
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Information Technology specialty

Kristiina Ritso

Scaling Virtualized Smartphone Images in the Cloud
Bachelor Thesis (6 EAP)

Supervisor: Satish Narayana Srirama, PhD
Co-Supervisor: Huber Flores, MSc

Author: ... “.....” May 2013

Supervisor: ... “.....” May 2013

Supervisor: ... “.....” May 2013

Allowed to defend

Professor: ... “.....” May 2013

TARTU 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/16270338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table of Contents
1. Introduction...4

2. State of The Art...6

2.1. Code Offloading...6

2.1.1. Research...8

2.1.2. Commercial Implementations..13

3. Background...15

3.1 Scaling And Scalability..15

3.2. Android...15

3.2.1 CyanogenMod..16

 3.3. Dalvik Virtual Machine...17

3.4. Amazon Elastic Compute Cloud...18

3.5. Amazon Elastic Load Balancing Tool19

3.6. Tsung...20

4. Problem Statement...21

4.1. Research Problem...21

5. Towards A Scalable Infrastructure For Code Offloading...........22

5.1 Setting Up An Instance In The Cloud......................................22

5.1.2. Building Isolated Dalvik Machine ..23

5.2. Benchmark Testing Android x86 ...24

5.3. Performance Testing Using Tsung...27

5.4. Scaling the Android x86 EC2 Instance...................................32

5.4.1. Adding Elastic Load Balancer With Auto Scaling.................32

5.4.2 Implementation’s Drawbacks...34

6. Conclusions And Future Possible Work....................................36

Virtualiseeritud nutitelefoni platvormi skaleerimine pilvekeskkonnas

..38

Licence..39

Bibliography..40

 Appendix A...43

1

Illustration Index
Figure 1: Application's flow with code offloading to Cloud. Method 1, 2 and 4 are executed in

device but method 3 is sent for remote execution..6

Figure 2: COFA architecture. On the server side, runs a modified Dalvik with server mode. On

the client side, Dalvik runs in client mode. Taken from [4]..8

Figure 3: The schematic overview of the Cuckoo's build process. The developer has to

implement remote service, and local service implementation. They generate Ant build and

dummy methods for remote execution. After building the installable apk file is generated.

Taken from [8]..11

Figure 4: Architecture of the experiment. Up to 24 clients send load to the load balancer

which then divides the load between the web roles. Taken from [14].....................................14

Figure 5: Android operating system major components. The Linux Kernel lies in the bottom.

Taken from [11]..16

Figure 6: Layers of Android . Taken from [20]...17

Figure 7: Directory’s hierarchy that is necessary for our solution to work...............................23

Figure 8: Tsung cluster generating load(T1, T2 and T3 are Tsung instances) and sending it to

Tomcat server in our Dalvik instance...28

Figure 9: Simultaneous users. Maximum user count was 240. The red line describes

connected users and the green line describes overall count of users.....................................29

Figure 10: Simultaneous users graph. Red line describes connected users and green line

overall count of user...30

Figure 11: M1 Medium instance's simultaneous users graph. Around 80th second the

instance is overloaded..31

Figure 12: Tsung Cluster generating load, sending it to Elastic Load Balancer (ELB) that is

balancing the load between instances. When the load increases, another Android-x86

instance is created...33

2

Index of Tables

Table 1 Average execution times of the tested methods. Methods were ran in the device and

then in the cloud Android instances..26

Table 2 Commands execution times in instances M1 Small and M1 Medium. Javac compiles

the .java file. Dx wraps the generated .class file into .dex and rund.sh executes the .dex file

...35

3

1. Introduction

Smartphones are getting more and more popular each day. Along with it, user requirements

rise too. Last year, in the third quarter, smartphones running on Android operating system had

75% of the market share [1]. People have the need for more powerful phones, but we have

certain restrictions, for example storage, battery and memory usage. This is where we could

make use of cloud computing. It would reduce cost and reliance on hardware and software,

because the computations are run in the cloud [2]. Cloud computing for mobile users would

bring benefits. Data and tasks would be kept in the cloud rather than in a physical device,

providing on-demand access [3]. This would save storage space, decrease memory usage and

save battery life. We will be discussing code offloading as this is an important part of this

thesis, because we can take the tests results, that will be carried out in this thesis, into

consideration when doing code offloading.

We will be setting up an Android image with Dalvik Virtual Machine (later referred to as

Dalvik VM) in Amazon Elastic Compute Cloud (later EC2) instance, test its performance

compared to a physical device and try to scale the instance using Amazon Elastic Load

Balancing tool and Auto Scaling. We will run ten different algorithms in the cloud and on a

physical android device then compare and analyze the result and later stress test a single

Android x86 image with Tsung. The tests that we will be carrying out will give us an

understanding how much load can one instance bear and how scalable our solution can be.

The result of this thesis are useful for the Cloud Computing Laboratory, institute of Computer

Science, Faculty of Mathematics and Computer Science, University of Tartu.

Chapter 2 consists of state of the art. It describes related work and the purpose of this thesis.

And describes a commercial implementation.

Chapter 3 describes background information about scaling, Android, Dalvik virtual machine,

Tsung, Amazon Elastic Compute Cloud and Amazon Elastic Load Balancing tool that are used

to solve the problem of this thesis.

Chapter 4 describes the problem statement and research problem.

4

Chapter 5 describes how to set up the environment towards solving the problem and tests that

were carried out, also an analyzis of the results we got.

Chapter 6 concludes the work and describes what could be done in the future.

Chapter 7 is an abstract in Estonian

5

2. State of The Art

2.1. Code Offloading

Taking cloud computing context as an example, code offloading means that large scale

applications can load balance their computations during heavy workload, it means sending

selected code to cloud for computations. Code offloading can be beneficial in applications

where there are little dependencies. We have to take into account that sending code to cloud,

getting back the response and merging takes time and when a part of code, that other methods

depend on, is sent for execution in the cloud, it may be inexpedient. It is recommended to send

large processing tasks for remote execution. Figure 1. shows the application’s flow with code

offloading to a cloud instance.

Figure 1: Application's flow with code offloading to Cloud. Method 1, 2 and 4 are

executed in device but method 3 is sent for remote execution

To get a better understanding of code offloading architecture we will give an example. Let us

assume we are doing some sort of computing and use Amazon Elastic Cloud Compute

instance as a physical mobile device’s clone.

6

1. We send a method to the cloud and invoke processing on Amazon’s instance

2. We continue tasks on device until we receive a response that remote process is finished

and pushed back to device

3. We will merge the remotely executed code with device’s code.

If we cannot continue with our tasks in the device then it would take up time due to network

latency and therefore it would make the process slower. Doing code offloading we have to

consider that, as well as deciding what methods are worth sending for remote execution and

which ones are not.

An architecture introduced by COFA [4], a client-server architecture where the server lies in a

powerful machine hosted over hight bandwidth line. They configured Dalvik so that it has

three modes, server, client and normal. When Dalvik is in normal mode the code will not be

offloaded and it will operate like an unmodified virtual machine. In client mode, it can make

requests to server and transfer off-loadable methods. They use Transmission Control Protocol

for communication between the client and the server. If a thread is called for remote execution,

it is passed to the server with description of its thread index and class descriptor. The thread

index helps the server to find the code in the apk file located in server. Figure 2. describes its

architecture.

7

In our implementation, we will send a Java file for execution in the Dalvik situated in Amazon

instance. We will be introducing COFA and other work done on code offloading in the next

subsection. We will also analyze and compare other related work.

2.1.1. Research

Previous work that can be mentioned is MAUI [5], CloneCloud [6], ThinkAir [7], Cuckoo [8],

COMET [9], ECOS [10] and COFA[4]. MAUI’s approach is using code annotations to

determine which methods to offload. Annotations are set within the source code during

development. The programmer annotates methods that should be taken into account for code

offloading. MAUI uses its optimization framework to decide which method to send for remote

execution. It measures network connectivity to the infrastructure and estimates its latency and

bandwidth. All that is taken into consideration when dealing with optimization problem. If

there is a disconnection, MAUI resumes code execution locally. However, MAUI did not

consider scaling. Each time a new application was developed a new server proxy also had to

8

Figure 2: COFA architecture. On the server side, runs a modified Dalvik with server

mode. On the client side, Dalvik runs in client mode. Taken from [4].

be configured. This makes scaling hard because we cannot seamlessly do it. In this thesis, we

will try to automatically scale out, this means we will use multiple independent instances

together and pass out the workload between them. Unlike MAUI, we do not have to configure

a new server proxy each time we add a new instance. Amazon Elastic Load Balancing tool

will spread the workload between identical instances that Auto Scaling tool creates.

Another notable paper is about CloneCloud. Its essence primarily relies on the application-

layer virtual machine (VM) side. [6]. CloneCloud is process based, each time a new

application is made, a new process has to be configured. Unlike MAUI, CloneCloud’s one

goal is taking programmer out of the application partitioning business, it aims to make this

procedure automatic. A chosen point of an independent thread is taken out of the program and

migrated to a device’s clone in the cloud. Eventually the thread returns with its remotely

created state and is migrated back to the original state. Like MAUI, mathematical optimizer

chooses these migration points. The partitioning part of CloneCloud is offline, it picks which

parts to migrate for remote execution and which are executed on mobile device. In this thesis,

like CloneCloud, we rely on application-layer level, we will be using Dalvik VM. In this thesis

we will be using CyanogenMod7 that is based on Android version 2.3 [13], unlike CloneCloud

that uses Android 1.5 Cupcake (application programming interface level 3). Android 1.5 was

released 30 April, 2009, and now, in the year 2013, has less than 0.1% devices distributed with

that version [11]. We will not be focusing on code offloading part as CloneCloud does, we

will test how much load can an Amazon instance bear and how scalable can it be.

Third considerable work is ThinkAir. It is a framework to increase smartphone’s capabilities

with cloud computing. ThinkAir addresses scalability issues and removes environmental

conditions that CloneCloud engenders by adapting online method of offloading. ThinkAir

provides a library to make it easy for developers to exploit the framework with minimal effort.

Like MAUI, ThinkAir uses code annotation. A part of the code is to be considered for remote

execution, a programmer simply annotates it with @Remote. This gives the developer more

control over what he wants or does not want to send for remote execution. ThinkAir code

generator takes this annotated part of code and generates wrappers and utility methods.

ThinkAir’s execution controller starts the profiler to provide data. It also decides whether to

9

execute the invocation remotely or not. If not, then execution is continued in the phone [6].

ThinkAir explores dynamic scaling of the computational power as well as the server side.

ThinkAir’s VM automatically scales computational power and depending on the user’s

requirements, it can allocate more than one VM for tasks. In this thesis, unlike ThinkAir that

uses Oracle’s Java VM, we will be using Dalvik VM and test out how scalable and time

consuming can that be.

Cuckoo is another framework which is implemented for better code offloading and is targeted

at Android. It provides a dynamic runtime system which decides whether to execute a piece of

code remotely or locally. Cuckoo also provides a programming model for mobile

environments which supports both, local and remote execution. This is useful because

smartphones may not always be connected to network, thus making cloud resources

unavailable. Cuckoo has two services, first one is Service Rewriter. Cuckoo builder is called

and has to be invoked before Java Builder and after Android Precompiler. It will rewrite

generated stub, so Cuckoo could decide at runtime if a method should be called for remote or

local execution. Second Cuckoo service is Remote Service Deriver. It generates an Ant build

file for building a Java Archive File (.jar) for remote execution. The jar file contains the

remote implementation [8]. Cuckoo differs from previously mentioned work because of its

services. Although sending a .jar file for execution can be less time consuming, still each time

a change is made in the code, the generation of Ant build file has to be repeated. Cuckoo

generates dummy methods that the programmer can change. This is similar to MAUI and

ThinkAir, where the methods that are annotated are sent for remote execution, in Cuckoo's

case they are the dummy methods. Figure 3. shows the schematic overview of the Cuckoo's

build process.

10

Cuckoo has a Resource Manager that runs on smartphone. The remote resource has to be

registered with the Resource Manager in order to the phone to recognize it. Once the resource

is registered it can be used by any application that uses Cuckoo framework. Cuckoo also

allows to collect remote resources from laptops and personal computers. Unlike ECOS, that

will be introduced later, Cuckoo is not secure, meaning anyone can access the remote code and

install any code to the system. This can be a problem when using Cuckoo framework, for

example for some kind of image manipulation in the remote location. If someone with bad

intentions has installed code onto the system that downloads that picture without the owner's

permission, it would be a serious issue.

COMET, Code Offload by Migrating Execution Transparently, is a runtime system for code

offloading. It is built on top of Dalvik VM and implements distributed shared memory (DSM),

that is applied for code offloading. COMET’s approach offers same benefits as specialized

offloading systems. COMET is similar to MAUI which enabled automated offloading. When

a connection is lost, COMET allows, like Cuckoo, computations to resume on a device.

Unlike previously mentioned work, the developer does not have to write the logic of sending

the code for remote execution. This sets a limitation to COMET, because it may decide to send

code for remote execution that is actually not necessary for computations. COMET handles

multiple-threaded environment by virtualizing threads across multiple endpoints. Similar to

MAUI and CloneCloud, they assign IDs for objects in the tracked sets which allows endpoints

to talk about shared objects [9].

11

Figure 3: The schematic overview of the Cuckoo's build process. The developer has to implement

remote service, and local service implementation. They generate Ant build and dummy methods for

remote execution. After building the installable apk file is generated. Taken from [8].

Another framework, ECOS, Practical Mobile Application Offloading for Enterprises, uses a

controller to leverage diverse compute resources. ECOS is focused on privacy and this is one

of the measures it takes into account when deciding where to offload code. ECOS is focused

on privacy, but its drawbacks are that it limits the resources used for remote execution.

Encrypted code can cause latency overhead. They transferred 15KB of unencrypted and

encrypted data for remote execution. With unencrypted data, they received the response in 0.3

seconds whereas with encrypted data, they received the response in 0.8 seconds. The decision

of securing has to be done by the contents of data that will be sent for remote execution. In

ECOS they statistically assigned security levels to applications and mobile devices. the Since

ECOS is enterprise-centric, it is understandable, because enterprise applications operate on

data which has strict privacy requirements. [5], [6], [7], [8], [8] Gave the understanding when

and how to do code offloading but they did not describe the impact that sending code for

offloading on a single remote instance may have [10]. ECOS introduced an idea that an

offload is assigned to a dedicated resource, for ensuring increased performance. In this paper

they do not mention scaling and issues it may cause.

An implementation based on MAUI was COFA, its difference was that instead annotating the

code like MAUI and ThinkAir, they took programmer out of the application partitioning part.

COFA's architecture was discussed in section 2.1.. They operate with application's binaries,

and their implementation makes repacking existing binaries on Google Play easily off-

loadable. Like MAUI, they have a profiler. On device's side it monitors battery consumption

as well as thread executions. On the application's side it monitors thread execution times, if

one takes up too much time, it is considered for remote execution. The profiler also monitors

network, when its quality is poor then the code is not offloaded.

Annotating code that is sent for remote execution gives developers the power to decide what to

execute locally and remotely. Like mentioned in [9] when the developer does not have to

write the offloading logic, some unnecessary computations can be sent for remote execution.

The profiler introduced by COFA could bring benefits when the annotation should be

automatic. When the network quality is poor or a thread will not process too long, then a local

execution should be considered. When doing code offloading, one should also think about

12

security. Cuckoo framework pointed out that this can have some consequences when

malicious users can access the remote system. ECOS tries to decrease these issues by

assigning security levels. Another topic to think about is how to decide how strong should the

encryption be, because it may cause latency overhead as described by ECOS. [8] and [9] only

deal with code offloading, but in our thesis we will be carrying out tests to get more

information about instance's load tolerance and scalability, these issues are not pointed out in

previously mentioned papers. In the next subsection we will be discussing one commercial

implementations that uses cloud computing capabilities to increase smartphone application’s

performance.

2.1.2. Commercial Implementations

One of commercial implementations was introduced by Danihelka and Kencl [14], interactive

3D services over Windows Azure. Although Windows Azure is ideal for building rapidly

scalable 3D environments, it is still hard to synchronize between several clients, due to cloud

operations and network delays. The idea behind this implementation was to manipulate a 3D

teapot in the cloud. Its architecture consists of several layers, 3D environment that is placed in

the cloud and accessible by multiple devices. They use Silverlight 5 technology because it

provides hardware-accelerated 3D graphics using Microsoft's toolset XNA. For cloud service

they use Windows Azure. For rendering code reuse between the web browser with Silverlight

and Windows Phone 7 they created a library to encapsulate difference between those two

platforms. Tests involved scalability, reliability and response latency by manipulating 3D

teapot with 24 different clients. Figure 4. shows the architecture of the experiment.

13

The clients were connected using 1 Mbps Internet. Simulation ran for 1 hour, starting with

only one teapot instance and later incrementally adding instances, always 2 per client. The

client instances were trying to connect to the web service every 100ms to synchronize the state

of a single object. By the time 6 instances were manipulating the synchronization got slower,

this means they could not see the image manipulations instantly. With 24 instances, there was

no trace of synchronization. With growing instances, latency becomes a bigger problem,

because it becomes less predictable and higher. [14]. In this experiment, they did not try

scaling but this may be a solution to make the synchronization process faster.

14

Figure 4: Architecture of the experiment. Up to 24 clients send load to the load balancer

which then divides the load between the web roles. Taken from [14]

3. Background

3.1 Scaling And Scalability

Scalability is a desirable attribute that has the ability to make applications or products to

function well when computing power or volume’s size is changed. Scaling is the procedure of

increasing the computing power. There are two types of scaling, horizontal and vertical.

Vertical scaling means that when the load increases, more processors and volumes are added

to extend processing capabilities. Horizontal scaling means that more processing nodes,

multiple independent computers, are added for extending the computing power [15] [16]. In

this thesis, we use horizontal scaling, adding more identical instances as the load increases.

Application is not scalable if it encounters performance problems after scaling. [17]. In the

next section we will describe Android operating system to get an overview of its architecture

and nature.

3.2. Android

Android is a mobile operating system that runs on top of Linux kernel relying on its core

system services like memory management, security, driver model etc. On top of kernel it has

customized Dalvik Virtual Machine [11]. We will explain the nature of Dalvik VM in a later

section. Kernel is a software that provides a layer between hardware and applications [18].

Android provides, with its core libraries, functionalities of Java. Figure 5. shows the major

components of Android operating system.

15

Android uses its own virtual machine, its runtime, which runtime manages memory. The last

one also manages process lifetimes. Android applications that are running in the background

will close when system needs memory. This is a bottleneck because sometimes there are too

many applications running in the background and this causes slowness in everyday

performance[12]. In this thesis we will use CyanogenMod that is a firmware based Android

Open Source Project. We will briefly look into CyanogenMod in the next subsection.

3.2.1 CyanogenMod

16

Figure 5: Android operating system major components. The Linux Kernel lies in the bottom. Taken

from [11].

In this thesis we are using CyanogenMod, it is a customized open source aftermarket firmware

for Android devices and it is based on Android operating system. [13]. The difference between

Android and CyanogenMod is that it is developed by a community. After Android version is

released, it will be customized, added some new features and ported into several, new and old,

devices. CyanogenMod is an alternative operating system for Android devices [19]. Like

Android, CyanogenMod also has Dalvik VM,we will discuss its nature in the next section.

3.3. Dalvik Virtual Machine

Instead of Oracle’s JVM, Android uses its own virtual machine named Dalvik. It is designed

to run on devices that have low memory. Every application runs in its own Dalvik virtual

machine instance, this requires Dalvik to be small. Figure 6. shows that Dalvik VM lies

between Linux process and Android application.

Figure 6: Layers of Android . Taken from [20].

Dalvik executes .dex files (Dalvik executable) which are optimized for minimal memory [11].

Android applications are stored as .apk-s (application package file) that include dex bytecode

and also resources. Apk file format is used to install middleware and application software on

Android operating system. [21]. Dalvik bytecode is designed so that it would make less

memory reads and writes and it has increased code density compared to Java bytecode [22].

17

It is possible to run Dalvik, just like a virtual machine, from a desktop system. First we have to

compile our Java language resources, then convert and combine .class files into DEX files1.

To run the code you need a bootclasspath script2 for Dalvik. The script is also available in

Appendix A. We will talk about how to setup the environment, including Dalvik VM, in

chapter 5. We will deploy Dalvik in Amazon Elastic Compute Cloud which will be introduced

it in the next subsection.

3.4. Amazon Elastic Compute Cloud

Amazon Elastic Compute Cloud (later EC2) is a web service that provides compute capacity

in the cloud. It allows to configure capacity with minimal effort and provides a complete

control over computing resources. EC2 has a virtual environment that allows us to create

instances and use web services. Its instances have variety of operating systems [23]. Amazon

EC2 has several features [23]:

1. Amazon Elastic Block Store - Allows storage of Amazon EC2 instances. Elastic Block

Store volumes are attached to the instances and persist independently from the life of

an instance. Volumes are automatically replicated on the backend. It also provides

snapshots that can be used as a starting point for a new instance. In this thesis we have

made a 60 GB Elastic Block Store volume for our instance.

2. Elastic IP Address - Static IP addresses for dynamic cloud computing. It allows to

mask instances and Availability Zone failures.

3. Amazon CloudWatch - Provides monitoring cloud applications and resources,

visibility of operational performance, CPU Utilization, disk read and writes and

network traffic.

1 https://github.com/kohviuba/scalingAndroidImages/blob/master/Wraping%20class%20file%20to
%20dex
2 https://github.com/kohviuba/scalingAndroidImages/blob/master/rund.sh

18

https://github.com/kohviuba/scalingAndroidImages/blob/master/rund.sh
https://github.com/kohviuba/scalingAndroidImages/blob/master/Wraping%20class%20file%20to%20dex
https://github.com/kohviuba/scalingAndroidImages/blob/master/Wraping%20class%20file%20to%20dex

4. Auto Scaling - Allows us to automatically scale EC2 instances according to the

conditions defined. Instances are seamlessly scaled up to maintain performance and

scaled down when the demand drops.

5. Elastic Load Balancing - Distributes incoming traffic across multiple EC2 instances. It

also detects unhealthy instances and automatically reroutes traffic from them.

We will be discussing about the last two features in the later section. Elastic Compute Cloud

has several different instance types, marked M1 and M3, with dissimilar specifications. First

generation M1 instances are low cost and with a balanced set of resources that are suitable for

many applications. Second generation M3 instances are for higher level of processing

performance. In this thesis we will use M1 Small instance, because this is with the least we

need, to deploy a smartphone image in the cloud. Its efficiency to handle workload will be

tested and discussed in a later chapter. In the next subsection we will talk about Amazon

Elastic Load Balancing tool that we will be using in this thesis to solve the scalability issues.

3.5. Amazon Elastic Load Balancing Tool

Amazon Elastic Load Balancing (ELB) Tool distributes incoming traffic and can detect the

health of an instance. It automatically reroutes traffic from unhealthy instances, it will resume

routing traffic in them when the instance becomes healthy again. Amazon Elastic Load

Balancing Tool can also be used in Amazon Private Virtual Cloud. This tool will be useful for

managing the scaling problem we have in this thesis. User makes a requests from the client

computer to ELB, and the load balancing tool seamlessly spreads the load between the

instances. Using this tool we can achieve more tolerant applications. In this thesis we will use

this tool and stress test the instance with Tsung, this will be discussed in the next subsection.

[23]

19

3.6. Tsung

Tsung is a load testing tool used to test scalability and performance. It is developed in Erlang.

Erlang is a functional programming language, it is made to support hundred thousands

lightweight processes in a single VM [24]. Erlang is concurrency-related language, writing

parallel programs is easy because there are no shared resources and parallel processes do not

have mutual exclusion [25]. Tsung can simulate huge number of users, we will use that to

simulate offloading code to cloud. We will deploy Tsung on 3 instances, 1 controller and 2

worker nodes. Tutorial how to deploy Tsung in a cluster is available in Github1.

1 https://gist.github.com/huberflores/2827890

20

https://gist.github.com/huberflores/2827890

4. Problem Statement

Smartphones have become more popular over the years, partly because we can do so much

more with them than just call and send text messages. We can use social networking services

like Facebook, Twitter and Foursquare, read news, listen to music and watch videos.

Smartphones are also replacing cameras and netbooks. People have the need to be in touch

with everything and everyone and use their smartphones for that, when their personal

computer or laptop is not around. With this increasing popularity people also have the need for

more powerful smartphones, but with increased power some problems arise, like battery life.

When we intensively use our smartphones we have to charge them daily. By offloading some

work to cloud we could increase battery life indicators and also make computing process

faster. The solution for increasing the computing capabilities, we could find in cloud

computing. Next we will be discussing about this thesis’ research problem.

4.1. Research Problem

Based on previous work we cannot make conclusions which instances to use for cloud

offloading and what kind of architecture the implementation should have and weather we

could scale an Android instance with x86 architecture. We are trying to figure out how much

time would we spare when doing code offloading and how scaling the instance could make the

process even faster. There are also drawbacks, for example network latency and cloud

instances’ load tolerance. We have to figure if our chosen instance will be sufficient in order to

achieve a more powerful performance. In this thesis we will be using Amazon EC2 instance to

test scaling and code offloading. The instance we use is M1 Small, it is sufficient enough for

deploying our test environment, its parameters are discussed in more detail in the next chapter.

Later we would change the instance type to M1 Medium and carry out the tests again. Another

aspect of the research problem is whether a virtualized smartphone machine is scalable enough

on the cloud when the load increases. In the next chapter we will set up a testing environment

and carry out several tests.

21

5. Towards A Scalable Infrastructure For Code Offloading

This chapter describes how to set up the environment for solving the problem stated in chapter

4. It also describes the tests that were made and analysis of their results. We will be setting up

a single Android instance and a server on it. With Tsung tests we will send a calculation

method to the Android instance’s server that will send the file for execution. Tsung will

simulate several users to test our instance’s workload tolerance. Later we will use Amazon’s

Load Balancing tool for scaling and managing the load. We will add two more instances that

are identical to our Android instance and have the same server on them.

5.1 Setting Up An Instance In The Cloud

In this section we describe the setup of Android image with x86 architecture. We will use this

instance to test how much faster is it to run the code in cloud. The code is first executed

locally in the instance, because this thesis does not focus on code offloading, so we will not be

fully implementing it in the boundaries of this thesis. First we had to create an instance in

Amazon. It is a rather simple procedure that can be carried out in EC2 Management Console.

We made a 64-bit Linux instance with 60GB of storage. The instance type is M1 Small, it has

1.7GiB memory and 1 EC2 Compute unit. [23]. For creating an instance see the Amazon

Elastic Compute Cloud tutorial 1 . After we had launched the instance, we deployed

CyanogenMod. The tutorial is available in Github2. We also had to get Android SDK for the

instance, it is available on Android Developers Page.3 There is a list of dependencies that had

to be installed before we could set up CyanogenMod7 [26]. Installing ia32-libs dependencies

caused some problems on Cloud. The solution to that was to enable installation of i386

packages. When deploying Android x86 on Cloud, we used Oracle’s Java 1.6.. Another

important point is that we need a certain hierarchy of the environment in order it to work.

Figure 7. shows the structure.

1 http :// docs . aws . amazon . com / AWSEC 2/ latest / UserGuide / EC 2_ GetStarted . html # EC 2_ LaunchInstance _ Linux

2https :// gist . github . com / huberflores /4687766
3 http :// developer . android . com / sdk / index . html

22

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
https://gist.github.com/huberflores/4687766
https://gist.github.com/huberflores/4687766
https://gist.github.com/huberflores/4687766
https://gist.github.com/huberflores/4687766
https://gist.github.com/huberflores/4687766
https://gist.github.com/huberflores/4687766
https://gist.github.com/huberflores/4687766
https://gist.github.com/huberflores/4687766
https://gist.github.com/huberflores/4687766
https://gist.github.com/huberflores/4687766
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#EC2_LaunchInstance_Linux

 Figure 7: Directory’s hierarchy that is necessary for our solution to work.

The tutorial in the appendix has a mistake, two directories android and bin must be made

under /environment not in the root folder. After initializing the repository and synchronizing it

we can move on to building an isolated Dalvik machine. We will describe it in the next

subsection.

5.1.2. Building Isolated Dalvik Machine

After setting up the CyanogenMod environment, we were able to build an isolated Dalvik

machine, so we could run tests in the cloud. The full tutorial is available in Github1. For

building Dalvik, we needed to be in the $HOME/CyanogenModBuild/android/system

directory. We chose full_x86-eng image for Dalvik. Once the environment was ready and

built, we had to create a bootclasspath script for launching Dalvik VM. It is available in the

Git repository2 and Appendix A. Now we had our basic test environment ready, we were able

to carry out tests on them that will be described and discussed in the next section. We added a

server to our instance after we had carried out the simple benchmarking tests on our instance
1 https://gist.github.com/huberflores/4714824
2 https :// github . com / kohviuba / scalingAndroidImages / blob / master / rund . sh

23

https://github.com/kohviuba/scalingAndroidImages/blob/master/rund.sh
https://github.com/kohviuba/scalingAndroidImages/blob/master/rund.sh
https://github.com/kohviuba/scalingAndroidImages/blob/master/rund.sh
https://github.com/kohviuba/scalingAndroidImages/blob/master/rund.sh
https://github.com/kohviuba/scalingAndroidImages/blob/master/rund.sh
https://github.com/kohviuba/scalingAndroidImages/blob/master/rund.sh
https://github.com/kohviuba/scalingAndroidImages/blob/master/rund.sh
https://github.com/kohviuba/scalingAndroidImages/blob/master/rund.sh
https://github.com/kohviuba/scalingAndroidImages/blob/master/rund.sh
https://github.com/kohviuba/scalingAndroidImages/blob/master/rund.sh
https://github.com/kohviuba/scalingAndroidImages/blob/master/rund.sh
https://github.com/kohviuba/scalingAndroidImages/blob/master/rund.sh
https://github.com/kohviuba/scalingAndroidImages/blob/master/rund.sh
https://github.com/kohviuba/scalingAndroidImages/blob/master/rund.sh
https://github.com/kohviuba/scalingAndroidImages/blob/master/rund.sh
https://github.com/kohviuba/scalingAndroidImages/blob/master/rund.sh
https://github.com/kohviuba/scalingAndroidImages/blob/master/rund.sh
https://gist.github.com/huberflores/4714824

and in our smartphone. The server is necessary for stress testing with Tsung. Its

implementation will be described in the next section along side with the tests carried out on

the phone and on the instance.

5.2. Benchmark Testing Android x86

In this subsection we will compare and contrast the results of the tests that were ran on

Android-x86 image and on a physical device. The device we used was Samsung Galaxy S II

with Android 4.1 Jelly Bean. It has 1 GB of RAM, Dual-core 1.2 GHz Cortex-A9 CPU. [27].

After testing the M1 Small instance, we changed its type to M1 Medium and carried out the

tests again. M1 Medium instance has 3.75Gib memory, 2 EC2 Compute Units and supports

both, 32-bit and 64-bit platforms. We had 10 methods, we ran each of them ten times in the

cloud and on the device and marked down their execution time in both cases. In these tests we

did not consider the time the method is sent to cloud. The code of the methods can be seen in a

Github repository1 and Appendix A, here are short descriptions of the methods:

1. IsPrime - This method takes an integer array and iterates through it. If an element of

the array is a prime number, then it prints out “ [number] is prime”, otherwise

“[number] is not prime”.

2. PrimeFactors - This method takes an integer array with 12 elements in them and

iterates through it, calculates every element’s prime factors and prints them out.

3. BubbleSort - This method takes an integer array with a length of 10 000. Each element

is a random number between 1 and 1 000 000. It sorts the array using bubble sort

algorithm.

4. MultiplyMatrices - This method takes 16x16 matrices and multiplies them and after

that prints out the new matrix.

1 https :// github . com / kohviuba / scalingAndroidImages / tree / master / methods

24

https://github.com/kohviuba/scalingAndroidImages/tree/master/methods
https://github.com/kohviuba/scalingAndroidImages/tree/master/methods
https://github.com/kohviuba/scalingAndroidImages/tree/master/methods
https://github.com/kohviuba/scalingAndroidImages/tree/master/methods
https://github.com/kohviuba/scalingAndroidImages/tree/master/methods
https://github.com/kohviuba/scalingAndroidImages/tree/master/methods
https://github.com/kohviuba/scalingAndroidImages/tree/master/methods
https://github.com/kohviuba/scalingAndroidImages/tree/master/methods
https://github.com/kohviuba/scalingAndroidImages/tree/master/methods
https://github.com/kohviuba/scalingAndroidImages/tree/master/methods
https://github.com/kohviuba/scalingAndroidImages/tree/master/methods
https://github.com/kohviuba/scalingAndroidImages/tree/master/methods
https://github.com/kohviuba/scalingAndroidImages/tree/master/methods
https://github.com/kohviuba/scalingAndroidImages/tree/master/methods
https://github.com/kohviuba/scalingAndroidImages/tree/master/methods

5. Quicksort - This method takes an integer array with 1 000 000 elements. Each element

is a random number between 1 and 100 000 000. The array is sorted using Quicksort

algorithm

6. FloydWarshall - This method takes a 16x16 matrix and finds a shortest path in a

weighted graph using Floyd-Warshall algorithm

7. Fibo - this method calculates Fibonacci numbers from 0 to 200000.

8. NQueens - This method is an implementation of the n-Queens problem on 8x8

chessboard.

9. TowersOfHanoi - This method solves the Towers of Hanoi problem.

We intentionally use big numbers for calculations so the difference would come out clearly.

The full tables with the test results are in Github1 and Appendix A. Here we bring out the

average result of each test. Table 1. represents the results.

1 https://github.com/kohviuba/scalingAndroidImages/tree/master/methods

25

https://github.com/kohviuba/scalingAndroidImages/tree/master/methods

Method Name Result in M1
Small

(milliseconds)

Result in M1
Medium

(milliseconds)

 Result in the
device(millisecon

ds)

IsPrime 4776.0844 2395.7121 5433.225

PrimeFactors 29943.0607 15950.0059 7145.987

BubbleSort 6846.0144 3989.3402 2895.652

MultiplyMatrices 0.1931 0.1818 0.7382

Quicksort 2518.9266 1393.3065 1616.7306

FloydWarshall 3.8956 3.3951 94.4131

Fibo 198.2832 98.8443 81.4402

NQueens 88949.3576 77818.2227 11509.5300

TowersOfHanoi 124.0893 22.981 211.9660

GreatestCommon
Divisor

0.0144 0.0128 0.0389

Table 1. Average execution times of the tested methods. Methods were ran in the device and

then in the cloud Android instances.

Although some methods ran faster on a device than on a cloud instance, compared to M1

Medium instance, it would be beneficial to run computations in the cloud. M1 Small instance

stayed slow for our calculations. For detecting how much load can each instance bear we will

do some stress and performance testing using Tsung, we also added a Apache Tomcat server

on our Android instance, this test case is described in the next subsection.

26

5.3. Performance Testing Using Tsung

This section describes the tests we ran with Tsung and their results. For stress testing we set up

a cluster with three Tsung images. Tutorial on how to deploy Tsung in a cluster can be found

in Github1. We had to configure them so, that there would be one controller and two worker

instances. Each Tsung instance had to have other instances public keys in order to

communicate via SSH. The controller node has a configuration file2, which is available in

Appendix A, that makes a connection with the worker nodes, sets the server, the request and

the number of clients. In the Dalvik instance, we set up an Apache Tomcat server. Its servlet

takes Tsung’s uploaded Java file, compiles it and wraps the class file into a dex file and then

executes it with Dalvik. The code for the servlet can be seen in a Git repository3 and Appendix

A. When setting up the environment we had to bare in mind that in order to write and execute

files we have to give certain permissions for the catalog where the uploaded files will be

written and executed. Figure 8. shows the architecture of our implementation.

1 https://gist.github.com/huberflores/2827890
2 https :// github . com / kohviuba / scalingAndroidImages / blob / master / Tsung %20 tests / example . xml
3 https :// github . com / kohviuba / scalingAndroidImages / tree / master / Tsung %20 tests / webandroid

27

https://github.com/kohviuba/scalingAndroidImages/tree/master/Tsung%20tests/webandroid
https://github.com/kohviuba/scalingAndroidImages/tree/master/Tsung%20tests/webandroid
https://github.com/kohviuba/scalingAndroidImages/tree/master/Tsung%20tests/webandroid
https://github.com/kohviuba/scalingAndroidImages/tree/master/Tsung%20tests/webandroid
https://github.com/kohviuba/scalingAndroidImages/tree/master/Tsung%20tests/webandroid
https://github.com/kohviuba/scalingAndroidImages/tree/master/Tsung%20tests/webandroid
https://github.com/kohviuba/scalingAndroidImages/tree/master/Tsung%20tests/webandroid
https://github.com/kohviuba/scalingAndroidImages/tree/master/Tsung%20tests/webandroid
https://github.com/kohviuba/scalingAndroidImages/tree/master/Tsung%20tests/webandroid
https://github.com/kohviuba/scalingAndroidImages/tree/master/Tsung%20tests/webandroid
https://github.com/kohviuba/scalingAndroidImages/tree/master/Tsung%20tests/webandroid
https://github.com/kohviuba/scalingAndroidImages/tree/master/Tsung%20tests/webandroid
https://github.com/kohviuba/scalingAndroidImages/tree/master/Tsung%20tests/webandroid
https://github.com/kohviuba/scalingAndroidImages/tree/master/Tsung%20tests/webandroid
https://github.com/kohviuba/scalingAndroidImages/tree/master/Tsung%20tests/webandroid
https://github.com/kohviuba/scalingAndroidImages/tree/master/Tsung%20tests/webandroid
https://github.com/kohviuba/scalingAndroidImages/tree/master/Tsung%20tests/webandroid
https://github.com/kohviuba/scalingAndroidImages/tree/master/Tsung%20tests/webandroid
https://github.com/kohviuba/scalingAndroidImages/tree/master/Tsung%20tests/webandroid
https://github.com/kohviuba/scalingAndroidImages/blob/master/Tsung%20tests/example.xml
https://github.com/kohviuba/scalingAndroidImages/blob/master/Tsung%20tests/example.xml
https://github.com/kohviuba/scalingAndroidImages/blob/master/Tsung%20tests/example.xml
https://github.com/kohviuba/scalingAndroidImages/blob/master/Tsung%20tests/example.xml
https://github.com/kohviuba/scalingAndroidImages/blob/master/Tsung%20tests/example.xml
https://github.com/kohviuba/scalingAndroidImages/blob/master/Tsung%20tests/example.xml
https://github.com/kohviuba/scalingAndroidImages/blob/master/Tsung%20tests/example.xml
https://github.com/kohviuba/scalingAndroidImages/blob/master/Tsung%20tests/example.xml
https://github.com/kohviuba/scalingAndroidImages/blob/master/Tsung%20tests/example.xml
https://github.com/kohviuba/scalingAndroidImages/blob/master/Tsung%20tests/example.xml
https://github.com/kohviuba/scalingAndroidImages/blob/master/Tsung%20tests/example.xml
https://github.com/kohviuba/scalingAndroidImages/blob/master/Tsung%20tests/example.xml
https://github.com/kohviuba/scalingAndroidImages/blob/master/Tsung%20tests/example.xml
https://github.com/kohviuba/scalingAndroidImages/blob/master/Tsung%20tests/example.xml
https://github.com/kohviuba/scalingAndroidImages/blob/master/Tsung%20tests/example.xml
https://github.com/kohviuba/scalingAndroidImages/blob/master/Tsung%20tests/example.xml
https://github.com/kohviuba/scalingAndroidImages/blob/master/Tsung%20tests/example.xml
https://github.com/kohviuba/scalingAndroidImages/blob/master/Tsung%20tests/example.xml
https://github.com/kohviuba/scalingAndroidImages/blob/master/Tsung%20tests/example.xml
https://github.com/kohviuba/scalingAndroidImages/blob/master/Tsung%20tests/example.xml
https://github.com/kohviuba/scalingAndroidImages/blob/master/Tsung%20tests/example.xml
https://gist.github.com/huberflores/2827890

Figure 8: Tsung cluster generating load(T1, T2 and T3 are Tsung

instances) and sending it to Tomcat server in our Dalvik instance.

We used Tsung recorder to write a user scenario. We put Tsung recorder listening to a port,

opened a web browser and configured a new proxy and went to a page we needed to record.

[24]. We uploaded a file, on our local computer’s browser, in that page and sent it to the

server. After recording the scenario we used the output in our configuration file. The usage of

this file can be seen in the Github configuration file 7. In our first test we had one arrival phase,

that lasted for 2 minutes. Each second we added 2 users, so in total there was 240 users added.

The count of finished users was 239. Figure 9. shows that the instance can handle that amount

of users simultaneously. The duration of user’s session was 16 minutes and 55 seconds which

is clearly a lot of time. Full reports and graphs can be seen in the Github repository1 and

Appendix A and the meaning behind the statistics can be found out from Tsung’s user manual2.

1 https://github.com/kohviuba/scalingAndroidImages/tree/master/Tsung%20tests/stats
2 http :// tsung . erlang - projects . org / user _ manual . html # htoc 72

28

http://tsung.erlang-projects.org/user_manual.html#htoc72
http://tsung.erlang-projects.org/user_manual.html#htoc72
http://tsung.erlang-projects.org/user_manual.html#htoc72
http://tsung.erlang-projects.org/user_manual.html#htoc72
http://tsung.erlang-projects.org/user_manual.html#htoc72
http://tsung.erlang-projects.org/user_manual.html#htoc72
http://tsung.erlang-projects.org/user_manual.html#htoc72
http://tsung.erlang-projects.org/user_manual.html#htoc72
http://tsung.erlang-projects.org/user_manual.html#htoc72
http://tsung.erlang-projects.org/user_manual.html#htoc72
http://tsung.erlang-projects.org/user_manual.html#htoc72
http://tsung.erlang-projects.org/user_manual.html#htoc72
http://tsung.erlang-projects.org/user_manual.html#htoc72
http://tsung.erlang-projects.org/user_manual.html#htoc72
http://tsung.erlang-projects.org/user_manual.html#htoc72
http://tsung.erlang-projects.org/user_manual.html#htoc72
http://tsung.erlang-projects.org/user_manual.html#htoc72
http://tsung.erlang-projects.org/user_manual.html#htoc72
https://github.com/kohviuba/scalingAndroidImages/tree/master/Tsung%20tests/stats

Figure 9: Simultaneous users. Maximum user count was 240. The red line describes

connected users and the green line describes overall count of users.

Since this load seemed to be tolerable for the instance, despite the time spent on the session,
we decided to increase it by adding more users. In this test, we added 3 users every second. 25
of the users got the response that request timed out. The user’s session lasted for 18 minutes
and 44 seconds. Figure 10. shows the simultaneous users graph.

29

Figure 10: Simultaneous users graph. Red line describes connected users and green line overall

count of user.

As seen from the Figure 10. since the 80 second the load becomes too big, there are less

connected users than overall users. The connected users count starts to drop around 300 users,

so we assume, based on previous graphs and tests, that one Android instance can bear

maximum 300 users. When carrying out the same tests with M1 Medium instance, we noticed

that it could only bear 220 users. This may be caused by changing the instance's type. We were

unfortunately unable to trace back the problem. Figure 11. shows the simultaneous users

graph. Every second there was added 2 users and the test lasted for 120 seconds.

30

When we were carrying out this test in M1 Medium instance, the server loaded itself until the

tests finished, when entered via web browser. During the test, instance's CPU was 100% . This

may have been one of the problems why there is little load tolerance. We will try to increase

the tolerance by scaling the instance and then carrying out the tests again. We set up Elastic

Load Balancing tool, and then run the tests again. These will be discussed in the next section.

31

Figure 11: M1 Medium instance's simultaneous users graph. Around 80th second the instance is

overloaded

5.4. Scaling the Android x86 EC2 Instance

In this subsection we will set up two identical Amazon instances, add an Elastic Load

Balancer, scale the instance with Auto Scaling tool when load gets bigger and run Tsung tests,

that were described in section 5.3., again. For ELB we had to add at least one instance more in

addition to our Android-x86 because this tool can be used with two or more instances. For

making identical instances we first need to create a new Amazon Machine Image (AMI) of our

Android instance. This is a rather simple procedure and can be carried out in the EC2

Management Console. By right-clicking on the selected image, we can choose “Create Image

(EBS AMI)” from the menu. Once the procedure is finished, the new AMI will be available

under “Images” section in the left side panel of the Management Console. We will create new

instances in the same availability zone as our main instance, but Elastic Load Balancer tool

can manage instances in different availability zones, so it is not compulsory to create them in

the same zone.

5.4.1. Adding Elastic Load Balancer With Auto Scaling

Once we have our instances running, we can add Elastic Load Balancer tool for load

managing. A guide for setting up Elastic Load Balancer can be found in Amazon

documentation1. For right communication between the ELB and back-end server, we need to

set server timeout for 60 seconds [28]. Once the ELB is created, we can verify that the

description matches our specifications by clicking on the load balancer. When instances has

been registered and are in service, we can test our load balancer to check that it works as

needed by copying the DNS name of the load balancer on our browser address field. If the

balancer is working correctly one should see the back-end server’s default page.

Next we set up Auto Scaling tool. It will automatically scale our instances when the load

increases and the ELB will divide it between the new instances. Figure 12. shows our

1
http :// docs . aws . amazon . com / ElasticLoadBalancing / latest / DeveloperGuide / UserScenariosForEC 2. html

32

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/UserScenariosForEC2.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/UserScenariosForEC2.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/UserScenariosForEC2.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/UserScenariosForEC2.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/UserScenariosForEC2.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/UserScenariosForEC2.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/UserScenariosForEC2.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/UserScenariosForEC2.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/UserScenariosForEC2.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/UserScenariosForEC2.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/UserScenariosForEC2.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/UserScenariosForEC2.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/UserScenariosForEC2.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/UserScenariosForEC2.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/UserScenariosForEC2.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/UserScenariosForEC2.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/UserScenariosForEC2.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/UserScenariosForEC2.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/UserScenariosForEC2.html

improved implementation that includes in the section 5.3. described Tsung cluster and Dalvik

instance with Tomcat server.

Figure 12: Tsung Cluster generating load, sending it to Elastic Load Balancer

(ELB) that is balancing the load between instances. When the load increases,

another Android-x86 instance is created.

 For setting up Auto Scaling tool, see the AWS documentation1. In order this tool to work

properly we had to add paths to Java JDK and Auto Scaling tool directory respectively. The

guide to add them is also in the AWS documentation 1. Once the setup has been done, we can

create a launch configuration. The launch configuration’s instance id in our case is ami-

978d9ae3 and instance type is M1 Small. After we had created the launch configuration, we

also had to create an Auto Scaling group. We put the minimum size of instances 2 and

maximum 10. While creating the group, we also had to describe the load balancer that we

wanted to attach. For scaling out we had to define a scaling policy that will add one instance

with a cool-down of 30 seconds. When the policy is created, we will add an alarm, so that

1 http :// docs . aws . amazon . com / AWSEC 2/ latest / UserGuide / using - auto - scaling - elb . html

33

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-auto-scaling-elb.html

when after 60 seconds, CPU is higher than 60%, our scaling policy will be fired. For scaling

down we also had to make a policy which removes an instance when its CPU is less than 40%.

Alarms can be created from the EC2 Management console with those defined policies as well

as from the command line interface. While executing the Tsung tests again, now with a

Amazon Load Balancing tool dividing load between instances, we ran into a problem. Like

seen from the results of the tests that were ran in section 5.3., getting response back takes time.

Our problem was, that the Amazon Load Balancing tool has a session timeout in 60 seconds

and it cannot be configured. We were able to see that when the load increased, the scaling

policy was fired and new instances added. The load was divided between the healthy

instances. Because of the timeout, we could not get relative statistics to conclude how much

more load could the instances bear and how scalable the virtualized smartphone image is.

Drawbacks of our implementation, these will be discussed in the next subsection.

5.4.2 Implementation’s Drawbacks

In this section we will talk about the drawbacks we had with our implementation, that could

not give us proper test results for making conclusion. In our servlet implementation, we wrote

the user’s uploaded Java file to disk for later execution. After simultaneously writing files on

the disk we also had to compile them with javac. This operation raised the CPU usage to

100%, thus making it slow. When we ran these load tests against a single Android-x86

instance, without ELB balancing the load, it took time to compile, wrap the .class file in dex

and execute it with Dalvik and get the response back. We measured the time how much each

command took time. We used for this test our MultiplyMatrices method and ran them in M1

small and M1 Medium instance. We ran each command 10 times, here we bring out the

results' average. tests results are available in Github1 and in Appendix A. Table 2 shows the

results of our test.

1 https://github.com/kohviuba/scalingAndroidImages/blob/master/Execution%20time%20test%20-

%20Sheet1.pdf

34

https://github.com/kohviuba/scalingAndroidImages/blob/master/Execution%20time%20test%20-%20Sheet1.pdf
https://github.com/kohviuba/scalingAndroidImages/blob/master/Execution%20time%20test%20-%20Sheet1.pdf

Command M1 Small M1 Medium

javac 3.1558 1.3574

dx 1.5415 0.6489

rund.sh 0.105 0.2279

Table 2. Commands execution times in instances M1 Small and M1 Medium. Javac compiles

the .java file. Dx wraps the generated .class file into .dex and rund.sh executes the .dex file

Like we can see, compiling Java takes a little over 3 seconds in instance M1 small, and when

running multiple compilations at the same time, makes it even slower. Although the process

got faster when we deployed the Elastic Load Balancer and Auto Scaling, but then we had

another drawback that was the ELB’s timeout. It cut down our responses after 60 seconds

because within this time, we had not got back responses to our requests. We were able to see

that the Android images were scaled nicely as the load increased, but we could not get the

result, how much users could the instances bare, when instances are scaled horizontally.

Because of this drawback we did not try scaling with M1 Medium instance.

35

6. Conclusions And Future Possible Work

One of the goals of this thesis was to deploy an Android-x86 image to an Amazon M1 Small

instance and to find out whether this instance is sufficient enough for code offloading, how

much load can it bear. Another goal was to find out how scalable is an Android-x86 image. In

conclusion we are able to say that an Amazon instance M1 Small is sufficient to deploy an

Android-x86 image, but our tests that were carried out showed that it is slower than a physical

device for running computations and bearing only 300 simultaneous users.

Tsung load tests were carried out and we were able to see, how many concurrent users can use

the instance. A server for uploading a file and sending it for execution to our Dalvik instance

was also implemented. An Amazon Elastic Load Balancer tool was used together with Auto

Scaling. The load balancer divided workload between instances. If one instance's CPU raised

to 60% another instance was made and rest of the load was sent there. This procedure was

repeated if necessary and up to 10 instances made. Although we were able to see that with our

implementation, when the workload increased, more working nodes were added, it is not

sufficient for making a conclusion whether a smartphone image is scalable, because we had

several drawbacks. The Elastic Load balancer tool had a timeout of 60 seconds and that cut off

our requests, so although we were able to get some responses back, we did not get enough

relevant information to make any conclusions. These drawbacks will be taken into account

and are adequate for future work. When doing code offloading we should think how to handle

storing the code, that was sent for remote execution, while we compile and execute it. The

Amazon tools that we used in this thesis made the implementation of scaling simple and

understandable.

For future work the implementation of a servlet we used could be improved, for example

instead writing the incoming file to disk we could handle it by writing it into memory. Another

possibility is to think maybe simply compiling and running the classes with Java instead of

Dalvik. Because we did not mainly focus on the code offloading side, the implementation

needs optimization. This could lead to better test results. Right now, when the server receives

36

a file, it writes it to the disk, then compiles it, wraps the generated .class file into dex and

executes it with Dalvik. Compiling Java classes is rather slow, especially when there are

several Java compilers running. For better offloading results, in the future we could use Java

Compiler API [29] to compile parts of the code. Another approach would be sending a file that

is already wrapped in dex for remote execution.

37

Virtualiseeritud nutitelefoni platvormi skaleerimine
pilvekeskkonnas

Bakalaureusetöö (6 EAP)

Kristiina Ritso

Resümee

Üks selle Bakalaureuse töö eesmärkidest oli Android-x86 nutitelefoni platvormi juurutamine

pilvekeskkonda ja välja selgitamine, kas valitud instance on piisav virtualiseeritud nutitelefoni

platvormi juurutamiseks ning kui palju koormust see talub. Töös kasutati Amazoni instance'i

M1 Small, mis oli piisav, et juurutada Androidi virtualiseeritud platvormi, kuid jäi kesisemaks

kui mobiiltelefon, millel teste läbi viidi. M1 Medium instance'i tüüp oli sobivam ja näitas

paremaid tulemusi võrreldes telefoniga.

Teostati koormusteste selleks vastava tööriistaga Tsung, et näha, kui palju üheaegseid

kasutajaid instance talub. Testi läbiviimiseks paigaldasime Dalviku instance'ile Tomcat

serveri. Pärast teste ühe eksemplariga, juurutasime külge Elastic Load Balancing ja

automaatse skaleerimise Amazon Auto Scaling tööriista. Esimene neist jaotas koormust

instance'ide vahel. Automaatse skaleerimise tööriista kasutasime, et rakendada

horisontaalset skaleerimist meie Android-x86 instance'le. Kui CPU tõusis üle 60% kauemaks

kui üks minut, siis tehti eelmisele identne instance ja koormust saadeti edaspidi sinna. Seda

protseduuri vajadusel korrati maksimum kümne instance'ini. Meie teostusel olid tagasilöögid,

sest Elastic Load Balancer aegus 60 sekundi pärast ning me ei saanud kõikide välja

saadetud päringutele vastuseid. Serverisse saadetud faili kirjutamine ja kompileerimine olid

kulukad tegevused ja seega ei lõppenud kõik 60 sekundi jooksul. Me ei saanud koos Load

Balancer'iga läbiviidud testidest piisavalt andmeid, et teha järeldusi, kas virtualiseeritud

nutitelefoni platvorm Android on hästi või halvasti skaleeruv.

38

Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Kristiina Ritso (date of birth: 15/07/1989), herewith grant the University of Tartu a free

permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public, including

for addition to the DSpace digital archives until expiry of the term of validity of the

copyright, and

1.2. make available to the public via the web environment of the University of Tartu, including

via the DSpace digital archives until expiry of the term of validity of the copyright,

Scaling Virtualized Smartphone Images In the Cloud

supervised by Satish Narayana Srirama, PhD and Huber Raul Flores Macario,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 13/05/2013

39

Bibliography

[1] - “Android Marks Fourth Anniversary

Since Launch with 75.0% Market Share in

Third Quarter, According to IDC”

URL: http :// www . idc . com / getdoc . jsp ?

containerId = prUS 23771812#. UREd 6 eninz 4

last visited: 05.01.2013

[2] Cloud Computing and Smartphones

URL:

http :// cloudtimes . org /2011/03/01/ cloud -

computing - and - smartphones / last visited:

06.01.2013

[3] Mobile cloud computing URL:

http :// en . wikipedia . org / wiki / Mobile _ cloud _ co

mputing] last visited: 02.02.2013

[4] Deepak Shivarudrappa, MingLung Chen,

Shashank Bharadwaj URL:

https://bitbucket.org/shashank/shashank.bitb

ucket.org/src/851f08735551/projects/cu/CO

FA.pdf last visited: 06.05.2013

[5] Eduardo Cuervo , Aruna

Balasubramanian, Dae-ki Cho,

Alec Wolman , Stefan Saroiu , Ranveer

Chandra , Paramvir Bahl.

MAUI: making smartphones last longer with

code offload. Duke University, University of

Massachusetts Amherst, UCLA, Microsoft

Research ACM, 2010

[6] Byung-Gon Chun, Mayur Naiak,

Sunghwan Ihm, Petros Maniatis, Ashwin

Patti . CloneCloud: Elastic Execution

between Mobile Device and Cloud.

Proceeding EuroSys '11 Proceeding of the

sixth conference on Computer systems Pages

301-314

[7] Sokol Kosta, Andrius Aucinas, Pan Hui,

Richard Mortier and Xinwen Zhang

ThinkAir: Dynamic resource allocation and

parallel execution in cloud for mobile code

offloading

[8] Roelof Kemp, Nicholas Palmer, Thilo

Kielmann, and Henri Bal. Cuckoo: a

Computation Offloading Framework

for Smartphones. URL:

www.cs.vu.nl/~rkemp/papers/kemp-

mobicase2010.pdf last visited: 03.05.2013

[9] COMET COMET: Code Offload by

Migrating Execution Transparently, Mark S.

Gordon†,D. Anoushe Jamshidi, Scott

Mahlke, Z. Morley Mao, Xu Chen

OSDI '12 Proceeding of the 10th USENIX

conference on Operating Systems Design

and Implementation Pages 93-106

[10] Aaron Gember, Chris Dragga, Aditya

Akella. E COS: Practical Mobile Application

Offloading for Enterprises Hot-ICE '12

Proceedings of the 2nd USENIX conference

on Hot Topics in Management of Internet,

40

http://www.cs.vu.nl/~rkemp/papers/kemp-mobicase2010.pdf
http://www.cs.vu.nl/~rkemp/papers/kemp-mobicase2010.pdf
http://en.wikipedia.org/wiki/Mobile_cloud_computing
http://en.wikipedia.org/wiki/Mobile_cloud_computing
http://en.wikipedia.org/wiki/Mobile_cloud_computing
http://en.wikipedia.org/wiki/Mobile_cloud_computing
http://en.wikipedia.org/wiki/Mobile_cloud_computing
http://en.wikipedia.org/wiki/Mobile_cloud_computing
http://en.wikipedia.org/wiki/Mobile_cloud_computing
http://en.wikipedia.org/wiki/Mobile_cloud_computing
http://en.wikipedia.org/wiki/Mobile_cloud_computing
http://en.wikipedia.org/wiki/Mobile_cloud_computing
http://en.wikipedia.org/wiki/Mobile_cloud_computing
http://en.wikipedia.org/wiki/Mobile_cloud_computing
http://en.wikipedia.org/wiki/Mobile_cloud_computing
http://en.wikipedia.org/wiki/Mobile_cloud_computing
http://en.wikipedia.org/wiki/Mobile_cloud_computing
http://en.wikipedia.org/wiki/Mobile_cloud_computing
http://cloudtimes.org/2011/03/01/cloud-computing-and-smartphones/
http://cloudtimes.org/2011/03/01/cloud-computing-and-smartphones/
http://cloudtimes.org/2011/03/01/cloud-computing-and-smartphones/
http://cloudtimes.org/2011/03/01/cloud-computing-and-smartphones/
http://cloudtimes.org/2011/03/01/cloud-computing-and-smartphones/
http://cloudtimes.org/2011/03/01/cloud-computing-and-smartphones/
http://cloudtimes.org/2011/03/01/cloud-computing-and-smartphones/
http://cloudtimes.org/2011/03/01/cloud-computing-and-smartphones/
http://cloudtimes.org/2011/03/01/cloud-computing-and-smartphones/
http://cloudtimes.org/2011/03/01/cloud-computing-and-smartphones/
http://cloudtimes.org/2011/03/01/cloud-computing-and-smartphones/
http://cloudtimes.org/2011/03/01/cloud-computing-and-smartphones/
http://cloudtimes.org/2011/03/01/cloud-computing-and-smartphones/
http://cloudtimes.org/2011/03/01/cloud-computing-and-smartphones/
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UREd6eninz4
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UREd6eninz4
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UREd6eninz4
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UREd6eninz4
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UREd6eninz4
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UREd6eninz4
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UREd6eninz4
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UREd6eninz4
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UREd6eninz4
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UREd6eninz4
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UREd6eninz4
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UREd6eninz4
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UREd6eninz4
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UREd6eninz4
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UREd6eninz4
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UREd6eninz4
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UREd6eninz4
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UREd6eninz4
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UREd6eninz4
http://www.idc.com/getdoc.jsp?containerId=prUS23771812#.UREd6eninz4

Cloud, and Enterprise Networks and

Services Pages 4-4

[11] Android Developers URL:

http://developer.android.com/ last visited:

07.04.2013

[12] Reto Meier Android 4 Application

Development Page 8

[13] CyanogenMod7 URL:

http://www.cyanogenmod.org/about last

visited: 07.04.2013

 [14] Jiri Danihelka Lukas Kencl .

Interactive 3D services over Windows Azure

URL:

www.rdc.cz/download/publications/danihelk

a12cloudfutures.pdf last visited: 05.05.2013

[15]André B. Bondi Characteristics of

Scalability and Their Impact on Performance

WOSP '00 Proceedings of the 2nd

International workshop on Software and

performance Pages 195-203, ACM 2000

[16]Vertical Scalability URL:

http://www.techopedia.com/ last visited:

05.05.2013

[17] Trieu C. Chieu, Ajay Mohindra, Alexei

A. Karve and Alla Segal. Dynamic Scaling

of Web Applications

in a Virtualized Cloud Computing

Environment. e-Business Engineering, 2009.

ICEBE '09. IEEE International Conference

on 21-23 Oct. 2009. Pages 281- 286 IEEE

Xplorer

[18] How Linux Kernel Works URL:

[http://www.tuxradar.com/content/how-

linux-kernel-works last visited: 01.04.2013

[19] About CyanogenMod7. URL:

http://wiki.cyanogenmod.org/ last visited:

07.04.2013

[20] Figure of Dalvik architecture URL:

http://www.ibm.com/developerworks/openso

urce/library/os-android-devel/fig02.gif last

visited: 07.04.2013

[21] APK file extension URL:

http://en.wikipedia.org/wiki/APK_(file_form

at) last visited: 07.04.2013

[22] Stefan Brähler Analysis of the Android

Architecture. Karlsruhe institute for

technology, 2010

[23] Amazon Elastic Compute Cloud URL:

http://aws.amazon.com/ec2/ last visited:

01.05.2013

[24] Tsung’s Users Manual URL:

http:// tsung.erlang-

projects.org/user_manual.html last visited:

29.04.2013

[25] Erlang. URL:

http://www.macs.hw.ac.uk/~ag275/tutorial/e

rlang/ last visited: 28.04.2013

[26] Initializing Build Environment. URL:

http://source.android.com/source/initializing.

html last visited: 07.04.2013

[27] Samsung Galaxy S II and Galaxy Y

Specifications. URL:

http://www.samsung.com/ last visited:

25.04.2013

41

http://www.samsung.com/global/microsite/galaxys2/html/specification.html
http://source.android.com/source/initializing.html
http://source.android.com/source/initializing.html
http://www.macs.hw.ac.uk/~ag275/tutorial/erlang/
http://www.macs.hw.ac.uk/~ag275/tutorial/erlang/
http://tsung.erlang-projects.org/user_manual.html
http://tsung.erlang-projects.org/user_manual.html
http://tsung.erlang-projects.org/user_manual.html
http://aws.amazon.com/ec2/
http://www.ibm.com/developerworks/opensource/library/os-android-devel/fig02.gif
http://www.ibm.com/developerworks/opensource/library/os-android-devel/fig02.gif
http://wiki.cyanogenmod.org/
http://www.tuxradar.com/content/how-linux-kernel-works
http://www.tuxradar.com/content/how-linux-kernel-works
http://www.techopedia.com/
http://www.rdc.cz/download/publications/danihelka12cloudfutures.pdf
http://www.rdc.cz/download/publications/danihelka12cloudfutures.pdf
http://www.cyanogenmod.org/about
http://developer.android.com/

[28] Deploy Elastic Load Balancing in

Amazon EC2-Classic URL:

http://docs.aws.amazon.com/ElasticLoadBal

ancing/latest/DeveloperGuide/US_SettingUp

LoadBalancerHTTPS.html last visited:

01.05.2013

[29] Java Compiler API. URL:

http://www.javabeat.net/2007/04/the-java-6-

0-compiler-api/ last visited: 05.05.2013

42

http://www.javabeat.net/2007/04/the-java-6-0-compiler-api/
http://www.javabeat.net/2007/04/the-java-6-0-compiler-api/
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/US_SettingUpLoadBalancerHTTPS.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/US_SettingUpLoadBalancerHTTPS.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/US_SettingUpLoadBalancerHTTPS.html

Appendix A

Tutorials how to deploy CyanogenMod7, Dalvik VM and Tsung can be accessed

https://gist.github.com/huberflores . Methods used for testing and their results alongside Tsung

test results are available at https://github.com/kohviuba/scalingAndroidImages and on a CD

attached to this thesis.

43

https://github.com/kohviuba/scalingAndroidImages
https://gist.github.com/huberflores

	Scaling Virtualized Smartphone Images in the Cloud
	1. Introduction
	2. State of The Art
	2.1. Code Offloading
	2.1.1. Research
	2.1.2. Commercial Implementations
	3. Background
	3.1 Scaling And Scalability
	3.2. Android
	3.2.1 CyanogenMod

	3.3. Dalvik Virtual Machine
	3.4. Amazon Elastic Compute Cloud
	3.5. Amazon Elastic Load Balancing Tool
	3.6. Tsung
	4. Problem Statement
	4.1. Research Problem
	5. Towards A Scalable Infrastructure For Code Offloading
	5.1 Setting Up An Instance In The Cloud
	5.1.2. Building Isolated Dalvik Machine
	5.2. Benchmark Testing Android x86
	5.3. Performance Testing Using Tsung
	5.4. Scaling the Android x86 EC2 Instance
	5.4.1. Adding Elastic Load Balancer With Auto Scaling
	5.4.2 Implementation’s Drawbacks
	6. Conclusions And Future Possible Work
	Virtualiseeritud nutitelefoni platvormi skaleerimine pilvekeskkonnas
	Licence
	Bibliography

	Appendix A

