7 research outputs found

    A Privacy-Aware Distributed Storage and Replication Middleware for Heterogeneous Computing Platform

    Get PDF
    Cloud computing is an emerging research area that has drawn considerable interest in recent years. However, the current infrastructure raises significant concerns about how to protect users\u27 privacy, in part due to that users are storing their data in the cloud vendors\u27 servers. In this paper, we address this challenge by proposing and implementing a novel middleware, called Uno, which separates the storage of physical data and their associated metadata. In our design, users\u27 physical data are stored locally on those devices under a user\u27s full control, while their metadata can be uploaded to the commercial cloud. To ensure the reliability of users\u27 data, we develop a novel fine-grained file replication algorithm that exploits both data access patterns and device state patterns. Based on a quantitative analysis of the data set from Rice University, this algorithm replicates data intelligently in different time slots, so that it can not only significantly improve data availability, but also achieve a satisfactory performance on load balancing and storage diversification. We implement the Uno system on a heterogeneous testbed composed of both host servers and mobile devices, and demonstrate the programmability of Uno through implementation and evaluation of two sample applications, Uno@Home and Uno@Sense

    Cloud Services Brokerage for Mobile Ubiquitous Computing

    Get PDF
    Recently, companies are adopting Mobile Cloud Computing (MCC) to efficiently deliver enterprise services to users (or consumers) on their personalized devices. MCC is the facilitation of mobile devices (e.g., smartphones, tablets, notebooks, and smart watches) to access virtualized services such as software applications, servers, storage, and network services over the Internet. With the advancement and diversity of the mobile landscape, there has been a growing trend in consumer attitude where a single user owns multiple mobile devices. This paradigm of supporting a single user or consumer to access multiple services from n-devices is referred to as the Ubiquitous Cloud Computing (UCC) or the Personal Cloud Computing. In the UCC era, consumers expect to have application and data consistency across their multiple devices and in real time. However, this expectation can be hindered by the intermittent loss of connectivity in wireless networks, user mobility, and peak load demands. Hence, this dissertation presents an architectural framework called, Cloud Services Brokerage for Mobile Ubiquitous Cloud Computing (CSB-UCC), which ensures soft real-time and reliable services consumption on multiple devices of users. The CSB-UCC acts as an application middleware broker that connects the n-devices of users to the multi-cloud services. The designed system determines the multi-cloud services based on the user's subscriptions and the n-devices are determined through device registration on the broker. The preliminary evaluations of the designed system shows that the following are achieved: 1) high scalability through the adoption of a distributed architecture of the brokerage service, 2) providing soft real-time application synchronization for consistent user experience through an enhanced mobile-to-cloud proximity-based access technique, 3) reliable error recovery from system failure through transactional services re-assignment to active nodes, and 4) transparent audit trail through access-level and context-centric provenance

    Dependable eventual consistency with replicated data types

    Get PDF
    Eventually consistent replicated databases offer excellent responsiveness and fault-tolerance, but expose applications to the complexity of concurrency andfailures. Recent databases encapsulate these problems behind a stronger interface, supporting causal consistency, which protects the application from orderinganomalies, and/or Replicated Data Types (RDTs), which ensure convergent semantics of concurrent updates using object interface. However, dependable algorithms for RDT and causal consistency come at a cost in metadata size. This thesis studies the design of such algorithms with minimized metadata, and the limits of the design space. Our first contribution is a study of metadata complexity of RDTs. RDTs use metadata to provide rich semantics; many existing RDT implementations incur high overhead in storage space. We design optimized set and register RDTs with metadata overhead reduced to the number of replicas. We also demonstrate metadata lower bounds for six RDTs, thereby proving optimality of four implementations. Our second contribution is the design of SwiftCloud, a replicated causally-consistent RDT object database for client-side applications. We devise algorithms to support high numbers of client-side partial replicas backed by the cloud, in a fault-tolerant manner, with small metadata. We demonstrate how to support availability and consistency, at the expense of some slight data staleness; i.e., our approach trades freshness for scalability (small metadata, parallelism), and availability (ability to fail-over between data centers). We validate our approach with experiments involving thousands of client replicas.Les bases de données répliquées cohérentes à terme récentes encapsulent la complexité de la concurrence et des pannes par le biais d'une interface supportant la cohérence causale, protégeant l'application des problèmes d'ordre, et/ou des Types de Données Répliqués (RDTs), assurant une sémantique convergente des mises-à-jour concurrentes en utilisant une interface objet. Cependant, les algorithmes fiables pour les RDTs et la cohérence causale ont un coût en terme de taille des métadonnées. Cette thèse étudie la conception de tels algorithmes avec une taille de métadonnées minimisée et leurs limites. Notre première contribution est une étude de la complexité des métadonnées des RDTs. Les nombreuses implémentations existantes impliquent un important surcoût en espace de stockage. Nous concevons un ensemble optimisé et un registre RDTs avec un surcoût des métadonnées réduit au nombre de répliques. Nous démontrons également les bornes inférieures de la taille des métadonnées pour six RDTs, prouvant ainsi l'optimalité de quatre implémentations. Notre seconde contribution est le design de SwiftCloud, une base de données répliquée causalement cohérente d'objets RDTs pour les applications côté client. Nous concevons des algorithmes qui supportent un grand nombre de répliques partielles côté client, s'appuyant sur le cloud, tout en étant tolérant aux fautes et avec une faible taille de métadonnées. Nous démontrons comment supporter la disponibilité (y compris la capacité à basculer entre des centre de données lors d'une erreur), la cohérence et le passage à l'échelle (petite taille de métadonnées, parallélisme) au détriment d'un léger retard dans l'actualisation des données

    Fidelity-Aware Replication for Mobile Devices

    No full text
    Mobile devices often store data in reduced resolutions or custom formats in order to accommodate resource constraints and tailormade software. The Polyjuz framework enables sharing and synchronization of data across a collection of personal devices that use formats of different fidelity. Layered transparently between the application and an off-the-shelf replication platform, Polyjuz bridges the isolated worlds of different data formats. With Polyjuz, data items created or updated on high-fidelity devices—such as laptops and desktops—are automatically replicated onto low-fidelity, mobile devices. Similarly, data items updated on low-fidelity devices are reintegrated with their high-fidelity counterparts, when the application permits it. Polyjuz performs these fidelity reductions and reintegrations as devices exchange data in a peer-to-peer manner, ultimately extending the eventual-consistency guarantee of the underlying replication platform to the multi-fidelity universe. In this paper, we present the design and implementation of Polyjuz and demonstrate its benefits for a fidelity-aware contacts management application
    corecore