometer to approximate location
features. Furthermore, for synthesizing novel (class conditional) samples, an independent
supervised AAE model is trained without introducing any noise in the input and with a slightly
different architecture.

110

After training the AAE model with clean examples for which all sensory modalities are
available, it can be extended for multilabel classification. In this situation, either a separate
network is learned or additional layers are connected to encoder network to classify a user’s
behavioral context. For latter, the error is backpropagated through the full network; includ
ing encoder and classification layers. Moreover, during the classifier training phase, we keep
adding noise in the input as mentioned earlier. To leverage the entire dataset for classification,
the noisy features are first reconstructed with the learned autoencoder model and combined
with the cleaned data. The class weights are calculated from the combined training set (see
Section 8.2.3), where zero weight is assigned to missing labels. Thus, this formulation allows
us to learn from any combination of noisy, clean, labeled and unlabeled data.

We employ binary crossentropy (see Equation 8.7) for reconstruction loss rather than MSE
as it led to consistently better results in earlier exploration. Since crossentropy deals with bi
nary values, all the features are first normalized to lie between zero and one as mentioned ear
lier. We train the reconstruction network in an unsupervised manner, while the synthesizing
model is provided with supervision through the decoder network as onehot encoded vector
y of class labels. The missing labels y are simply represented with zeros instead of −1 as we
wanted to utilize both labeled and unlabeled instances. The supervision of decoder network
also allows the model to better shape the distribution of the hidden code by disentangling
label information from compressed representation [22]. Likewise, the samples from Gaussian
distribution are provided to a discriminator network as positive examples and hidden code z
as negative examples to align the aggregated posterior to match the prior distribution.

To assess the robustness of our approach for fillingin lost sensor features, we compared it
with PCA reconstruction by applying inverse transformation to the reduced 75dimensional
principle components vector. In addition, we evaluated multilabel classification performance
by utilizing the learned embedding, and training an extended network on top of an encoder
and comparing them with four different ways of dealing with the missing data: mean substi
tution, filling it with a median, replacing missing values with−1, and using a dimensionality
reduction method i.e. PCA. To facilitate fair comparison, we limit the reduction of original
166 features to 75dimensional feature vector, it allows PCA to capture 98% of the variance.
We also experimented with a standard DAE model but found it to perform similarly to AEE
for feature reconstruction.

The visual fidelity and the supervised classification task are used to examine the quality
of the synthetic samples produced by the (decoder) generative model. We train a context
classification model on synthetic data and evaluate its performance on the heldout real test
set and viceversa. Because the decoder is trained with supervision it enables us to generate
class conditional samples. For generating labeled data, we use labels from the (real) training
set and feed it together with the Gaussian noise into the decoder. Another strategy for data
augmentation could be to first sample class labels and then use those for producing synthetic
features. However, as we are dealing with multilabel classification, where labels jointly ex
plain the user’s context, arbitrarily sampling them is not feasible as it may lead to inconsistent
behaviors and activities (such as, sleeping during running). Therefore, we straightforwardly
utilize the clean training set labels to sample synthetic data points.

111

8.2.5 Implementation Details

Our approach is implemented in Tensorflow [216]. We initialized weights with Xavier [217]
technique and biases with zeros. We use Adam optimizer [31] with fixed but different learning
rates for reconstruction and synthesizing models. For the former, the learning rates of 0.0003,
0.0005 and 0.0005 are used for adversarial and reconstruction and classification losses, respec
tively. While in the latter, 0.001, 0.001 and 0.0005 are used for reconstruction, adversarial
and classification losses, respectively. We employ l2regularization on encoder’s and classifier’s
weights with a rate of 0.00001. The rest of the hyperparameters are minimally tuned on the
(internal) validation set by dividing the training folds data into a ratio of 80−20 to discover a
architecture that gives optimal performance across users. The suitable configuration of recon
struction network is found to be 3layers encoder and decoder with 128 hidden units in each
layer and dropout [209] with a rate of 0.2 on the input layer. The classification network con
tains a single hidden layer with 64 units. Similarly, the synthesizing model contains 2 hidden
layers with 128 and 10 units and dropout of 0.2 is applied on encoding layer z. However,
during sampling from the decoder network, we apply dropout with 0.75. The LeakyReLU
activation is used in all the layers except for the classifier trained on synthetic data, where
ReLU performed better. Moreover, we also experimented with several batch sizes and found
64 to produce optimal results. We train the models for a maximum of 30 epochs and utilize
earlystopping to save the model based on internal validation set performance.

8.3 Experiments

8.3.1 ExtraSensory Dataset

We seek to learn a representation of context and activities by leveraging massive amounts of
multimodal signals collected using smartphones and wearables. While there are a variety of
open datasets available on the web, we choose to use ExtraSensory Dataset¹ [206] because it
was collected in a realworld environment when participants were busy with their daily rou
tines. It provides a more realistic picture of a person’s life as compared to a scripted lab data
collection which constrains users to a few basic activities. A system developed with data col
lected in lab settings fails to capture intrinsic behaviors in every day inthewild conditions.
The data collection protocol is described in detail in [206], and we provide a brief summary
in this section. The data is collected from sixty users with their personal devices using specif
ically designed applications for Andriod, iPhone, and Pebblewatch unit. Every minute an
app collected 20 seconds of measurements from multiple sensors and asked the user to pro
vide multiple labels that define their environment, behavior, and activities from a selection
of 100 contextual labels. In total, the dataset consists of 300, 000+ labeled and unlabeled
measurements of various heterogeneous sensors. We utilize precomputed features from six
modalities: phoneaccelerometer (Acc), phonegyroscope (Gyro), phoneaudio (Aud), phone
location (Loc), phonestate (PS), and watchaccelerometer (WAcc). Among Loc features, we
only use quick location features (such as user movement) and discard absolute location as it is

¹http://calab1.ucsd.edu/ datasets/extrasensory/

112

place specific. By adding features from each sensing modality, we end up with 166 features,
where we utilize 51 processed labels provided in the original dataset.

This dataset also naturally highlights the inevitable problem of missing data in realworld
studies. For instance, the participants turned off the location service to avoid battery drain,
did not wear the smartwatch continuously and sensor malfunction or other factors resulted
in missing samples. In this case, even though labels and signals from other modalities are
available but instances with missing features cannot be directly used to train a classifier or to
make a prediction in the production setting. This either requires imputation or leads to the
discarding of expensivetoobtain labeled data. From 300K+ instances in the dataset, approx
imately half of them have all the features available and the rest even though labeled cannot
be utilized due to missing values. Therefore, an efficient technique is required to approximate
missing data and prevent valuable information from going to waste during learning a context
classifier. Similarly, the data collected inthewild often have imperfect and imbalanced classes
as some of the labels occur only a few times. It can also be attributed to the difference be
tween participants’ routines or their privacy concerns as some classes are entirely missing from
their dataset. Hence, learning from imbalanced classes in a principled way becomes crucial to
correctly identify true positives. In summary, the ExtraSensory Dataset highlights several chal
lenges for context recognition in reallife conditions, including complex behavioral activities,
unrestrained personal device usage, and natural environments with habitual routines.

8.3.2 Performance Evaluation

We evaluate reconstruction and classification performance through fivefolds crossvalidation,
where each fold has 48 users for training and 12 users for testing; with the same folds as
of [206]. The crossvalidation technique is used to show the robustness of our approach when
the entire data of users are heldout as testset during experiments. For hyperparameters
optimization in this setting, we randomly divide a training set into 80% training and 20%
internal validation set. The same approach is employed to evaluate the quality of synthetic data
points via a supervised classification task. Figure 8.3 depicts the data division for imputation
and classification experiments. The entire dataset is first splitup into clean and noisy parts,
where clean data is used for training and measuring the performance of restoring missing
features as described in Section 8.2.4. The noisy data is then interpolated using a learned
model and combined with the clean version to use for context classification task. However,
we use only clean data to train and evaluate the synthesizing model, the artificial data generated
from the AAE is used to train a classifier and its performance is evaluated on real test (folds)
data.

The performance of approximating missing data or input reconstruction is measured with
root mean square error (RMSE) same as [215]:

RMSE =

√
E[(X − X̃)2] (8.9)

The multilabel classification is evaluated through balanced accuracy (BA) derived from
sensitivity (or recall) and specificity (or true negative rate) as shown in equations below. BA

113

Noisy

Clean

Classification

Sensory

Reconstruction

Synthesizing

5-folds cross-validation

Dataset

Figure 8.3: Data split for reconstruction, synthesizing, and classification experiments.

is a more robust and fair measure of performance for imbalanced data as it is not sensitive
to class skew as opposed to average accuracy, precision and fscore which can over or under
emphasize the rare labels [213]. Likewise, it is important to note that, the evaluation metrics
are calculated independently for each label of the 51 labels and averaged afterwards.

Sensitivity = tp/(tp+ fn) (8.10)
Specificity = tn/(tn+ fp) (8.11)

Balanced Accuracy = (Sensitivity + Specificity)/2 (8.12)

8.3.3 Results

Modality reconstruction

We first seek to validate the capability of the AAE network to restore the missing modalities.
It is evaluated in comparison with PCA reconstruction, which is achieved by projecting the
original 166 features onto a lower dimensional space, having a feature vector of length 75 and
then applying an inverse transformation on it to get the original data space. The PCA is able
to capture 98% of the variance in the clean training data and thus to set a reasonably strong
baseline. However, the AAE network trained with structured noise significantly outperformed
the PCA reconstruction by achieving an average RMSE of 0.227 compared with 0.937 on the
clean subset of the test folds. To assess the performance of the reconstruction of all the fea
tures of each data source, the entire modality is dropped and restored with both procedures.
Table 8.1 provides RMSE averaged across folds and number of features for each modality used
from the original dataset. Apart from location features, the AAE network outperforms PCA
on the reconstruction of every modality. For gyroscope, we noticed a performance drop on
test set of fold 4 which can be due to relatively fewer number of instances from the partici
pants in the testing fold. The reason for comparatively lower performance on the phone state
can be attributed to these features being binary and cannot be perfectly approximated with
continuous functions.

The AAE is able to learn compressed nonlinear representations that are sufficient to capture

114

Table 8.1: RMSE for each modality averaged over 5-folds cross-validation.

Modality # of Features PCA AAE

Accelerometer (Acc) 26 1.104 ± 0.075 0.104 ± 0.016
Gyroscope (Gyro) 26 1.423 ± 0.967 0.686 ± 1.291

WAccelerometer (WAcc) 46 1.257 ± 0.007 0.147 ± 0.003
Location (Loc) 6 0.009 ± 0.003 0.009 ± 0.003
Audio (Aud) 28 1.255 ± 0.015 0.080 ± 0.006

Phone State (PS) 34 0.578 ± 0.000 0.337 ± 0.011

0.0

0.2

0.4

0.6

Fe
at

ur
e

Va
lu

e

Ground Truth AAE PCA

Figure 8.4: Restoration of an (phone) accelerometer feature values with the AAE and PCA. The entire modality is dropped and
reconstructed using features from the remaining signals.

the correlation between different features. Hence, it provides a close approximation of the
features from the lost modality through leveraging the available signals. Figure 8.4 illustrates
this point, where an accelerometer signal (from phone) is dropped (mimicking a missing
signal) and all of its 26 features are reconstructed by leveraging the rest of the modalities. The
AAE network predicted very realistic values of the missing features that are masked with special
value −1. On the contrary, the PCA restoration is stuck around values near zero; failing to
capture the feature variance. We think, it could be because PCA does a linear transformation,
while the features may have an inherent nonlinear relationship that can be extracted well using
autoencoders. The difference between the considered methods is also apparent in Figure 8.5
for fillingin values of features extracted from an audio signal. Here, PCA fluctuates between
zero and one, failing to recover the values, whereas, AAE largely recovers values that are close
to the ground truth.

0.6

0.7

0.8

0.9

1.0

Fe
at

ur
e

Va
lu

e

Ground Truth AAE PCA

Figure 8.5: Restoration of an audio (MFCC) feature values with AAE and PCA. An entire modality is dropped and reconstructed
using features from the remaining signals.

Classification with AAE representations

In order to test the ability of AAE to learn a latent code irrespective of missing modalities,
we also performed classification experiments with combined, noisy and clean datasets. The
feature vector x is passed into the learned autoencoder to get a compressed representation z

115

of 128 dimensions. This embedding is used to train a 1layer neural network and compared
with other methods of missing data imputation such as filling with mean, median or−1 and a
dimensionality reduction technique i.e. PCA. Figure 8.6 provides results on various metrics for
crossvalidation using considered procedures. We did not find a significant difference between
the classifiers trained on embedding and other methods. However, the recall (sensitivity) of
AAE is found to be better but somewhat close to the mean imputation. The results obtained
here are in line with [215] that used an encoded representation for mood prediction and found
no improvement. Similarly, in our case, the reason for unchanged performance could be that
a large part of the data is clean and the extracted features are based on extensive domain
knowledge which are highly discriminative. Nevertheless, the latent encoding acquired via
AAE can be seen as privacypreserving representation of otherwise sensitive personal data.
Moreover, if an autoencoder is trained with recent advancements made in combining deep
models with differential privacy [218], even stronger privacy guarantee can be provided.

AC BA SN SP

AAE

PCA

Mean

Median

Fill -1

0.765 0.734 0.703 0.764

0.798 0.733 0.664 0.802

0.790 0.744 0.695 0.793

0.802 0.740 0.674 0.805

0.803 0.730 0.653 0.807

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8.6: Classification results of 5-folds cross-validation with combined clean and reconstructed noisy data. This resembles the
situation when all the modalities are available during learning and inference phases. We notice the AAE network
performs better than other technique with high recall rate of 0.703. AC, BA, SN, and SP stand for accuracy, balanced
accuracy, sensitivity, and specificity, respectively.

Context recognition with several missing modalities

For better assessment of AAE capability to handle missing data, we simulated multiple scenar
ios where several modalities are lost at once. These experiments reasonably mimic a realworld
situation for the classifier in which a user may turnoff the location service, forget to wear a
smartwatch or may be taking a call (such that the audio modality is missing). Thus, as a
baseline, we employ techniques to handle missing data through dimensionality reduction and
imputation as described earlier and train a classification model with the same configuration
(see Section 8.2.4). The AAE model is extended by adding a classifier network on top of an
encoder to directly make predictions for the user context.

We begin by investigating the effect of losing each of the six modalities one by one on
the classification performance. Figure 8.7 summarizes the classification results by utilizing
different techniques to handle missing features. The classifier learned through extending the

116

AAE network persistently achieved superior performance compared to the others as can be
seen from high BA and true positive rate.

AAE PCA Mean Median Fill -1
0.0

0.2

0.4

0.6

0.8

Acc

AAE PCA Mean Median Fill -1
0.0

0.2

0.4

0.6

0.8

Gyro

AAE PCA Mean Median Fill -1
0.0

0.2

0.4

0.6

0.8

WAcc

AAE PCA Mean Median Fill -1
0.0

0.2

0.4

0.6

0.8

Loc

AAE PCA Mean Median Fill -1
0.0

0.2

0.4

0.6

0.8

Aud

AAE PCA Mean Median Fill -1
0.0

0.2

0.4

0.6

0.8

PS

BA
SN
SP
AC

Figure 8.7: Average evaluation metrics for 51 contextual labels with 5-folds cross-validation. All the features from the corre-
sponding modality are dropped and imputed with all the considered techniques. BA, SN, SP, AC stands for balanced
accuracy, sensitivity, specificity, and accuracy respectively.

AAE PCA Mean Median Fill -1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
BA SN SP AC

Figure 8.8: Average evaluation metrics for 51 contextual labels with 5-folds cross-validation. All the features from Acc, Gyro
and Aud modalities are dropped and restored with a specific technique. BA, SN, SP, AC stands for balanced accuracy,
sensitivity, specificity, and accuracy respectively.

Next, we experimented with dropping three important signals i.e. Acc, Gyro, and Aud at
once. Figure 8.8 shows the averaged results across labels and testing folds, when entire feature
vectors of the considered modalities are restored with each method. The simplest technique of
fillingin missing data with−1 performed poorly with the lowest recall rate and the same goes
for PCA which fails to restore the values. However, mean and median imputation performed
moderately better as compared to the these two. The AAE achieved better BA and recall rate
of 0.710 and 0.700, respectively.

It is important to note that the data is highly imbalanced with few positive samples. There

117

Table 8.2: Classification results for 5-folds cross-validation with different missing modalities that are restored with a specific
method. The reported metrics are averaged over 51 labels and BA stands for balanced accuracy.

(a) Missing: Gyro, WAcc, Loc and Aud

BA Sensitivity Specificity Accuracy

AAE 0.713 ± 0.008 0.711 ± 0.021 0.716 ± 0.021 0.716 ± 0.024
PCA 0.526 ± 0.007 0.249 ± 0.040 0.802 ± 0.041 0.825 ± 0.034
Mean 0.669 ± 0.023 0.548 ± 0.056 0.791 ± 0.025 0.785 ± 0.022

Median 0.657 ± 0.015 0.502 ± 0.045 0.812 ± 0.022 0.808 ± 0.017
Fill 1 0.519 ± 0.004 0.175 ± 0.012 0.862 ± 0.004 0.857 ± 0.013

(b) Missing: WAcc, Loc and Aud

BA Sensitivity Specificity Accuracy

AAE 0.723 ± 0.007 0.729 ± 0.017 0.718 ± 0.013 0.721 ± 0.014
PCA 0.549 ± 0.02 0.255 ± 0.052 0.842 ± 0.013 0.847 ± 0.019
Mean 0.682 ± 0.017 0.567 ± 0.04 0.797 ± 0.014 0.79 ± 0.014

Median 0.678 ± 0.014 0.543 ± 0.028 0.814 ± 0.005 0.806 ± 0.004
Fill 1 0.547 ± 0.016 0.209 ± 0.087 0.885 ± 0.055 0.836 ± 0.047

(c) Missing: WAcc and Loc

BA Sensitivity Specificity Accuracy

AAE 0.722 ± 0.010 0.704 ± 0.029 0.74 ± 0.018 0.742 ± 0.020
PCA 0.568 ± 0.012 0.300 ± 0.038 0.835 ± 0.016 0.856 ± 0.010
Mean 0.735 ± 0.011 0.678 ± 0.028 0.793 ± 0.009 0.789 ± 0.008

Median 0.727 ± 0.012 0.653 ± 0.035 0.801 ± 0.020 0.796 ± 0.020
Fill 1 0.564 ± 0.026 0.270 ± 0.064 0.859 ± 0.012 0.840 ± 0.008

fore, only considering naïve accuracy or true negative rate provides an incomplete picture of
the models’ performance. Moreover, to see the fine differences between true positive rates of
each technique, Figure 8.9 presents recall rate for all 51 contextual labels. Overall, the AAE
network showed superior results across the labels, highlighting its predictive power to very
well handle the noisy inputs.

Next, we evaluated a scenario when four modalities, namely, Gyro, WAcc, Loc and Aud
are missing together. Specifically, these sensors have high chances of not being available in
realworld conditions. Table 8.2a provides results of the experiment, as earlier, the traditional
imputation procedures failed to account for the correct identification of true positives. The
AAE gracefully handles missing values with BA of 0.713; through learning important char
acteristics of data distribution on the training set. Likewise, we tested another scenario with
only WAcc, Loc and Aud being missing. Table 8.2b shows that AAE maintained BA at 0.723
even when nearly half of the features from three important modalities are missing. We further
assess the classifier’s behavior, in a case when a user does not provide access to location service
and does not wear a smartwatch, i.e. WAcc and Loc are not available. Table 8.2c provides
these results and indicates that mean/median imputations and AAE showed similar perfor
mance on BA metric but the AAE has the highest recall rate of 0.704 among the rest. It
highlights the consistent predictive power of AAE based classification network for realworld
context recognition applications. Moreover, regardless of the number of missing modalities,

118

0.0 0.2 0.4 0.6 0.8 1.0
Recall

At a bar
At a party

At a restaurant
At home

At main workplace
At school

At the gym
Bathing-shower

Bicycling
Cleaning

Computer work
Cooking

Doing laundry
Dressing

Drinking alcohol
Drive-I am a passenger

Drive-I am the driver
Eating

Elevator
Exercise

Grooming
In a car

In a class
In a meeting

Indoors
Labwork

Lying down
On a bus

On beach
Outside

Phone in bag
Phone in hand

Phone in pocket
Phone on table

Running
Shopping

Singing
Sitting

Sleeping
Stairs-going down

Stairs-going up
Standing
Strolling

Surfing the internet
Talking

Toilet
Walking

Washing dishes
Watching tv

With co-workers
With friends

C
on

te
xt

/A
ct

iv
ity

AAE PCA Mean Median Fill -1

Figure 8.9: Recall of 51 contextual labels with 5-folds cross-validation. All the features from Acc, Gyro and Aud modalities are
dropped to emulate missing features and imputed with different techniques to train a classifier.

the AAE performed superior as compared to other classical ways to handle the lost data.

Generating realistic multimodal data

One of the key goals of this work is to build a model capable of producing realistic data points
and especially features extracted from sensory data. To demonstrate the ability of AAE to
generate synthetic data, we evaluate its performance through visual fidelity and classification.

119

The data generated by the AAE is used to train a classifier, which is then tested on real data
instances.

0.0 0.2 0.4 0.6 0.8
Balanced Accuracy

Lying down
Sitting

Walking
Running
Bicycling
Sleeping
Labwork
In a class

In a meeting
At main workplace

Indoors
Outside
In a car

On a bus
Drive-I am the driver

Drive-I am a passenger
At home

At a restaurant
Phone in pocket

Exercise
Cooking

Shopping
Strolling

Drinking alcohol
Bathing-shower

Cleaning
Doing laundry

Washing dishes
Watching tv

Surfing the internet
At a party

At a bar
On beach

Singing
Talking

Computer work
Eating
Toilet

Grooming
Dressing

At the gym
Stairs-going up

Stairs-going down
Elevator

Standing
At school

Phone in hand
Phone in bag

Phone on table
With co-workers

With friends

C
on

te
xt

/A
ct

iv
ity

Synthetic
Real

Figure 8.10: Balanced accuracy of 51 contextual labels for two classifiers trained with real and synthetic samples−evaluation is
done on real test data with 5-folds cross-validation.

Similarly, a model is also trained on real data and evaluated on synthetic test data generated
by the AAE. This requires the artificial data to have labels, we can provide these labels to the
decoder (generator) as supervision, either by sampling them independently or by an additional
network (added to an AAE) predict these class labels. Here, we utilized (the former method)
using training or test set labels to generate the data, as applicable. This metric of evaluation
is also more suitable compared to visual analysis as it determines the ability of synthetic data
to be used for real applications. The results of the classification experiments are presented
in Table 8.3, which compares the performance achieved for multilabel context recognition
with real and artificial data. It can be seen that the model trained on synthetically generated
data achieved close results (BA of 0.715 vs. 0.752) as of when a model is learned on an
original data. Likewise, the performance is also optimal (BA of 0.700) when synthetic test
data generated using test set labels and random noise are assessed on a classifier learned with
real samples.

To get a better appreciation of these results, Figure 8.10 provides BA of each class label for
models trained on real and synthetic instances− evaluated on a real test set. We notice that, for

120

Table 8.3: Performance of 1-layer neural network for context recognition when: a) both the training and the test sets are real
(Real, first row), b) a model trained with synthetic data and the test set is real (TSTR, second row), and c) the training
set is real and the test set is synthetic (TRTS, bottom row).

BA Sensitivity Specificity Accuracy

Real 0.753 ± 0.011 0.762 ± 0.014 0.745 ± 0.016 0.749 ± 0.015
TSTR 0.715 ± 0.011 0.731 ± 0.035 0.700 ± 0.036 0.705 ± 0.034
TRTS 0.700 ± 0.020 0.656 ± 0.035 0.744 ± 0.033 0.744 ± 0.030

some class labels the BA score is equal to or larger than the model learned with real data, such
as for classes: Phone in bag, Singing, On beach, and At a restaurant. It indicates that the AAE
generates realistic enough samples to train a classifier which then achieves high performance
on real test data. Furthermore, we also validate the quality of generated samples by visual
inspection. It is helpful as we can see from the generated samples if they have the similar
characteristics and dynamics as the one we wish to model. Figures 8.11 illustrates both real
and generated examples, the essential thing to notice is that real and synthetic values exhibit
similar shift, peaks, and local correlations that are captured well by the AAE. However, binary
(discrete) features belonging to phone states such as, is phone connected to WiFi etc. are
hard to perfectly reconstruct but they can be easily binarized by thresholding at a particular
value.

8.4 Related Work

Previous work on behavior context recognition has evaluated fusing singlesensor [206] classi
fiers to handle missing input data, in addition to utilizing different combinations of sensors to
develop models for each group [219]. However, these methods do not scale well to many sen
sors and may fail to learn correlations that exist between different modalities. Furthermore,
restoration of missing features with imputation methods remains a nontrivial task as most
procedures fail to account for uncertainty in the process. In the past, autoencoders have been
successfully used for unsupervised feature learning in several domains thanks to their ability
of learning complex, sparse and nonlinear features [29]. To put this work into context, we
review contemporary approaches to leveraging autoencoders for representation learning and
handling missing input data.

Recent methods [94, 95, 220, 221, 222, 223, 224] on ubiquitous activity detection have ef
fectually used the restricted Boltzmann machine, denoising and stacked autoencoders to get
compressed feature representations that are useful for activity classification. These methods
performed significantly better for learning discriminative latent representations from (par
tial) noisy input, that is not solely possible with traditional approaches. To the best of our
knowledge, no earlier works in activity recognition domain explicitly addresses missing sensors
problem except [213] that utilizes dropout [209] for this purpose. Nevertheless, several works
in different areas have used autoencoders to interpolate missing data [215, 225, 226, 227, 228].
Thompson et al. [225] used contractive autoencoder for the restoration of missing sensor values
and showed it is generally a nonexpensive procedure for most data types. Similarly, Nelwa
mondo et al. [226] study the combination of an autoencoder and a genetic algorithm for an

121

0 100 200 300 400 500 600 700 800
0.0

0.2

0.4

0.6

0.8

Real

0 100 200 300 400 500 600 700 800
0.0

0.2

0.4

0.6

0.8

Synthetic

(a) Accelerometer

0 100 200 300 400 500 600 700 800
0.0

0.2

0.4

0.6

0.8

1.0
Real

0 100 200 300 400 500 600 700 800
0.0

0.2

0.4

0.6

0.8

Synthetic

(b) Gyroscope

0 100 200 300 400 500 600 700 800

0.2

0.4

0.6

0.8

1.0
Real

0 100 200 300 400 500 600 700 800

0.2

0.4

0.6

0.8

1.0
Synthetic

(c) Watch accelerometer

0 100 200 300 400 500 600 700 800
0.00

0.02

0.04

0.06

0.08

0.10

0.12
Real

0 100 200 300 400 500 600 700 800
0.0

0.1

0.2

0.3

0.4

0.5

Synthetic

(d) Location

0 100 200 300 400 500 600 700 800

0.6

0.7

0.8

0.9

Real

0 100 200 300 400 500 600 700 800
0.5

0.6

0.7

0.8

0.9

Synthetic

(e) Audio (MFCC)

0 100 200 300 400 500 600 700 800
0.0

0.2

0.4

0.6

0.8

1.0
Real

0 100 200 300 400 500 600 700 800
0.0

0.2

0.4

0.6

0.8

1.0
Synthetic

(f) Phone state

Figure 8.11: Examples of real (blue, top) and generated (red, bottom) samples of a randomly selected feature with AAE.

approximation of missing data that have inherent nonlinear relationships.

122

In bioinformatics and healthcare community, denoising autoencoders (DAE) have been
used to learn from imperfect data sources. Li et al. [229] used DAE for pretraining and de
coding an incomplete electroencephalography to predict motor imagery classes. Likewise,
Miotto et al. [230] applied DAE to produce compressed embedding of patients’ characteris
tics from a very large and noisy set of electronic health records. Their results showed major
improvements over alternative feature learning strategies (such as PCA) for clinical predic
tion tasks. Furthermore, BeaulieuJones [228] systematically compared multiple imputation
strategies with deep autoencoders on the clinical trial database and showed strong performance
gains in disease progression predictions.

Autoencoders are also extensively used in affective computing to advance emotion recogni
tion systems. Martinez et al. [115] applied a convolutional autoencoder on raw physiological
signals to extract salient features for affect modeling of game players. In [231], autoencoders
are utilized with transfer learning and domain adaption for disentangling emotions in speech.
Similarly, Jaques et al. [215] developed a multimodal autoencoder for filling in missing sen
sor data for mood prediction in a realworld setting. Furthermore, DAE has been effectively
demonstrated for rating prediction tasks in recommendation systems [232].

Generative adversarial network (GAN) [211] as a framework has shown tremendous power
to produce realistic looking data samples, particularly images. It is also successfully applied
in natural language processing domain to generate sequential data with a focus on discrete
tokens [233]. Recently, they are also used in medical domains to produce electronic health
records [234] and timeseries data from an intensive care unit [131]. Makhzan et. al [22] com
bined classical autoencoders with GANs through the incorporation of adversarial loss to make
them a generative model, hence called adversarial autoencoder (AAE). This makes AAE a suit
able candidate for learning to reconstruct and synthesize with a unified model. However, to
the best of our knowledge, no previous work has utilized them for synthesizing features ex
tracted from multimodal timeseries, specifically for context and activity recognition. Hence,
models capable of successful reconstruction and generation of synthetic samples can help over
come the issues of noisy, imbalanced and access problems (due to sensitive nature) to the data,
which ultimately helps downstream models to become more robust.

Our work is broadly inspired by efforts to jointly learn from multimodal data sources
and it is similar to [215] in applied training strategy; though it utilizes an AAE for recon
struction, augmentation, and multilabel behavior context recognition. Besides, as opposed
to [213], where a feedforward classification model is directly trained with dropout [209] to
handle missing modalities, here, the model first learn to reconstruct the missing features by
employing both dropout and structured noise (see Section 8.2.4). Then, we extend this model
with additional layers for multilabel classification through either directly exploiting the en
coder or training a network from scratch with learned embedding. In this manner, the AAE
based network will not just be able to reconstruct and classify but it can also be used for class
conditional data augmentation.

123

8.5 Conclusion

We proposed a method utilizing an adversarial autoencoder (AAE) for synthesizing and restor
ing missing sensory data to facilitate user context detection. The signals loss commonly hap
pens during realworld data collection and in realistic situations after model deployment in
thewild. For example, a user may prefer to not wear a smartwatch, hence, no signals (or
features) from a smartwatch that are used during development will be available for inference.
Our empirical results demonstrate that the AAE network trained with structured noise can
provide a realistic reconstruction of features from the lost modalities as compared to other
methods, such as PCA. Similarly, we show the AAE model trained with supervision to a de
coder network produce realistic synthetic data, which further can be used for real applications.
We have shown the data generation capability of our network through visual fidelity analysis
and by comparing classification performance with real data. In the latter, we do training on
the artificial data and evaluation of real instances, and training on real and validation on syn
thetic samples. This methodology allows researchers to develop robust models that are able
to learn noise invariant representations and inherently handle several missing modalities. It
also enables leveraging artificial data to increase training set size, and data sharing which is
occasionally not possible due to the sensitive nature of the personal data.

The presented network has several other advantages, it allows to utilize an entire dataset
for learning i.e. any combination of labeled, unlabeled noisy and clean instances. We see a
consistent performance of our classifier trained by extending the encoder network, even when
several modalities (i.e. more than half of the features) are dropped to emulate missing sen
sors. Broadly, unlike prior methods for handling missing input data, where a model failed to
detect true positive correctly, AAE maintains its ability to recognize user context with high
performance. This highlights an important characteristic of the described technique that even
if some signals are not available e.g. when users optout of location service or do not wear a
smartwatch, still their partial data can be used to get accurate predictions. Besides, the model
developed with the proposed technique could be a very attractive feature for users concerned
about their privacy concerns regarding location data. Likewise, a classifier trained on embed
ding provides similar performance as the original feature set, which means raw features would
not have to be stored and can be shared with other researchers while preserving users’ privacy.
The privacy guarantee can be further enhanced by taking advantage of recent advances made
in combining deep learning with differential privacy [218].

We notice that labels reported by the users are sparse, resulting in an imbalanced dataset.
To deal with this, an instance weighting strategy same as in [213] is applied. Although, we
experimented with resolving imbalance through synthetic data only but results were not sat
isfactory (unless combined with instance weighting); we believe this requires further explo
ration. Likewise, AAE can be extended to do semisupervised learning taking advantage of
unlabeled examples. It can further help in the collection of a large dataset with a low mental
load for the user as it reduces the need for labeling every example. Another area of potential
improvement could be an ensemble of multilayer neural networks efficiently compressed to
do realtime detection on an edge device with minimum resource utilization.

124

Various icons used in the figures are created by Anuar Zhumaev, Tim Madle, Shmidt Sergey, Alina Oleynik,
Artdabana@Design and lipi from the Noun Project.

125

Chapter 9

Model Adaptation and
Personalization

This chapter is based on our paper Model Adaptation and Personalization for Physiological Stress
Detection published in IEEE DSAA 2018 [24]. It was a joint work with Jan van Erp and Stojan
Trajanovski.

9.1 Introduction

In this chapter, we provide a simple yet effective approach to personalizing deep neural net
works and adapting them using unlabeled target data of a same task as source domain with
a multitask learning framework. We show efficacy of our approach on physiological stress
recognition but we note that the proposed methods are generic and can be used to solve other
tasks in a straight forward manner.

We experience numerous stressful situations in our dailylives, such as dealing with annual
job evaluation, business failure, or illness. Stress is described as a psychophysiological response
to mental, emotional and physical challenges encountered in daily life [235]. Even though the
human body is capable of dealing with shortlived daytoday stressors, the longterm exposure
to unremitting stress can have destructive consequences for wellbeing, productivity, behavior,
and selfconfidence [236, 237]. Stress can also adversely affect health with implications for
progression, recovery, and treatment of nearly every known disease through physiological,
behavioral and cognitive changes [235]. It increases the risk of diabetes, metabolic disorders,
cardiovascular diseases and (psycho) somatic complaints [238, 239]. Due to these health and
performance issues, stress management becomes important. A timely detection of stress can
be extremely powerful as it can empower users to take corrective and preventive measures in
an informed manner [240].

The autonomic nervous system (ANS) consists of two branches, namely, sympathetic and

127

parasympathetic nervous system which are both influenced by (amongst others) physiological
stress and emotional arousal. The activity of the sympathetic part results in an increase in heart
rate, blood pressure, respiration, and blood flow to the muscles. An activity of the parasym
pathetic division results in an increase in blood flow to the organs and the skin, a decrease
in heart rate and respiration, and an increase in heart rate variability. The ANS responds to
stress by stimulating specified target organs via efferent neuron tracts, initiated in the locus
coeruleus of the brain stem [241] resulting in a release of noradrenaline and norepinephrine.
The immediate effect thereof is an increase in sympathetic and a decrease in parasympathetic
activity, resulting in a measurable change in physiological parameters, such as an increased
heart rate (HR) and skin conductance (SC) level.

Assessing stress levels has a wide area of applications, from increasing resilience of military
personnel to enhancing athletes’ performance and improving workforce productivity. Sev
eral techniques have been proposed in the past to detect stress in pilots [242], car and truck
drivers [69, 109, 243], computer users [244], call center employees [240] and in surgeons [245].
In addition to audiovisual modalities, most approaches use numerous physiological signals,
such as respiration rate, electrocardiography (ECG), blood pressure, and electromyography
(EMG). The collection of these data in natural conditions is very difficult and usually not
consumer friendly enough for practical applications. In contrast, SC and HR can be reliably
acquired in a noninvasive and nonobtrusive way from wearable sensors placed on the wrist.
Currently, the key challenge is the reliable and personalized classification of stressstates based
on these easy to obtain SC and HR signals. In the present work, we focus on personaliza
tion and unsupervised model adaptation to improve stress assessment both inside and outside
controlled lab environments (domains) using HR and SC signals.

The development of wearable sensors for electrodermal activity and heart rate monitoring
has boosted the interest in using these for stress assessment over the last decade. Several recent
works have shown their successful application with machine learning algorithms to detect
stress in different (mostly controlled) conditions [246, 247, 248]; see [249] for a detailed sur
vey. The aspect that is evident from the overview of earlier work is that current methods do
not address issues of endtoend representation learning, covariate shift, personalization, and
domain adaptation. The traditional supervised learning algorithms are not robust to dataset
bias [250] and may perform poorly when the data distribution of training instances (of a source
domain) differs from test instances (of a target domain). For example, a model trained on a
data collected in a simulated (constrained) environment may not be able to perform well in a
realworld (unconstrained) setting. Hence, these methods require a collection of groundtruth
data (in realworld) for model retraining and are unable to leverage unlabeled data directly to
perform crossdomain stress classification. Similarly, physiological signals tend to vary in peo
ple and are influenced by age, gender, diet or sleep [127]. Due to this fact, stress responses can
differ from person to person. The global (or onefitsall) models, often do not generalize well
to unseen test subjects and hence need extensive finetuning.

To address the aforementioned issues, we propose an endtoend representation learning
framework based on a deep reconstruction classification network [251] (DRCN) and multi
task learning (MTL). We focus on personalization and domain adaptation together as DRCN
can be seen as an extension of MTL. The objective of DRCN is to improve predictive perfor
mance on the target domain through joint training on labeled and unlabeled data points. It

128

performs shared feature extraction through supervised source label predictions and unsuper
vised target data reconstruction. Specifically, the reconstruction phase enables the network
to adapt the label prediction function for the target domain, which is similar to learning an
auxiliary task in MTL setting to improve the performance on the actual task [252]. Likewise,
model personalization can be achieved with MTL, if subjects are treated as tasks [253]. In this
case, the multitask neural network has hard (or soft) parameter sharing of mutual represen
tations along with distinct layers for each subject (or task) to account for bodily interpersonal
differences.

We demonstrate the versatility of the proposed methods via three datasets from a repre
sentative application area i.e. stress detection in a driving context. Our approach makes no
assumption about the sensor types, sampling frequency, and structure of the physiological
time series. It is important to note that these methods are flexible, they can be applied to a
variety of neural network architectures and can be used for a variety of different time series
classification tasks with minimal changes. Additionally, DRCN and MTL models learned in
an endtoend fashion match or improve results obtained through adhoc feature extraction
procedures, achieving promising predictive accuracy without any input from domain experts.

The primary contributions of this work are:

• Using multimodal physiological timeseries data from realworld and simulated driv
ing environments to develop a stress recognition model with endtoend representation
learning on the one hand and manual feature engineering on the other.

• Demonstration of an unsupervised model adaptation for crossdomain transfer using
deep reconstruction classification networks.

• Presenting a robust approach for personalizing a model with deep multitask neural
networks.

9.2 Approach

9.2.1 Problem Definition

The stress detection (classification or recognition) can be framed as a sequence (timeseries)
classification task which takes physiological signals as input and outputs a label (generally
binary) for each sequence. The raw input signals of different modalities are divided into
segments of fixed length; with sliding window to avoid semantic segmentation. This process
produces m inputoutput {(xi, yi)}mi=1 pairs, where yi is taken to be the mode of context
window. The x⃗i is either used directly for learning representations with deep networks or
highlevel features are extracted from it manually to learn a classification model.

129

9.2.2 Unsupervised Model Adaptation

We formulate model adaptation as a crossdomain and crossuser transfer learning problem.
Here, a model trained on a dataset collected in a specific setting or source domain has to be
adapted to perform the same task in a different situation or target domain. The key challenges,
in this case, are a) unavailability of groundtruth for the target domain, b) expensive process
of acquiring a large number of labels, and c) dynamic shift in data distribution. Therefore,
target data cannot be directly used for finetuning an existing model in a supervised manner.
However, the unlabeled target data provide auxiliary training information that can be lever
aged to improve model generalization on the target domain than using only source data. This
learning setting resembles MTL in the sense that learning an auxiliary task can help improve
performance for the actual task using a shared representation [252].

So
ur

ce
 C

la
ss

Pr

ed
ic

tio
n

Ta
rg

et

Re
co

ns
tr

uc
tio

n

In
pu

t
G

au
ss

ia
n

N
oi

se

Co
nv

 +
 R

eL
U

M
ax

 P
oo

lin
g

Co
nv

 +
 R

eL
U

M
ax

 P
oo

lin
g

Bi
di

re
ct

io
na

l R
N

N

Si
gm

oi
d

Co
nv

 +
 R

eL
U

U
ps

am
pl

in
g

Co
nv

 +
 R

eL
U

U
ps

am
pl

in
g

Co
nv

 +
 R

eL
U

O
ut

pu
t

Co
nc

at
en

at
e

Co
nc

at
en

at
e

So
ur

ce
 &

 T
ar

ge
t

Ph
ys

io
lo

gi
ca

l S
ig

na
ls

E

C

D

R

L

Figure 9.1: Unsupervised (cross-domain) model adaptation architecture. The network consists of three main blocks, encoder,
decoder and label classifier, where encoder is shared between autoencoder and label classifier. The target data is
reconstructedwith encoder/decoder part of the network, represented by E andD. Similarly, source labels are predicted
with the encoder and classifier, showed by E and L. The model is trained end-to-end with back-propagation using
gradient descent (Adam). During optimization, first the weights of classification network (C) are updated followed
by weight optimization of autoencoder (R). Concretely, the labeled source data flow through lower part of the model
whereas, the unlabeled target data passes through upper part of the network.

Our goal is to transfer knowledge from labeled source data S to improve classification
performance on unlabeled target data T . Let, XS represent data instances and let YS be
stress labels for the source. Likewise, XT denotes data points from the target without any
labels, YT . In domain adaptation case, the marginal probability distribution of input data i.e.
P (XS) and P (XT) are different but the set of classes are the same YS = YT . We used an
extension of deep reconstruction classification network [251] to jointly model distribution of
S and T with a combination of supervised and unsupervised objectives. The model is based
on temporal convolution and recurrent layers (see Figure 9.1). There are two distinct stages
of the source and target feature learning by having a shared encoding representation. The

130

initial stage is a hybrid of convolution and recurrent layers for source label predictions i.e.
C : XS → YS . While the subsequent phase is a denoising convolutional autoencoder for
target data reconstruction i.e. R : XT → XT .

The encoding phase of the architecture consists of 2 temporal convolution layers each fol
lowed by a max pooling operation with a pool size of 5. The convolution layers all have 90
feature maps and a filter length of 10 with rectified linear activation. The decoder architecture
is similar except that the output is upsampled at the same rate as the input is downsampled in
the encoder. The classification network shares the same encoder but has an additional bidi
rectional recurrent layer with 80 units. It is followed by a standard sigmoid layer to get a
binary output. The Gaussian noise with a standard deviation of 0.1 is added to both source
and target instances and l2regularization is applied on the encoder’s weights. The model is
jointly optimized with binary classification (LC) and reconstruction (LR) losses for S and
T , respectively. Given mS source labeled instances {(xi, yi)}mS

i=1 and mT unlabeled target
samples {(xi)}mT

i=1, the objective functions are then defined as follows:

LCE(ŷ, y) = −
m∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (9.1)

LMSE(ŷ, y) =
1

m

m∑
i=1

(yi − ŷi)2 (9.2)

LC = LCE(C(XS ; {ΘE ,ΘL}), YS) (9.3)

LR = LMSE(R(XT ; {ΘE ,ΘD}), XT) (9.4)

LCL = αLC + (1− α)LR (9.5)

where ΘE , ΘD, ΘL, are an encoder, decoder and label prediction network weights, respec
tively. Note thatΘE is shared between classification network C and autoencoderR. Likewise,
0 ≤ α ≤ 1 is a tradeoff hyperparameter to control the contribution of classification and
reconstruction losses.

9.2.3 Personalization

A subjectindependent global model for stress detection may perform poorly due to large
interpersonal variations in physiological parameters [127] e.g. due to age, gender, sleep, and
diet. In order to take these disparities into account, we personalize a model by applying deep
multitask learning (MTL) with the subjectsastasks approach [253]. MTL involves finding
a unified model for solving more than one task with a shared representation of the tasks.
Consequently, a multitask neural network (MTNN) consists of common layers across tasks

131

as well as taskspecific layers. Besides, the last layer contains a separate output unit and a
loss function for each task. The optimization of loss functions is done at the same time by
alternating between different tasks at random.

In
pu

t

Co
nv

 +
 R

eL
U

Av
g

Po
ol

in
g

Co
nv

 +
 R

eL
U

D
ro

po
ut

Private
layers

Shared layers
Conv FC

Conv FC

Conv FC

Conv FC

Output
layers

Subject1

SubjectN

Subject2

Subject3Ra
w

 P
hy

si
ol

og
ic

al

Si
gn

al
s

Figure 9.2: Multi-task convolutional neural network architecture. The network consists of two temporal convolution and an
average pooling layers along with a dropout which acts as the shared feature extractors. The separate convolution
and dense layers are used as private layers for each participant with a sigmoid unit in the last. The model input is a
3d tensor of raw physiological signals of fixed length. It is trained end-to-end with back-propagation and gradient
descent by alternating between tasks (subjects) at random (see Section 9.3).

We use two model architectures for the MTL setting, one based on the temporal convo
lutional neural network for endtoend representation learning (see Figure 9.2) and another
feedforward neural network trained with manually extracted features. In the former, the first
three layers act as the shared feature extractors among the tasks (see Figure 9.3). They have
96 features maps with a kernel size of 8 and average pooling of size 5. A separate convolution
and fully connected layers are employed as subjectspecific layers to learn personalized fea
tures. The private convolution layer has the same configuration as shared ones but the dense
layer has 512 hidden units with tanh activation. In the latter, a fullyconnected layer with
200 units is used as a shared layer, whereas a separate hidden layer with 100 units is used as
a private layer for each subject. In both cases, the last part contains a sigmoidal layer with
standard binary crossentropy loss function for each user. We use rectified linear activation in
every layer (unless mentioned otherwise) and apply l2regularization and dropout with a rate
of 0.0001 and 0.2, respectively, to avoid overfitting.

This model architecture will be able to take interpersonal variations in physiological signals
into account through personspecific layers, rather than; having a mutual global represen
tation. Likewise, we perceive personalization for new unseen user straightforward through
adding randomly initialized layers to an existing model. In this case, our architecture can be
seen as an instantiation of Progressive Neural Networks [254]. The newlyadded layers can be
attached to existing shared layers; while dropping or chaining the private layers for knowledge
transfer. The userspecific layers can then be optimized while keeping weights of shared layers
frozen or tuning them separately with very small learning rate. This training strategy provides
an additional benefit as the data from earlier users/tasks are not necessarily required to train a
personalized model from scratch.

132

In
pu

t

Fu
lly

 C
on

ne
ct

ed

Ph
ys

io
lo

gi
ca

l
Fe

at
ur

es

Private
layers

Output
layers

Subject1

SubjectN

Subject2

Subject3

D
ro

po
ut

FC

FC

FC

FC

Shared layers

Figure 9.3: Multi-task neural network architecture. The model consists of one shared layer (with hard-parameter sharing) and
a (private) user specific dense layer with sigmoid classifiers in the last layer. The input is a vector of 16 physiological
features, extracted from the heart rate and skin conductance manually (see Section 9.3).

9.3 Dataset and PreProcessing

We use skin conductance and heart rate signals from realworld and simulator driving datasets.
The details are discussed below:

MIT Driver Stress (M)

The MIT Driver Stress dataset [255] consists of physiological signals recorded from 17 drives
in a reallife experiment; when participants drove in a city, on a highway and rested in a garage.
The collected signals comprise of EMG, ECG, galvanic skin response (GSR) from hand and
foot, HR derived from ECG and respiration rate. The signals provided in the dataset are all
downsampled to 15.5 Hz. We used the ‘marker’ signal (a button press) to derive the ground
truth annotation for binary stress levels. The peaks are detected in the signal to capture the
button push event; indicating a new trial of the experiment is commencing, e.g. the start or
end of a rest period. The data points before and after the first and last markers (peaks) are
removed as they correspond to the time when subjects were equipped with sensors. Likewise, 4
minutes of data after resting and before the beginning of the post driving baseline are removed.
These steps are taken to avoid feeding signals with ambiguous labels, as it is hard to determine
if subjects are stressed or recuperated. The artifacts are removed from HR and GSR signals
following [256] as values fluctuated to unreasonably high and low levels. Likewise, ECG, GSR
from foot and respiration rate are not used as collecting them in realworld situations is very
problematic. Lastly, the following 10 drives’ dataset having valid HR, GSR from hand, and
marker signals are used for further experimentation: 04, 05, 06, 07, 08, 09, 10, 11, 12 and
16.

Distracted Driving (D)

The multimodal Distracted Driving dataset [257] is acquired on a simulator in a controlled
environment. The dataset includes data from 68 volunteers (35 male/33 female) that drove the

133

same highway under four different conditions: a) no interruption, b) cognitive distraction, c)
emotional distraction, and d) sensorimotor distraction. In addition to the driving indicators
(such as speed, brake force, and steering) and eye tracking; several physiological signals were
recorded. These include palm electrodermal activity (EDA), HR, breathing rate, and perinasal
perspiratory signal. We normalize EDA (dividing by 1000) as a preprocessing step to ensure
the same range of variability compared to other data sources. In this research as our focus is
on detecting cognitive load stressors, we used only the EDA and HR data (provided with a
sampling rate of 1Hz) from drive under normal and cognitive mental load. During a cognitive
load drive, the stressors were induced by mathematical and analytical questions posed verbally
by the experimenter. We used 40 participants for our analysis and dropped the rest due to
corrupted or missing signals either during a normal or a stressful drive.

Cognitive Load Driving (C)

We collected heart rate and skin conductance (SC) data from 19 professional truck drivers
using wristworn devices. The SC signal was recorded at a frequency of 10 Hz and HR was
derived from Photoplethysmogram sensor data with a frequency of 1 Hz; it was upsampled to
match the frequency of SC. The experiment was realized with a driving simulation software
and participants received standardized instructions from an audiotape. The study consisted
of three major steps 1) baseline driving, 2) moderate stress activity, and 3) highstress task.
The high stress was induced by means of a secondary arithmetic subtraction task. It is a
component of widely used Trier Social Stress Test [258], where a user has to perform a serial
subtraction verbally in a loud manner and has to start over from the last correct answer; if a
mistake is made. Since we are interested in recognition of baseline and high stress, data points
of moderate stress activity are dropped. Also, two subjects are dropped due to having bad
quality signals.

Segmentation and Features

To prepare the data for model input, we used a sliding window approach as mentioned ear
lier to extract fixedlength sequences from each participant’s physiological signals. A window
length of 300 samples with a fixed step size of 50 samples is used for each dataset. In the case of
endtoend representation learning, raw physiological signals are used. For traditional learn
ing algorithms, features are extracted manually from HR and SC which is discussed below. It
is important to note that raw segments and features were computed from preprocessed sig
nals, standardized with mean normalization by baseline to compensate for individuals having
different resting heart rates.

Heart Rate Heart rate is the number of complete cardiac cycles for instance measured as
the RR interval in an electrocardiogram. It reflects the heart activity, including autonomic
nervous system activity when it accommodates the body’s demands depending on the received
stimuli [109]. We obtained the following seven features from heart rate: mean, standard
deviation, min, max, range, root mean square of successive differences, and standard deviation
of successive differences.

134

Skin Conductance The skin conductance (also known as galvanic skin response or elec
trodermal activity) describes the autonomic variations in electrical properties of the skin or
equivalently, the number of active sweat glands. It is widely used as a sensitive index of
emotional processing, sympathetic activity and is a relevant indicator of the stress level of a
person [259, 260]. From this signal, the following nine features are extracted: mean, standard
deviation, min, max, range, number of peaks, amplitude, skewness, and kurtosis.

Table 9.1: Test set Kappa and AUROC score for unsupervised (cross-domain) model adaptation

Kappa

Methods C → D C → M D → C D → M M → C M → D
Source Only NN 0.040 0.640 0.371 0.604 0.470 0.148
Source Only CNN 0.246 0.648 0.389 0.566 0.594 0.401
DRCN NN 0.110 0.215 0.527 0.192 0.491 0.186
DRCN CNN 0.541 0.656 0.747 0.701 0.774 0.432

AUROC

Methods C → D C → M D → C D → M M → C M → D
Source Only NN 0.521 0.826 0.760 0.781 0.780 0.575
Source Only CNN 0.619 0.827 0.765 0.755 0.827 0.701
DRCN NN 0.563 0.628 0.807 0.610 0.798 0.598
DRCN CNN 0.772 0.830 0.844 0.831 0.867 0.713

9.4 Experiments

Our experiments were conducted using physiological signals from three datasets described
in section 9.3: MIT Driver Stress (M) [255], Distracted Driving (D) [257] and Cognitive
Load Driving (C). The data of every subject in each dataset is randomly divided into training,
validation and test sets of size 70%, 10%, and 20%, respectively. For each experiment, the
networks are trained from scratch, initializing the weights with the Xavier technique [217].
We use the Adam [31] optimizer with the default parameters but used the validation set to find
optimal learning rate and tradeoff parameters (α). The optimal values of α are found to be
between [0.20.7]. Finally, we employ validation based early stopping during the optimization
process to further avoid overfitting and improve the stress recognition rate.

Table 9.2: Average test set (20%) results of drives in MIT Driver Stress dataset

Model AUROC Kappa
LR 0.821 ± 0.074 0.650 ± 0.143
SVM (L) 0.832 ± 0.076 0.675 ± 0.146
SVM (RBF) 0.894 ± 0.035 0.808 ± 0.062
STNN 0.852 ± 0.116 0.707 ± 0.241
MTNN 0.905 ± 0.056 0.831 ± 0.098
MTCNN 0.918 ± 0.058 0.841 ± 0.110

Table 9.3: Average test set (20%) results of participants of Cognitive Load Driving dataset

Model AUROC Kappa
LR 0.880 ± 0.161 0.745 ± 0.314
SVM (L) 0.876 ± 0.141 0.740 ± 0.264
SVM (RBF) 0.923 ± 0.104 0.853 ± 0.252
STNN 0.935 ± 0.072 0.855 ± 0.142
MTNN 0.960 ± 0.056 0.911 ± 0.114
MTCNN 0.956 ± 0.080 0.918 ± 0.147

135

We evaluated DRCN for model adaptation on six combinations (source S→ target T) of
the above mentioned datasets: C→M, C→D, D→ C, D→M, M→D and M→ C and
report kappa and area under the receiver operating curve (AUROC) on the heldout test set.
For a baseline, we used a CNN model trained only on source data with architecture similar
to the encoder part of the model as discussed in section 9.2.2. Furthermore, we also experi
mented with feedforward networks trained with manually extracted features for both DRCN
and sourceonly settings. The feedforward models consist of 3 hidden layers with 128, 64
and 32 units with tanh activation, where the decoder network has a similar configuration but
layers in opposite order to reconstruct the original input vector of 16 dimensions. The results
are summarized in Table 9.1. The DRCN model trained endtoend demonstrates a strong
performance boost for the unsupervised crossdomain transfer learning problem. It achieves
kappa of above 0.7 from the simulator to onroad and viceversa from sourceonly baseline
kappa of 0.6. It is important to note that, we used a fixed architecture for all six combinations
of model adaptation tasks to show predictive performance increase via joint training on source
and target. We believe further improvement can be achieved if architectural components (e.g.
number of kernels, kernel size, activation) are optimized for each adaptation task separately.
Likewise, convolutional models trained endtoend outperformed those with an adhoc fea
ture extraction procedure. This can be due to CNN’s capacity and ability to automatically
learn general to specific features from source and target domains together. Although, when
the target domain is Distracted Driving, the domain adaptation performance is comparatively
low. This could be due to the relatively small size of this dataset and the recognition rate can
be improved with a larger dataset.

Table 9.4: Average test set (20%) results of users in Distracted Driving dataset

Model AUROC Kappa
LR 0.734 ± 0.215 0.473 ± 0.431
SVM (L) 0.735 ± 0.217 0.472 ± 0.429
SVM (RBF) 0.882 ± 0.152 0.760 ± 0.909
STNN 0.860 ± 0.166 0.715 ± 0.334
MTNN 0.908 ± 0.140 0.814 ± 0.282
MTCNN 0.871 ± 0.127 0.738 ± 0.257

In our attempt to personalize the model, we first evaluated two standard classifiers as a
baseline: logistic regression (LR) and support vector machine with linear (L) and radial basis
function (RBF) kernels. In addition, we also trained two layers (subject independent) feed
forward neural network with 100 hidden units and rectified linear activation in each layer. The
data of each subject is randomly divided into (80/20) train and test sets. The crossvalidation
is performed on the training set for hyperparameter optimization and evaluation metrics are
averaged across participants on the test set. The stress recognition performance of these models
is summarized in Table 9.2, 9.3 and 9.4 for realworld and simulator drivings, respectively.
In MIT Driver Stress (onroad) dataset, SVM (RBF) set a strong baseline by achieving the
highest results among other singletask models including STNN. The proposed MTCNN
model greatly improved upon that by achieving kappa of 0.84 and AUROC score of 0.91. It
can be seen as an overall improvement across drivers due to subjectspecific layers. Likewise,
the MTNN model which is trained with manually extracted features achieved similar results.
Nevertheless, we advise caution in the interpretation of MIT Driver Stress dataset’s result as
no actual ground truth annotations or subjective selfreports are publicly available. The labels

136

were acquired by means of a ‘marker’ signal, representing the start of next study trial (i.e. from
resting to driving in a city) and assuming that driving, in general, is a stressful task.

For simulator driving datasets, the standard (onefitsall) classifiers do not generalize as can
be seen from the high standard deviation values of evaluation metrics in Table 9.3 and 9.4.
The difference is particularly high for the Distracted Driving dataset, where a number of
participants were comparatively large and more diverse belonging to different gender and age
groups. The MTNN notably improved the recognition rate across subjects and resulted in
a better model by achieving kappa of 0.91 and 0.81 on both simulator datasets. Similarly,
MTCNN performed well apart from on Distracted Driving dataset which can be attributed
to its small size as deep models require large datasets for representation learning. However,
these results show that multitask learning with reliable quality signals can be used to develop
a personalized model as it generalizes well across various users and different environments i.e.
realworld and simulators.

9.5 Conclusion

In this work, we proposed a solution for unsupervised crossdomain adaptation and personal
ization of physiological stress recognition models with deep multitask learning (MTL). The
traditional learning approaches used for stress detection mostly (see [249] for a review) rely
on sensor data (such as EMG, respiration rate, facial expressions and pupil dilation) that are
very hard to acquire in a reallife situation to develop practical applications. Likewise, they
do not explicitly address issues of endtoend representation learning, covariate shift, and do
main adaptation. Therefore, these methods may perform poorly when data distribution (of
a source domain) training instances differs from test instances (of a target domain). Simi
larly, global subjectindependent models do not generalize well to new test subjects because
of large interpersonal variations in physiological parameters of individuals which can be due
to age, gender, sleep, and diet. We used skin conductance and heart rate from realworld
and simulator driving tasks to show: a) how models can be adapted to improve predictive
performance on target domain in an unsupervised manner with deep reconstruction and clas
sification networks (DRCN) and b) how to utilize multitask learning (with subjectsastasks)
to get personalized stress models. In our experiments, we found that the convolutional neural
network based DRCN model outperforms the models trained only on source data and feed
forward networks utilizing manually extracted features. Likewise, in model personalization
experiments, the MTL networks either trained endtoend or with feature extraction proce
dures significantly improve the recognition rate across all datasets as compared to singletask
models. We believe, if a wearable device provides reliable and highquality signals, a realtime
stress detection application can be developed to improve safety and wellbeing. In addition
to stress classification in a driving environment, a future study may involve applying and in
vestigating the performance of these methods in a dailylife context by comparing the model’s
outputs against subjective selfreports.

137

Chapter 10

Unified Model for CrossDomain
Sensing Tasks

This chapter is based on our paper Learning CrossDomain Sensing Tasks with a Unified Self
Supervised Model, which is under review. It was a joint work with Shkurta Gashi, Shohreh
Deldari, Flora D. Salim, Daniel V. Smith, and Silvia Santini.

10.1 Introduction

In the previous chapters, we developed a broad spectrum of selfsupervised tasks for learning
representations from many input modalities and datasets individually, including techniques
to handle various input artifacts. In this chapter, we address the subject of building a unified
neural networkbased model for solving multiple sensing tasks simultaneously with a single
model. In particular, we show that a unified model can be trained in a supervised and self
supervised manner and is highly competitive with singletask counterparts in a variety of
settings. Singletask deep learning models have been extensively investigated to recognize
behavior from sensor data [3, 108]. While these methods achieve acceptable performance,
they ignore the knowledge and structure shared between the tasks and might not generalize
well [32]. They also require redundant effort in designing and training a separate model for
each task [261]. These methods can be prone to overfitting in the case of few labeled data
as they require curation of massive pertask dataset. Lastly, the training of multiple similar
deep models require extensive computational resources in terms of exploring architectural and
hyperparameter space.

Several researchers have shown the effectiveness of multitask learning for solving a vari
ety of tasks using single sensor data [14, 262, 263]. Existing approaches, however, focus on
developing models for learning to solve similar problems using data collected from the same
domain and input modality. This prevents the model from considering the correlations be

139

tween crossdomain data of different modalities simultaneously. Furthermore, it may also
increase the deployment cost, particularly on resourceconstrained devices, as each task will
have one model. A multitask model with a shared backbone and multiple heads, one for each
task vastly addresses the aforementioned issues while allowing tasks to learn general represen
tations from each other.

Although multimodal and multitask learning has been explored to solve various tasks
with sensory data, existing methods address the problem in a purely supervised manner by
heavily depending on the availability of labeled data. The collection of sensory data for several
applications is challenging, costly and in some cases requires domain expertise. Therefore, a
large amount of unlabeled data can not be utilized for learning [15]. Selfsupervised learning
(SSL) aims to solve this issue and enables the learning of useful representations from unlabeled
data through tasking the network to solve an auxiliary objective for which supervision can be
acquired from the input itself. Given this, we aim to answer the following question:

Can we develop a unified deep model with selfsupervision for multiple sensing tasks using
multimodal data to achieve similar performance as singletask models?

To answer the question mentioned above, we propose UniModel, a multitask deep neural
network to concurrently learn to solve multiple tasks with multimodal data collected using
various sensors. To evaluate UniModel, we train it on the following tasks: heart rate estima
tion, sleep stage scoring, activity recognition and abnormal electroencephalogram (EEG) detection.
Our technique exploits the underlying relations and shared features between modalities and
tasks to learn a specific task better than learning them individually. We propose to leverage
a selfsupervision to overcome the obstacle of label scarcity in mobile and wearable sensor
data as SSL techniques do not require annotated data. In particular, our model learns useful
representations for downstream tasks using unlabeled data collected from different sensors.
Recently, several authors have effectively utilized SSL to learn features from audio and visual
data [264, 265], including wearable sensor data [14, 15, 266]. In contrast to these existing ap
proaches, we explore a multitask formulation of contrastive predictive coding [42] to learn
generalpurpose representations in a labelfree manner that generalizes better on downstream
tasks. Additionally, we investigate the effectiveness of SSL in lowlabeled data regimes to
leverage a pretrained network for improved generalization. Further, to evaluate the generaliz
ability of UniModel on outofdomain data, we investigate the applicability of our pretrained
selfsupervised representations for transfer learning. It has been consistently shown that the
transfer from the existing models significantly reduces the training time and effort needed
to converge to an optimal solution on a future task through exploiting previously acquired
knowledge [32, 267].

Our contributions can be summarized as follows:

• We propose UniModel, a single multitask multimodal network to learn representa
tions with data acquired from a variety of sensors from different domains.

• To the best of our knowledge, we, for the first time, explore learning a unified (or one)
model for sensing tasks using unaligned data (i.e., signals collected for different tasks).

140

Multi-task Multi-modal
Sensory Data

Task-specific
Subnets

PredictorsShared Encoder
(Fusion Subnet)

Figure 10.1: Illustration of UniModel for multi-task and multi-modal learning of a wide range of sensing tasks.

• We apply our approach to several important recognition problems, including heart
rate estimation, sleep stage scoring, activity recognition and abnormal electroencephalogram
detection. We show that the performance of UniModel for considered tasks is similar
to, in some cases, even higher than the singleproblem (or singletask) models.

• We explore the effectiveness of selfsupervised learning to create a generalpurpose
model from unlabeled data. Specifically, to the best of our knowledge, we, for the
first time, utilize contrastive predictive coding (CPC) in a multitask learning setting
for pretraining a model simultaneously across tasks.

• We demonstrate significant generalization improvement in lowdata regimes with a
UniModel trained in a selfsupervised manner compared to a supervised counterpart.

• We investigate whether the representations learned with UniModel are transferable
across datasets, tasks, and devices. We show that, after finetuning, our approach out
performs standard models trained and tested on the indomain dataset.

10.2 Approach

We present an approach to learning unified representations for multiple tasks and modalities
with a unified neural network. In this section, we formally define our problem and present
our learning strategy. Next, we discuss selfsupervised learning approach based on contrastive
predictive coding for multitask learning. Finally, we describe an approach to leverage self
supervision for semisupervised learning.

10.2.1 Problem Formulation

Here, we provide a formal description of learning a UniModel for solving numerous sensing
problems in a supervised manner and with selfsupervision, to mitigate the requirement of
wellannotated data.

141

We consider labeled data Dτ
s = {(xτi , yτi)}m

τ

i=1 from a distributionMτ over the domains
X τ × Yτ , where X ⊆ Rd is the input space with d input channels and Y is label space
for a learning task τ and s representing labeled examples. Specifically, given multiple tasks
each with its own set of m examples (xi, yi) in inputlabel pairs, our goal is to learn a joint
predictive model fθ : X τ −→ Yτ that fits ∀τ ∈ T , where T is a set comprising learning
problems.

We approach the problem of learning fθ through extracting task representations as feτ (x) =
h ∈ Rr over the taskspecific input. Afterwards, we learn taskagnostic representations with
a shared encoder fes(h) = z ∈ Rg over taskrelated features h. Finally, we learn a predictor
y = fcτ (z) ∈ Yτ . We form a unified model through the composition of encoders and pre
dictors to use a jointloss L =

∑
τ∈T ℓ

τ for training the model endtoend. The multitask
networks are a composition of taskspecific and shared layers with hard parameter sharing
amongst the tasks. Each task’s input goes through its respective layers before being processed
with a shared model. Our model has hard parameter sharing amongst the tasks, which may
result in robust representations invariant to noise. It also produces a compact model that can
be used for multiple tasks directly ondevice, e.g., on a smartphone.

We are further interested in representation learning techniques, where we can learn feτ and
fes with the help of a pretext task using unlabeled data Dτ

u = {xτj }n
τ

j=1 from a distribution
same as or different thanMτ . We pose a pretext task as a selfsupervised (or unsupervised)
learning problem which depends solely on input x. To that end, we leverage a generic self
supervision task to correctly predict the latent embeddings in future timesteps of x using an
encoder and autoregressive model to represent the encoded embedding. A noise contrastive
estimation technique, such as the InfoNCE loss [42] is then used to maximize the mutual
information between the features that the model learns and those extracted from future time
observations. It is also helpful that we do not need to handdesign an auxiliary task to learn
from multimodal data. Further, it could be significantly challenging and does not guarantee
that the learned features will be useful for the end task of interest. For this purpose, we lever
age the contrastive predictive coding [42] formulation in a multitask setting, which allows
learning a range of tasks from multiple sensing modalities, simultaneously.

10.2.2 Unified Sensorbased Multitask, Multimodal Learning

We introduce unified model or UniModel for short, a temporal convolutionalbased neural
network applicable to a variety of sensing tasks. Figure 10.1 illustrates the highlevel architec
ture, which comprises individual convolutional subnets, a fusion network that is shared across
tasks, and output layers for the considered tasks.

The initial modeling step is to extract important features for the tasks independently and
bring all sensor modalities into a similar structure to process them further with a shared set of
layers. A taskspecific subnet is also essential as the input size and number of modalities (or
input channels) differ across problems. We use convolutional neural networks feτ (·) to learn
salient features for each task with their own set of parameters. We keep the subnet compact to
control the overall network size as adding new tasks increases the parameters that the model
needs to learn with an overhead for inference at runtime. Another key reason for the design

142

choice is to leverage the fusion network to learn highlevel features shared across tasks. Our
network comprises a pair of 1D convolutional layers to process the input modalities stacked
depthwise. Each of the convolutional layers is combined with a LayerNorm [174] and PReLU
nonlinear activation function. The subnet also consists of an InstanceNorm [196] operation
to normalize each instance independently. We preserve the original input resolution with the
same padding in the convolutions but expand features maps that the shared network uses as
an input to create an embedding space useful for many sensors. Likewise, our multimodal
subnet or shared encoder fes is also a convolutional model with strong parameter sharing
among tasks. It leverages complementary aspects of each signal to learn representations that
are general and useful across multiple tasks. The rest of the implementation details of the
architecture are explained in Section 10.3.2.

10.2.3 Multitask Contrastive Predictive Coding

A central problem in machine learning is to design (or learn) features that provide discrimina
tive information about the input data. Their quality enables a learning algorithm to efficiently
solve a task at hand and generalize well on unseen data. The representations that capture high
level information about the input facilitate the model to perform well on downstream tasks
while improving data efficiency. To learn sensory representations with deep neural networks,
we require a large amount of labeled data, which is prohibitively expensive to acquire for many
problem domains in a realworld setting. The area of selfsupervised learning describes a class
of methods that aim at learning useful representations from unannotated data. It tasks the
network to solve an auxiliary objective for which supervision can be acquired from the data
itself. Given an unlabeled datasetDy = {x}nj=1 and network fθ(.), the aim is to pretrain the
network through solving a surrogate task where, labels y for the standard objective functions
are extracted automatically from x. The learned model is then utilized as initialization for
rapidly learning an endtask.

We use contrastive predictive coding (CPC) for providing selfsupervision to a deep model
that relies on mutual information maximization criteria [42]. CPC lets the network learn
features that can be used to make optimal estimates of future observations through maximiz
ing mutual information between the predicted representations based on data that has been
recorded so far compared to those extracted from future timesteps. The key intuition behind
CPC is to extract structure from input at different levels, ultimately deciding the horizon of
longterm predictions we can make with the model. For instance, slowly varying features
are learned if the model predicts further in the future than making predictions on a smaller
timehorizon [268].

CPC is applied successfully to image and speech modalities [42] to learn features from unla
beled data for singletask models. Here, we utilize it for a multitask setting for jointly learning
representations from multiple sensing modalities, such as accelerometer, electroencephalog
raphy, and photoplethysmogram. For the sake of simplicity, we provide a formulation for
a single task, and it applies straightforwardly to multiple tasks. Consider a raw multivariate
signal x = [x1, x2, . . . , xL] of length L with xi ∈ Rd. A taskspecific encoder h = feτ (x)
encodes the raw signal into a latent embedding related to a task. It is then processed with
a shared encoder z = fes(z

τ), z ∈ Rr (with r being dimension of feature vector) to pro

143

duce sensoragnostic representations. We employ recurrent network with the gated recurrent
unit [269] as an autoregressive model fa to generate a summary of past representation as
a context vector c. It has hidden units equivalent to the last convolutional layer’s features
maps in feτ . The network consisting of these building blocks learns the representation while
maximizing mutual information between context vectors c and future embeddings z with a
lowerbound on mutual information with InfoNCE [42] as:

LNCE =
1

K

K∑
k=1

log
sk(ct, zt+k)∑

x∈Xt,k
sk(ct, zn)

,

s(ct, zt+k) = exp(c⊤t Wkzt+k)

(10.1)

where W are learnable parameters of logbilinear model s, theK denotes the total timesteps
to predict into the future while t represents a starting point from where we start estimating
future states, and it is randomly selected depending on the resolution of z. We selected the
value of K with an initial exploration of our considered tasks. The LNCE is a contrastive
objective that minimizes a dot product between the predicted and correct future representation
while maximizing the dot product with a set of negative examples Xt,k taken from the mini
batch. We use the same formulation to compute the loss for each task and sum them across
tasks Laggregated =

∑
τ∈T Lτ

NCE for multitask learning.

10.2.4 SemiSupervised Learning for Sensing

As mentioned earlier, the curation of a massive amount of wellannotated data for train
ing deep models is prohibitively expensive and requires extensive effort. We can leverage a
model bootstrapped with selfsupervision for semisupervised learning at no extra cost. The
selfsupervised pretrained network captures highlevel representations that lower the bar of
annotated data and improve endtask data efficiency. To that end, once the selfsupervised
network is trained to produce unified sensory representations, we can use z as input to further
predictive models for solving the endtask, such as sleep stage scoring and heart rate estima
tion. The key possibilities are to either keep the encoder fixed or finetune it along with the
end task. For learning with few labeled data, we choose to finetune an entire network on the
downstream task with various amounts of labeled data. We keep feτ (·) and fes(·) encoders
and discard rest of the layers from the CPC model. We apply a global averagepooling to
accumulate features z from the encoder, and a linear layer follows it with the hidden units
equivalent to task outputs. For classification and regression problems, we use softmax and lin
ear activation, respectively. We finetune the resulting model endtoend on the downstream
task.

10.3 Experiments

We validate the effectiveness of UniModel on several publicly available datasets from differ
ent domains. We find that learning a unified model provides similar or better performance

144

Table 10.1: Salient characteristics of datasets used in our evaluation.

Task Dataset #Channels #Outputs

Activity Recognition HHAR 6 6
MotionSense 6

Heart Rate Estimation PPGDaLiA 4 1
Sleep Stage Scoring SleepEDF 1 5

Abnormal EEG TUH Abnormal 21 2
Seizure Detection CHBMIT 17 2

as compared to individual taskspecific models. We show that selfsupervised pretraining is
highly effective in leveraging unlabeled data to improve performance in the lowdata regime,
even on outofdomain data. In the rest of the section, we provide details of the tasks and
datasets used to assess UniModel. We also discuss evaluation strategy and key implementation
details. Finally, we provide experimental results on various sensing tasks.

10.3.1 Tasks and Datasets

To evaluate our approach, we focus on health, wellbeing, and daily living problems that
require sensory data collected from smartphones and other wearables. We target human ac
tivity recognition, sleep stage scoring, heart rate estimation, and seizure detection problems.
Specifically, we evaluate UniModel on seven different datasets, four of which are used for
core multitask learning (i.e., HHAR, SleepEDF, PPGDaLiA, and TUH Abnormal EEG)
and evaluation. The other three (MotionSense, HHARSW, and CHBMIT) are utilized for
evaluation in transfer settings due to their relatively small size.

Activity Recognition: For activity recognition, we choose datasets with accelerometer and
gyroscope signals: HHAR [56], MotionSense, HHARSmartwatch (SW). To summarize, the
HHAR dataset contains 8 smartphones and 4 smartwatches data from 9 subjects performing 6
activities, i.e., biking, sitting, standing, walking, stairsup, and stairsdown. The sampling rate
of signals varies considerably across devices with values ranging between 50−200Hz. We use
smartphone data in core training and use smartwatch signals in assessing generalization across
devices. Similarly, MotionSense comprises inertial sensors’ data acquired at a sampling rate
of 50Hz with iPhone 6S from 24 users who performed 6 activities, namely, sitting, walking,
upstairs, jogging, downstairs, and standing. We segmented the signals into fixedsize windows
that have 400 samples with 50% overlap for all the considered datasets.

Sleep Stage Scoring: For sleep stage scoring with singlechannel EEG, we use Physionet
SleepEDF dataset [106, 107] consisting of 61 polysomnograms. It is collected from 20 sub
jects to study the effect of a) age on sleep in healthy individuals and b) effects of temazepam
on sleep. The dataset includes 2 wholenight sleep recordings of EEGs from FPzCz and Pz
Oz channels, EMG, EOG, and event markers. The signals are provided at a sampling rate of
100Hz, and sleep experts annotated 30 seconds into 8 classes. The classes include Wake (W),

145

Table 10.2: Comparison of UniModel trained jointly on four sensing tasks and individual models for each task. We evaluate the
generalization capability of our approach in both supervised and self-supervised settings. SSL refers to self-supervised
learning, a model that is pretrained and fine-tuned end-to-end on the downstream tasks. We report mean±std.
deviation of metric scores averaged over 10 independent runs.

Method
Heart Rate Estimation Sleep Stage Scoring Activity Recognition Abnormal EEG

Mean Absolute Error Accuracy Fscore Accuracy Fscore Accuracy Fscore

Singleproblem Supervised 7.871±0.485 0.787±0.018 0.791±0.013 0.859±0.014 0.857±0.015 0.769±0.092 0.751±0.144
SSL (Finetuned) 7.609±0.253 0.792±0.008 0.791±0.006 0.863±0.016 0.862±0.016 0.813±0.007 0.812±0.007

UniModel
(Joint Network)

Supervised 8.090±0.461 0.789±0.011 0.782±0.014 0.852±0.017 0.850±0.018 0.806±0.019 0.805±0.021
SSL (Finetuned) 7.789±0.293 0.795±0.011 0.796±0.010 0.877±0.014 0.876±0.014 0.809±0.006 0.808±0.006

Rapid Eye Movement (REM), N1, N2, N3, N4, Movement and Unknown (not scored). We
applied standard preprocessing as proposed in [108] to merge N3 and N4 stages into a single
class following American Academy of Sleep Medicine (AASM) standards and removed the
unscored and movement segments. We utilize EEG (FpzCz channel) signals from an initial
study to categorize sleep into 5 classes, i.e., W, REM N1, N2, and N3.

Heart Rate Estimation: The pulse oximeters sensor in contemporary wearable devices pro
vides a lowcost, noninvasive and efficient way to estimate heart rate. We use PPG−DaLiA
dataset that is acquired from 15 subjects using Empatica E4 [270] a wristworn device. It con
sists of photoplethysmogram (PPG) and accelerometer signals recorded at 64Hz and 32Hz, re
spectively. The data collection protocol included low, medium, and highintensity arm move
ments to introduce motion artifacts that make accurate estimation cumbersome. Similarly,
to generate a highly irregular heartrate, participants completed activities of varying physical
effort (e.g., cycling vs. sitting). The ground−truth is obtained from the ECG recorded with
the RespiBAN device mounted on the chest. We use a window size of 8 seconds to segment
the signals as in [270] where groundtruth heart rate is provided at the same resolution. We
upsample the accelerometer signal to match PPG’s sampling rate to have an input stacked
depthwise for the network. We apply znormalization to scale the output for training with
the mean and standard deviation computed from training set examples.

Electroencephalography Tasks: Electroencephalography (EEG) is a noninvasive approach
to record electrical brain activities from the user’s skull and scalp. It has a wide range of ap
plications in medicine, such as diagnosis of epilepsy, seizure detection, and in building the
braincomputer interface domain. Inherently, EEG signals are prone to noise and require col
lecting a large amount of data either for multiple sessions to perform meaningful neurological
conditions analysis. Moreover, the acquired data volume makes it significantly challenging
for manual inspection; thus, automated methods are preferred. We focus on the tasks of rec
ognizing if the recorded EEG signal is normal or abnormal to decide if it can be useful for
the downstream application or not. We use TUH Abnormal EEG Corpus containing EEG
signals recorded at 250Hz and annotated them as clinically normal or abnormal. It is a part
of the TUH EEG Corpus [197], a most extensive publicly available corpus comprising over
15000 subjects and session recording as per the international 10 − 20 system. We use 21
common channels set across subjects and segments of approximately 8 seconds to learn and
evaluate models. In a transfer setting, for detecting seizures, we use CHBMIT data [198]
containing intractable seizures acquired from 23 pediatric subjects with EEG signals sampled

146

at 256Hz with 17 electrodes or channels. The varying duration of the sessions resulted in the
input of different lengths. We use segments of 500 samples randomly selected (and padded
with zeros if necessary) from the training sequences during the learning phase. For evaluation,
we use an entire recording to generate the model’s prediction.

Validation Procedure: We employ a traintest split (70− 30) of the datasets in all the cases
as we can not perform a leaveoneuserout crossvalidation strategy due to a varying number
of users across the datasets. We split the data based on subjects whenever possible (except
TUH Abnormal EEG Corpus and CHBMIT data where we perform a standard split). We
compute the weighted F1score and accuracy metrics for our method’s performance analysis.
Importantly, we use the same network architecture in all the cases along with fixed hyper
parameters. We compare the results of our approach and the baselines using a ttest, with a
significance level of 0.01 as suggested in [271].

Table 10.3: Effectiveness of UniModel in out-of-domain transfer across different tasks, devices and data collection protocols. We
compare models learned from in-domain data to transferred models that we use as initialization for fine-tuning on
downstream tasks. For MotionSense and HHAR-SW we use task-specific encoder of HHAR and for CHB-MIT we use
an encoder learned on TUH Abnormal EEG data in both cases, i.e., single-problem and UniModel. The metric scores
are averaged over 10 independent runs and mean±std. deviation is reported. In-domain refers to directly training
on the target data without transfer learning.

Method
MotionSense HHARSW CHBMIT

Accuracy Fscore Accuracy Fscore Accuracy Fscore

Indomain Supervised 0.852±0.016 0.854±0.016 0.643±0.017 0.634±0.016 0.872±0.026 0.857±0.039

Singleproblem SSL (Finetuned) 0.879±0.022 0.882±0.022 0.677±0.011 0.674±0.013 0.815±0.048 0.772±0.086

UniModel
(Joint Network)

Supervised 0.874±0.022 0.876±0.029 0.672±0.014 0.670±0.014 0.899±0.025 0.892±0.033
SSL (Finetuned) 0.875±0.006 0.881±0.006 0.695±0.013 0.695±0.012 0.925±0.011 0.922±0.013

Table 10.4: Evaluation of self-supervised UniModel with a linear classifier trained on-top of a frozen network in comparison to
fine-tuning.

Method
Heart Rate Estimation Sleep Stage Scoring Activity Recognition Abnormal EEG

Mean Absolute Error Accuracy Fscore Accuracy Fscore Accuracy Fscore

Frozen 15.89±0.461 0.756±0.004 0.752±0.005 0.748±0.034 0.747±0.034 0.709±0.014 0.707±0.015

Finetuned 7.789±0.293 0.795±0.011 0.796±0.010 0.877±0.014 0.876±0.014 0.809±0.006 0.808±0.006

10.3.2 Implementation Details

We use a temporal convolutional model to learn representations from multimodal data of
crossdomain tasks. Our model is inspired from [42] with taskspecific encoder feτ (·) has a
pair of convolutional layers having a kernel size of 10 and 24 filter maps. The multimodal
subnet or shared encoder fes consists of a stack of 6 convolution layers with 32, 64, 72,
96, 128, and 256 feature maps and kernel sizes of 10, 8, 6, 6, 4, and 4 in each layer with a
stride of 1, respectively. We also use LayerNorm and PReLU activation here, same as a task
specific subnet, after the convolution layers. After every second convolution layer, we add
a maxpooling layer with a pool size of 8 and stride of 2 to reduce the input size and bring
translation invariance to lowlevel changes in the input. We adopt the same architecture
for an encoder composed of taskspecific and fusion networks for learning representations

147

in a supervised and selfsupervised manner. Importantly, the same architecture is used as a
backbone network in singletask models with an addition of output layers on top. To generate
taskrelated outputs, i.e., classlabel or scalar value depending on the learning problem, we use
global average pooling to aggregate the features and pass them to the dense (output) layers of
each task. These layers have hidden units corresponding to the number of outputs with either
softmax or linear activation.

We use an Adam optimizer [31] with a learning rate of 10−3 and a batch size of 24. We
train singletask networks for 50 epochs with a standard crossentropy loss for classification
and mean absolute error for regression tasks. In the case of a multitask network, we prepare
the minibatch with uniformly sampled data points for each task and backpropagate the error
jointly (simultaneously) on the tasks to update the parameters. The different tasks are learned
at a different rate and can also diverge from the optimal solution; therefore, we monitor
training loss and stop learning as soon as total loss increases. We notice network converges
after 10 epochs on the joint data of the considered tasks. For pretraining with contrastive
loss, we let the network predict K = 12 timesteps ahead in the future for all the tasks. We
explored other values but did not find a significant difference in performance. We select a
starting point t randomly for each task and training step (or minibatch creation), depending
on the output resolution of encoder fes(·). Once pretraining is finished, we finetune the
model endtoend with labeled data of end task for 50 epochs. In this case, we select the task
specific encoder depending on the task’s available modalities, including in transfer to other
datasets. We use L2regularization with a rate of 10−4 on all layers in the network except
output. We also apply a dropout of 0.1 in the autoregressive function in the CPC model.

10.3.3 Results

In this section, we discuss the key contributions to show the effectiveness of UniModel both
as a supervised and a selfsupervised network against singleproblem (or singletask) baselines
trained either in a fully supervised manner or with selfsupervision. We designed learning
strategies for our model to be trained jointly on all tasks simultaneously with semantic anno
tations in an entirely supervised manner and exploit unlabeled data to learn useful represen
tations with a selfsupervised loss. After pretraining, we finetune UniModel endtoend on
each task, including in lowdata regimes and evaluating transferability.

Train One for All

Table 10.2 reports the mean and standard deviation of the performance metrics for each con
sidered task using UniModel and singleproblem (or singletask) models trained with super
vised or selfsupervised learning. In the supervised case, UniModel achieves an Fscore and
accuracy of 80% to detect abnormal EEG, which corresponds to 4 and 5 percentage points
increment on top of singletask counterpart. The performance of UniModel for the rest of
the tasks is similar to corresponding singletask models. These results show the effectiveness
of UniModel to learn multiple tasks jointly with similar to, in some cases, even better, per
formance than the singletask models. Although UniModel offers a simple architecture with

148

Instances per class

F-
sc

or
e

Sleep Stage Scoring Activity Recognition Abnormal EEG

MotionSense HHAR-SW CHB-MIT

Heart Rate Estimation

#Instances

M
ea

n
A

bs
ol

ut
e

Er
ro

r

Supervised
Single-task (SSL)
UniModel (SSL)

Figure 10.2: Effectiveness of self-supervised UniModel in a low-data regime. We use the pretrained model as initialization and
fine-tune it end-to-end with a few labeled data for each task (i.e., SSL-FT). We perform 100 independent runs,
sampling different labeled examples for learning and report average metric scores. The metrics are statistically
significant according to the t-test with *p<0.01, except for HHAR-SW with 50 instances and CHB-MIT with 20 and
50 instances. The dotted line represents the upper bound performance that can be achieved with a single-task
fully-supervised model trained on entire labeled data.

hard parameter sharing among different tasks, the results are competitive with the singletask
baseline specifically designed to learn only one task. This outcome highlights the fact that Uni
Model is able to leverage the knowledge from multiple tasks efficiently. Hence, in resource
constrained devices, a unified generalpurpose model could substitute multiple singletask
models.

To understand the impact of selfsupervised learning, we compared the performance of
UniModel trained with supervised and selfsupervised learning. The F1 scores of finetuned
UniModel from Table 10.2 for sleep stage scoring, activity recognition, abnormal EEG are
79%, 87% and 80%, which are 12 percentage points higher than or equal to UniModel trained
in a supervised approach. The mean absolute error for heart rate estimation is 7.78, which
is approximately a 1 point decrease – in this case, decreasing refers to a better performance –
from the supervised UniModel. These results underpin our assumption that training the joint
model first on unlabeled data and then finetuning on labeled data helps the model to learn
unified representations for many tasks. Furthermore, in Table 10.4, we compare training
a linear classifier on top of a frozen feature extractor with finetuning the entire pretrained
model. The key objective of the experiment is to study the quality of learned representations
solely with CPC. We observe that the learned (fixed) features are highly useful as a linear
classifier can discriminate among the underlying classes with a reasonably good recognition
rate.

Leverage Knowledge Transfer

We use the model trained in the previous section to learn new tasks (including activity recog
nition using different devices and seizure detection) across MotionSense, HHARSW, and

149

CHBMIT datasets. The performance of UniModel is compared against singleproblem learn
ing on indomain examples regarding supervised, and SSL (finetuned) approaches. The
singleproblem models for HHARSW and MotionSense with IMU sensors and CHBMIT
dataset with EEG signals are pretrained based on HHAR datasets and TUH Abnormal EEG
datasets. Specifically, to tackle a varying numbers of channels between EEG datasets, we pad
instances with zeros channelwise. We use transferred models constituting taskspecific and
shared encoders and add a randomly initialized layer on top to finetune an entire network
endtoend.

Table 10.3 shows the comparison of transfer learning performance of both variations of Uni
Model against indomain and singleproblem (SSL) models pretrained with the contrastive
predictive coding task. The indomain models are trained directly on target data without any
transfer, while singleproblem (SSL) networks are pretrained and transferred from related data
as described earlier. We observe UniModel significantly outperforming its counterparts across
HHARSW and CHBMIT datasets for activity recognition with smartwatch and seizure de
tection problems, respectively. On the latter task, our SSL model achieves an accuracy of
92.5%, which is 5, and 11 percentage points better than baselines. On MotionSense data,
finetuning UniModel can reach almost the same accuracy, and Fscore as finetuned single
problem provides but better than training from scratch on indomain data. In addition, Uni
Model shows an average accuracy and Fscore improvements of 4.2% and 5.1%, respectively,
across all tasks compared to indomain training and 4.1% and 5.7% improvements against
finetuning the singleproblem model. We can conclude that UniModel provides a more ro
bust unified feature learning strategy that can share knowledge between different problems
while avoiding overfitting towards any of the consisting tasks.

Labelefficiency with Less Supervision

The labeled data are not always available; hence, we have to deal with no or a few amount of
annotated data in most cases. In this set of experiments, we aim to show the dataefficiency
of UniModelagainst its supervised and selfsupervised (singleproblem) baselines. In all of
the studied tasks, the singleproblem model fails to learn a generalizable model as the size
of labeled data decreases. We use selfsupervised pretrained UniModel as initialization to
rapidly learn downstream tasks with few labeled examples. We perform 100 independent
runs of training and evaluation with different fractions of labeled examples. For each run,
we randomly sample m instances per class from a training set for finetuning and report the
average metric score on the test set. For the regression task of heartrate estimation, we use
10 times more instances for learning models. Notably, only sampled examples are used to
perform meannormalization of heart rate output as described in Section 10.3.1. We show
that UniModel through jointlylearning to solve multiple tasks can reach a higher recognition
rate in even a lowdata regime.

Figures 10.2 compare the ability of UniModel against singleproblem supervised and self
supervised approaches on handling limited supervision situations. For the latter, we directly
train a network from scratch with available data, while for the former, we pretrain a network
with selfsupervision on a single problem and then finetune it on the downstream task. In
the transfer setting for MotionSense or HHARSW and CHBMIT, a singleproblem self

150

supervised model is learned with HHAR and TUH Abnormal EEG datasets, respectively.
We notice that the performance of both singletask models substantially degrade when less
supervisory data is provided. However, UniModel can benefit from the shared information
between multiple tasks. Likewise, contrary to the supervised counterparts, our approach pro
vides a significant improvement in generalization; for instance, on activity recognition task
with 20 labeled examples per class UniModel achieves a weighted Fscore of 70% as com
pared to 55% of a model trained from scratch. Similarly, in outofdomain transfer overall,
our selfsupervised approach performs better and dramatically improves label efficiency.

10.4 Related Work

MultiTask Learning (MTL) approaches aim to learn multiple separate tasks simultaneously
by leveraging the knowledge and relation among tasks generally through a partially shared
network [32]. The features learned with these techniques are better transferable between dif
ferent tasks without overfitting any of them. MTL methods can be more dataefficient (i.e.,
requiring less labeled data) than learning a single task by taking advantage of the knowledge
and shared aspects of representations from other tasks. In practice, MTL models are often
shown to provide higher performance compared to singletask learning [267].

MTL has been applied in a variety of application domains, such as computer vision [272,
273, 274], natural language processing (NLP) [275, 276], recommender systems [277], voice
recognition [278], human activity recognition [14], sentiment classification in text [279], traf
fic and flow prediction [280], and health and wellbeing [281, 282]. However, all of these
methods consider single modality, nonsequential data (e.g., images), while in this work, we
focus on sequential (timeseries or sensory) data from sensors of different domains (multi
ple modalities). Recently, in contrast to multitask models for singlemodality, the models
leveraging multiple modalities are especially designed to capture the relations between data
from different domains, such as text, audio, and image simultaneously (i.e. Visual Question
Answering [283] or sentiment analysis in videos [284]).

For sequential data, MTL has been studied mainly in NLP, [276, 285], and computer vision
(video) applications [286], which only consider one type of modality (text or video, respec
tively). However, the closest works to ours are multimodality multitask learning methods,
such as MultiModel [261] which focuses on learning one model for tasks involving images,
audio, text, and tabular datasets in a fully supervised manner. In comparison, we focus on
tasks utilizing sensory data (e.g., physiological signals), and in addition to a supervised learn
ing setting, we also focus on selfsupervised learning. Likewise, Shazeer et al. [287] propose a
framework based on a Mixture of Experts and selfattention mechanisms to learn representa
tions from different modalities, including language, image, audio, and categorical data at the
same time. Other than text or video as sequential data, MoSE (Mixture of Sequential Experts)
introduces a framework based on a sequential data log from GSuite applications to predict
user activity and improve decision making in Gmail [288]. As a sequential single modality
approach, Spathis et al. [281] propose a method to forecast mental moods based on sequences
of selfreported data. In contrast, we target heterogeneous crossdomain sensor data of tasks in
ubiquitous computing and ambient sensing, which is not addressed in previous works. Like

151

wise, we focus on the selfsupervised learning of a unified model to simultaneously leverage
data of different modalities to demonstrate data efficiency in lowdata regimes.

Recently, there has been increasing research interest in jointly learning to solve multiple
tasks in sensor data [289, 290, 291]. Taylor et al. [289] proposed an MTL model for data
from different sequential modalities, including survey data, weather records, wearable sensors,
and smartphone to predict mood, stress, and health per individual. The Abedin et al. [291]
propose a deep clustering framework for human activity data based on multitask learning.
The authors defined future prediction and frame reconstruction as auxiliary tasks to train the
model to learn representations in a selfsupervised manner. However, the definition of tasks
is different in [69, 289, 290] as it proposes a multitask learning framework for personalized
human activity recognition (treating each user as an independent task).

While various complex methods and architectures have been proposed, Liu et al. [276]
investigate the effectiveness of three main MTL architectures with different intertask pa
rameter sharing strategies. They show the superiority of the simplest model, which contains
taskrelated encoders followed by a shared module. In our work, we follow the same strat
egy. In addition to the complex architectures, existing MTL methods mainly focused on 1)
single modality; or 2) single type of task but for multiple instances (e.g., users). In the latter
case, each user (or instance) is considered as an individual task, and 3) fullysupervised mod
els. However, our proposed method is generalpurpose, selfsupervised, and applicable over
multiple tasks with varying sensory modalities simultaneously.

Moreover, the usage of ubiquitous sensors is prevalent these days; annotating the recorded
data is prohibitively expensive and inaccurate [271]. This issue emphasizes the role of self
supervised learning (SSL) methods in sensor data applications, which require no manual an
notation. Recently, SSL has been used for representation learning in human activity recog
nition [14, 15, 17], timeseries changepoint detection [123], computer vision [292, 293], NLP
and reinforcement learning [25], audio processing [16, 294, 295]. Some are applicable over
multimodality data such as [296, 297, 298]. Mostly, these methods are based on contrastive
learning that has become a powerful tool in selfsupervised learning to extract useful features
from unlabeled data. Hence, we employ the contrastive predictive coding approach [25] to
train our unified model (as compared to singletask models of prior work) to learn compact
informative representations for all tasks together.

10.5 Conclusion

We introduce a unified deep neural network, termed UniModel, for learning to solve multiple
sensing problems simultaneously from multimodal data. We demonstrate the effectiveness
of our simplistic and easytoimplement jointnetwork with hard parameter sharing among
tasks in learning generalpurpose representations with both supervised and selfsupervised
learning. In particular, we utilize contrastive predictive coding in a multitask setting to ex
ploit largescale data for pretraining sensory models. Using data acquired from several sensors
embedded in wearable devices, such as accelerometer, gyroscope, photoplethysmogram and
electroencephalography signals as input to UniModel we achieve an F1 score of 79.6%, 87.6%,

152

80.8% for solving sleep stage scoring, activity recognition and abnormal electroencephalogram de
tection tasks, and an MAE of 7.78 for heart rate estimation task. We examine the feasibility of
UniModel in contrast to models created individually for each problem, including strong trans
ferability on outofdomain data from different devices and tasks. Furthermore, we show that
the UniModel trained with selfsupervised learning using unlabeled data significantly outper
forms their fullysupervised counterparts in the lowdata regime. To conclude, we hope this
work will popularize training unified models with selfsupervised learning on massive unla
beled sensor datasets in a realworld setting to improve label efficiency across various sensing
domains. In future work, we aim to investigate negative transfer in a selfsupervised setting
and study deployment (or efficiency) related issues of a unified model for ondevice inference.

Various icons used in the figures are created by Rahmadi Kurniawan, Vectors Point, Universal Icons and Ben
Davis from the Noun Project.

153

Chapter 11

Conclusion

This thesis described methods for learning highlevel representations from raw signals using
deep neural networks to support the development of novel sensing applications and empow
ering selflearning InternetofThings (IoT). To enable a wide range of ambient and personal
sensing tasks, we put a strong focus on approaches that are: a) highly practical and general
purpose, b) simple and lightweight, c) require minimal effort in data labeling, d) are reliable
and robust to failures in the sensing system, and e) have an inbuilt mechanism to preserve
privacy. The developed methods in the thesis lie on the intersection of deep learning, ambi
ent (or pervasive) sensing, and ubiquitous computing. They provide a strong foundation for
building datadriven predictive models for various domains ranging from health monitoring,
wellbeing, elderly care, affective computing, human mobility to industrial automation and
agriculture.

Our core contributions are in representation learning with selfsupervision for which we
design and introduce numerous auxiliary tasks that extract the intrinsic supervisory signal
from unlabeled inputs to train deep models with standard objective functions. Our self
supervised approaches applicable to different types of sensors learn broadly useful features that
significantly improve data efficiency, are vastly transferable, competitive with fullysupervised
counterparts, and do not require data to be aggregated in a centralized repository for learning
(Chapters 3, 4, 5, and 6). We further propose techniques to make neural networksbased
models adaptable and reliable when encountering noisy inputs, so their performance degrades
gracefully (Chapters 7 and 8). Notably, we also study the problem of learning a unified model
to solve many related crossdomain tasks with a single neural network that exploits the shared
structure of the data (Chapters 9 and 10).

Having described our key methods and discussion of the results in previous chapters to
substantiate this thesis, we seek to provide answers to the research questions introduced in
Chapter 1. We recap the contributions and provide pointers to future research directions.
To summarize, we follow the structure of Chapter 1, grouping the research questions into
four themes. After that, we reflect on the guiding hypothesis that unsupervised methods can
approach supervised methods in performance. To that end, first, we address selfsupervised

155

learning from a wide variety of unlabeled sensory data, which in practice could be distributed
across IoT devices. Second, we focus on the robustness and reliability of the deep model on
noisy inputs either due to missing modalities or channels being inconsistent. Lastly, we look
into jointly learning to solve multiple tasks with a unified model and tackle personalization.

How can we utilize largescale sensory data without semantic labels to learn
highlevel representations?

It is challenging to answer such a question in general due to its wider scope. We study it
through exploring varied examples in four research questions below.

Research Question 1: Do selfsupervised pretext tasks enable learning useful representations with
deep neural networks from unlabeled sensor data that are competitive with the fullysupervised
counterparts?

In a variety of contexts, we explored the basic idea of selfsupervising the network in dif
ferent ways and we show that our proposed auxiliary tasks generate meaningful representa
tions. The transformation prediction network in Chapter 3 provides an important initial step
towards highlighting the effectiveness of selfsupervision in learning from sensory data. The
pretext tasks developed within sense and learn framework in Chapter 4 further showed that
simple objectives could be used to leverage largescale unlabeled data for pretraining the deep
models without requiring human involvement. In particular, the auxiliary tasks, such as fea
ture prediction from masked window, blend detection, and odd segment recognition demonstrate
generalization onpar with transformations while being easytoimplement and without in
dulging into selection of appropriate transformation functions for learning invariant features.
The scalogram contrastive learning approach developed in Chapter 5 further showed that multi
view learning (i.e., aligning different views of the same data sample) with a contrastive loss
is a powerful way to learn highlevel representations. On a broad range of tasks and sensory
modalities, we observe that selfsupervision provides results onpar with supervised methods,
which have direct access to task labels. Furthermore, it is also better than input reconstruc
tion techniques (e.g., autoencoder) with not just being better in performance but also not
requiring a symmetric decoder, which reduces the number of parameters to learn, makes the
model compact ideal for ondevice learning, and offer flexibility in designing better encoder
architectures. For the cases we studied, we conclude that selfsupervised learning is a viable
alternative to classic supervised approaches when semantic labels are infeasible and expen
sive to acquire, we may expect this to generalize better. The interesting open question is to
explore selfsupervision for continual learning where a model has to learn tasks sequentially
without having access to the task identities. Likewise, another open problem is to devise
ways to counter shortcut learning in neural networks [97], i.e., the model learns semantic
representation as opposed to merely modeling the noise via capturing spurious correlations
to solve auxiliary tasks. The shortcut learning is a wellknown phenomenon in deep learning
and equally applicable to supervised learning regimes as it is to selfsupervision.

Research Question 2: Does selfsupervised pretraining improve label efficiency to achieve better
generalization on downstream tasks with fewlabeled examples and does it induce inductive bias
required for transfer across the domain?

156

To answer the defined research question, we analyze the quality of learned representations
with selfsupervision in the lowdata regimes and in a transfer setting. We evaluate our pro
posed pretext tasks for their efficacy to improve data efficiency and transfer of the pretrained
model to other related downstream tasks in Chapters 3, 4, and 5. We focus on demonstrat
ing that leveraging unlabeled data improves performance when a model is finetuned with
fewlabeled data points (i.e., in a semisupervised setting) compared to training from scratch.
Our results across datasets and tasks highlight that we can significantly reduce labeled data re
quirements, and as few as five to ten instances per class are sufficient to improve generalization
over training from scratch. Likewise, we achieved encouraging results in a transfer learning
setting even when a linear classifier is trained ontop of frozen feature extractors (Chapters
3, 4, 6). These results indicate that our pretext tasks enable the deep model to learn domain
invariant features that are highly transferable crossdomain. Hence, we can conclude that
selfsupervision is a robust way to improve label efficiency and a promising competitor to
supervised transfer learning, where a model is learned with labeled examples and transferred
afterwards. Along these lines, followup work is to incorporate pseudolabeling or a similar
semisupervised learning algorithm to iteratively assign labels to high confidence predictions
and utilize them during learning of downstream tasks. Likewise, tackling distributional shift
(or domain adaptation) in a realworld setting is another open area of research.

Research Question 3: Does learning general purpose representations from unlabeled data improve
performance on various recognition tasks? This question is investigated on sound recognition tasks.

We introduce contrastive learning for audio (COLA), a discriminative pretraining frame
work in Chapter 6 to address this question. The key ingredient of COLA is to contrast be
tween representations extracted from the randomly sampled segments (i.e., anchors and pos
itives) of the same audio clip. We demonstrate that to acquire a strong supervisory signal for
training deep model unlike prior methods, COLA neither relies on augmentation strategies
for positive sample generation nor require maintaining a memory bank of distractors. Our
approach allows us to consider a large number of negatives for each positive pair in the ob
jective function and avoid the need to carefully curate negative examples, unlike tripletbased
approaches. We use a highcapacity network, EfficientNetB0 [173] as the encoder and train it
on a massive audio database known as Audioset [154] comprising millions of unlabeled audio
clips. We evaluate COLA in a crossdomain transfer setting on numerous challenging audio
understanding tasks of varying difficulty. Our results with a linear classifier trained ontop of
a frozen network and endtoend finetuning of pretrained model demonstrates that COLA
learns unified representations useful for numerous downstream tasks beyond speech, such
as keyword spotting, bird sounds, spoken language detection, speaker identification more.
Specifically, our method improves performance over prior selfsupervised pretext tasks and
provides better generalization than training models on indomain data directly. The COLA
provides a simple yet powerful means to learn audio representations from unlabeled data.
Looking into the future, it would be useful to explore if our approach is useful for other tasks,
such as source separation, audio retrieval, and fewshot learning.

Research Question 4: How to perform selfsupervised federated learning to utilize decentralized
unlabeled data?

In Chapter 6 and [17], we demonstrate that selfsupervision can be used in a federated

157

setting to exploit a massive amount of unlabeled data. Generally, it is assumed in federated
learning that data on the device edge (i.e., a device holding the local data) or at clientside is
annotated, or it can be labeled with a minimal effort. This assumption does not hold for many
modalities, particularly for sensory data, and the edge devices have no direct interaction with
human users, who can provide annotations. Selfsupervised (and unsupervised) learning is a
viable alternative to techniques that require semantic supervision. We propose scalogramsignal
correspondence learning method, a general contrastive task focusing on contrasting whether a
raw signal and a scalogram (i.e., a representation computed via wavelet transform) relate to
each other or not. We note that other methods could be used to generate a corresponding view
of the input in lieu of a wavelet, such as via fast Fourier transform. With a simulation of the
federated environment on a range of tasks, we show, our approach learns representations of
similar quality as those learned in a centralized setting, hence it could be effectively used to ex
ploit unlabeled distributed data for model pretraining. There are many directions for research
in this area; a promising way is to scale federated learning in the real world with thousands of
clients participating in the learning process to recognize its true potential. Likewise, different
auxiliary tasks (such as those described in Chapter 4) can be selected depending on the devices’
resources to optimize computational effort and quality of learned representations.

How to avoid catastrophic failure of deep neural networks on noisy inputs
with learningbased approaches?

We study catastrophic failure in neural networks from the perspective of inconsistent inputs
channels and missing modalities, e.g., due to sensor failures. We define a specific research
question to investigate them in particular settings.

Research Question 5: Can a learnable channel remapping be used to handle inconsistent inputs?
and what is a good strategy for tackling missing input modalities for a deep model at inferencetime?

The channel reordering module (CHARM) introduced in Chapter 7 and [19] addresses the
problem of tackling inconsistent input channels (e.g., in an electroencephalogram or EEG)
that are permuted, missing, or noisy and hence can not be fed into neural networks, since
they expect consistent channel ordering. CHARM is a novel differentiable model that learns
to remap multichannel input to canonical representations. Specifically, it learns per channel
embedding independently to identify each channel’s location from its content and then uses an
attentionmechanism to remap channels to a canonical ordered set. After the remapping, the
channels are ordered consistently and can be further processed by a standard neural network,
regardless of the actual variations in the input data. CHARM can be trained in an endtoend
manner while learning a task of interest without requiring any preprocessing on the user’s
end. We also propose channel masking and shuffling augmentation to improve the model’s
robustness further. CHARM is highly effective on challenging tasks involving EEG signals,
such as seizure classification, detection of abnormal EEGs, and detection of artifacts (e.g., eye
movement). We show that our approach is significantly more robust to missing and permuted
channels than a standard model, even when 50% of the input channels are missing.

To solve the problem of missing sensory modalities at inference time, we develop an ad
versarial autoencoderbased model in Chapter 8 and [23] that learns to restore (or reconstruct)

158

features given other available modalities. Our approach can provide a better imputation com
pared to classical techniques and shows strong predictive performance on a multilabel context
recognition task, even in cases when several sensory features are missing from a multimodal
input. An added benefit of our adversarial model is that it can be used to generate synthetic
data in enormous amounts from a trained decoder. In particular, we show that our model
can be conditioned on a multilabel class vector to create multisensory features. We evaluate
the effectiveness of artificial data through visual fidelity analysis, learn a model on synthetic
inputs, and estimate its performance on a real test set. For future work an important topic is to
study adversarial robustness [299] of the sensing model to prevent the model from generating
wrong predictions on artificially corrupted inputs.

How effective is a single deep neural network at learning shared representa
tions for multiple related tasks?

We analyze the capability of multitask learning in terms of personalized and adaptable models
as well as creating a generalist model for solving many tasks. We outline two subresearch
questions to study it in specific contexts.

Research Question 6: Is it possible to effectively leverage multitask learning for model personal
ization and adaptation?

We introduce a subjectsastasks approach for personalizing deep neural networks using a
multitask learning formulation where a subject is treated as a task in Chapter 9 and [24]. A
subjectindependent global model for sensing tasks (e.g., physiological stress detection) may
perform poorly due to large interpersonal differences. To take these disparities into account,
we develop a multitask model with a shared backbone network to learn general features across
subjects and use small networks (with few layers) that focus on learning representations spe
cific to subjects. We demonstrate the personalization efficacy of our method with two model
architectures, one utilizing handcrafted features with a feedforward network and the other
learning representations in an endtoend manner with a temporal convolutional network.
Likewise, we propose a method for unsupervised domain adaptation based on jointly learn
ing to optimize a dualstream neural network on source and target domain data. Precisely,
one stream (or set of layers) operates on source domain data, where, labels are available to
train a supervised model, while the other stream use target data with unsupervised objective
function. We consider a crossdomain and crossuser transfer learning setting, where, source
and target tasks share the same label set. Our model comprising an encoder, decoder, and a
classifier learns to solve a source domain task using an encoder and a classifier with standard
loss function (i.e., crossentropy) and uses the encoder and decoder for the reconstruction of
target domain inputs where groundtruth is not available. Our simple multitask technique
adapts shared representations using an auxiliary loss to improve generalization on a target task.
Promising future work could be to investigate if selfsupervised pretext tasks help in domain
adaptation, particularly after model deployment.

Research Question 7: To what degree can a unified deep neural network learn to solve multiple
tasks using multimodal sensory data?

159

This question focuses on a broader and challenging problem in machine learning of creating
a single generalist neural network capable of solving several tasks while exploiting shared struc
ture among them. Within this theme, we focus on developing a model for sensory data, such
as accelerometer, gyroscope, photoplethysmogram, and electroencephalography. We devise a
unified model in Chapter 10, a deep temporal convolutional neural network that can learn to
solve many sensing tasks from crossdomain (i.e., different input modalities, sensors, users,
data collection protocols and tasks) multimodal data both in supervised and selfsupervised
ways. Our lightweight and simple model learns generalpurpose representations that achieve
performance similar as individual taskspecific models while significantly reducing the num
ber of parameters to learn and effort to design a separate model for each task. We extend con
trastive predictive coding to a multitask setting for selfsupervision of the model. We highlight
its generality by pretraining a model simultaneously across datasets with different modalities
and show that unified model learns useful features without taskspecific labels. Our model
achieves significantly better generalization in lowdata regimes through using a pretrained
model as initialization. In particular, even with five to 10 labeled instances the unified model
performs better than supervised and singletask selfsupervised models. Furthermore, our ap
proach achieves better generalization in transfer learning settings on outofdomain data than
models trained using indomain data. With the development of this unified model, we barely
scratch the surface of what is truly possible in learning one model for multiple tasks. Given
these results, we can answer the defined question affirmatively that a single model can be used
to solve a variety of sensing tasks. Future work can look into designing better architectures
using a mixtureofexperts or an attentionmechanism with one encoder per modality instead
of taskspecific encoders and reusing them across tasks. Likewise, exploring different auxiliary
tasks from sense and learn framework for each modality or task is also an exciting work that
may help improve the representation quality.

Final Remarks

The work in this thesis is based on the idea of incorporating selflearning capabilities in the
IoT and other devices, which can ultimately unleash their true potential to continually sense,
learn, and adapt in a realworld setting. The ubiquity of sensorrich IoT devices in our daily
lives generates a continuous stream of highquality data that can be exploited to build in
telligent systems to solve challenging problems. This research theme has led us to important
discoveries in proposing novel selfsupervised tasks, learning from decentralized data, develop
ing smallscale and powerful temporal convolutional architectures, methods for improving the
robustness of neural networkbased models, enhancing generalization in the lowdata regimes,
and beyond towards exploring a unified model for multiple tasks.

Our devised selfsupervised methods instill in deep neural networks the ability to learn
generalpurpose representations without requiring semantic annotations from humans, which
is of a high value for IoT devices as labeling is expensive, timeconsuming, and requires domain
expertise in several cases. Similarly, our broad range of auxiliary tasks provides an opportu
nity to choose a suitable one for training deep neural network based on modalities, system
device resources, and performance on downstream tasks. Learning on the distributed de
vices is challenging due to the heterogeneity and unlabeled nature of the data; in such cases,

160

our pretext tasks can be effectively used to learn deep models without aggregating privacy
sensitive data in a centralized repository. The availability of better tools and frameworks for
federated learning as well as largescale sensory datasets that simulate realworld settings can
further demonstrate the effectiveness of selfsupervision. Moreover, the predictive models are
prone to failure when encountering missing modalities or inconsistent input channels. We
developed methods to improve robustness and enable graceful degradation of predictive per
formance that is of central importance to smart devices as sensors can break and input can be
corrupted, e.g., due to system heterogeneity. Towards incorporating useful inductive biases
and leveraging the shared structure of the tasks, we also focused on learning a single model for
multiple tasks. A generalpurpose audio model, potentially running on a resourceconstrained
device, can effectively solve various sound recognition tasks. We developed a selfsupervised
method to create a single model that performs well on a range of audio classification tasks.
Our method performed significantly better than prior handcrafted auxiliary tasks for audio
models and improved the performance over supervised models through finetuning. Like
wise, we also proposed a unified neural networkbased model for sensing tasks that can utilize
crossdomain and multimodal data for learning, moving from specialists to generalist mod
els. With a unified model for many tasks we demonstrated that a similar performance can
be achieved to indomain models. Likewise, we show that single model can be trained with
unlabeled data and it improves the performance in lowdata regimes as compared to training
from scratch; while being highly transferable to outofdomain tasks.

Over the course of this thesis’s work, our contributions led us to several general insights
about learning deep models for sensing tasks and corresponding shortcomings of existing ap
proaches and missing components. We found selfsupervised learning to be highly effective
for pretraining as compared to autoencoding approaches and widely beneficial in lowdata
regimes. Selfsupervision not just reduced the number of parameters to learn but provided
us the liberty in designing better encoders as no symmetric decoders were needed. Likewise,
we think that the success of transformation recognition as an auxiliary task may be due to
its capability of making a network become invariant to various perturbations of the input,
which helps incorporate useful inductive biases. We also note that the developed variants of
signal transformation objective as kway classification and a set of binary classification tasks
solved in a multitask manner leads to different optimization of model’s parameters. Specif
ically, the latter provides a way to the network to learn transformation invariant and non
invariant features with distinct layers while the former makes the network architecture sim
pler but does not provide a distinction between learned representations. We note that here
the design choice can be primarily driven based on domainknowledge or performance on the
downstream task. We also did not explore combining transformation and contrastive learn
ing, where, representational similarity of original and augmented (transformed) samples is
maximized while minimizing it for the rest of the examples. We think it could be a logical
extension of our proposed task.

We believe, contrastive objectives (or other tasks that do not require reconstruction) are
better suited if we are solely interested in learning representations and do not want to generate
synthetic data, for which generative approaches are the natural choice. Likewise, we think a
fusion of selftraining (i.e., noisy student and teacher paradigm) with selfsupervision could
be very effective to label the data automatically and learn from it. We notice that the majority
of the sensory datasets in pervasive sensing are relatively smaller in size compared to datasets in

161

other communities e.g., natural language processing. Having a largescale unlabeled dataset
with millions of examples could truly unlock the potential of selfsupervised learning. To
avoid this problem, many small datasets could be combined but it limits the evaluation in
transfer learning setting. Similarly, as we designed many auxiliary tasks, there are several open
questions that can be studied to improve understanding of selfsupervision and deep learning
in general. We suggest the crucial ones here: a) why do certain tasks work better than others
in terms of performance on downstream applications?, b) does the representations differ as
compared to learning with semantic labels?, c) how to combine different pretext tasks in a
multitask learning paradigm to determine if it is useful as compared to training a model with
a single auxiliary task? d) how robust can selfsupervised representations be for learning with
imbalanced downstream data? and e) how can we establish similarity between pretext and
downstream tasks for avoiding negative transfer?

The availability of stable frameworks for federated learning simulation improved over the
years. We notice that to effectively utilize federated learning in embedded or pervasive intelli
gence and to address corresponding issues, benchmark sensory datasets with a large number of
users are needed. Even accessibility of publicly available unlabeled data with clear distinction
of clients can widen the horizon of problems that can be tackled with federated unsupervised
learning. We show that general representations of audio can be learned that are useful for
many tasks, raising a question if a multimodal network can be used to learn simultaneously
from synchronized modalities in a same manner. Moreover, learning unified model with
crossdomain data provided valuable empirical results that neural networks can effectively
exploit shared structures of different input modalities (e.g., accelerometer, electroencephalo
gram, and photoplethysmogram). We think analysis of weights and features from the earlier
layers of such a model can yield valuable information about network capturing highlevel
patterns that are similar to diverse signals. Such an insight can guide the development of bet
ter architectural priors or inductive biases that can ultimately be used for continual learning
from sensory streams. For personalization, we demonstrated that a multitask model with
hardparameter sharing where subjects are treated as tasks provides considerable performance
improvements. To improve it further, a network that can adaptively select layers via condi
tioning on personal attributes (such as, gender and agegroup) would be more appropriate in
feature reuse. Moreover, in remapping inconsistent input channels to a canonical represen
tation our approach exhibited remarkable performance in recognizing electroencephalogram
channels from its content and improving robustness to severely shuffled and missing chan
nels. However, we notice that on clean input a standard model performed better as it has
direct (implicit) access to channel ids. We think to improve the remapping module it can
be augmented with learnable positional embedding and a deep attention network discovered
using architecture search.

Finally, there are other important areas we did not explore in the thesis, which can be a
subject of future research. Among them, adversarial examples pose a major challenge for deep
models. The safe execution of a model to generate correct predictions is crucial for any system
equipped with a predictive model and that relies on it to make a decision. The area of adver
sarial robustness concerns the development of approaches to make neural networks invariant
to imperceptible perturbations of the input [299]. Therefore, methods that can improve the
model’s resilience to adversarial inputs are of high value and can complement our methods on
robustness against noise. Likewise, avoiding learning via shortcuts [97] in deep neural networks

162

is another key area that can improve our understanding of failure modes and interpretability to
develop better selfsupervised algorithms, architectural priors and boost the transferability of
models trained in a controlled environment to a realworld setting. Lastly, translating models’
predictions to decisions is also an open area of research. Currently, it is left up to the system’s
designer to decide on how to act on the predictions. Here, reinforcement learning can play
a role as it provides a set of methods for solving sequential decisionmaking problems. For
instance, to design better interventions to improve the user’s wellbeing based on recognized
behavioral patterns. In particular, offline reinforcement learning [300] is a suitable candidate
to bridge the gap from prediction to decision and takes us closer to the truly intelligent IoT
devices for pervasive sensing that can act on the detected events and learn from it.

163

Bibliography

[1] Elizabeth S Spelke and Katherine D Kinzler. Core knowledge. Developmental science,
10(1), 2007.

[2] Emin Orhan, Vaibhav Gupta, and Brenden M Lake. Selfsupervised learning through
the eyes of a child. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 9960–9971.
Curran Associates, Inc., 2020.

[3] Valentin Radu, Catherine Tong, Sourav Bhattacharya, Nicholas D Lane, Cecilia Mas
colo, Mahesh K Marina, and Fahim Kawsar. Multimodal deep learning for activity
and context recognition. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 1(4), 2018.

[4] Nicholas D Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choudhury,
and Andrew T Campbell. A survey of mobile phone sensing. IEEE Communications
magazine, 48(9), 2010.

[5] Hong Lu, Wei Pan, Nicholas D Lane, Tanzeem Choudhury, and Andrew T Campbell.
Soundsense: scalable sound sensing for peoplecentric applications on mobile phones.
In Proceedings of the 7th international conference on Mobile systems, applications, and
services, 2009.

[6] Nicholas D Lane and Petko Georgiev. Can deep learning revolutionize mobile sens
ing? In Proceedings of the 16th International Workshop on Mobile Computing Systems and
Applications, 2015.

[7] Neal Lathia, Veljko Pejovic, Kiran K Rachuri, Cecilia Mascolo, Mirco Musolesi, and
Peter J Rentfrow. Smartphones for largescale behavior change interventions. IEEE
Pervasive Computing, 12(3), 2013.

[8] Gierad Laput and Chris Harrison. Sensing finegrained hand activity with smart
watches. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems, 2019.

[9] Gierad Laput, Yang Zhang, and Chris Harrison. Synthetic sensors: Towards general
purpose sensing. In Proceedings of the 2017 CHI Conference on Human Factors in Com
puting Systems, 2017.

165

[10] Fahim Kawsar, Chulhong Min, Akhil Mathur, Alessandro Montanari, Utku Günay
Acer, and Marc Van den Broeck. esense: Open earable platform for human sensing. In
Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems, 2018.

[11] Mohamed Ali Feki, Fahim Kawsar, Mathieu Boussard, and Lieven Trappeniers. The
internet of things: the next technological revolution. Computer, 46(2), 2013.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning, volume 1. The
MIT Press, 2016.

[13] Virginia R de Sa. Learning classification with unlabeled data. In Advances in neural
information processing systems, 1994.

[14] Aaqib Saeed, Tanir Ozcelebi, and Johan Lukkien. Multitask selfsupervised learning
for human activity detection. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 3(2), 2019.

[15] Aaqib Saeed, Victor Ungureanu, and Beat Gfeller. Sense and learn: Selfsupervision
for omnipresent sensors. arXiv preprint arXiv:2009.13233, 2020.

[16] Aaqib Saeed, David Grangier, and Neil Zeghidour. Contrastive learning of general
purpose audio representations. arXiv preprint arXiv:2010.10915, 2020.

[17] Tanir Ozcelebi Aaqib Saeed, Flora D. Salim and Johan Lukkien. Federated self
supervised learning of multisensor representations for embedded intelligence. IEEE
Internet of Things Journal, 2020.

[18] Ingrid Daubechies. The wavelet transform, timefrequency localization and signal anal
ysis. IEEE transactions on information theory, 36(5), 1990.

[19] Aaqib Saeed, David Grangier, Olivier Pietquin, and Neil Zeghidour. Learning
from heterogeneous eeg signals with differentiable channel reordering. arXiv preprint
arXiv:2010.13694, 2020.

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
neural information processing systems, 2017.

[21] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10), 2009.

[22] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey.
Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2015.

[23] Aaqib Saeed, Tanir Ozcelebi, and Johan Lukkien. Synthesizing and reconstructing
missing sensory modalities in behavioral context recognition. Sensors, 18(9):2967, 2018.

[24] Aaqib Saeed, Tanir Ozcelebi, Johan Lukkien, Jan van Erp, and Stojan Trajanovski.
Model adaptation and personalization for physiological stress detection. In 2018 IEEE
5th International Conference on Data Science and Advanced Analytics (DSAA). IEEE,
2018.

166

[25] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with con
trastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[26] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6), 1958.

[27] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro SanchezGonzalez, Vini
cius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro,
Ryan Faulkner, et al. Relational inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

[28] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of brain
mechanisms. Technical report, Cornell Aeronautical Lab Inc Buffalo NY, 1961.

[29] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A re
view and new perspectives. IEEE transactions on pattern analysis and machine intelli
gence, 35(8), 2013.

[30] Yann Le Cun, Lionel D Jackel, Brian Boser, John S Denker, Henry P Graf, Isabelle
Guyon, Don Henderson, Richard E Howard, and William Hubbard. Handwritten
digit recognition: Applications of neural network chips and automatic learning. IEEE
Communications Magazine, 27(11), 1989.

[31] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[32] Rich Caruana. Multitask learning. Machine learning, 28(1), 1997.

[33] Rich Caruana. A dozen tricks with multitask learning. In Neural Networks: Tricks of
the Trade. Springer, 2012.

[34] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning
with a unified texttotext transformer. Journal of Machine Learning Research, 21(140):
1–67, 2020.

[35] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation
learning by predicting image rotations. arXiv preprint arXiv:1803.07728, 2018.

[36] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Colorization as a proxy
task for visual understanding. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017.

[37] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by
solving jigsaw puzzles. In European conference on computer vision. Springer, 2016.

[38] Jacob Devlin, MingWei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

167

[39] Andrew Owens, Jiajun Wu, Josh H McDermott, William T Freeman, and Antonio
Torralba. Ambient sound provides supervision for visual learning. In European confer
ence on computer vision. Springer, 2016.

[40] Donglai Wei, Joseph J Lim, Andrew Zisserman, and William T Freeman. Learning
and using the arrow of time. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018.

[41] Michael Gutmann and Aapo Hyvärinen. Noisecontrastive estimation: A new esti
mation principle for unnormalized statistical models. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics. JMLR Workshop and
Conference Proceedings, 2010.

[42] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with con
trastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[43] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discrimi
natively, with application to face verification. In 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05), volume 1. IEEE, 2005.

[44] Elad Hoffer and Nir Ailon. Deep metric learning using triplet network. In International
workshop on similaritybased pattern recognition. Springer, 2015.

[45] Carl Doersch and Andrew Zisserman. Multitask selfsupervised visual learning. In
The IEEE International Conference on Computer Vision (ICCV), 2017.

[46] Richard Zhang, Phillip Isola, and Alexei A Efros. Splitbrain autoencoders: Unsuper
vised learning by crosschannel prediction. In CVPR, volume 1, 2017.

[47] Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuffle and learn: unsupervised
learning using temporal order verification. In European Conference on Computer Vision.
Springer, 2016.

[48] Basura Fernando, Hakan Bilen, Efstratios Gavves, and Stephen Gould. Selfsupervised
video representation learning with oddoneout networks. In Computer Vision and
Pattern Recognition (CVPR), 2017 IEEE Conference on. IEEE, 2017.

[49] Relja Arandjelović and Andrew Zisserman. Objects that sound. arXiv preprint
arXiv:1712.06651, 2017.

[50] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiositydriven
exploration by selfsupervised prediction. In International Conference on Machine
Learning (ICML), volume 2017, 2017.

[51] Terry T Um, Franz MJ Pfister, Daniel Pichler, Satoshi Endo, Muriel Lang, Sandra
Hirche, Urban Fietzek, and Dana Kulić. Data augmentation of wearable sensor data
for parkinson’s disease monitoring using convolutional neural networks. In Proceedings
of the 19th ACM International Conference on Multimodal Interaction. ACM, 2017.

[52] Gustavo EAPA Batista, Xiaoyue Wang, and Eamonn J Keogh. A complexityinvariant
distance measure for time series. In Proceedings of the 2011 SIAM international conference
on data mining. SIAM, 2011.

168

[53] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha SohlDickstein. Svcca: Sin
gular vector canonical correlation analysis for deep learning dynamics and interpretabil
ity. In Advances in Neural Information Processing Systems, 2017.

[54] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

[55] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using tsne. Journal of
machine learning research, 9(Nov), 2008.

[56] Allan Stisen, Henrik Blunck, Sourav Bhattacharya, Thor Siiger Prentow, Mikkel Baun
Kjærgaard, Anind Dey, Tobias Sonne, and Mads Møller Jensen. Smart devices are
different: Assessing and mitigating mobile sensing heterogeneities for activity recogni
tion. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems.
ACM, 2015.

[57] Daniela Micucci, Marco Mobilio, and Paolo Napoletano. Unimib shar: A dataset for
human activity recognition using acceleration data from smartphones. Applied Sciences,
7(10):1101, 2017.

[58] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis Reyes
Ortiz. A public domain dataset for human activity recognition using smartphones. In
ESANN, 2013.

[59] Charikleia Chatzaki, Matthew Pediaditis, George Vavoulas, and Manolis Tsiknakis.
Human daily activity and fall recognition using a smartphone’s acceleration sensor. In
International Conference on Information and Communication Technologies for Ageing Well
and eHealth. Springer, 2016.

[60] Jennifer R Kwapisz, Gary M Weiss, and Samuel A Moore. Activity recognition using
cell phone accelerometers. ACM SigKDD Explorations Newsletter, 12(2), 2011.

[61] Mohammad Malekzadeh, Richard G Clegg, Andrea Cavallaro, and Hamed Haddadi.
Protecting sensory data against sensitive inferences. In Proceedings of the 1st Workshop
on Privacy by Design in Distributed Systems. ACM, 2018.

[62] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521, May
2015.

[63] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multitask learning using uncertainty
to weigh losses for scene geometry and semantics. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018.

[64] Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Kather
ine Ye, and Alexander Mordvintsev. The building blocks of interpretability. Distill,
2018.

[65] Ari S Morcos, David GT Barrett, Neil C Rabinowitz, and Matthew Botvinick. On
the importance of single directions for generalization. arXiv preprint arXiv:1803.06959,
2018.

169

[66] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in
neural information processing systems, 1990.

[67] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the
intrinsic dimension of objective landscapes. arXiv preprint arXiv:1804.08838, 2018.

[68] Petko Georgiev, Sourav Bhattacharya, Nicholas D Lane, and Cecilia Mascolo. Low
resource multitask audio sensing for mobile and embedded devices via shared deep
neural network representations. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 1(3):50, 2017.

[69] Aaqib Saeed and Stojan Trajanovski. Personalized driver stress detection with multi
task neural networks using physiological signals. arXiv preprint arXiv:1711.06116, 2017.

[70] Awni Y. Hannun, Pranav Rajpurkar, Masoumeh Haghpanahi, Geoffrey H. Tison,
Codie Bourn, Mintu P. Turakhia, and Andrew Y. Ng. Cardiologistlevel arrhyth
mia detection and classification in ambulatory electrocardiograms using a deep neu
ral network. Nature Medicine, 25(1):65–69, 2019. ISSN 1546170X. doi: 10.1038/
s4159101802683.

[71] Chang Liu, Yu Cao, Yan Luo, Guanling Chen, Vinod Vokkarane, and Yunsheng Ma.
Deepfood: Deep learningbased food image recognition for computeraided dietary
assessment. In International Conference on Smart Homes and Health Telematics. Springer,
2016.

[72] Shuochao Yao, Yiran Zhao, Huajie Shao, Chao Zhang, Aston Zhang, Shaohan Hu,
Dongxin Liu, Shengzhong Liu, Lu Su, and Tarek Abdelzaher. Sensegan: Enabling
deep learning for internet of things with a semisupervised framework. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(3), 2018.

[73] Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui Peng, and Lisha Hu. Deep learning
for sensorbased activity recognition: A survey. Pattern Recognition Letters, 2018.

[74] Nils Y Hammerla, Shane Halloran, and Thomas Ploetz. Deep, convolutional, and
recurrent models for human activity recognition using wearables. arXiv preprint
arXiv:1604.08880, 2016.

[75] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of
generic convolutional and recurrent networks for sequence modeling. arXiv preprint
arXiv:1803.01271, 2018.

[76] Davide Figo, Pedro C Diniz, Diogo R Ferreira, and João M Cardoso. Preprocessing
techniques for context recognition from accelerometer data. Personal and Ubiquitous
Computing, 14(7), 2010.

[77] S. Wawrzyniak and W. Niemiro. Clustering approach to the problem of human activity
recognition using motion data. In 2015 Federated Conference on Computer Science and
Information Systems (FedCSIS), pages 411–416, Sep. 2015. doi: 10.15439/2015F424.

[78] Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures. In Proceed
ings of ICML workshop on unsupervised and transfer learning, 2012.

170

[79] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning (ICML
10), 2010.

[80] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Convolutional
deep belief networks for scalable unsupervised learning of hierarchical representations.
In Proceedings of the 26th annual international conference on machine learning. ACM,
2009.

[81] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y Ng. Self
taught learning: transfer learning from unlabeled data. In Proceedings of the 24th inter
national conference on Machine learning. ACM, 2007.

[82] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation
learning by context prediction. In Proceedings of the IEEE International Conference on
Computer Vision, 2015.

[83] Pulkit Agrawal, Joao Carreira, and Jitendra Malik. Learning to see by moving. In
Proceedings of the IEEE International Conference on Computer Vision, 2015.

[84] Lluis Gomez, Yash Patel, Marçal Rusiñol, Dimosthenis Karatzas, and CV Jawahar. Self
supervised learning of visual features through embedding images into text topic spaces.
arXiv preprint arXiv:1705.08631, 2017.

[85] Simon Jenni and Paolo Favaro. Selfsupervised feature learning by learning to spot
artifacts. arXiv preprint arXiv:1806.05024, 2018.

[86] HsinYing Lee, JiaBin Huang, Maneesh Singh, and MingHsuan Yang. Unsupervised
representation learning by sorting sequences. In Computer Vision (ICCV), 2017 IEEE
International Conference on. IEEE, 2017.

[87] Andrew Owens and Alexei A Efros. Audiovisual scene analysis with selfsupervised
multisensory features. arXiv preprint arXiv:1804.03641, 2018.

[88] Bruno Korbar, Du Tran, and Lorenzo Torresani. Cooperative learning of audio and
video models from selfsupervised synchronization. In Advances in Neural Information
Processing Systems, 2018.

[89] Jeeheh Oh, Jiaxuan Wang, and Jenna Wiens. Learning to exploit invariances in clinical
timeseries data using sequence transformer networks. arXiv preprint arXiv:1808.06725,
2018.

[90] Narges Razavian, Jake Marcus, and David Sontag. Multitask prediction of disease on
sets from longitudinal laboratory tests. In Machine Learning for Healthcare Conference,
2016.

[91] Zhicheng Cui, Wenlin Chen, and Yixin Chen. Multiscale convolutional neural net
works for time series classification. arXiv preprint arXiv:1603.06995, 2016.

171

[92] Francisco Javier Ordóñez Morales and Daniel Roggen. Deep convolutional feature
transfer across mobile activity recognition domains, sensor modalities and locations.
In Proceedings of the 2016 ACM International Symposium on Wearable Computers. ACM,
2016.

[93] Jindong Wang, Vincent W Zheng, Yiqiang Chen, and Meiyu Huang. Deep transfer
learning for crossdomain activity recognition. In Proceedings of the 3rd International
Conference on Crowd Science and Engineering, page 16. ACM, 2018.

[94] Yongmou Li, Dianxi Shi, Bo Ding, and Dongbo Liu. Unsupervised feature learning
for human activity recognition using smartphone sensors. In Mining Intelligence and
Knowledge Exploration. Springer, 2014.

[95] Thomas Plötz, Nils Y Hammerla, and Patrick Olivier. Feature learning for activity
recognition in ubiquitous computing. In IJCAI ProceedingsInternational Joint Confer
ence on Artificial Intelligence, volume 22, page 1729, 2011.

[96] Sourav Bhattacharya, Petteri Nurmi, Nils Hammerla, and Thomas Plötz. Using unla
beled data in a sparsecoding framework for human activity recognition. Pervasive and
Mobile Computing, 15, 2014.

[97] Robert Geirhos, JörnHenrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland
Brendel, Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural
networks. arXiv preprint arXiv:2004.07780, 2020.

[98] Marco Tagliasacchi, Beat Gfeller, Félix de Chaumont Quitry, and Dominik Rob
lek. Selfsupervised audio representation learning for mobile devices. arXiv preprint
arXiv:1905.11796, 2019.

[99] Yi Luo and Nima Mesgarani. Convtasnet: Surpassing ideal time–frequency magnitude
masking for speech separation. IEEE/ACM Trans. Audio, Speech and Lang. Proc., 27(8):
1256–1266, August 2019. ISSN 23299290.

[100] Neil Zeghidour and David Grangier. Wavesplit: Endtoend speech separation by
speaker clustering. arXiv preprint arXiv:2002.08933, 2020.

[101] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and PierreAntoine Manzagol. Ex
tracting and composing robust features with denoising autoencoders. In Proceedings of
the 25th international conference on Machine learning. ACM, 2008.

[102] Shun Zhang, Yihong Gong, JiaBin Huang, Jongwoo Lim, Jinjun Wang, Narendra
Ahuja, and MingHsuan Yang. Tracking personsofinterest via adaptive discriminative
features. In European conference on computer vision. Springer, 2016.

[103] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Prun
ing convolutional neural networks for resource efficient inference. arXiv preprint
arXiv:1611.06440, 2016.

[104] George Vavoulas, Matthew Pediaditis, Charikleia Chatzaki, Emmanouil G Spanakis,
and Manolis Tsiknakis. The mobifall dataset: Fall detection and classification with a
smartphone. IJMSTR, 2:44–56, 2014.

172

[105] JorgeL ReyesOrtiz, Luca Oneto, Albert Samà, Xavier Parra, and Davide Anguita.
Transitionaware human activity recognition using smartphones. Neurocomputing, 171,
2016.

[106] Bob Kemp, Aeilko H Zwinderman, Bert Tuk, Hilbert AC Kamphuisen, and Josefien JL
Oberye. Analysis of a sleepdependent neuronal feedback loop: the slowwave micro
continuity of the eeg. IEEE Transactions on Biomedical Engineering, 47(9), 2000.

[107] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch
Ivanov, Roger G Mark, Joseph E Mietus, George B Moody, ChungKang Peng, and
H Eugene Stanley. Physiobank, physiotoolkit, and physionet: components of a new
research resource for complex physiologic signals. Circulation, 101(23):e215–e220, 2000.

[108] Akara Supratak, Hao Dong, Chao Wu, and Yike Guo. Deepsleepnet: A model for
automatic sleep stage scoring based on raw singlechannel eeg. IEEE Transactions on
Neural Systems and Rehabilitation Engineering, 25(11), 2017.

[109] Jennifer A Healey and Rosalind W Picard. Detecting stress during realworld driving
tasks using physiological sensors. IEEE Transactions on intelligent transportation systems,
6(2), 2005.

[110] Siamak Yousefi, Hirokazu Narui, Sankalp Dayal, Stefano Ermon, and Shahrokh Valaee.
A survey on behavior recognition using wifi channel state information. IEEE Commu
nications Magazine, 55(10), 2017.

[111] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self
supervised learning can improve model robustness and uncertainty. In Advances in
Neural Information Processing Systems, 2019.

[112] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Inger
man, Vladimir Ivanov, Chloe Kiddon, Jakub Konecny, Stefano Mazzocchi, H Brendan
McMahan, et al. Towards federated learning at scale: System design. arXiv preprint
arXiv:1902.01046, 2019.

[113] T Nathan Mundhenk, Daniel Ho, and Barry Y Chen. Improvements to context based
selfsupervised learning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018.

[114] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

[115] Hector P Martinez, Yoshua Bengio, and Georgios N Yannakakis. Learning deep phys
iological models of affect. IEEE Computational intelligence magazine, 8(2), 2013.

[116] Awni Y Hannun, Pranav Rajpurkar, Masoumeh Haghpanahi, Geoffrey H Tison, Codie
Bourn, Mintu P Turakhia, and Andrew Y Ng. Cardiologistlevel arrhythmia detection
and classification in ambulatory electrocardiograms using a deep neural network. Na
ture medicine, 25(1):65, 2019.

[117] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Learning representations
for automatic colorization. In European Conference on Computer Vision. Springer, 2016.

173

[118] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In
European conference on computer vision. Springer, 2016.

[119] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal,
and Sergey Levine. Timecontrastive networks: Selfsupervised learning from video.
Proceedings of International Conference in Robotics and Automation (ICRA), 2018.

[120] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. arXiv
preprint arXiv:1906.05849, 2019.

[121] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, 2013.

[122] Aapo Hyvarinen and Hiroshi Morioka. Unsupervised feature extraction by time
contrastive learning and nonlinear ica. In Advances in Neural Information Processing
Systems, 2016.

[123] Shohreh Deldari, Daniel V Smith, Hao Xue, and Flora D Salim. Timeseries change
point detection with selfsupervised contrastive predictive coding. arXiv preprint
arXiv:2011.14097, 2020.

[124] Pritam Sarkar and Ali Etemad. Selfsupervised ecg representation learning for emotion
recognition. IEEE Transactions on Affective Computing, 2020.

[125] Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. S4l: Self
supervised semisupervised learning. arXiv preprint arXiv:1905.03670, 2019.

[126] Johan Himberg, Kalle Korpiaho, Heikki Mannila, Johanna Tikanmaki, and Hannu TT
Toivonen. Time series segmentation for context recognition in mobile devices. In
Proceedings 2001 IEEE International Conference on Data Mining. IEEE, 2001.

[127] Rosalind W. Picard, Elias Vyzas, and Jennifer Healey. Toward machine emotional in
telligence: Analysis of affective physiological state. IEEE Transactions on Pattern Analysis
& Machine Intelligence, 2001.

[128] Tarek Lajnef, Sahbi Chaibi, Perrine Ruby, PierreEmmanuel Aguera, JeanBaptiste
Eichenlaub, Mounir Samet, Abdennaceur Kachouri, and Karim Jerbi. Learning ma
chines and sleeping brains: automatic sleep stage classification using decisiontree
multiclass support vector machines. Journal of neuroscience methods, 250, 2015.

[129] Salih Güneş, Kemal Polat, and Şebnem Yosunkaya. Efficient sleep stage recognition
system based on eeg signal using kmeans clustering based feature weighting. Expert
Systems with Applications, 37(12), 2010.

[130] Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, et al. Multivariate time series
imputation with generative adversarial networks. In Advances in Neural Information
Processing Systems, 2018.

[131] Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. Realvalued (medical)
time series generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633,
2017.

174

[132] Yiqiang Chen, Jindong Wang, Meiyu Huang, and Han Yu. Crossposition activity
recognition with stratified transfer learning. Pervasive and Mobile Computing, 57, 2019.

[133] Martin Gjoreski, Stefan Kalabakov, Mitja Luštrek, Matjaž Gams, and Hristijan
Gjoreski. Crossdataset deep transfer learning for activity recognition. In Adjunct
Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2019 ACM International Symposium on Wearable Com
puters, 2019.

[134] Philip Schmidt, Attila Reiss, Robert Duerichen, Claus Marberger, and Kristof
Van Laerhoven. Introducing wesad, a multimodal dataset for wearable stress and af
fect detection. In Proceedings of the 2018 on International Conference on Multimodal
Interaction. ACM, 2018.

[135] Brandon Ballinger, Johnson Hsieh, Avesh Singh, Nimit Sohoni, Jack Wang, Geoffrey H
Tison, Gregory M Marcus, Jose M Sanchez, Carol Maguire, Jeffrey E Olgin, et al.
Deepheart: semisupervised sequence learning for cardiovascular risk prediction. In
ThirtySecond AAAI Conference on Artificial Intelligence, 2018.

[136] RJE Merry. Wavelet theory and applications: a literature study. DCT rapporten, 2005,
2005.

[137] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communicationefficient learning of deep networks from decen
tralized data. In Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics (AISTATS), 2017.

[138] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera
y Arcas. Communicationefficient learning of deep networks from decentralized data.
In Artificial Intelligence and Statistics. PMLR, 2017.

[139] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis,
Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel
Cummings, et al. Advances and open problems in federated learning. arXiv preprint
arXiv:1912.04977, 2019.

[140] Amin Sadri, Yongli Ren, and Flora D Salim. Information gainbased metric for recog
nizing transitions in human activities. Pervasive and Mobile Computing, 38, 2017.

[141] Diganta Misra. Mish: A self regularized nonmonotonic neural activation function.
arXiv preprint arXiv:1908.08681, 2019.

[142] George Vavoulas, Charikleia Chatzaki, Thodoris Malliotakis, Matthew Pediaditis, and
Manolis Tsiknakis. The mobiact dataset: Recognition of activities of daily living using
smartphones. In ICT4AgeingWell, 2016.

[143] Jonathan Liono, Flora D Salim, Niels van Berkel, Vassilis Kostakos, and A Kai Qin.
Improving experience sampling with multiview userdriven annotation prediction. In
2019 IEEE International Conference on Pervasive Computing and Communications (Per
Com. IEEE, 2019.

175

[144] J.B Grill, F. Strub, F. Altché, C. Tallec, P.H. Richemond, E. Buchatskaya, C. Doersch,
B.A. Pires, Z.D. Guo, M. G. Azar, et al. Bootstrap your own latent: A new approach
to selfsupervised learning. arXiv preprint arXiv:2006.07733, 2020.

[145] K. Kawakami, L. Wang, C. Dyer, P. Blunsom, et al. Learning robust and multilingual
speech representations. arXiv preprint arXiv:2001.11128, 2020.

[146] A. Jansen, M. Plakal, R. Pandya, D.P.W. Ellis, S. Hershey, J. Liu, R.C. Moore, and R.A.
Saurous. Unsupervised learning of semantic audio representations. In 2018 Proceedings
of the ICASSP. IEEE, 2018.

[147] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive
learning of visual representations. arXiv preprint arXiv:2002.05709, 2020.

[148] Y.A. Chung, C.C. Wu, C.H. Shen, H.Y Lee, and L.S. Lee. Audio word2vec: Unsuper
vised learning of audio segment representations using sequencetosequence autoen
coder. arXiv preprint arXiv:1603.00982, 2016.

[149] O. Plchot, L. Burget, H. Aronowitz, and P. Matejka. Audio enhancing with dnn au
toencoder for speaker recognition. In 2016 Proceedings of the ICASSP. IEEE, 2016.

[150] M. Meyer, J. Beutel, and L. Thiele. Unsupervised feature learning for audio analysis.
arXiv preprint arXiv:1712.03835, 2017.

[151] V. Wan, Y. Agiomyrgiannakis, H. Silen, and J. Vit. Google’s nextgeneration real
time unitselection synthesizer using sequencetosequence lstmbased autoencoders.
In INTERSPEECH, 2017.

[152] S. Pascual, M. Ravanelli, J. Serrà, A. Bonafonte, and Y. Bengio. Learning problem
agnostic speech representations from multiple selfsupervised tasks. arXiv preprint
arXiv:1904.03416, 2019.

[153] J. Shor, A. Jansen, R. Maor, O. Lang, O. Tuval, F. de Chaumont Quitry Quitry,
M. Tagliasacchi, I. Shavitt, D. Emanuel, and Y. Haviv. Towards learning a universal
nonsemantic representation of speech. arXiv preprint arXiv:2002.12764, 2020.

[154] J. F. Gemmeke, D.P.W. Ellis, D. Freedman, A. Jansen, W. Lawrence, R.C. Moore,
M. Plakal, and M. Ritter. Audio set: An ontology and humanlabeled dataset for audio
events. In ICASSP. IEEE, 2017.

[155] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word represen
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[156] A. Baevski, S. Schneider, and M. Auli. vqwav2vec: Selfsupervised learning of discrete
speech representations. arXiv preprint arXiv:1910.05453, 2019.

[157] M. Rivière, A. Joulin, P.E. Mazaré, and E. Dupoux. Unsupervised pretraining transfers
well across languages. In ICASSP. IEEE, 2020.

[158] A. Baevski, H. Zhou, A.R. Mohamed, and M. Auli. wav2vec 2.0: A framework for self
supervised learning of speech representations. arXiv preprint arXiv:2006.11477, 2020.

176

[159] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the IEEE/CVF CVPR, 2020.

[160] A. Srinivas, M. Laskin, and P. Abbeel. Curl: Contrastive unsupervised representations
for reinforcement learning. arXiv preprint arXiv:2004.04136, 2020.

[161] E. Kharitonov, M. Rivière, G. Synnaeve, Lior Wolf, P.E. Mazaré, M. Douze, and
E. Dupoux. Data augmenting contrastive learning of speech representations in the
time domain. arXiv preprint arXiv:2007.00991, 2020.

[162] Z. Wu, Y. Xiong, S. Yu, and D. Lin. Unsupervised feature learning via nonparametric
instancelevel discrimination. arXiv preprint arXiv:1805.01978, 2018.

[163] X. Wang and A. Gupta. Unsupervised learning of visual representations using videos.
In ICCV, 2015.

[164] M. Tagliasacchi, B. Gfeller, F. de Chaumont Quitry, and D. Roblek. Pretraining audio
representations with selfsupervision. IEEE Signal Processing Letters, 2020.

[165] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. Librispeech: an asr corpus based
on public domain audio books. In ICASSP, 2015.

[166] A. Nagrani, J.S. Chung, and A. Zisserman. Voxceleb: a largescale speaker identifica
tion dataset. arXiv preprint arXiv:1706.08612, 2017.

[167] P. Warden. Speech commands: A dataset for limitedvocabulary speech recognition.
arXiv preprint arXiv:1804.03209, 2018.

[168] T. Heittola, A. Mesaros, and T. Virtanen. Tut urban acoustic scenes 2018, development
dataset, April 2018.

[169] D. Stowell, M.D. Wood, H. Pamuła, Y. Stylianou, and H. Glotin. Automatic acous
tic detection of birds through deep learning: the first bird audio detection challenge.
Methods in Ecology and Evolution, 2019.

[170] D. Snyder, G. Chen, and D. Povey. Musan: A music, speech, and noise corpus. arXiv
preprint arXiv:1510.08484, 2015.

[171] J. Engel, C. Resnick, et al. Neural audio synthesis of musical notes with wavenet
autoencoders. In ICML. PMLR, 2017.

[172] K. MacLean. Voxforge. Ken MacLean.[Online]. Available: http://www. voxforge.
org/home.[Acedido em 2012], 2018.

[173] M. Tan and Q.V Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946, 2019.

[174] J.L Ba, J.R. Kiros, and G.E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[175] Robin Kennett. Modern electroencephalography. Journal of neurology, 259(4), 2012.

177

[176] Eva Svanborg and Christian Guilleminault. EEG frequency changes during sleep ap
neas. Sleep, 19(3), 1996.

[177] Henri Korkalainen, Juhani Aakko, Sami Nikkonen, Samu Kainulainen, Akseli Leino,
Brett Duce, Isaac O Afara, Sami Myllymaa, Juha Töyräs, and Timo Leppänen. Accurate
deep learningbased sleep staging in a clinical population with suspected obstructive
sleep apnea. IEEE journal of biomedical and health informatics, 24(7), 2019.

[178] Gert Pfurtscheller and Christa Neuper. Motor imagery and direct braincomputer
communication. Proceedings of the IEEE, 89(7), 2001.

[179] NR Galloway. Human brain electrophysiology: Evoked potentials and evoked mag
netic fields in science and medicine. The British journal of ophthalmology, 74(4), 1990.

[180] Chi Li, M Zeeshan Zia, QuocHuy Tran, Xiang Yu, Gregory D Hager, and Manmo
han Chandraker. Deep supervision with shape concepts for occlusionaware 3d object
parsing. arXiv preprint arXiv:1612.02699, 2016.

[181] Ali H Shoeb and John V Guttag. Application of machine learning to epileptic seizure
detection. In Proceedings of the 27th International Conference on Machine Learning
(ICML10), 2010.

[182] Alexander Craik, Yongtian He, and Jose L ContrerasVidal. Deep learning for elec
troencephalogram (eeg) classification tasks: a review. Journal of neural engineering, 16
(3), 2019.

[183] DF Wulsin, JR Gupta, Ram Mani, JA Blanco, and B Litt. Modeling electroencephalog
raphy waveforms with semisupervised deep belief nets: fast classification and anomaly
measurement. Journal of neural engineering, 8(3), 2011.

[184] Yuanfang Ren and Yan Wu. Convolutional deep belief networks for feature extraction
of eeg signal. In 2014 International joint conference on neural networks (IJCNN). IEEE,
2014.

[185] Yousef Rezaei Tabar and Ugur Halici. A novel deep learning approach for classification
of eeg motor imagery signals. Journal of neural engineering, 14(1), 2016.

[186] Robin Tibor Schirrmeister, Jost Tobias Springenberg, Lukas Dominique Josef Fiederer,
Martin Glasstetter, Katharina Eggensperger, Michael Tangermann, Frank Hutter, Wol
fram Burgard, and Tonio Ball. Deep learning with convolutional neural networks for
eeg decoding and visualization. Human brain mapping, 38(11), 2017.

[187] Vernon J Lawhern, Amelia J Solon, Nicholas R Waytowich, Stephen M Gordon,
Chou P Hung, and Brent J Lance. Eegnet: a compact convolutional neural network
for eegbased brain–computer interfaces. Journal of neural engineering, 15(5), 2018.

[188] Pierre Thodoroff, Joelle Pineau, and Andrew Lim. Learning robust features using deep
learning for automatic seizure detection. In Machine learning for healthcare conference,
2016.

178

[189] Mengni Zhou, Cheng Tian, Rui Cao, Bin Wang, Yan Niu, Ting Hu, Hao Guo, and
Jie Xiang. Epileptic seizure detection based on eeg signals and cnn. Frontiers in neu
roinformatics, 12, 2018.

[190] Shu Lih Oh, Yuki Hagiwara, U Raghavendra, Rajamanickam Yuvaraj, N Arunkumar,
M Murugappan, and U Rajendra Acharya. A deep learning approach for parkinson’s
disease diagnosis from eeg signals. Neural Computing and Applications, 2018.

[191] Fatemeh Fahimi, Zhuo Zhang, Wooi Boon Goh, TihShi Lee, Kai Keng Ang, and
Cuntai Guan. Intersubject transfer learning with an endtoend deep convolutional
neural network for eegbased bci. Journal of neural engineering, 2019.

[192] Shivarudhrappa Raghu, Natarajan Sriraam, Yasin Temel, Shyam Vasudeva Rao, and
Pieter L Kubben. Eeg based multiclass seizure type classification using convolutional
neural network and transfer learning. Neural Networks, 2020.

[193] Dongrui Wu, Brent Lance, and Vernon Lawhern. Transfer learning and active transfer
learning for reducing calibration data in singletrial classification of visuallyevoked
potentials. In 2014 IEEE International Conference on Systems, Man, and Cybernetics
(SMC). IEEE, 2014.

[194] Dongrui Wu, Vernon J Lawhern, W David Hairston, and Brent J Lance. Switching eeg
headsets made easy: Reducing offline calibration effort using active weighted adapta
tion regularization. IEEE Transactions on Neural Systems and Rehabilitation Engineering,
24(11), 2016.

[195] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing humanlevel performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, 2015.

[196] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The
missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[197] Iyad Obeid and Joseph Picone. The temple university hospital eeg data corpus. Frontiers
in neuroscience, 10, 2016.

[198] Ali Hossam Shoeb. Application of machine learning to epileptic seizure onset detection and
treatment. PhD thesis, Massachusetts Institute of Technology, 2009.

[199] Parisa Rashidi and Alex Mihailidis. A survey on ambientassisted living tools for older
adults. IEEE journal of biomedical and health informatics, 17(3), 2013.

[200] Inbal NahumShani, Shawna N Smith, Ambuj Tewari, Katie Witkiewitz, Linda M
Collins, Bonnie Spring, and S Murphy. Just in time adaptive interventions (jitais):
An organizing framework for ongoing health behavior support. Methodology Center
technical report, 2014, 2014.

[201] Akin Avci, Stephan Bosch, Mihai MarinPerianu, Raluca MarinPerianu, and Paul
Havinga. Activity recognition using inertial sensing for healthcare, wellbeing and sports
applications: A survey. In Architecture of computing systems (ARCS), 2010 23rd interna
tional conference on. VDE, 2010.

179

[202] Mashfiqui Rabbi, Min Hane Aung, Mi Zhang, and Tanzeem Choudhury. Mybehav
ior: automatic personalized health feedback from user behaviors and preferences using
smartphones. In Proceedings of the 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing. ACM, 2015.

[203] Tim Althoff, Jennifer L Hicks, Abby C King, Scott L Delp, Jure Leskovec, et al. Large
scale physical activity data reveal worldwide activity inequality. Nature, 547(7663),
2017.

[204] Liju Joshua and Koshy Varghese. Accelerometerbased activity recognition in construc
tion. Journal of computing in civil engineering, 25(5), 2010.

[205] Anind K Dey, Katarzyna Wac, Denzil Ferreira, Kevin Tassini, JinHyuk Hong, and
Julian Ramos. Getting closer: an empirical investigation of the proximity of user to
their smart phones. In Proceedings of the 13th international conference on Ubiquitous
computing. ACM, 2011.

[206] Yonatan Vaizman, Katherine Ellis, and Gert Lanckriet. Recognizing detailed human
context in the wild from smartphones and smartwatches. IEEE Pervasive Computing,
16(4), 2017.

[207] Hyun Kang. The prevention and handling of the missing data. Korean journal of
anesthesiology, 64(5), 2013.

[208] Andrew Gelman and Jennifer Hill. Missingdata imputation. Analytical Methods for
Social Research. Cambridge University Press, 2006. doi: 10.1017/CBO9780511790942.
031.

[209] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1), 2014.

[210] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and PierreAntoine
Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep
network with a local denoising criterion. Journal of Machine Learning Research, 11(Dec),
2010.

[211] Ian Goodfellow, Jean PougetAbadie, Mehdi Mirza, Bing Xu, David WardeFarley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, 2014.

[212] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data
with neural networks. science, 313(5786), 2006.

[213] Yonatan Vaizman, Nadir Weibel, and Gert Lanckriet. Context recognition inthewild:
Unified model for multimodal sensors and multilabel classification. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(4), 2018.

[214] Jinseok Nam, Jungi Kim, Eneldo Loza Mencía, Iryna Gurevych, and Johannes
Fürnkranz. Largescale multilabel text classification—revisiting neural networks. In
Joint european conference on machine learning and knowledge discovery in databases.
Springer, 2014.

180

[215] Natasha Jaques, Sara Taylor, Akane Sano, and Rosalind Picard. Multimodal autoen
coder: A deep learning approach to filling in missing sensor data and enabling better
mood prediction. In Proc. International Conference on Affective Computing and Intelli
gent Interaction (ACII), San Antonio, Texas, 2017.

[216] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for largescale machine learning. In OSDI, volume 16, 2016.

[217] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed
forward neural networks. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, 2010.

[218] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal
Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016.

[219] John J Guiry, Pepijn Van de Ven, and John Nelson. Multisensor fusion for enhanced
contextual awareness of everyday activities with ubiquitous devices. Sensors, 14(3), 2014.

[220] Aiguo Wang, Guilin Chen, Cuijuan Shang, Miaofei Zhang, and Li Liu. Human activity
recognition in a smart home environment with stacked denoising autoencoders. In
International Conference on WebAge Information Management. Springer, 2016.

[221] Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui Peng, and Lisha Hu. Deep learning
for sensorbased activity recognition: A survey. arXiv preprint arXiv:1707.03502, 2017.

[222] Meng Ding and Guoliang Fan. Multilayer joint gaitpose manifolds for human gait
motion modeling. IEEE Trans. Cybernetics, 45(11), 2015.

[223] Xin Zhang, Meng Ding, and Guoliang Fan. Videobased human walking estimation
using joint gait and pose manifolds. IEEE Transactions on Circuits and Systems for Video
Technology, 27(7), 2017.

[224] Chen Chen, Roozbeh Jafari, and Nasser Kehtarnavaz. A survey of depth and inertial
sensor fusion for human action recognition. Multimedia Tools and Applications, 76(3),
2017.

[225] Benjamin B Thompson, RJ Marks, and Mohamed A ElSharkawi. On the contractive
nature of autoencoders: Application to missing sensor restoration. In Neural Networks,
2003. Proceedings of the International Joint Conference on, volume 4. IEEE, 2003.

[226] Fulufhelo V Nelwamondo, Shakir Mohamed, and Tshilidzi Marwala. Missing data:
A comparison of neural network and expectation maximization techniques. Current
Science, 2007.

[227] Yanjie Duan, Yisheng Lv, Wenwen Kang, and Yifei Zhao. A deep learning based ap
proach for traffic data imputation. In Intelligent Transportation Systems (ITSC), 2014
IEEE 17th International Conference on. IEEE, 2014.

181

[228] Brett K BeaulieuJones and Jason H Moore. Missing data imputation in the electronic
health record using deeply learned autoencoders. In PACIFIC SYMPOSIUM ON BIO
COMPUTING 2017. World Scientific, 2017.

[229] Junhua Li, Zbigniew Struzik, Liqing Zhang, and Andrzej Cichocki. Feature learning
from incomplete eeg with denoising autoencoder. Neurocomputing, 165, 2015.

[230] Riccardo Miotto, Li Li, Brian A Kidd, and Joel T Dudley. Deep patient: an unsuper
vised representation to predict the future of patients from the electronic health records.
Scientific reports, 6, 2016.

[231] Jun Deng, Xinzhou Xu, Zixing Zhang, Sascha Frühholz, and Björn Schuller. Uni
versum autoencoderbased domain adaptation for speech emotion recognition. IEEE
Signal Processing Letters, 24(4), 2017.

[232] Oleksii Kuchaiev and Boris Ginsburg. Training deep autoencoders for collaborative
filtering. arXiv preprint arXiv:1708.01715, 2017.

[233] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative
adversarial nets with policy gradient. In AAAI, 2017.

[234] Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F Stewart, and Ji
meng Sun. Generating multilabel discrete electronic health records using generative
adversarial networks. arXiv preprint arXiv:1703.06490, 2017.

[235] Neil Schneiderman, Gail Ironson, and Scott D Siegel. Stress and health: psychological,
behavioral, and biological determinants. Annu. Rev. Clin. Psychol., 1, 2005.

[236] Thomas G. Pickering. Mental stress as a causal factor in the development of hyperten
sion and cardiovascular disease. Current hypertension reports, 3(3), 2001.

[237] Lorenz Goette, Samuel Bendahan, John Thoresen, Fiona Hollis, and Carmen Sandi.
Stress pulls us apart: Anxiety leads to differences in competitive confidence under stress.
Psychoneuroendocrinology, 54, 2015.

[238] Sari D. Holmes, David S Krantz, Heather Rogers, John Gottdiener, and Richard J.
Contrada. Mental stress and coronary artery disease: a multidisciplinary guide. Progress
in cardiovascular diseases, 49(2), 2006.

[239] Angela Liegey Dougall and Andrew Baum. Stress, health, and illness. Handbook of
health psychology, 2001.

[240] Javier Hernandez, Rob R Morris, and Rosalind W Picard. Call center stress recognition
with personspecific models. In International Conference on Affective Computing and
Intelligent Interaction. Springer, 2011.

[241] John T Cacioppo, Louis G Tassinary, and Gary Berntson. Handbook of psychophysiology.
Cambridge University Press, 2007.

[242] Carl W SemJacobsen. Electroencephalographic study of pilot stresses in flight. Tech
nical report, Gaustad Hospital Oslo (Norway) EEG Research Lab, 1961.

182

[243] Dwight A Hennessy and David L Wiesenthal. Traffic congestion, driver stress, and
driver aggression. Aggressive behavior, 25(6), 1999.

[244] Jing Zhai and Armando Barreto. Stress detection in computer users based on digital
signal processing of noninvasive physiological variables. In Engineering in Medicine and
Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE. IEEE,
2006.

[245] J Bryan Sexton, Eric J Thomas, and Robert L Helmreich. Error, stress, and teamwork
in medicine and aviation: cross sectional surveys. Bmj, 320(7237), 2000.

[246] Roberto Zangróniz, Arturo MartínezRodrigo, José Manuel Pastor, María T López,
and Antonio FernándezCaballero. Electrodermal activity sensor for classification of
calm/distress condition. Sensors, 17(10):2324, 2017.

[247] T Salafi and JCY Kah. Design of unobtrusive wearable mental stress monitoring de
vice using physiological sensor. In 7th WACBE World Congress on Bioengineering 2015.
Springer, 2015.

[248] Jacqueline Wijsman, Bernard Grundlehner, Hao Liu, Julien Penders, and Hermie Her
mens. Wearable physiological sensors reflect mental stress state in officelike situations.
In Affective Computing and Intelligent Interaction (ACII), 2013 Humaine Association Con
ference on. IEEE, 2013.

[249] Nandita Sharma and Tom Gedeon. Objective measures, sensors and computational
techniques for stress recognition and classification: A survey. Computer methods and
programs in biomedicine, 108(3), 2012.

[250] Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In Computer Vision
and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011.

[251] Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang, David Balduzzi, and Wen
Li. Deep reconstructionclassification networks for unsupervised domain adaptation.
In European Conference on Computer Vision. Springer, 2016.

[252] Rich Caruana. Multitask learning. In Learning to learn. Springer, 1998.

[253] Natasha Jaques, Sara Taylor, Ehimwenma Nosakhare, Akane Sano, and Rosalind Pi
card. Multitask learning for predicting health, stress, and happiness. In NIPS Workshop
on Machine Learning for Healthcare, 2016.

[254] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirk
patrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural
networks. arXiv preprint arXiv:1606.04671, 2016.

[255] Jennifer Healey and Rosalind W Picard. Driver stress data. Retrieved June 26th from
MIT Affective Computing Group: http://affect.media.mit.edu, 124, 2002.

[256] Simon Ollander. Wearable sensor data fusion for human stress estimation, 2015. Master
Thesis, Technical University of Linköping University.

183

[257] Salah Taamneh, Panagiotis Tsiamyrtzis, Malcolm Dcosta, Pradeep Buddharaju, Ashik
Khatri, Michael Manser, Thomas Ferris, Robert Wunderlich, and Ioannis Pavlidis. A
multimodal dataset for various forms of distracted driving. Scientific data, 4:170110,
2017.

[258] Melissa A Birkett. The trier social stress test protocol for inducing psychological stress.
Journal of visualized experiments: JoVE, 2011.

[259] Elise Labbé, Nicholas Schmidt, Jonathan Babin, and Martha Pharr. Coping with stress:
the effectiveness of different types of music. Applied psychophysiology and biofeedback,
32(34), 2007.

[260] Pedro Ferreira, Pedro Sanches, Kristina Höök, and Tove Jaensson. License to chill!:
how to empower users to cope with stress. In Proceedings of the 5th Nordic conference on
Humancomputer interaction: building bridges. ACM, 2008.

[261] Lukasz Kaiser, Aidan N Gomez, Noam Shazeer, Ashish Vaswani, Niki Parmar,
Llion Jones, and Jakob Uszkoreit. One model to learn them all. arXiv preprint
arXiv:1706.05137, 2017.

[262] Jessica TorresSoto and Euan A Ashley. Multitask deep learning for cardiac rhythm
detection in wearable devices. NPJ Digital Medicine, 3(1), 2020.

[263] Hirotaka Kaji, Hisashi Iizuka, and Masashi Sugiyama. Ecgbased concentration recog
nition with multitask regression. IEEE Transactions on Biomedical Engineering, 66(1),
2018.

[264] Andrew Owens and Alexei A Efros. Audiovisual scene analysis with selfsupervised
multisensory features. In Proceedings of the European Conference on Computer Vision
(ECCV), 2018.

[265] Bruno Korbar, Du Tran, and Lorenzo Torresani. Cooperative learning of audio and
video models from selfsupervised synchronization. arXiv preprint arXiv:1807.00230,
2018.

[266] Dimitris Spathis, Ignacio PerezPozuelo, Soren Brage, Nicholas J Wareham, and Cecilia
Mascolo. Selfsupervised transfer learning of physiological representations from free
living wearable data. arXiv preprint arXiv:2011.12121, 2020.

[267] Sebastian Ruder. An overview of multitask learning in deep neural networks. arXiv
preprint arXiv:1706.05098, 2017.

[268] Laurenz Wiskott and Terrence J Sejnowski. Slow feature analysis: Unsupervised learn
ing of invariances. Neural Computation, 14(4), 2002.

[269] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
rnn encoderdecoder for statistical machine translation. arXiv preprint arXiv:1406.1078,
2014.

184

[270] Attila Reiss, Ina Indlekofer, Philip Schmidt, and Kristof Van Laerhoven. Deep ppg:
Largescale heart rate estimation with convolutional neural networks. Sensors, 19(14),
2019.

[271] Shkurta Gashi, Elena Di Lascio, Bianca Stancu, Vedant Das Swain, Varun Mishra,
Martin Gjoreski, and Silvia Santini. Detection of artifacts in ambulatory electrodermal
activity data. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies (IMWUT), 4(2), 2020.

[272] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Crossstitch
networks for multitask learning. In Proceedings of the IEEE CVPRW 2016, 2016.

[273] Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, and Alan L Yuille. Nddrcnn: Layerwise
feature fusing in multitask cnns by neural discriminative dimensionality reduction.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPRW), 2019.

[274] Shikun Liu, Edward Johns, and Andrew J Davison. Endtoend multitask learning
with attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPRW), 2019.

[275] Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Yeyi Wang.
Representation learning using multitask deep neural networks for semantic classifi
cation and information retrieval. In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Denver, Colorado, 2015. Association for Computational Linguistics.

[276] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Recurrent neural network for text clas
sification with multitask learning. In Proceedings of the TwentyFifth International Joint
Conference on Artificial Intelligence (IJCAI). AAAI Press, 2016. ISBN 9781577357704.

[277] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. Modeling
task relationships in multitask learning with multigate mixtureofexperts. In Pro
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (KDD), 2018.

[278] Jinfeng Rao, Ferhan Ture, and Jimmy Lin. Multitask learning with neural networks
for voice query understanding on an entertainment platform. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(KDD), 2018.

[279] Bin Liang, Rongdi Yin, Lin Gui, Jiachen Du, Yulan He, and Ruifeng Xu. Aspect
invariant sentiment features learning: Adversarial multitask learning for aspectbased
sentiment analysis. In Proceedings of the 29th ACM International Conference on Infor
mation & Knowledge Management, 2020.

[280] Senzhang Wang, Hao Miao, Hao Chen, and Zhiqiu Huang. Multitask adversarial
spatialtemporal networks for crowd flow prediction. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, 2020.

185

[281] Dimitris Spathis, Sandra ServiaRodriguez, Katayoun Farrahi, Cecilia Mascolo, and
Jason Rentfrow. Sequence multitask learning to forecast mental wellbeing from sparse
selfreported data. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD), 2019.

[282] Hrayr Harutyunyan, Hrant Khachatrian, David C Kale, Greg Ver Steeg, and Aram
Galstyan. Multitask learning and benchmarking with clinical time series data. Scientific
data, 6(1), 2019.

[283] DuyKien Nguyen and Takayuki Okatani. Multitask learning of hierarchical vision
language representation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPRW), 2019.

[284] Md Shad Akhtar, Dushyant Singh Chauhan, Deepanway Ghosal, Soujanya Poria, Asif
Ekbal, and Pushpak Bhattacharyya. Multitask learning for multimodal emotion
recognition and sentiment analysis. arXiv preprint arXiv:1905.05812, 2019.

[285] Jinfeng Zhuang and Yu Liu. Pintext: A multitask text embedding system in pinterest. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining (KDD), 2019.

[286] Xi Ouyang, Shuangjie Xu, Chaoyun Zhang, Pan Zhou, Yang Yang, Guanghui Liu,
and Xuelong Li. A 3dcnn and lstm based multitask learning architecture for action
recognition. IEEE Access, 7, 2019.

[287] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geof
frey Hinton, and Jeff Dean. Outrageously large neural networks: The sparselygated
mixtureofexperts layer. arXiv preprint arXiv:1701.06538, 2017.

[288] Zhen Qin, Yicheng Cheng, Zhe Zhao, Zhe Chen, Donald Metzler, and Jingzheng Qin.
Multitask mixture of sequential experts for user activity streams. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(KDD), New York, NY, USA, 2020. Association for Computing Machinery.

[289] Sara Taylor, Natasha Jaques, Ehimwenma Nosakhare, Akane Sano, and Rosalind Pi
card. Personalized multitask learning for predicting tomorrow’s mood, stress, and
health. IEEE Transactions on Affective Computing, 11(2), 2017.

[290] Reem A Mahmoud, Hazem Hajj, and Fadi N Karameh. A systematic approach to
multitask learning from timeseries data. Applied Soft Computing, 96, 2020.

[291] Alireza Abedin, Farbod Motlagh, Qinfeng Shi, Hamid Rezatofighi, and Damith Ranas
inghe. Towards deep clustering of human activities from wearables. In Proceedings of
the 2020 International Symposium on Wearable Computers (ISWC), 2020.

[292] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple
framework for contrastive learning of visual representations. Proceedings of the Interna
tional Conference on Machine Learning (ICML), 2020.

186

[293] Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, SM Es
lami, and Aaron van den Oord. Dataefficient image recognition with contrastive pre
dictive coding. Proceedings of the International Conference on Machine Learning (ICML),
2020.

[294] Joel Shor, A. Jansen, Ronnie Maor, Oran Lang, Omry Tuval, Felix de Chau
mont Quitry, M. Tagliasacchi, Ira Shavitt, D. Emanuel, and Yinnon A. Haviv. Towards
learning a universal nonsemantic representation of speech. ArXiv, abs/2002.12764,
2020.

[295] S. Pascual, M. Ravanelli, J. Serrà, A. Bonafonte, and Yoshua Bengio. Learning
problemagnostic speech representations from multiple selfsupervised tasks. In IN
TERSPEECH, 2019.

[296] JeanBaptiste Alayrac, Adrià Recasens, Rosalia Schneider, Relja Arandjelović, Jason
Ramapuram, Jeffrey De Fauw, Lucas Smaira, Sander Dieleman, and Andrew Zisser
man. Selfsupervised multimodal versatile networks. In Advances in Neural Information
Processing Systems, 2020.

[297] Bruno Korbar, Du Tran, and L. Torresani. Cooperative learning of audio and video
models from selfsupervised synchronization. In Advances in Neural Information Pro
cessing Systems, 2018.

[298] Amila Silva, Shanika Karunasekera, Christopher Leckie, and Ling Luo. Meteor: Learn
ing memory and time efficient representations from multimodal data streams. In Pro
ceedings of the 29th ACM International Conference on Information & Knowledge Manage
ment, 2020.

[299] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[300] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforce
ment learning: Tutorial, review, and perspectives on open problems. arXiv preprint
arXiv:2005.01643, 2020.

187

Acknowledgements

First and foremost, I would like to thank all my teachers for their support, guidance, under
standing, and encouragement, as none of this work would have been possible otherwise. I am
immensely thankful to them for teaching important lessons and inspiring me to have a grand
vision. I am tremendously grateful to Johan Lukkien and Tanir Ozcelebi for an opportunity
to pursue Ph.D. under their supervision and for their continuous mentorship, support, and
above all, freedom to pursue my interest and explore different research directions. Johan,
thank you for the thoughtprovoking discussions, advice, motivation, and supporting me in
the ups and downs of navigating the Ph.D. Tanir, thank you for your unconditional support,
patience, and fostering an environment where I was able to freely pursue research. I have also
been fortunate to have great mentors throughout graduate life. I want to express immense
gratitude to Stojan Trajanovski, Maurice van Keulen, Adrienne Heinrich, Qasim Pasta, Faraz
Zaidi, Khalid Khan, and Rashid Saleem for believing in me and inspiring me to pursue a sci
entific career and work towards a Ph.D. I would like to thank my thesis committee Cecilia
Mascolo, Fahim Kawsar, Flora Salim, Mykola Pechenizkiy, and Mathias Funk for taking the
time to give me valuable feedback.

Being part of the IRIS (formerly SAN) group was a great and humbling experience. Many
thanks to all my colleagues Jeroen, Hamid, Reza, Nan, Sachin, Bram, Luis, Tianyu, Marijn,
and Geert for countless funny moments during coffee breaks, workrelated discussions, social
events outside work and endofday meetings. I am also very grateful to Anjolein Gouma and
Jolande Matthijsse for all their support in administrative tasks. In particular, I am immensely
thankful to Richard Verhoeven for all his support in terms of computing resources, server
management, and help with demonstrator setup for the SCOTT project. I am also thankful
to all the partners within the SCOTT H2020 project. I would also like to thank Nirvana
Meratnia for her valuable support and help in creating a pleasant work environment during
the pandemic for working from home. I also have had the chance to supervise and work with
several talented MSc students, including Bram, Ye, Songwa, Sandhiya, and Vasilis. It was
great working with you, and I learned a lot! I am also glad to have had the opportunity to
collaborate with outstanding researchers and faculty outside of the Eindhoven University of
Technology: Shkurta Gashi, Shohreh Deldari, Flora D. Salim, Irina Stipanovic, Jan van Erp,
Silvia Santini, and Zaharah Bukhsh.

I am immensely grateful to have had the chance to be a research intern at Google Re
search twice during the Ph.D. I gained valuable research and software engineering experience

189

within the Sense team in Google Cerebra under the supervision of Victor Ungureanu and
Beat Gfeller. Thank you, Victor, and Beat for being amazing hosts, providing excellent men
torship, and helping me in navigating the Google codebase. I would also like to thank Hassan
Rom, Marco Tagliasacchi, Felix de Chaumont Quitry, Dominik Roblek, Matt Sharifi, and
Jeremiah Harmsen for all their support. My mentors and hosts for an internship within the
Google Brain team Neil Zeghidour, David Grainger, and Olivier Pietquin have my immense
gratitude for their continuous support in making a remote internship a wonderful experience
and remarkably a productive one. Neil, thank you very much for the guidance, advice, pa
tience, being extremely approachable, and stimulating discussions and above all for being an
amazing mentor. It was a pleasure working with you, and I learned a lot within a short period
of time from you. David, thank you for being a great mentor and collaborator; your feedback
and advice have helped me grow tremendously. I also like to thank Olivier Teboul and other
members of the Brain team in Paris. I am also very thankful to Google Cloud for their support
in computing resources for my research.

I am very fortunate to have great friends and want to thank them for always being with
me through thick and thin and in celebrating my achievements. I am particularly grateful to
Inam, Nouman, Mudasir, Mutlib, and Basit for their encouragement, support, distractions,
fun conversations, and being part of my life throughout these years!

Finally, I am immensely thankful to my parents for all their love, sacrifices, and countless
efforts in providing me opportunities for a better future. Many thanks to my siblings for
their unconditional support, love, and taking care of everything in my absence. I also like to
thank Faizan and Faiza for their guidance, encouragement, wonderful trips, barbecues, and
for the good times over the years in the Netherlands. A special word of gratitude to my wife,
Zaharah, for enriching my life, for her patience, enduring my long working hours, countless
discussions on research, always being there for me, and being emotional support in making
this journey wonderful. Zaharah, thank you!

190

Curriculum Vitae

Aaqib Saeed was born in Hyderabad, Pakistan. He obtained his bachelor’s degree in Computer
Science (cum laude) from PAFKarachi Institute of Economics and Technology, Karachi, Pak
istan, in December 2014. Thereafter, in 2015, he started his M.Sc. study in Computer Science
at the University of Twente, Enschede, the Netherlands. During his master’s studies, he
participated in the Honors Program, and he did research internships at TNO and Philips
Research. In 2017, he obtained his master’s degree (cum laude), specializing in Data Sci
ence and Smart Services. Immediately after that, he started his Ph.D. in the Department of
Mathematics and Computer Science at the Eindhoven University of Technology, Eindhoven,
the Netherlands, under the supervision of prof. dr. J.J. Lukkien and dr. T. Ozcelebi. His
Ph.D. research was funded by the H2020 SCOTT project. During his Ph.D. studies, he did
two research internships in Google Research. The research focus of the Ph.D. is on learning
generalpurpose and robust sensory representations with minimal supervision. The results are
presented in this dissertation.

191

	Summary
	List of Publications
	Introduction
	Sensing, Deep Learning and Challenges
	Towards Self-Learning Systems for Embedded Intelligence
	Objectives and Research Questions
	Thesis Organization

	Background
	Notation
	Neural Networks and Representations
	Multi-task Learning
	Knowledge Transfer
	Self-Supervision
	Modeling Signals and Time-Series

	Self-Supervised Learning with Transformation Prediction
	Introduction
	Approach
	Overview
	Self-Supervised Task: Signal Transformations
	Network Architecture and Implementation

	Experiments
	Datasets
	Pre-Processing and Assessment Strategy
	Results

	Related Work
	Conclusion

	Sense and Learn: Self-Supervision for Omnipresent Sensors
	Introduction
	Approach
	Motivation and Overview
	Suite of Pretext Tasks
	Network Architecture Design

	Experiments
	Datasets
	Pre-processing and Evaluation
	Results and Discussion
	Impact and Limitations

	Related Work
	Conclusion

	Federated Self-Supervised Learning of Multi-Sensor Representations
	Introduction
	Background
	Federated Learning
	Wavelet Transform

	Approach
	Scalogram-Signal Correspondence Learning
	Network Architecture
	Implementation Details

	Experiments
	Datasets and Preprocessing
	Results

	Conclusion

	Contrastive Learning of General-Purpose Audio Representations
	Introduction
	Approach
	Experiments
	Datasets and Tasks
	Model Architecture and Implementation Details
	Results

	Conclusion

	Differentiable Channel Reordering for Heterogeneous Signals
	Introduction
	Approach
	Learnable Channel Remapping
	CMSAugment: Shuffling and Masking Channels
	Network Architecture Design and Implementation

	Experiments
	Datasets
	Generalizing to Shuffled and Masked Channels
	Performance in Structured Masking Conditions
	Transfer Learning

	Conclusion

	Synthesizing and Reconstructing Missing Sensory Modalities
	Introduction
	Approach
	Autoencoder
	Adversarial Autoencoder
	Context Classification
	Model Architecture and Training
	Implementation Details

	Experiments
	ExtraSensory Dataset
	Performance Evaluation
	Results

	Related Work
	Conclusion

	Model Adaptation and Personalization
	Introduction
	Approach
	Problem Definition
	Unsupervised Model Adaptation
	Personalization

	Dataset and Pre-Processing
	Experiments
	Conclusion

	Unified Model for Cross-Domain Sensing Tasks
	Introduction
	Approach
	Problem Formulation
	Unified Sensor-based Multi-task, Multi-modal Learning
	Multi-task Contrastive Predictive Coding
	Semi-Supervised Learning for Sensing

	Experiments
	Tasks and Datasets
	Implementation Details
	Results

	Related Work
	Conclusion

	Conclusion
	Bibliography
	Acknowledgements
	Curriculum Vitae

