57,853 research outputs found

    The RAppArmor Package: Enforcing Security Policies in R Using Dynamic Sandboxing on Linux

    Get PDF
    The increasing availability of cloud computing and scientific super computers brings great potential for making R accessible through public or shared resources. This allows us to efficiently run code requiring lots of cycles and memory, or embed R functionality into, e.g., systems and web services. However some important security concerns need to be addressed before this can be put in production. The prime use case in the design of R has always been a single statistician running R on the local machine through the interactive console. Therefore the execution environment of R is entirely unrestricted, which could result in malicious behavior or excessive use of hardware resources in a shared environment. Properly securing an R process turns out to be a complex problem. We describe various approaches and illustrate potential issues using some of our personal experiences in hosting public web services. Finally we introduce the RAppArmor package: a Linux based reference implementation for dynamic sandboxing in R on the level of the operating system

    Global Grids and Software Toolkits: A Study of Four Grid Middleware Technologies

    Full text link
    Grid is an infrastructure that involves the integrated and collaborative use of computers, networks, databases and scientific instruments owned and managed by multiple organizations. Grid applications often involve large amounts of data and/or computing resources that require secure resource sharing across organizational boundaries. This makes Grid application management and deployment a complex undertaking. Grid middlewares provide users with seamless computing ability and uniform access to resources in the heterogeneous Grid environment. Several software toolkits and systems have been developed, most of which are results of academic research projects, all over the world. This chapter will focus on four of these middlewares--UNICORE, Globus, Legion and Gridbus. It also presents our implementation of a resource broker for UNICORE as this functionality was not supported in it. A comparison of these systems on the basis of the architecture, implementation model and several other features is included.Comment: 19 pages, 10 figure

    Phenomenology Tools on Cloud Infrastructures using OpenStack

    Get PDF
    We present a new environment for computations in particle physics phenomenology employing recent developments in cloud computing. On this environment users can create and manage "virtual" machines on which the phenomenology codes/tools can be deployed easily in an automated way. We analyze the performance of this environment based on "virtual" machines versus the utilization of "real" physical hardware. In this way we provide a qualitative result for the influence of the host operating system on the performance of a representative set of applications for phenomenology calculations.Comment: 25 pages, 12 figures; information on memory usage included, as well as minor modifications. Version to appear in EPJ

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Ellogon: A New Text Engineering Platform

    Full text link
    This paper presents Ellogon, a multi-lingual, cross-platform, general-purpose text engineering environment. Ellogon was designed in order to aid both researchers in natural language processing, as well as companies that produce language engineering systems for the end-user. Ellogon provides a powerful TIPSTER-based infrastructure for managing, storing and exchanging textual data, embedding and managing text processing components as well as visualising textual data and their associated linguistic information. Among its key features are full Unicode support, an extensive multi-lingual graphical user interface, its modular architecture and the reduced hardware requirements.Comment: 7 pages, 9 figures. Will be presented to the Third International Conference on Language Resources and Evaluation - LREC 200

    Scaling Virtualized Smartphone Images in the Cloud

    Get PDF
    Üks selle Bakalaureuse töö eesmärkidest oli Android-x86 nutitelefoni platvormi juurutamine pilvekeskkonda ja välja selgitamine, kas valitud instance on piisav virtualiseeritud nutitelefoni platvormi juurutamiseks ning kui palju koormust see talub. Töös kasutati Amazoni instance'i M1 Small, mis oli piisav, et juurutada Androidi virtualiseeritud platvormi, kuid jäi kesisemaks kui mobiiltelefon, millel teste läbi viidi. M1 Medium instance'i tüüp oli sobivam ja näitas paremaid tulemusi võrreldes telefoniga. Teostati koormusteste selleks vastava tööriistaga Tsung, et näha, kui palju üheaegseid kasutajaid instance talub. Testi läbiviimiseks paigaldasime Dalviku instance'ile Tomcat serveri. Pärast teste ühe eksemplariga, juurutasime külge Elastic Load Balancing ja automaatse skaleerimise Amazon Auto Scaling tööriista. Esimene neist jaotas koormust instance'ide vahel. Automaatse skaleerimise tööriista kasutasime, et rakendada horisontaalset skaleerimist meie Android-x86 instance'le. Kui CPU tõusis üle 60% kauemaks kui üks minut, siis tehti eelmisele identne instance ja koormust saadeti edaspidi sinna. Seda protseduuri vajadusel korrati maksimum kümne instance'ini. Meie teostusel olid tagasilöögid, sest Elastic Load Balancer aegus 60 sekundi pärast ning me ei saanud kõikide välja saadetud päringutele vastuseid. Serverisse saadetud faili kirjutamine ja kompileerimine olid kulukad tegevused ja seega ei lõppenud kõik 60 sekundi jooksul. Me ei saanud koos Load Balancer'iga läbiviidud testidest piisavalt andmeid, et teha järeldusi, kas virtualiseeritud nutitelefoni platvorm Android on hästi või halvasti skaleeruv.In this thesis we deployed a smartphone image in an Amazon EC2 instance and ran stress tests on them to know how much users can one instance bear and how scalable it is. We tested how much time would a method run in a physical Android device and in a cloud instance. We deployed CyanogenMod and Dalvik for a single instance. We used Tsung for stress testing. For those tests we also made a Tomcat server on Dalvik instance that would take the incoming file, the file would be compiled with java and its class file would be wrapped into dex, a Dalvik executable file, that is later executed with Dalvik. Three instances made a Tsung cluster that sent load to a Dalvik Virtual Machine instance. For scaling we used Amazon Auto Scaling tool and Elastic Load Balancer that divided incoming load between the instances
    corecore