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Abstract

Recently, companies are adopting Mobile Cloud Computing (MCC) to efficiently deliver enterprise services

to users (or consumers) on their personalized devices. MCC is the facilitation of mobile devices (e.g., smart-

phones, tablets, notebooks, and smartwatches) to access virtualized services such as software applications,

servers, storage, and network services over the Internet. With the advancement and diversity of the mobile

landscape, there has been a growing trend in consumer attitude where a single user owns multiple mobile

devices. This paradigm of supporting a single user or consumer to access multiple services from n–devices is

referred to as the Ubiquitous Cloud Computing (UCC) or the Personal Cloud Computing.

In the UCC era, consumers expect to have application and data consistency across their multiple devices

and in real time. However, this expectation can be hindered by the intermittent loss of connectivity in

wireless networks, user mobility, and peak load demands.

Hence, this dissertation presents an architectural framework called, Cloud Services Brokerage for Mobile

Ubiquitous Cloud Computing (CSB-UCC), which ensures soft real–time and reliable services consumption

on multiple devices of users. The CSB-UCC acts as an application middleware broker that connects the

n-devices of users to the multi-cloud services. The designed system determines the multi-cloud services based

on the user’s subscriptions and the n-devices are determined through device registration on the broker. The

preliminary evaluations of the designed system shows that the following are achieved: 1) high scalability

through the adoption of a distributed architecture of the brokerage service, 2) providing soft real-time appli-

cation synchronization for consistent user experience through an enhanced mobile-to-cloud proximity-based

access technique, 3) reliable error recovery from system failure through transactional services re-assignment

to active nodes, and 4) transparent audit trail through access-level and context-centric provenance.
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Chapter 1

Introduction

1.1 Background

Cloud computing which is a paradigm that facilitates the consumerization of virtualized applications, servers,

storage, and network services from providers has become the backbone of most companies [1] [2]. Today,

enterprises (i.e., services providers) expose multiple cloud services to their employees and other companies

who act as services consumers. Moreover, cloud services providers especially from the commodity cloud

suppliers are guaranteeing high services availability for anytime access [3] [4]. The commodity cloud (also

known as, the utility cloud) is the cloud services delivery model that follows the pay-according-to-usage

policy. This follows the business model of delivering the cloud services as a utility and billing the service

consumer on pay-as-you-go bases. Thus, companies that do not have the financial muscle to deploy their own

internal cloud architecture (i.e., private cloud) can purchase services at a reasonable price from providers.

The importance of cloud computing for companies and consumers, as detailed in Chapter 2, is enormous.

Some of these include: cost management as companies can cut down on their internal IT budget, improved

maintenance culture as the task of infrastructure manageability is delegated to the cloud service provider,

and soft-real time services delivery as downtime is low [5].

The architectural overview of cloud computing is diagrammatically illustrated in Fig. 1.1. The figure

shows the three major categories of the cloud computing delivery model which are: Software-as-a-Service

(SaaS) – services as applications, Platform-as-a-Service (PaaS) – services for development, testing, interfaces,

etc. and Infrastructure-as-a-Service (IaaS) – services that support virtualization such as network, servers,

etc.

As cloud computing is receiving much attention, there is one big question that draws urgent attention.

That is, how do we compliment the anytime-access possibilities of the cloud with anywhere-access capabilities?

The answer to the above question has been the focus of most researchers who proposed the Mobile Cloud

Computing (MCC) [7], which is the facilitation of mobile devices as the cloud services consumption node.

The mobile devices complement cloud computing facilities by offering ubiquitous (i.e., anywhere) access to

enterprise information [8]; a major revolution that Mohiuddin et al. [9] describe as 24x7x365 mobile access

which is also promising for the mobile commerce space. Furthermore, most of today’s smartphones and

tablet devices in production have good backings for varied networks and protocols. Thus, connectivity can
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Source: [6]

Figure 1.1: Cloud Computing

be established between the mobile devices and the cloud clusters via networks such as 3.5/4G and Wi-Fi [10]

[11]. The success of mobile cloud computing is evidenced in some enterprise revolutions such as mHealth

[12] [13], m/ubiquitousLearning [14], mCommerce [15], mobile emergency preparedness services [16], mobile

in academic curriculum definitions [17] and so on.

But, what is more prevalent today is the consumer attitude where users own multiple mobile devices.

It is a common phenomenon these days to see a single consumer who owns at least a smartphone and a

tablet device; and these consumers expect to have application, data, and services consistency across these

personalized devices. The era of supporting n–devices of a single user is dubbed Ubiquitous Cloud Computing

(UCC) since consumers are no longer tied to a single client node but the options are wide for data access

on multiple devices. Also, enterprises are exposing multiple cloud services which are relevant for consumers.

This facilitates the provisioning of cloud services from multiple providers in a single workflow to support the

multiple consumer devices of a single user. For instance, there is an increasing amount of standalone mobile

apps that integrate email services, file storage and synching services, and calendar and notification services.

These services can be offered by different providers but they are presented to the consumer as a single service

on the consumer’s multiple devices. The paradigm where n-devices of a single user are enabled to access

multi-cloud services is referred to as the Personal Cloud [18].

A reason the Personal Cloud has come to stay is evidenced in the rapid adoption of the Bring-Your-
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Own-Device (BYOD) trend at the workplace. This means, employees as well as service consumers can use

their personalized devices to consume corporate and enterprise services. This is to further fuel the enterprise

workforce who need to access services on the go and cannot be tied to a single client platform. According to

Intel, the presence of BYOD at the workplace is a major revolution that cut across industry and geographical

boundaries [19]. The same company attests to the fact that the leap in personally owned device usage by

employees between 2010 and 2011 from 3000 to 17000 has gained productivity by 1.6 million hours. Thus,

the BYOD paradigm will be encouraged to facilitate ubiquitous access to services.

Currently, there is not enough research on the personal cloud (e.g., its architectural deployments, market

analysis and impact, performance, etc.) apart from Cantara [18] who speculates in July 2012 that the

successful deployment of the personal cloud will require the implementation of cloud services brokerage.

Couple of years later, most of the research on brokerage services still focus on enabling interoperability and

portability of applications across multiple cloud providers [4] but not offering mobile specific solutions. Also,

there is a recent push for the deployment of a cloud model that is known as the Mobile Back-end-as-a-Service

(MBaaS) [20]. While MBaaS is not directly linked to the personal cloud, the initial designs seek to enable

third party services integration into mobile specific applications. This includes the design of back-end layers

that can facilitate user authentication from third parties and so on. This again leads to the wide gap between

research on the personal cloud and the existing up-and-coming solutions. But to offer any solution, there is

the need to highlight the problem areas that this dissertation is focusing on.

1.2 Problem Statement

The cloud is a reliable back-end infrastructure. This means the cloud as a service guarantees anytime access

(i.e., the facilitation of high availability with minimal downtime). The question therefore is how do we

provide the same guarantee for anywhere-access? The answer to this question puts forward mobile cloud

computing research where the mobile is expected to complement the cloud scenery with ubiquitous access.

Ensuring seamless transactions in the mobile cloud ecosystem is a big challenge in itself [7]. Mobile computing

has challenges that directly translate into mobile cloud architectures. Some of the challenges are: sporadic

disconnections, fluctuating bandwidth, and tightly controlled energy budget that is dictated by the device’s

battery. The direct effects of these challenges are high communication latency, inability to propagate data and

information within the mobile cloud ecosystem, and failed data and application state management. Also, the

discussion on extending corporate services and data to mobile consumers (whether employees or customers)

requires some level of audit to ensure confidentiality, integrity, privacy, and security especially now that there

are several incidents of cybercrime [21].

The question that arises is how can enterprises enable the mobile consumers (i.e., the employees or other

companies) to access cloud services seamlessly in the era of the personal cloud? To answer this broad question,

there are some issues that must be explored such as:
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A. How do we ensure consumer consistent experience?

Since wireless communication channels can be unreliable, there is no guarantee that services or data will

be available on the mobile all the time. While the consumer is in a disconnected state, updates can be pushed

to any of the back-end services by other consumers. This phenomenon leads to other questions such as:

(i) How do we detect and push new updates to the consumer irrespective of which service is updated?

(ii) How do we propagate the updates to the active device of the user automatically without the user

manually polling for the data?

(iii) How do we ensure application consistency from a user’s perspective?

(iv) How do we ensure group data and file synchronization?

B. How do we ensure the aggregation of the services on a consumer’s multiple devices?

Since there are multiple services as well as multiple devices of a single user, there is the need to propose a

services brokerage platform that can aggregate the services to the n–mobile devices. The brokerage platform

can be a middleware or a Mobile Back-end as a Service (MBaaS); however, there are some questions that

need to be answered regarding the brokerage service.

(i) How do we ensure the scalability of the broker? Scalability is a key requirement in the area of distributed

services and systems since it is paramount for systems to accommodate increasing throughputs (or

workloads). The approaches that this work will adopt include the deployment of a centralized and

distributed MBaaS. So, the question that will need serious attention is how can the MBaaS which will

act as a middleware be deployed to accommodate high throughput requests from the users, as well as

the increasing data processing from the cloud sources?

(ii) How do we ensure agility of the brokerage framework? Most companies will like to change the structure,

services, and the focus of their job process execution in order to maintain their businesses in an agile

economy. Hence, most companies keep changing infrastructure or adding new ones. The question

therefore is how can the broker be deployed in a way that changes to cloud services selection can be

incorporated without challenges?

(iii) How do we support concurrency? There is the need to support multiple connections of concurrent

mobile devices when the brokerage platform is deployed.

C. How do we ensure fault tolerance/Error Recovery?

Since the mobile environment experiences errors (e.g., termination of connection), there is the need to

investigate the best approaches that can aid the mobile architecture to be resilient. For instance, how does

the system recover from connection error? And how does the system determine faults and react accordingly

to the error?
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1.3 Summary

To address the research questions highlighted above, this dissertation puts forward an architectural design

that seeks to ensure seamless enterprise data and application consumption in mobile cloud architectures,

which are the main requirements of the personal cloud. The conceptualized architecture is multi-tier and

enables n–devices of a user to access multi–cloud services through a designed brokerage platform - emulat-

ing a MBaaS. The dissertation further provides test cases using the public cloud services (such as Amazon

Web services, DropBox and MEGA), several smartphones (Android and iOS), and some real world adap-

tation of the designed framework (e.g., the Clandestine Anomaly Augmented Reality Game by ZenFri Inc

Canada). Preliminary evaluation results of the designed system, including real world test data, shows that

the aforementioned research questions in the problem statement section are well addressed.

Further, key issues that are considered in the development of the architecture are expounded in the

literature review section to know the current state-of-the-art approaches by the research community. These

areas include:

• Cloud Computing

• Mobile Cloud Computing

• Ubiquitous Cloud Computing and the Personal Cloud

• Provenance

• Services Synchronization in Mobile Distributed Systems and Brokerage Services

The work is structured as follows. The next section details the existing works in the areas of cloud com-

puting layers, mobile cloud computing, and the ubiquitous cloud computing. The same section highlights the

unanswered questions in the area of the mobile ubiquitous cloud computing (personal cloud computing) and

the specific research questions under consideration in this dissertation. Chapter 3 focuses on the deployment

of the proposed cloud services brokerage for mobile ubiquitous cloud computing and the implementation

of some real world and prototypic applications. Chapter 4 is dedicated to the evaluation of the designed

architecture to determine whether the research goals are met or not. The work concludes in Chapter 5 with

the research contributions and further outlook.
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Chapter 2

Literature Review

In order to understand mobile cloud computing platforms and paradigms, this chapter focuses on the

existing works in the areas. The purpose of the chapter is to carry out detail investigation into the current

deployments of Mobile Cloud Computing (MCC) services and how the MCC era is transforming into UCC as

well as the new opportunities that the UCC era will provide enterprises to support consumers (e.g., employees)

who own mobile devices. As well, major areas are explored that can potentially affect the deployment of the

UCC services such as application and data state management, synchronization, etc. These macro issues will

be explored with respect to the specific challenges that are present in mobile distributed architectures such

as network instability, synchronization, scalability, and reliability.

2.1 Cloud Computing (From MCC to UCC and the Personal Cloud)

Though as of now there is no universally accepted definition for cloud computing, I agree with Buyya et

al. [22] on the definition of the cloud as: “a type of parallel and distributed system consisting of a collection

of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more

unified computing resource(s) based on service-level agreements established through negotiation between the

service provider and consumers.”

The current macro enterprise IT revolution in the areas of social networking services, Web 2.0, Internet,

and so on is heavily dependent on cloud computing. This revolution has propelled the cloud computing

paradigm to be placed into a three main taxonomy, as illustrated in Fig. 2.1, and further explained by Li et

al. [1] as:

• Software as a Service (SaaS): These are application software deployed on remote servers by

providers as services to be accessed by consumers over the Internet. Examples of SaaS are E–mail

Services, Social media, Salesforce.com, etc.

• Platform as a Service (PaaS): These are cloud frameworks that are made available by services

providers to be used for application development, testing, and deployment by consumers. Some exam-

ples of PaaS are Google App Engine, Microsoft Azure, etc.

• Infrastructure as a Service (IaaS): This is on–demand computing infrastructure made available
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Source: [5]

Figure 2.1: Cloud Computing Stack

to consumers mostly in the form of virtualized servers, storage, and network. Some examples of IaaS

are Amazon Elastic Compute Cloud, Rackspace, etc.

The cloud taxonomy has been employed at the enterprise level to provide business agility and better

manage the cost of business infrastructural IT. When necessary, the three services (SaaS, IaaS, and PaaS)

can be combined to provide composite cloud services to meet specific enterprise workflows. The benefits

of cloud computing are enormous – ranging from enterprise business agility and system scalability to data

maintainability. However, the services cost charged by the cloud services providers is deemed economical

which gives enterprise stakeholders the breathing space to cut down on internal IT infrastructural budget.

In general, the services which are made available by cloud services providers on a pay–according–to–usage

policy are known as the public cloud (a.k.a., commodity cloud or utility cloud). It is noteworthy to say that

some of the public cloud services are also free. Moreover there are other advantages such as on–demand

self–service, ubiquitous network access, and network pooling [5].

But as a challenge, stakeholders have raised questions regarding the safety, privacy, potential security

risks, assurance, data ownership, and insurance of adopting cloud computing [1] [23] [24]. These questions

are mostly asked regarding public cloud usage (this is not to say public clouds are not secured; rather,

stakeholders want to know the safety guarantees). In cases where enterprises have huge economic muscles,

they can deploy private cloud architectures (a.k.a., internal cloud) thereby enforcing internal security and
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data protection [25]. Based on the physically distributed nature of the cloud services, enterprises are further

aided to adopt hybrid cloud architecture mechanisms. Hybrid cloud is the employment of public clouds and

a private cloud in a single architecture in order to achieve enterprise or business–driven goals [26]. With

the current outlook of the cloud as well as the future projections, it is very clear that soon most IT related

resources will be a service; an emerging cloud domain described as Everything as a Service (XaaS) [3]. The

emerging macro trend within the cloud provisioning landscape shows that the consumers will be at the top

of the cloud food chain according to the Gartner Report [27]. This creates the need to shift focus from the

current enterprise–driven cloud approach to a consumer–driven approach. As far as the consumer–driven

cloud is explored, the attention has mostly been on the agile data delivery node (client devices); and how

these consumer devices can be facilitated to reliably access the back–end cloud services. While the personal

computer (PC) has been at the forefront of consuming cloud hosted data, this assertion changed when the

mobile device became the ubiquitous device at the center of human existence [28]. The increasing growth of

the mobile landscape coupled with the unceasing agility and expansion of the cloud led to the exploration

of “Mobile Cloud Computing” [7] [29]. Mobile cloud computing has witnessed different architectural designs

and product delivery models to bring satisfaction to consumers in terms of data access. In the upcoming

section, some paradigm defining works within mobile cloud computing are discussed.

2.1.1 Mobile Cloud Computing (MCC)

As the cloud computing field is evolving, the mobile landscape is equally growing rapidly. Nowadays, smart-

phones and tablet devices have established themselves as the dominant nodes to access and consume digital

assets [30] [31]. The fact that the cloud is a back-end service and offers anytime access aligns very well with

the mobile field which complements the cloud by providing anywhere access. However, there are certain chal-

lenges that have plagued the sustainable deployment of mobile cloud computing services. These challenges

are summarized below after an exhaustive search and these challenges are the bases for most of the works in

the area of mobile cloud computing.

• Unstable Wireless networks: Mobile devices rely on wireless channels (e.g., Wi-Fi, Bluetooth,

Infrared, NFC, 4/4.5/5 G, etc.) to communicate in distributed systems. Despite the advances made

in providing these heterogeneous communication channels, these wireless channels experience sporadic

disconnections which hampers the smooth transmission of data and communication services.

• Limited Bandwidth Availability : The available bandwidth in mobile networks is limited in compar-

ison to those in LAN environments. Furthermore, the bandwidth in mobile networks has the tendency

to experience fluctuations which leads directly to high communication latency and slow system respon-

siveness.

• Mobile Device Constraints: Recently, the resources of mobile devices (especially smartphones and

tablet devices) have been improving in terms of processing, storage, and memory. However, the truth
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still remains that mobile devices are “thin clients” with poor resources when compared to desktops.

Thus, the high demanding workloads that are easily processed in desktop environments cannot be

directly translated into mobile networks.

• Energy Limitations: The battery life of mobile devices is limited which has the tendency to cause

the devices to shut down at times that these devices are needed most.

As researchers are exploring endless opportunities in the mobile cloud computing (MCC) field, their

attention has always been on overcoming some of the above listed issues. Conceptually, the MCC architectures

have been designed (as depicted in Fig. 2.2) with most of the debate focusing on mobile context management,

resources allocation and management (scheduling), and the efficient utilization of the transmission channel

[32] [33]. From a previous proposition by Huerta–Canepa and Lee [34] and later supported by Subpratatsavee

et al. [35], the MCC architectures can also have components such as applications semantic – for the detection

and differentiation of apps such as mutable apps (for barcode readers) and proprietary apps (for specific client

tasks). In some systems, there can also be the introduction of Application Programming Interface (API)

management components; where the API dictates how the mobile communicates with the cloud services [34]

[36].

Source: [33]

Figure 2.2: The MCC Design Concepts

Notably, computational offloading from the mobile node to the cloud super nodes has been proposed to

manage most of the aforementioned limitations [34] [37] [38] [39] [40]. Mobile cloud computing can also be

extended to support Mobile Internet Devices (MID) [41] [42]. MID systems (or portable devices) have all

the previously listed limitations and the possibility of offloading can be a solution. For instance, Bahl et

al. [37] argue that offloading requires functional replication such as location awareness, mobile adaptability,

and code block execution between the mobile and the cloud. Thus, the authors opined that current cloud

architectures should be enhanced with middle–tier layers which can offer the following supports:

• Minimization of latency between the mobile and the cloud servers;

• Virtual machine (VM) migration into available public cloud in the event of disconnections;
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• Uniformity in cloud platforms for resource augmentation; and

• Ability to store replica data.

These supports can be facilitated easily now that public cloud providers are offering platform services,

application services (e.g., Amazon Simple Notification Service), and context-aware services. The availability

of these services can further aid the integration of mobile applications into social networks and sensor networks

[37].

The ECOS project [40] featured prominently on the list of frameworks that support computation and

workload offloading into the cloud from mobile nodes. Basically, offloading requires the delegation of some

resource intensive activities to the rich cloud platforms as a way to manage the limited resources of the mo-

bile. However, in multi–user domains such as enterprises, offloading can lead to challenges such as security

and privacy breach, and computation and data sharing conflicts. The ECOS project seeks to address these

challenges and further advanced on the offloading technique by achieving: 1) low latency transfer of computa-

tion, 2) offloading based on need with little penalty on energy exhaustion on the mobile, 3) encryption–based

security control, and 4) multiplexing of offloaded task. Offloading aids in resources sharing and aids mobile

developers to take advantage of the scalable cloud infrastructure.

Another way to enable mobile devices to share a common pool of computational resources is the de-

ployment of virtual private mobile architectures [43] [44]. Primarily, the virtualization of the virtual private

mobile environment is to offer mobility–as–a–service (allowing third parties to use mobile networks at low

infrastructure cost), sandboxing (isolating mobile components in a network from malware attacks), and la-

tency reduction (since point–to–point redirection can be facilitated). Equally, virtual private mobile networks

can aid in reliable content delivery, gaming, and computational offloading [43]. Furthermore, Bifulco et al.

[45] advanced on the topic of cloud services virtualization by proposing a more scalable architecture called

Follow–Me–Cloud (FMC). The whole concept of the FMC is to suspend the execution of application states

on one mobile endpoint (due to loss of connectivity or application failure) and resume the application state

later in a different environment where connectivity is stable. This approach overcomes the communication

failure in a TCP/IP environment that hinders the mobile–server data exchanges when the user is in network

blackout zones. At the implementation level, FMC is achieved by allowing the virtual machine migration to

be handled by the network infrastructure; which aids every process of the data transmission to be transparent

to any network within which the mobile is located [45]. Practically, assigned IP addresses to mobile devices

in wireless networks change as consumers switch between available network services or change location but

FMCs allow consistent configuration of IP addresses so the same address can be used across network nodes.

Therefore, it is mandatory for the FMC to scale in such a way that many devices as well as multiple IP

address sustainability can be achieved.

There is also a growing demand for the integration of data and notification services in mobile application

systems [46] [47]. Mobius [46] has been proposed to offer unified messaging and data serving for Mobile

Apps. The researchers opined that current client-server architectures which are directly emulated in the
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mobile–cloud environment require consistent network interface. However, this requirement is a mirage since

it can never be guaranteed in mobile networks. Hence, Mobius relies on client–side caching to offer offline

services. The architectural overview of Mobius is shown in Fig. 2.3.

Source: [46]

Figure 2.3: Architectural Overview of Mobius

The component labelled MUD is the acronym for Messaging Unified with Data. The MUD is a table–

oriented layer that supports read and write operations in soft–real time. Overall, Mobius achieves the

following guarantees for the mobile developer community as reproduced from [46]:

• Reading/writing data and messaging

• Flexible real-time notification

• Disconnected operation handling for reading and writing

• Transparent, intelligent caching/pre–fetching

• Hosted, scalable back-end service

RFS [48] has also been designed for sharing files in a mobile–cloud ecosystem. Understanding the unstable

connectivity challenges in mobile networks, RFS aims at providing a cache component on the mobile end

that is synchronized with the back-end cloud. The uniqueness of RFS is that the file synchronization process

is adaptable to the particular network protocol. So, if the mobile establishes connection to the cloud over

a weak network, the synchronization process follows a pre–fetching methodology. Pre–fetching means the

history of the user requests are kept so when similar requests are issued later, the system automatically adds

other requests that might have been issued in previous attempts even if these requests are not explicitly called

by the user. RFS also has pre–pushing services which work similar to pre–fetching but in this case, the server

pushes the files to the client nodes once the server knows those requests may be needed by the user based

on the user’s history without the user even making an attempt to request for the data. The combination

of pre–fetching and pre–pushing techniques in RFS makes the system exchange files in real time with very

minimal energy exhaustion. Before the deployment of RFS, Wukong was proposed by Mao et al. [49]. The

Wukong platform equally relies on techniques such as: timestamp (to manage conflict between read/write

operations applied to files in the mobile to cloud interaction), caching (to minimize the request between

the mobile and cloud), file compression (to reduce the file size and manage the mobile storage space), and
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optional data encryption mechanisms. Recently, some studies also put forward pre–fetching as a technique

to efficiently achieve services offloading in mobile networks [50].

Moreover, Costa et al. [51] observed that there is an assimilation gap between the mobile user generated

content and the services delivery models from the cloud providers. We can describe this situation as a conflict

between enterprise cloud business models and the consumer demand and expectation. An attempt is made

to bridge the two requirements by Costa et al. [51] who propose the Cloud2Bubble framework (Fig. 2.4).

The framework aims at collecting both user generated content and the environment data (a.k.a., environment

perception) based on sensors and offloads the collected data to the cloud platform for processing. In this

case, the cloud platform performs the role of decision making, world modeling, and hardware layer. It is

also important to state that Cloud2Bubble only provisions services to the user based on the preferences of

the user; an attempt that prevents the mobile node from being overloaded with unwanted sensor data and

services.

Source: [51]

Figure 2.4: Data Flow and Services Delivery of Cloud2Bubble

The collected data is also aggregated so it is presented to the user as a personalized data in a single–

dimensional view. Identical to the Cloud2Bubble system is the Cognitive Engine (CE) [52] and context-aware

services [53] which are designed for mobile services learning and adaptability to environmental changes. The

expectation is that, CE systems are designed to facilitate the mobile to change its behavior based on the

environmental data or database information. Thus, the cognitive learning capabilities are parts of the device

rather than the user’s responsibility. The CE service relies on local events and actions within the operating

environment (i.e., network, or application domain). These events and actions are controlled activities by

users which involves application requesting, request/response interactions, measurement data, configuration,

and configuration feedback. The advancement in CE systems is under–studied but it has huge potentials to

solving most recent challenges such as mobile data traffic routing, energy economization, and so on.

Further, the instability of wireless networks has led to questions of data and application state consistency

on the mobile. It is important to emphasize that researchers such as Burckhardt et al. [54] and not long ago
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Lee et al. [55] argue that eventual consistency methodologies should be adopted. For example, in order to

facilitate access to application execution or data in offline mode (i.e., in the case of connectivity loss) mobile

applications can be deployed to keep replicas or (mirrored data) in a local cache/storage. This locally cached

data can be accessed in the offline mode and can support the user until connectivity is restored. Burckhardt

et al. [54] further propose the employment of cloud types which is a way to ensure the same style of data

and application formatting across the mobile and cloud components in order to enforce application level

uniformity. The recognizable advantage of cloud types is that it ensures consistency at the schema level.

This is a way to overcome the integration challenges of heterogeneous application services which are written

in JSON, XML, HTML5, and so on. Also, the same authors put forward revision diagrams that can be

followed to track changes to the application state. Revision diagrams aid in monitoring not just the stored

application but the change set (or revision history) of the application when it was in offline mode. Thus,

once connectivity is restored, the mobile application state will be synchronized with the server application

state without any conflict.

Another major revolution in the design of mobile cloud services is the CloneCloud [56]. CloneCloud

is a proposed approach that aids mobile application execution partitioning to rich cloud nodes. That is,

instead of offloading all the computational requirements to the cloud node through virtual machines (VMs),

the architecture distributes the application execution tasks and decides which states of the application to

execute locally on the mobile and which states to offload to the cloud. Such partitioning allows for the

synchronization of the application states after the various application endpoints have finished their executions.

The partitioning is done in an offline mode where the decision to partition are based on set criteria such as

network characteristics, processing power, energy consumption, and computational intensity of the application

[56]. The partitioned services are executed in parallel and they can be suspended and captured during the

life cycle of the application execution. Similar mobile frameworks to the CloneCloud are the MAUI platform

designed by Cuervo et al. [57] and the application partitioning approach by Ferdous and Rahman [58].

Similarly, Cloud–assisted mobile applications (CAM–apps) perform resource allocation tasks to emulate

computation intensive processing in static hardware (i.e., desktop) environments in mobile networks [59].

CAM–apps is a middleware–oriented framework that facilitates job distributions in such a manner that the

minimum threshold for services quality is not compromised. The middleware itself on behalf of the mobile

and the cloud server performs important roles such as remote service hosting, services management and

allocation, and accounting and billing [59]. The idea of resources allocation has also been confirmed to

extend the battery life of the mobile devices by Ge et al. [39].

Whether application partitioning, offloading, or virtual migration methodology is adopted, a crucial

question to address is the performance of the system. Giurgiu [60] investigates the performance of workload

transmission and distribution between mobile–cloud systems. The parameters that account for slowness

in communication round–trip time is measured for such distributed mobile services. These parameters are

the nature of the application setup, application demand, and workload intensity. The understanding of the
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behaviour of these parameters can lead to efficient resource allocation (such as CPU and memory) as well as

which services to offload.

Next, the dissertation explores mobile ubiquitous cloud computing.

2.1.2 Ubiquitous Cloud Computing (UCC)

In the genesis, the focus has been on mobile cloud computing (MCC) where questions were asked about how

legacy services in cloud–desktops (static hardware ) systems can be translated to cloud–mobile architectures.

But, recently there is a rapid shift in industrial and academic research toward ubiquitous cloud computing

(UCC) largely because, the new consumer attitude in device ownership and services utilization expectations

are changing [54] [61] [62]. It is a common phenomenon to come across consumers today who own multiple

portable devices (e.g., smartphones, tablets, etc.) and they expect to have their services synchronized on all

their devices. We refer to this paradigm of deploying cloud–centric applications that are accessible by a single

consumer on n–devices as Ubiquitous Cloud Computing (UCC). Kim et al. [63] on the other hand referred

to their seemingly UCC environment as Mobile Personal Grid (MPG) as illustrated in Fig. 2.5. While

mobile cloud computing is enterprise–driven, ubiquitous cloud computing is consumer–driven; though, van

der Merwe et al. [64] used the term ubiquitous cloud computing to refer to the increasing services consumption

workload (cloudburst) on enterprise clouds. The motivation for n–device ownership in the modern era by

consumers is linked to: preferential display and device manipulation choices, elimination of overhead time

introduced for application set-ups, multitasking, backup (fallback) devices, personal ergonomics, and social

acceptability [65] [66].

When van der Merwe et al. [64] outline their vision for the ubiquitous cloud computing, they were mainly

focusing on how enterprises will adopt the “follow–the–sun” approach to support services infrastructure. For

example, when a user moves from one geographical location to the other (e.g., New York to Tokyo), the cloud

services of the user can also be migrated to a nearby infrastructure closer to the user’s current location. But,

in this dissertation, the ubiquitous cloud computing paradigm is reviewed as a burst in consumer devices of

a single user and how these devices can have access to cloud services by maintaining consistent consumer

experience.

From the reviews, the UCC architecture is following three design paradigms:

• Multiple Consumer Devices to a Single IaaS Cloud Source:

The employment of multi–consumer devices such as smartphones, tablets, and the personal computer to

provide seamless access to data from a single provider can be seen recently. Some examples of products in

this line are: the BlackBerry Synchronization Service (BSS), the Android Sync Software, Dropbox, and so

on.

• Multiple Consumer Devices to a Single IaaS Cloud Integrated with Multiple SaaS:
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Source: [63]

Figure 2.5: The Mobile Personal Grid Environment

Though much is not seen of this architectural design from the business to consumer (B2C) market, Intel is

pushing in this direction [30] [67]. The company is moving towards mobile device unification due to the steady

rise in the number of APIs for the mobile enterprise app store. Fig. 2.6 illustrates the architectural design

that emulates the unified mobile architecture proposed by Intel. The approach adopted by Intel focuses on

“all inclusive” consumer devices where APIs can be employed to break the barriers that are formed by the

mobile vendors. The company also argues that there is the need to provide security gateway services in the

form of brokers which should manage the safety of the data in the heterogeneous device ecosystem. The

improvement in the architecture proposed by Intel is the integration of SaaS oriented cloud services. The

iCloud (https://www.icloud.com/) by Apple Inc. also falls within this category.

• Multiple Consumer Devices to Multiple SaaS, IaaS, and PaaS Sources:

The next architectural design that is worth highlighting is the support for multiple mobile devices and the

convergence of multiple cloud layers. This is the model that best describes Gartner’s view of the ubiquitous

cloud which they dubbed as the “Personal Cloud” [18] [27]. Currently, cloud services providers such as

Rackspace (http://www.rackspace.com/) is facilitating consumers to integrate services from multiple IaaS

cloud sources including private and hybrid clouds. Also, the Locker Project (http://lockerproject.org/) which

works as a personal container is following this vision. But, before the discussion of the personal cloud, the

dissertation discusses some issues pertaining to the UCC design from the research and developer perspectives.

The initial challenge that the developer community faced with the deployment of UCC services is the

requirement for writing several codes in different languages for the different mobile platforms. The challenge
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Figure 2.6: Intel’s Approach Towards a Unified Mobile Architecture

arises due to the fact that the underlying operating systems of the mobile platforms are different; thus,

their native development environments are also different. For example, iOS powered devices (e.g., iPad,

iPhone, etc) support the Objective-C (now Swift) programming language for native app development while

Android powered devices (e.g., Samsung Galaxy, Asus Transformer Prime, etc.) support Java. BlackBerry

supports Java Micro Edition, and NOKIA and Windows Phone support C# or Python. The heterogeneity

in native platform support means deploying UCC services will require knowledge of all these programming

languages. Also, if the application is later upgraded, the upgrade has to be applied individually on every

mobile platform. Even though a product such as Xamarin (http://xamarin.com/) is able to enable cross-

platform app deployment natively, the product only supports the direct translation of the business logic of

the app but the user interface design requirements vary. There may be future improvement by the company

on the user interface integration. Table 2.1 highlights some mobile platforms and the native programming

language they support. Though efforts are being made to offer unified native app development, there are still

some barriers to cross especially with the mobile vendors.

But recently, HTML5 and other Web-based frameworks (e.g., jQuerymobile, jQtouch, etc.) have come

to leverage native app deployment on cross–platforms using a single code base. The single code base can be

written following the Web standard and the code can be deployed as native app [68] [69]. Also, the fact is

that mobile Web apps are different from traditional websites. Mobile Web apps just rely on Web technology

services to provide application services. Furthermore, developers can now build hybrid apps where native

codes can be combined with Web technologies to deploy standalone applications with full capabilities. The
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Table 2.1: Native Programming Environments

Device Native Development / Programming Environment

BlackBerry Java Micro Edition (Java ME)

iOS (from Apple) Objective-C and Swift (for Xcode) and C# (for Mono-

Touch)

Android Java

Symbian (deprecated) C++ and Python

Windows Mobile C# .NET

paradigm shift is illustrated in Fig. 2.7.

Source: [70]

Figure 2.7: The Web App as the Bridge Between the Traditional Web Site and Native Apps

Aside the developer challenges, researchers are also proposing different architectural designs for the UCC

services. Chen et al. [61] proposed UbiCloud which architecturally comprises of four components: the mobile

client devices, services app pool, virtual machine pool, and back-end servers. In essence, the server hosts

several distributed virtual machines for controlling specific services. Hence, the mobile client devices can

communicate with any of the virtual machines over a universal plug–and–play (UPnP) protocol. UbiCloud

further relies on Quality of Service (QoS) controls to determine which services to be pushed to which devices

of the user. The presence of the QoS feature enables the resource limited devices to tap into the computing

capacity of the nearby super nodes in the cloud.

Extending on the Cognitive Engine approached proposed by Hyhty et al. [52] for the mobile cloud

environment, Gad [14] also put forward a learning and adaptive framework that consists of consumer devices

front–end, Web server back–end, and application cloud services. The focus of such learning systems is
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to propagate different sensor data (environment data) to different consumer devices based on the devices

capacity to propagate or consume that data. The type of data gathered is adapted towards which device is

available for the user.

Kim et al. [63] argue that consumers often move between different networks and switch between several

contextual environments (i.e., multiple personas such as business and personal). However, there is no guaran-

tee for services and application consistency when the user is changing roles by either moving between public

and private networks, or changing the contextual environment. Thus, the authors designed a ubiquitous

cloud computing framework which they called Carmen (Cloudcentric Architecture for Rich Mobile Experi-

ence Networking). Primarily, the Carmen framework consists of a cloud-oriented controller (for determining

the varied network interfaces that are available within the environment of the user and which devices are

connected to which network interfaces), converged access networks (for context-aware interaction and cloud

connectivity), and resource virtualization (where both the mobile device and the network are virtualized).

The importance of the virtualization technique in the Carmen framework is to identify under–utilized net-

works and migrate intensive workloads to those environments while less intensive workloads or mobile devices

that are in suspended mode can be moved into congested network environments. The technique further main-

tains connectivity balance and seamless user experience with services accessibility on different devices. The

architectural overview of Carmen is shown in Fig. 2.8.

Source: [63]

Figure 2.8: The Carmen Architecture

Since the communication between the mobile and cloud nodes requires some guarantee of network avail-

ability, the question that arises is whether the n–device ownership trend in consumer attitude can change this

network requirement. Koukoumidis et al. [71] have looked into this question by proposing Pocket Cloudlets.

The idea of pocket cloudlets is to support multiple devices of a user to access cloud–hosted services but;

copies of those cloud hosted–services will be kept on each mobile node. This idea according to the authors

have some distinct benefits such as: 1) local access to parts or all of the services in the event of network loss,

2) reduce network traffic since the user is not always requesting to the cloud, 3) the fact that the services

reside on the mobile means services can be personalized for the device, user, and context, and 4) personalized

information can be stored securely without the worry of network attacks. In our opinion, the reason the
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pocket cloudlet approach can be crucial for the next generation application deployments is that, mobile to

mobile communication services can be deployed where services accessibility will be facilitated in an intra–

mobile environment when access to the cloud is evasive. As already posited, mobile devices have wide array

of network interfaces (such as Bluetooth, Wi–Fi, infra–red, NFC, etc.); but in a mobile to cloud interaction,

communication exchanges occur over Wi–Fi, GSM or any HTTP protocol. So, mostly when we say there is

connectivity loss, we are only referring to the fact that we don’t have Wi–Fi or GSM access whereas other

network interfaces such as Bluetooth can be available. Thus, the advancement of pocket cloudlets technology

seems as a way to take advantage of other network interfaces that are supported by mobile devices to access

services from other peer devices when services cannot be reached in the cloud. The architecture of pocket

cloudlets is shown in Fig. 2.9. Pocket Cloudlets can further lead to new research questions, challenges, and

behavioral studies. For instance, can we facilitate services accessibility from a colleague’s device when the

cloud is not accessible? How will people feel knowing other people are accessing services that they are hosted

on their devices considering the fact that these devices are deemed to contain personal information? How do

we ensure that in the course of accessing open services, personalized data is not stolen? And the questions

go on.

Source: [71]

Figure 2.9: The Envisioned Pocket Cloudlet Architecture

Currently, the proponents of the pocket cloud have just envisioned the case of network loss and how that

can be supplemented with a mobile services hosting. Additionally, CIRRUS clouds [72] extends on the pocket

cloud architecture by designing services portability features that can be migrated between the cloudlets and

public networks such as Wi–Fi in buses. Thus, such public environments can act as transient platforms for

data transmission between the pocket cloudlets. Also, Miluzzo et al. [73] share the same views of the pocket
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cloud but they referred to their proposal as Vision (to depict the future of mCloud). The hypothetical

question that Vision seeks to answer is what will be the opportunities when mobile devices in the near future

become as powerful as desktops? In that case, hosting cloud services directly on the mobile will become a

very common style of app deployment.

The deployment of UCC services also opens up new dimensions for mobile collaborative services for

businesses (e.g., between enterprises and their customers). For instance, research works in [62], [74], and [75]

opined that enterprises can collaborate with their clients through exposing services that are consumable on

n-devices. In such cases, a unified cross–platform has to be proposed that natively adapts the services to

specific devices. In such collaborations, the authors also noted some salient factors that need consideration

such as customer decision making and security. The extension on the UCC paradigm of services accessibility

using the mobile as the services consumption node is the personal cloud.

2.1.3 The Personal Cloud

Soon, there will be a new digital universe which will require the need to have multi control access to devices.

The new digital universe which was forecast in the Gartner Report [27] termed the era as the “Personal

Cloud”, and will provide consumers with the flexibility to use n–devices to access data from multi–cloud

providers in order to improve user satisfaction and productivity. Since today’s mobile devices and PCs are

enabled to access the same cloud services (document sharing, social media and so on), the consumer–driven

cloud is poised to be next revolution in the mobile cloud ecosystem.

The Gartner Report [27] supported the personal cloud claim by enumerating five macro trends that are

shifting from traditional IT to form a new cloud ecosystem. These trends are:

• Consumerization: Users are becoming the deciding factors for technology innovations.

• Virtualization: Changing how IT enterprises are driven to implement applications.

• “App–ification”: Shifting focus to platform independent applications which can be consumed by end

users.

• Self-Service Cloud: Supporting individual use of the cloud.

• Mobility Shift: Accessing consumer information from ubiquitous devices anytime-anywhere.

But, the bigger question is how prepared are the cloud stakeholders for the personal cloud? According

to the Gartner Report [27], the personal cloud “will require enterprises to fundamentally rethink how they

deliver applications and services to users”. While the consumers anticipated the coming personal cloud era,

the enterprises did not see it coming. This according to the report is troubling.

As first step, Cantara [18] and other Gartner experts in their publication, “Hype Cycle for Cloud Services

Brokerage, 2012,” present a theoretical view of a Cloud Services Brokerage (CSB). A role of the CSB is to
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provide intermediary services between cloud providers and cloud consumers. The CSB acts as a hub; linking

one or more external cloud service providers (e.g. public, hybrid, private) on behalf of one or more end users

of those services. In general, the CSB assumes any of the following roles:

• Aggregation brokerage: bringing multiple services together to enable business workflow or enhance the

consumer experience,

• Integration brokerage: using typically SaaS based cloud services to provide an integrated service, and

• Customization brokerage: bringing selective cloud services together and re-aligning them to deliver new

set of services.

In March 2012, the Gartner experts also present graphically the CSB’s impact on consumers as reproduced

in Fig. 2.10. From the graph, it can be inferred that there is a high expectation for technology triggers but

the plateau of productivity is shifting towards Software as a Service and Infrastructure as a Service. The

illustration from Fig. 2.10 shows that new technologies can be presented by combining existing technologies

based on IaaS, PaaS, SaaS, and BPaaS (Business Process as a Service).

Source: [27]

Figure 2.10: The Hype Cycle for Cloud Services Brokerage (March 2012)

Proposing a generic architectural design for the personal cloud should be relevant to all the stakeholders

(i.e., enterprises and personal users). Furthermore, cloud services delivery models should be considered in

the architectural design. These models are: Business–to–Business (B2B) – adopted by cloud suppliers to

support other providers and enterprises (e.g., IBM), and Business–to–Consumer (B2C) – adopted by cloud

suppliers to support consumers directly (e.g., Amazon Web Services, Google App Engine, Microsoft Azure).

Other factors which are equally important for consideration are: Cloud product divergence the possibility of

enterprises coming up with unique cloud products that will be “walled garden” is looming, and cloud product
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convergence cloud technology and products are converging; at least for now from research and developer

perspectives. Today, new smartphones and tablet devices in the market from different vendors are sold with

almost identical applications such as map services, weather services, social media apps, inbuilt GPS, etc. by

the manufacturers.

Also, there is a growing attention for the deployment of Mobile Back-end as a Service (MBaaS) products

[20]. The whole concept of MBaaS is to skew back–end services towards the mobile in order to fill the gap

between the PaaS and IaaS at the abstract layer. This means the services will be conscious of the mobile

specific challenges and address them rather than leaving it to the developers.

2.1.4 Summary

The advent of paid for virtual computing resources, known as cloud computing, has become a defining moment

for the research and enterprise communities. Cloud computing is facilitating high availability of services which

otherwise will have been hosted on traditional IT environments. As the cloud field is advancing, the mobile

domain is also advancing with the resources (features) of these devices being improved constantly. The

mobile devices support consumer mobility and this has made services accessibility ubiquitous without tying

the consumer to static hardware (e.g., desktops). As a result, mobile cloud computing has been gaining

popularity from diverse stakeholders who are aiming at providing better services. Of great importance is the

identification of the following challenges that hampers the successful deployment of mobile cloud computing

services: intermittent disconnections, tight energy budget that is driven by the device battery life, fluctuating

bandwidth, resource poverty nature of the mobile device features in comparison to their desktop counterparts,

and high latency. In an attempt to overcome these challenges, various methodologies have been proposed in

different works which can be categorized as follows:

• Virtual Machine (VM) Migration

• Data, Services, Resource, and Computation Offloading

• Partitioning and Parallel Execution

• Resource Allocation

In recent days however, there is a paradigm shift towards the use of n–devices to support cloud services

consumption from a single user perspective. This new paradigm is referred to as ubiquitous cloud computing.

The challenges in the mobile cloud computing domain apply to the ubiquitous cloud computing domain.

However, the ubiquitous cloud computing era is driven by the expectation of consumers who wants to have

services and application consistency across n–devices. The future direction of ubiquitous cloud computing is

the personal cloud. The personal cloud provides an era of services and device convergence. The convergence

of services can be achieved through the deployment cloud brokerage services. So, what are cloud brokerage
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services, their challenges, benefits, and potential impact on the cloud and mobile space? These issues are

discussed in the next section.

2.2 Brokerage Services

The cloud computing era has witnessed the deployment of cloud-based brokers especially with regards to data

and storage aggregation. A possible way to achieve the integration of services goal is to adopt a Cloud Services

Brokerage (CSB) [18]. The CSB represents ”the market, model, and roles that support the intermediation

between cloud services and cloud consumers” [18]. However, this dissertation narrows the scope of the rather

broad definition of the CSB to the various models and aggregation frameworks that have been proposed for

the integration of multiple consumer devices and cloud services. The brokerage idea is also supported by

Intel [67] and Seo et al. [76] who are focusing more on the security issues that can arise from the integration

of the consumer devices into the consumer cloud.

2.2.1 Broker Frameworks

The broker service offers a uniform interface for users to access cross–domain cloud services, provides mon-

itoring services for both private and public clouds, performs failure and fault detection services, manages

resources, migrates resources between cloud infrastructures, and manages interactions management [76] [77]

[78]. Apart from the academic–oriented approaches to the service broker deployment, there are some ongoing

enterprise oriented projects including well–established broker services for enterprise consumption. The Locker

Project for example is an ongoing project that aims at integrating the data of individuals that are scattered

across multiple sources. This type of integration is referred to as personal container. But the focus of the

project is more on integrating data that are on SaaS–oriented clouds such as Online Social Networks (e.g.,

Flickr and Facebook). Rackspace also offers real–world broker service which aids customers to aggregate

services from multiple IaaS-cloud providers. The service works with private clouds, public clouds, and hybrid

clouds. Apart from integrating services, Rackspace also offers hosting services based on pay as you go policy

that enables customers to dump their aggregated data on the platform. The Google Project Glass is another

evidence of personalized aggregation service that performs brokerage functionalities. The idea of the project

is to unify all the digital assets of a user from multiple sources and allow multiple consumer devices to be

used in accessing the same data.

Houidi et al. [79] and Aazam and Huh [80] assert that cloud brokerage services are required for inter–

cloud networking. The architectural overview of the broker proposed in [79] is illustrated in Fig. 2.11. In the

view of the authors, cloud requests from the user can be split and provisioned on multiple cloud platforms.

Also, the same user requests can be provisioned over inter–cloud networks that are connected to a network

operating system (NOX).

Furthermore, Sundareswaran et al. [81] proposed a cloud brokerage framework that aids consumers in
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Source: [79]

Figure 2.11: Inter-Cloud Broker Architecture

the selection of cloud products. In the view of the authors, it is challenging to select cloud services from

different vendors based on Quality of Service (QoS) and Service Level Agreements (SLAs) so the proposed

broker service does the cloud product selection using selection indices. The authors further proposed a cloud

provider index which has the following parameters: service type of the provider, security of the cloud provider,

pricing units, QoS, Operating System, and so on. But, the whole concept of the authors is based on data

aggregation from the service providers. The Scalia [82] framework also aimed at aggregating storage facilities

from multiple cloud vendors. Scalia optimizes the cost of engaging multiple cloud services by providing

effective means for data placement. So, assuming it is too costly to keep data A on cloud C1 in comparison

to cloud C2, Scalia will recommend the movement of the data to C2. A further advantage of Scalia is

the support for hybrid storage (i.e., private storage services and commercial storage services). This ensures

adaptability to data movement and placement whereby services consumers are not over-charged when they

can leverage the storage cost with local facilities.

The ServBGP framework proposed by Itani et al. [83] is aimed at building on QoS services to ensure

services routing in a collaborative environment. Considering the high diversity in cloud provisioning and the

increasing service consumer audience, it is no longer an option but a necessity to support services routing.

The existing services selection models are based on manual selection by the consumers who can sometimes

make mistakes in their choices. Hence, the ServBGP framework performs autonomic service selection and

routing for the cloud consumer based on the QoS indications from the cloud service providers. The inter-

service interaction is facilitated over the Border Gateway Protocol (BGP). The collaboration services that

ServBGP offer in our view can be explored further to build learning and adaptable broker models that will
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provide services recommendations based on the consumer demand trend. Currently, the ServBGP framework

relies on advertisement from the service publishers so the broker sends the messages to the collaborators who

are interested in those adverts. Also, the adverts serve as a basis to autonomously select the services that

consumers may express interest in. Overall, the autonomous decision making regarding services selection

is good but the current work is silent on cost analysis. In effect, quality services can be selected for the

consumer but the consumer may not be in the position to afford the service. With this limitation, we can

argue that consumers should select their own services or the framework should be improved to consider cost

and affordability indexes.

There have also been proposals for broker models that aggregate multiple cloud services to provide a

SLA–based tiered pricing [84] [85]. In the work of Nair et al. [85], their model which follows the enterprise

requirement offers SLA–based services such as identity brokerage entitlement management, policy enforce-

ment, usage monitoring reporting, and network security. Further, the functional overview of the broker model

is given in terms of cost, security, and performance management. Regarding security, the authors advocate

for the deployment of broker services that ensures confidentiality and protected data transfer between the

cloud services and the consumers. The authors also justify the deployment of a storage service on the broker

that employs a portal that interfaces the list of provider services. The portal securely guarantees confidential

services selection in a manner that even services providers are not able to know the consumer’s identity.

Noreen et al. [86] have earlier also advocated for similar security requirements of the broker though they

were more concerned with the applicability of brokerage layers in a database domain. The MobiPass [87]

framework is also a local–based broker that facilitates mobile consumers to communicate in a trustworthy

environment. For instance, though mobile consumer A and B are unknown to each other or they both don’t

know much about each other, the broker maintains a trust index for both A and B since the broker main-

tains record of their communication activities. So, based on the broker’s trust for either A or B, the client

consumers can use this centralized trust to either communicate with each other or deny the communication.

Furthermore, Li et al. [88] argue that there is the need to investigate the impact of the dynamics of cloud

services parameters such as pricing schemes and virtual machines types on broker platforms. The authors

further propose virtual machine migration which is based on cloud scheduling. In that case, the broker service

has a scheduling optimizer that controls the execution plan between the cloud providers and the users.

There is also a growing concern for control plane integration for cloud services. Control plane is when

services are completely composed before their usage. Basu et al. [89] opined that while data plane focuses

on services brokerage and services transformation, control plane focuses on services configuration before it

is used. Control planes have heterogeneous protocols and are domain specific such as user account creation,

account configuration, data exchanges, mapping of user identities, etc. [89]. Control planes have service

integration platforms that maps provisioned services that are coming from the providers.

Blum et al. [90] also explored the opportunity of propagating user generated content between services

providers and consumers. The authors considered a user generated service workflow which consists of service
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providers, mashup studio (for activities such as the design, creation, configuration, and monitoring), execution

environment (for services description provisioning, deployment, and management), consumer environment

(where services list is authenticated and consume by services consumers). The deployment of the services

workflow is dependent on the implementation of a broker service which has functionalities such as policy

evaluation and management.

In mobile networks however, challenges such as limited battery life and sporadic network disconnection

exists so designing broker services comes with new challenges. For example, in order to achieve services

composition (i.e., bringing fragments of software, data, and applications together to form a single workflow),

considerations have to be given to failure of data and services state propagation. Chakraborty et al. [91]

devoted their work to building a stable environment that can aid mobile consumers with services composi-

tion. The authors developed a broker-based composition protocol with the following features: decentralize

control (in order to overcome single-point failure challenges in centralize systems), mobility–based dynamic

composition model (to determine atomic services), and efficient utilization of mobile resources (to manage

the poverty-features of the mobile). The authors further noted that the distributed broker framework offers

flexibilities such as composition adaptability to services topology (i.e., the changes that happen to services

request), load balancing on the broker, and error minimization for long–running composition tasks. The

distributed broker approach is an improvement on the dynamic broker service that was earlier deployed by

Chen et al. [92].

Mobile devices communicate by polling data from static servers. But in situations where the services

are composite and the workload is high, the communication latency can be intolerable. The Mobile Ajax

Broker (MaJaB) [93] is designed to improve on the optimization requirements for web request calls. The Ma-

Jab framework incorporates techniques such as scheduling (load adaptability), multiplexing (heterogeneous

communication interfaces are aggregated), piggybacking (prioritization of request), and priority-switching

(synchronizing background and foreground processes).

Chauhan and Babar [94] further assert that sometimes QoS and SLAs are not standardized and this can

lead to integration challenges. For instance, in developing tools for testing (which the authors called “Tools

as a Service”), it is required that IDEs and APIs are integrated from multiple sources. These IDEs and APIs

can be linked to the developer environment on Eclipse, Tomcat, MS Visual Studio, etc. through brokerage

services. Primarily, the brokerage services can be designed to maintain proprietary standardization according

to the developers’ specification.

The QoS of broker services has also been studied by Furtado and Santos [95], and Anastasi et al. [96].

These studies focused more on predicting the expressiveness of messages that are disseminated in publish-

subscribe environments as a way to enhance QoS. Furtado and Santos [95] however, opined that integrated

services should learn from the dynamisms of the changing environment rather than relying on static con-

figurations. For instance, broker services can be configured to behave based on some static conditions from

the services providers but once the conditions from those providers are changed, it means the broker will
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be inefficient. In order to support the agility of the service providers in a pressurized business environment,

the broker has to learn to adapt based on the changes from the service providers in order to enforce quality

of service (QoS) aggregation. Furtado and Santos [95] supported their goal by deploying a Contract–Broker

(C–Broker) which relies on the QoS indexes that are specified by the user (contracts). The C–Broker has a

resource manager and monitors that check the changes that are being applied to the application services and

whether those changes should be aggregated or ignored. In order to determine the changes at the application

level, the C–Broker performs event sniffing tasks which are controlled by the monitors.

Broker platforms can also be deployed to migrate services between client applications and services

providers. Messig and Goscinski [97] proposed a service migration broker that aids Web applications to

be discoverable by service consumers (illustrated in Fig. 2.12).

Source: [97]

Figure 2.12: The Migration Service Broker

Key features of the broker platform are: transparency during services discovery, data synchronization

and update management, QoS negotiation, automatic reconfiguration, and services publishing. The service

request between the client consumers and the services providers is facilitated by client proxy and service

proxy. The client proxy negotiates transparently with the broker on behalf of the consumer for all requests

while the service proxy is maintained by every individual server hosts. The service proxy also negotiates with

the broker to allow the utilization of services that are hosted on the back-end. This gives the service broker

two roles, service management and service instantiation.
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2.2.2 Publish-Subscribe Brokers

Publish-subscribe systems have been at the forefront of systems design that focus on information and data

dissemination. The publish-subscribe (pub/sub) system is when the information recipients (subscribers) reg-

ister for particular topics/channels and once those topics are sent by the information provider (publisher), the

topics get pushed to the subscribers. The pub/sub system improves on the point–to–point communication by

enforcing communication decoupling which improves on communication flow between the message providers

and recipients [98]. In most pub/sub systems, brokerage platforms are deployed as centralized or decentral-

ized platforms (also referred to as “hub–and–spoke”). In highly utilized environments where the workload

is heavy, the centralized service lacks the capacity to scale. While the decentralized brokers on the other

hand support high capacity workloads with good throughput, they also have challenges with synchronization

and data communication overhead. Hence, the PAPaS (Peer Assisted Publish and Subscribe) framework is

proposed by Ahmed et al. [99] who observed that P2P subscription services will scale better taking a cue

from BitTorrent and NetFlix. The P2P subscription service engages the publisher and subscriber in a direct

communication so there is no channel overload on the broker. The P2P subscription scheme has also been

proposed and tested by Oudenstad et al. [100] who observed that the scheme facilitates seamless data access

in comparison to the conventional client-server scheme.

The discussion on the performance of publish-subscribe broker services is discussed by Farooq et al.

[98] especially in the context of mobility message dissemination. The authors argue that publish-subscribe

brokers are ideal for services and data exchanges in mobile environments which are habitually characterized

by weak network signals and unstable connectivity. Since publish-subscribe systems enforces decoupling,

messages which are published can be accessed by connected mobile devices in real time or can be accessed

later when disconnected devices later got connected. In a point-to-point message communication however,

once the device is not available at the time of message dissemination, the message will be lost. In the mobile

environment, distributed brokers can be deployed in cellular networks or on a fixed location (server) that links

the publisher’s messages (or events) to the registered message consumers. Since mobile users move from one

location to another, they can disconnect from one broker and connect to another broker and still receive and

publish messages [98]. But such distributed broker environments need to offer some performance thresholds

such as maximum publisher throughput, subscriber throughput, and minimal/zero percentage message loss.

Gaddah and Kunz [101] have also advanced on the mobility broker services deployment by combing tech-

niques such as pro-active caching and neighbor graph. Previously, the systems that support reliable message

dissemination to mobile consumers in publish-subscribe environments are built on reactive techniques. Mean-

ing, the mobile in a disconnected state will not receive the published message(s) from the publishers across

the broker until the devices re–connect. The challenge also is that, there is no guarantee that the new broker

will have the latest messages of the mobile consumer. Thus, the pro–active caching approach is based on

studying the mobility pattern of the user and pushing the message state of the user to a hop ahead of the cur-

rent broker. As a result, the message state is always available on the new broker before the user will connect
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to it. The identification of which broker to send the message is based on a neighboring graph whereby the

current broker contacts the immediate brokers and delivers the messages of the user before the user gets to

those environments. One concern in our view with the pro-active methodology is the accuracy of identifying

the next broker and the message throughput so that the wrong broker targets are not overloaded. But, the

authors show the success of the approach in terms of measuring the publishing rate, subscriber population,

and handoff frequency (i.e., the rate of moving from one broker to the next).

Lundquist and Ouksel [102] also aimed at addressing the concern of overloading some brokers while

other brokers may be under-utilized in mobility scenarios. The main idea is to introduce density–control

functionalities so that the message dissemination workload will be balanced across the brokers. The load

balancing is achieved by identifying parameters such as the collection of matching publications, the age of

the subscription, the frequency of message replication on neighboring brokers, and the number of unique

brokers that publish the message. With these parameters, the authors are able to determine the maximum

and minimum utilities of each broker. Hence, once a broker is approaching its maximum utility, services are

diverted to other brokers that have minimal utility. But, the diversion of services (including messages or

events) is dependent on mutual reachability between the overloaded broker and the under–utilized broker.

If an attempt to reach an under–utilized broker is not successful, another broker will be contacted. Also,

the Figaro [103] framework aims to distribute the load in overloaded mobile and broker networks, where the

authors model the mobile devices as agents. Figaro comprises of a middleware broker that maintains storage

table for data routing. The uniqueness of Figaro is that, the developers treat the collection of agents accessing

a channel as a colony; thus, policies such as banishment, reputation, and fairness can be enforced. As a result,

agents can communicate with the broker about their successful and failure transactions with other agents and

the broker will decide on which agents need to be updated. The importance of load distribution in pub/sub

mobility networks is also emphasized by Salvador et al. [104] in their work which seeks to reduce message

flooding. The work considered three parameters which are expressiveness of the message, the scalability of

the pub/sub broker, and the degree of mobility support. The mobility support is facilitated by providing

user migration capabilities to the broker. Hence, messages are sent as a tuple in the format:

(message-type; source; destination; payload; timestamp)

Based on this format, the broker maintains a global view of all activities including the destinations that

are being flooded by messages. The use of time-stamp also maintains mobility safety whereby clients migrate

from end to end with minimal/no denial of service.

2.2.3 Summary

The advent of cloud computing coupled with the elasticity of the Internet is changing the services landscape

in terms of data and services accessibility. However, these wide array of services are spatial and scattered

with multiple interfaces. The fact that the mobile terrain is also advancing towards ubiquitous services

provisioning further leaves the consumer with divergent views on which data access node to employ and
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which data to consume.

To manage the problem of services diversity, brokerage frameworks have been proposed to aggregate

and integrate the distributed services. The brokerage frameworks provide services composition which aids

consumers to consume multiple scatted services in a single workflow. These broker services predominantly

are designed to offer the following macro services:

• Load balancing in consumer-provider scenarios with heavy processing demand

• Security and trustworthiness of multiple services consumption

• Resources management and utility control (especially in mobile networks)

• QoS preservation

• Standardization of SLAs

• Services composition

The employment of brokerage services to respond to the consumption of distributed services from multiple

consumer nodes has only solved the issue of services control and management. The fact that the services are

distributed further provides new opportunities such as i) the services consumption is extended to multiple

consumers (e.g., employers, employees, customers, etc.), ii) the services are being published by multiple

consumers, and iii) updates to services states are concurrent from multiple consumers. These factors lead

to critical issues such as the preservation and trustworthiness of the services (especially data) as well as the

credibility of the consumers. In view of this, the dissertation delve into the approaches that have been put

forward in the area of data provenance and truth maintenance system.

2.3 Provenance

In this section, discussions are presented on provenance methodologies that the scientific community has

proposed, adopted, adapted, and designed to enforce services and data assurance.

Data provenance (a.k.a., Data Lineage) is the ability to track the life-cycle of data from its creation

through to its present stage. According to Chao-Fan et al. [105], “No provenance, no trust”. The data

provenance mechanism facilitates derivation of data history which aids enterprises to enforce data trans-

parency, accountability, security, privacy, audit trail, confidentiality, services authenticity, and so on [106]

[107] [108] [109] [110] [111].

2.3.1 Provenance–Based Frameworks

According to the works shown by Davidson and Freire [112], Simmhan et al. [113], Tylissanakis and Cotronis

[114], and Woodman et al. [115], provenance implementation in scientific workflows can lead to reproducibility
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and services re–use; while Ikeda et al. [116] posit that provenance can enhance workflow refresh. A typical

framework that aims at combining services provenance, workflow, and a broker is the Karma [113] system

which is illustrated in Fig. 2.13. Further, Knutov et al. [117] noted that provenance can aid in efficient

deployment of Adaptive Hypermedia System (i.e., environments that support link traversal) and Lawabni

et al. [118] explained that provenance can be used to determine services dependencies and relationships in

heterogeneous systems.

Source: [113]

Figure 2.13: The Architectural Design of Karma

In enterprise information systems (EIS), data provenance can be implemented at the applications level,

workflow coordination and control level, and system level [111]. The adoption of cloud services further fuel the

debate on understanding the granularity of services security. By adopting provenance as a security measure,

Zhang et al. [119] argue that cloud data and information leakage can be prevented through transparent

and accountable event management. Hence, the authors focused on tracking the atomic operation on files

in a cloud ecosystem such as: creating a file, deleting a file, writing to a file, reading from a file, moving

a file, and renaming a file. But, the main contribution of the authors work is the rule–based adoption

for the provenance data traceability. The authors opined that data leakage can happen within the same

domain (locally) or across domains. The local rule identifies activities such as file copying, file renaming, and

file movements. The cross–domain rules however, track activities such as sender–side logic on the atomic

operations, receiver-side logic on atomic operations, and email attachments.

Specific to relational database query aggregation, Amsterdamer et al. [120] [121] propose rules that

govern atomic query operations. The authors argue that rules can be applied to operations such as single

queries, multiple queries, and composite queries in relational databases. These rules can be defined to

address the security issues and the complexities in query generation. Relational database provenance also

proves to be efficient for ensuring the quality of the queried data. However, provenance can lead to storage

complexity, time complexity, and storage size increment. Also, storing atomic provenance information can

lead to data growth where the size of the provenance data can overtake the actual data size. These challenges

have been the guiding principles for Bao et al. [122] who seek to reduce the challenges that provenance

can introduce in relational storages. The authors noted that previous studies have proposed provenance

31



tree techniques (as a means of tracing data derivations) but it can be time consuming to traverse the tree

later. So, at first, the authors propose rules that govern whether similar provenance data should be copied

for identical tuples or referenced; which the authors favor the latter option. Second, the authors propose

dynamic programming methodology that optimizes the generation of a provenance tree. Additionally, the

Perm (Provenance Extension of the Relational Model) framework which is developed by Glavic and Alonso

[123] is meant to optimize the query pattern and storage space of provenance data in relational databases.

For every data generated, Perm automatically creates a provenance data which is also relational so once a

data is queried, the provenance record of that data can equally be fetched without explicitly querying the

provenance data for history derivation.

Furthermore, provenance is not just based on policies and rules; but, the roles that the individual system

components play. She et al. [124] proposed a role-based provenance mechanism for services aggregation

and trustworthiness. In distributed systems, actors such as hardware, software, human operators are all

considered as independent services. Thus, enterprises rely on the Services–oriented Architecture (SOA) [125]

model to integrate these independent actors into a single business workflow; an approach known as services

composition. According to She et al. [124], provenance should be based on the roles that these independent

actors play especially, when the actors are from different application domains. Services composition from

different application domains is challenging considering the fact that there is no centralize authority. So, the

approach proposed by the authors is distributed protocol access control. In this case, the authors considered

the physical resources (e.g., files, directories, etc.), data resource (e.g., data and meta–data), and security

authority that controls access. Further, the authors explore inter–domain role–based access control (RBAC)

which permits users in a domain to have access to resources in another domain through role mapping. In

essence, the role that an actor is playing in domain A is translated to domain B when the actor moves to

that domain. The data quality index in a RBAC is represented as a tuple of the format:

QualityData = (ReliabilityData, TrustabilityData, ReinforcementData)

Where ReliabilityData is the reliability of the data from its source of origin, TrustabilityData is the trust-

worthiness of the originators and contributors to the data, and ReinforcementData is the reinforcement factor

which is based on the frequency with which individual system components repeat the generation of similar

information.

There are also data provenance mechanisms that are based on group collaborations; which is an extension

on the role–based provenance [126] [127]. Enterprises keep local copies of provenance data but there are cases

where data tracking is required between multiple enterprises. In that case, while local copies of provenance

data can be kept at the individual participating enterprises, there is also the need to keep a global provenance

record that aids in determining the activities of other users. In such group collaborations, it is important that

enterprises keep sight of internal confidentiality of data so that privacy is not breached. The works by Park

et al. [126] and Nguyen et al. [127] propose mechanisms that can aid in the local confidentiality maintenance

as well as global provenance tracking. The authors describe a uni-provenance mechanism where all entities
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have access to the environmental data and a multi–provenance mechanism where entities keep local copies

of their provenance data and only make it available to collaborators from other domains on request and

trustworthiness.

Once provenance is enforced, it leads to the tracking of user activities, and recording application proce-

dures. In this regard, we can argue that provenance can potentially risk data and user privacy. Alharbi and

Lin [128] propose a privacy–preserving data provenance (PDP) mechanism that aids users to securely access

services remotely without risking the exposure of their identities. In such environments, data provenance

focuses more on the prevention of unauthorized user activities while relying on group signature to enforce

user privacy. But, the PDP approach is feasible when there is a central authority (or centralized trusted

authority) that controls the security on the distributed trusted servers (the trusted servers in this case are

the hosts and providers of services) and a huge user base (U1, U2, ..., Un). In the system, the provenance

data which are kept on the trusted servers, do not contain the information of the individual users but just the

operations that have been performed on the data for the benefit of keeping audit trails; but, the information

on individual users are kept by the trusted authority. So, user privacy is preserved from the masses and

only administrators who are allowed access to the TA can view the user’s information. The same concern for

securing provenance data has been the focus of Hasan et al. [129] who argue that provenance data can be

forged or tampered with when it is passed through insecure networks. In this regard, the authors argue that

provenance data should be encoded with cryptographic hash keys before they are transmitted.

While provenance services have been built to track data derivation and services as a user triggered

event, there is also the need to look into automatic provenance mechanisms. Braun et al. [130] propose

Provenance–Aware Storage System (PASS) that automatically collects and records provenance data without

any intervention at the user and application levels. PASS records provenance data by observing the sequence

of execution of processes (or events) at the operating system and kernel level in the Linux environment. Braun

et al. [130] further noted that there exist Observed-Provenance Systems (where automatic provenance is

enforced through observation of process execution sequence) and Disclosed–Provenance Systems (where users

manually expound the workflow composition for provenance tractability). While the two types of provenance

services are complimentary, the major challenge is that, the identification of provenance granularity can

appear differently at the process execution level from the user expectation. The question that arises then is

how to synchronize provenance consistency between the user level and the system level. The authors then

proposed versioning control techniques where changes at every level are recorded and once new updates are

applied, a new version of provenance records is created. The only critique of the PASS framework is that, the

conflict resolution in the versions is not discussed. But, the authors rely on provenance pruning to control

the provenance record from growing out of proportion.

Provenance storage is very crucial and every effort must be made to curb the provenance data from

over–growing. Provenance record is also an extension of the semantic of the actual data [117]. Let’s consider

a practical scenario: Assuming we want to record the individual read requests to the Google homepage
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(http://www.google.ca), the size of the page itself is less than 1MB but the number of visitors to the site

daily is around 10 billion hits. This means if we want to record only the IP address of the machines that are

browsing the site, the provenance file will be approximately 540GB daily. The concern for the minimization

of provenance record has been the focus of the work presented by Chapman et al. [131]. The authors propose

algorithms that eliminate duplicates of provenance records. First, the authors keep a single hashtable that

contains all provenance records as a single long string. Secondly, new provenance records which are found in

the string are not stored again but when the provenance record is not on record, then a new file is created

that stores the new record. The authors further propose node factorization methodology. Since system nodes

record individual provenance records, there is the tendency to have duplications. So, node factorization aids

common provenance records to be placed in a single source where pointers are used to refer to them by each

node; while the node–specific provenance records are kept by each individual node. Xie et al. [132] also agree

that duplicated provenance records should be eliminated since the relationship between provenance record

and the actual data sets is a graph. The authors further propose the adoption of compression algorithms for

the provenance data in order to maintain the provenance storage. Cheney [133] also argues that provenance

record can be down-sided if we can carefully identify what is provenance and what is not.

The question of what should be a provenance record and what should not is detailed in the work of Reilly

and Naughton [134]. The authors posit that provenance should be considered at two levels; logical provenance

and infrastructure provenance. The former level focuses on the transformation that is occurring to the actual

data sets within the system while the latter level focuses on the environment where the data transformation

is happening (where the environment provenance can include operating system, date, processor, and so on).

This notion is the underlying policy for the Garm [135] framework which combines provenance between the

data process and the system environment and the work presented by Lim et al. [136] who argue that data

derivation history should be linked to the system environment.

Another mega trend in enterprise services deployment and consumption nowadays is collaborative ser-

vices. The advancement in cloud technologies is facilitating the deployment of collaborative services that aid

in workflow composition; however, the begging question is how tracking can be achieved in such environments

[137]. This question is answered by providing a three–level provenance tracking namely business level (using

product lifecycle through product life status diagram), process level (using workflow instances through work-

flow action diagrams), and data level (using workflow instances through input, output, and conversion logic)

[138]. Also, in a collaborative services environment, process documentation can be employed as a means to

ensure trailing analysis [139]. The proposal of trailing analysis is to guarantee services tracking in a dynamic

environment at runtime. The process documentation keeps the mapping relationship between the actors of

the system, the messages that they are receiving, and the messages that they are sending. Further, with

the advancement in Web technologies, collaborative services that are Web-based can rely on provenance to

determine the semantic structure of Web data [140]. Provenance record tracking in distributed services can

be a daunting task due to the fact that the individual services and data are of different semantics, structure,
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and formats. So, to be able to deploy provenance technique for such collaborative system, a mediator (or a

broker) can be implemented that converts the services heterogeneity into a common domain model [141].

Also, Truth Maintenance Systems (TMS) aid in the reasoning deductions of data changes from its input

(creation stage) to its output (usable/processed stage) [142] [143]. Apart from TMS, Assumption-based

Truth Maintenance System (ATMS) have also been employed to ensure consistency of data entered into an

expert system [144], and provide interface uniformity for services binding [145]. The deployment of TMS

is to facilitate the deployment of reasoning services. The combination of provenance and TMS/ATMS can

produce highly trustable and transparent services composition.

2.3.2 Summary

The advancement in cloud technology coupled with the dynamism of the services landscape is facilitating

the deployment of next generation services. The high availability of heterogeneous services and data is

further aiding consumers to access collaborative services. The issue therefore is how services and data

assurance can be enforced in the era of services composition. To answer this question, data provenance

methodology has been proposed by researchers and practitioners as a measure to enforce trustworthiness of

services composition.

In this regard, provenance has proved to be an effective means to enforce data and services reliability,

tracking, quality, and so on in a community. From the available works, provenance can be enforced in a:

• Group Collaboration,

• Workflow Composition,

• Role–based Service Composition, and

• Rule-based Services Composition.

It is surprising to note that as of now, not many works can be found that enforces provenance in dis-

tributed mobile networks. For instance, how do we enforce audit in a system that has mobile consumers

and providers who are geographically dispersed? How do we ensure transparency and services consistency

in the mobile environment? When updates are propagated to disconnected mobile nodes, how do we ensure

synchronization? In the view of this dissertation, some of the provenance mechanisms can be adapted to

answer these questions if researchers understand data management techniques in distributed systems.

2.4 Data State Management and Synchronization

In highly distributed systems such as enterprise information systems with cloud back–ends, the major concern

is data state (update) propagation and management [158] [159] [160]. Update management and synchroniza-

tion of data is crucial for business continuity, real–time and accurate decision making, and responsive system
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design. Services synchronization which aims at ensuring consistency on every node in the distributed system

follows the following processes: database or data source access, data capture or retrieval, data conversion

or transformation, and data transmission and security verification [161] [162]. The mode of data exchanges

during the synchronization process can be asynchronous (where one party sends a request to the other party

and without receiving a response sends other requests) or synchronous (where a response has to be received

for every request before another request can be made) [163].

The success of state management and synchronization from many sources can be advanced by deploying

middleware frameworks. The authors in [161] put forward a middleware layer that takes files from multiple

sources and applies a rule–based policy that combines those files into a single database. Rules are defined

to capture changes that are occurring from different sources and later the changes can be synchronized in

a single repository (specifically, XML flat file storage). Yang [164] also shares similar opinion by proposing

a middleware layer (the author called it a mediator) that performs mediation duties between front–end

applications and back–end services. However, data synchronization issues in mobile networks are more

challenging due to the limitations imposed on bandwidths in wireless networks and the intermittent loss

in connectivity. These challenges lead to high communication latency during update managements and

sometimes updates are unsuccessfully propagated when the mobile is in a disconnected state [165] [166] [167].

Xue [168] therefore proposed a middleware framework (called synchronization server as shown in Fig.

2.14) that aids in reliable and real-time state (data) synchronization in mobile networks. The mobile/client–

side application stores the application logic and a cache of the replica data from the back–end data source.

The middleware then stores the business logic and the synchronization logic that facilitates the update

propagation between the mobile and the back–end. The main objective of the mobile cache is to provide

offline data access. Further, the middleware aids in pushing only updates from the backend to the front-end;

an attempt that is aimed at reducing network overload. The middleware further facilitates the detection of

conflicting updates.

Source: [168]

Figure 2.14: Synchronization Server in a Mobile Network

36



Latency reduction is a very important aspect of mobile services design. For example, in mobile multi–

player game systems, latency can lead to inconsistency in the game state [169] [170]; while, in mission critical

systems such as mHealth [171], data propagation delays can lead to undesired circumstances. The concern

for latency reduction and real–time data update has been my research focus over the past year. A proposal

is put forward for a soft real–time data propagation middleware that aids in data routing among mobile

providers and consumers using the health domain as a use case [172]. There are few other works that also

employed middleware to support end–to–end mobile communication in the health domain. For example,

Arunachalan and Light [173] proposed a mobile agent communication protocol that transmits medical data

from the back–end server to the mobile clients. The agent communication protocol interfaces the middleware

which performs roles such as: data synchronization, data segregation, data distribution, power management,

and geo–location detection. Further, the MUHIS (Middleware for Ubiquitous Healthcare Information System)

framework which is designed in [174] [175] provides group collaboration and synchronization of data in the

distributed medical domain.

The data stream in distributed services can be in different formats (files, multimedia, etc.) and mostly,

these data is transmitted as packets [176]. Boukerche and Owens [177] investigated packet transmission

algorithms that enforce quality of service (QoS) in mobile distributed systems that transmit multimedia

packets. In such environments, multiple servers are facilitated to send multimedia data to multiple mobile

clients as streams where a base station is introduced in–between as a middleware. The question is how to

ensure proper arrangement of the fragmented data when they arrive on the client node. The authors therefore

focused on the QoS by investigating the impact of the following algorithms: First–In–First–Out (FIFO)–

the arrival of packet streams are stored in a single queue as and when they arrive on the mobile node in a

buffer, Priority Queuing (PQ)– priorities are set based on which packet stream should be sent in the order

of importance, Round Robin (RR)– the buffer is based on FIFO scheduling and queuing and reading from

the buffer is also based on FIFO, and Weighted fair queuing (WFQ)– the combination of PQ and RR.

But, the introduction of a middleware layer is not the only approach to ensure data synchronization in

mobile networks. Choi et al. [178] proposed an ad–hoc communication environment where a central server is

eliminated so that mobile devices can communicate directly with peers. The mobile application consists of

ad–hoc agent sync for synchronizing application state changes, user authentication layer for authorization,

services discovery protocol, and network layer. The synchronization of services is facilitated by implementing

timestamps on services so once the timestamp is altered, the application synchronization is issued to an

adjacent device.

The advancement in mobile technology has called for client side data hoarding as a means of enhancing

high availability of data, transaction, and application in mobile networks. Availability has been a challenge

in mobile ad hoc networks (MANETS) a decade ago due to the extreme limitation imposed on the mobile

device features [179]. According to Choi et al. [180] [181], mobile hoarding is effective for caching data that

is required for runtime transaction. In the event that the mobile is disconnected from the back–end super

37



nodes, the mobile can rely on the hoarded data to keep the application running. Without the hoarded data,

disconnection in the wireless network can result directly into the termination of the runtime transaction. The

hoarded data on the mobile has the same schema as the data on the back–end so the system keeps three

commit states. There is local commit state where transactions and data are committed on the mobile in its

disconnected state, the global commit which gives a universal overview of the transaction in the entire mobile

networks so that all transactions appear same on all nodes, and pre–commit state for ensuring availability.

Once data hoarding is adopted, the next problem that is presented is how to ensure data consistency and

conflict resolution in the files that are maintained on the various nodes. Marforio et al. [182] referred to

application conflicts as “colluding”. Gad [183] put forward a mobile learning environment that enables data

pattern detection as the data state changes. The back-end consists of a data structure that is mirrored on the

mobile so in case the data on the mobile changes, it directly changes the pattern on the server which means

the data has to be synchronized to ensure consistency. The pattern changes are determined by comparing

the timestamp, the identifier, and the date of change but the schema is never affected. If these values are

different from what is stored on the server, then the incoming data will override the existing data on the

server. In this case, there is no versioning. The workflow pattern for conflict resolution in the mobile-server

environment is reproduced in Fig. 2.15.

Source: [183]

Figure 2.15: Conflict Detection and Resolution Process Execution

Apart from pattern detection or keeping same schema of relational storage on the mobile and the server

side, data can be communicated and updated within a context. The UrbanWeb [184] framework stores

contextual data on a server and the mobile and relies on tagging to determine the inconsistency/consistency

in the data. If contextual data is tagged on one node, the information is synchronized on the other node
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with the tagged word so that the context will be the same. This type of approach is referred to us context

matching.

Another key issue in synchronizing data in mobile distributed systems is the security and trustworthiness

of the participating nodes. How should we securely transmit data (especially, Personal Information Manage-

ment)? And how sure are we that the recipient whose resources states have to be updated is genuine? In an

effort to answer these questions, Klingelhuber and Mayrhofer [185] opined that the mobile end of the data

should be encrypted before the data is sent to the untrusted server. The cost of encryption on the mobile can

be expensive since the process requires computation with complexities. The authors show that encryption

keys (based on passwords and public keys) can be shared between the mobile and the data sources so that

only intended nodes can synchronize the data. In order to manage the limited bandwidth in the mobile

environment, the authors propose that instead of the whole state of a resource which is updated be moved

to other nodes, only the deltas (i.e., the changes) should be transmitted.

The transmission of deltas instead of the whole data state has been studied by Koskimies [186] and

Ratner et al. [187] as a means to enable adaptive synchronization. Since synchronization is needed but

can be costly, adaptive synchronization ensures that update management is done based on the availabil-

ity of bandwidth, and the priority of the data that have to be synchronized. Adaptive synchronization

can lead to cost optimization and efficient system manageability [187]. This is the approach that the

Open Mobile Alliance (OMA) group is following to deploy the SyncML project [188]. SyncML (Available:

http://technical.openmobilealliance.org/Technical/technical-information/material-from-affiliates/syncml) is an

open standard in the mobile domain that is aimed at synchronizing services in distributed environments. Ad-

ditionally, Lam et al. [189] proposed the exchange of deltas based on path expression merging to efficiently

manage the data transmission cost. Also, Veeraraghavan et al. [190] [191] noted that deltas (which they

referred to as fidelity) can aid in the deployment of platform specific data models. That is, high capacity

environments such as the desktop can be facilitated to run workload intensive applications while low capacity

systems such as smartphones and tablets should have a minimal (low–fidelity) version of the same application.

This approach is referred to as “fidelity replication.”

2.4.1 Summary

The increasing capacity of the mobile (a.k.a., “pocket supercomputer”) is becoming a defining point for

next generation application deployment. Prior to the modern era, enterprise–oriented applications for the

mobile were built to access backend services through Ajax requests over HTTP. Such means of communication

typically follows the request–response fashion. However, the advancement in mobile technology and increasing

consumer demand for services accessibility with the mobile has propelled the developer community to start

hosting application states on the mobile. Hosting services on the mobile requires mobile data and transaction

hoarding/caching. In this regard, the new form of communication between the mobile and the back-end

service is synchronization. But, the process of synching services and application state can be time consuming
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and unreliable due to the instability of wireless connectivity.

As a means to enhance the deployment of real-time and mission critical mobile applications, the three–

layered architecture has been strongly preferred such that the mobile distributed environment can comprise

of mobile consumers, a middleware/mediator, and the back-end services. The introduction of middleware

platforms can greatly lead to:

• Services Composition

• Security Enforcement

• Real–time Synchronization of Application State, and

• Data and Application Level Consistency.

Synchronization of data, application, and services is paramount and cannot be avoided in the modern era

of mobile system deployments. However, there is the need for us to understand the new dimension of data

storage so that we can propose efficient synchronization algorithms. Next Web services design principles and

protocols are discussed.

2.5 Web Services

Web Services (WS) [192] [193] are network–oriented applications that can be deployed to convey data and

information following standards such as SOA and REST. The last decade has witnessed other standards such

as Simple Object Access Protocol (SOAP), Web Service Definition Language (WSDL), Universal Description

Discovery and Integration (UDDI), and XML Schema Definition (XSD) in order to ensure data availability

and access at real–time. Even with the introduction of the semantic web [194] [195] [196], the above mentioned

standards remain the dominant underlying protocols. However, cloud services providers are mostly adopting

SOAP and REST web services in today’s cloud delivery models since the focus of reaching the consumers is

through Application Programming Interfaces (APIs).

Further, the fact that Web services are distributed aligns very well with mobile architectures. Thus, the

consumption of data in the form of Web services in distributed mobile networks, including Web services

accessibility in mobile cloud computing, has witnessed significant research. The question however is which of

the Web services is more affordable, agile, and lightweight for mobile environments? It is important to state

that the Web services protocols were/are not designed specifically for the mobile; but, as the mobile landscape

evolves and advances, researchers have seen the need to link the two paradigms. In the next section, some of

the works on the various Web services paradigms and their applicability to the mobile domain is expounded.

2.5.1 Service–Oriented Architecture (SOA)

The Service–Oriented Architecture (SOA) provides support to various components of Web services to interop-

erate. SOA focuses on reusability of software and integration [197]. Another key feature of SOA is packaging,
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which makes upgrading of legacy services (applications) very fast and at minimal cost. Primarily, the SOA

model engages the client (service requester) who sends a request to the service registry (service broker) in

search for a particular service. The broker keeps the list of all published services from the available service

providers so that when the client’s request arrives, the broker only makes the service provider discoverable.

The communication within the SOA is shown in Fig. 2.16 as reproduced from [198].

Source: [198]

Figure 2.16: Services Oriented Architecture (SOA)

In most cases, the SOA relies on the Simple Object Access Protocol (SOAP) which follows the following

messaging structure according to Mizouni et al. [199].

• An envelope that acts as a container and provides description for the message (body) and the instruc-

tions (headers) on how the body should be treated.

• Encoding rules for data type expression.

• Routing standards for remote procedure calls and responses

• Standardization for exchanged communication using neutral protocols (e.g., SMTP, HTTP, TCP).

Though the SOA aids Web services developers to overcome interoperability challenges [200], it imposes

a lot of limitations when implemented in mobile distributed systems. SOA mostly generates the Extensible

Markup Language (XML) since it uses SOAP; and this makes simple communication between system com-

ponents in mobile distributed systems challenging. The difficulty is due to the fact that SOAP passes large

XML data; thus the consumption of data becomes a problem on mobile clients which have limitations of
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processing and storage [201]. Another hurdle in the SOA framework is that, to achieve cross platform inter-

operability between Web services, a lot of standards have to be followed. Though standards such as security,

integration and management have been projected for SOA, there is no common platform that integrates all

the standards [197]. Hence, today’s researchers from both industry and academia have opted for the REST

architecture as a preferred methodology for consuming services in mobile networks.

2.5.2 REpresentational State Transfer (REST)

The REpresentational State Transfer (REST) has clear semantic structure that aids in resources identifica-

tion and composition. RESTful Web Service (REST–WS) is a Web service framework that is built on the

architectural principles of REST and communicates over HTTP [202]. The REST protocol enables developers

to use HTTP methods to interact with the resources. The following HTTP methods [203] [204] currently

exist: GET– for resource retrieval (fetching/reading), HEAD– similar to GET request but the requesting

resource only receives the response headers without the entire message body, POST– invoked to push or

create a new resource, PUT– alters (updates) the state of a resource, DELETE– for removing the specified

resource, PATCH – to update parts of a resource without changing the state of the entire resource.

Overall, the REST design follows the following principles:

• Every identifiable entity is a resource and should be assigned unique identifier (ID).

• The key resources should be given Universal Resource Identifiers (URIs) which will facilitate interactions

within the system. The URIs provide a global namespace for resource and service identification.

• Resources can be manipulated through representations using uniform HTTP methods.

• Since resources are decoupled from their representation, it makes content accessibility very simple

regardless of the format of resource content.

• While resources have states, their interactions should be kept stateless. At the end of every transaction,

resources should have information about themselves but not how the last interaction was done.

• Hypermedia as the engine of application state (HATEOAS): In order to navigate between resources,

URIs such as hypertext can be used in a resource representation. HATEOAS aids the client to know

the next steps to take since the returned URI contains links to available options.

All the above principles are not mandatory to be considered in a single design. Only parts can be employed

and such systems are described as low–REST. However, adhering strictly to all the above listed principles is

known as high–REST.

In mobile cloud computing and services, previous researchers and works reported in [202], [204], [205],

[206], [207], [208], [209], [210], [211], and [212] all proved that adopting the REST design leads to higher

scalability, reliability, and decoupling in mobile networks.
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On the issue of provisioning services from the mobile node, AlShahwan and Moessner [213] and AlShahwan

et al. [214] deployed both the SOAP–based and REST Web services and investigated the performance of each.

The results show that the REST architecture facilitates services delivery in shorter time with less error rate.

Due to the verbosity of the SOAP protocol with a non–uniform interface, there were significant message

losses in the mobile network when the protocol is employed. On the other hand, the REST architecture

shows better performance since it supports loose–coupling and has uniform interface that explicitly defines

the operation of every HTTP method invocation. The result reported by the authors is also confirmed in our

previous work in [201].

Additionally, Mizouni et al. [199] investigate the cost of employing the two Web services paradigm in

a mobile context. The authors used the following indices as factors of cost: disconnections during service

execution, scalability, and bandwidth consumption. It is found that the REST approach is more scalable

since it supports higher message throughput. Also, REST shows minimal request–response time as well as

flexibility of allowing phone calls during services execution. Further investigation by Aijaz et al. [215] [216]

also confirmed the flexibility of REST as a technique to ensure services transparency.

2.5.3 Semantic Web

Another area that is offering value to enterprises today is the Semantic Web which is birthed from the Web

2.0 technology [217] [218]. The semantic web is a vision of Sir Tim Berners–Lee who proposes the idea

as an extension to the WWW for more generic data and knowledge exchange [219]. The semantic web

aids machines (e.g., computers) to interpret and understand Web contents intelligently which facilitates the

accomplishments of tasks such as finding, sharing, and information aggregation on the Web without human

intervention [220]. The semantic web technique offers smart ways to extract patterns and build knowledge

which has helped in social network analysis, and web structure and content usage [220]. Previously, the

web was only understood by humans, which leads to poor content mining at the machine level; but, the

advent of the semantic web allows hyperlinks to be described explicitly following a formal semantic for richer

mining. The practicality of the semantic web is evidenced in Linked Data which will be described later. Also,

the semantic web technology has great potential due to the advent of the modern data economy, popularly

referred to as “big data”. Big data is described by Akerkar et al. [220] as:

• Big transaction data: Exponential increase and diversity in the volume of transaction data.

• Big interaction data: Increase in open data such as social media and device data.

• Big data processing : Increasing processing demand on high-dimensional data.

The marriage between the semantic web and big data is what is seen today in most enterprise services

deployment such as: Facebook and Google including DBpedia [220] [221] [222].

The works by Eljinini [223], and Lopes and Oliveira [224] show the applicability of the Semantic Web

in the health and bioinformatics domains respectively. The Electronic Health Record (EHR) plus clinical
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data is growing rapidly without any universal standards. Eljinini [223] realized that most of the EHR and

clinical data which are online are in the HTML format which is meant for human readability but not at

the machine level. Thus, the author organized numerous websites and built ontology between them that

can take the advantage of the semantic web for more accurate knowledge discovery. The ontology is defined

as: determining the purpose of each site (i.e., products or services), determine the main entities (classes) to

be considered within the site, provide metadata for the classes (e.g., attributes, properties, etc.), establish

object–based hierarchy between the classes, transform the ontology into a formal module based on the Web

Ontology Language (OWL), and provide documentation. Frber and Hepp [225] provide further details on

creating vocabularies for semantic web architectures which is identical to the ontology proposed by Eljinini

[223].

Apart from enhancing the knowledge discovery process, the semantic web has also been linked to the

improvement on the Web’s Quality of Service (QoS). For instance, Garcia and Felgar de Toledo [226] tabulate

the QoS of the Web which includes properties such as: Response Time, Latency, Throughput, Scalability,

Capacity, Availability, and Robustness. The authors proposed a QoS policy that translates into the semantic

web paradigm with higher performance over the traditional web. Moreover, Ketter et al. [227] identified

that the combination of semantic web with existing technologies such as Web agents can greatly enhance the

decision making process on the Web.

In order to explain how the semantic web works in practice, the concept of linked data and graph–storage

is discussed in the next section.

2.5.4 Graph and Linked Data

The Linked Data, also referred to as Linked Open Data (LOD) [228] is semantic web in practice. The

paradigm shift in the current structure of the Web from static document to data web where data from

diverse domains are inter–linked is changing the requirements for retrieving facts. The structure of the data

web is illustrated in Fig. 2.17.

In order to make the accessibility of inter–linked heterogeneous resources at the machine–readable level,

Linked Data or Linked Open Data is proposed by the World Wide Web Consortium (W3C) working group

[228] [229] [230]. The current composition of the data web is in varying formats (e.g., relational databases,

XML, CSV, APIs, etc.) which leads to lack of standardization of queries on the Web. Further, the diversity

of the web data creates problem for data integration when already, the vast majority of the datasets are in

silos (i.e., they are not linked). For instance, there is no linkage between the data of Richard Lomotey on

Facebook and Richard Lomotey on Google+. The concept of Linked Data is to bypass the strict requirements

of data structure and semantic as well as the identification of the data source; and rather, rely on HTTP

Universal Resource Identifiers (URIs) to identify the data entities [228].

Linked data relies on the Resource Description Framework (RDF) to model the data as graph. An example

of RDF graph is shown in Fig. 2.18:

44



Source: [228]

Figure 2.17: Structure of the Data Web

Figure 2.18: Sample RDF Graph

The RDF is a triplet of the structure:

Subject: a URI in the namespace of a server (e.g., “RichardLomotey”)

Object: a URI in the namespace of another server (e.g., “RalphDeters”)

Predicate: the type of link between the subject and the object (e.g., “supervisedBy”)

When the server of the subject successfully links the server of the object using a predicate, the latter

responds with a RDF Schema or Web Ontology Language (OWL) definition [228]. The response can also

contain other links which leads to higher degree of interoperability.

To query linked data, SPARQL (http://www.w3.org/TR/rdf-sparql-query/) can be used.

But what are some of the challenges with Linked Data? In order to answer this question in its simplistic

way, Table 2.2 is provided.
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Table 2.2: Linked Data and Some Open Issues.

Challenge Proposed Solutions Author(s)

How do we trust the data or the quality

of the data which is coming from mul-

tiple sources

Provenance (for trust and quality

control) is proposed.

Sequeda and Mi-

ranker [231]

How is the evolving inter–linked struc-

tured data preserved?

Provide distributed, service–

based infrastructure called

DIACHRON, for curation and

preservation. Macro techniques

such as provenance, change de-

tection, multi–version archiving,

etc. are also proposed.

Auer et al. [228]

How do we identify good and useful

data sources in the ocean of linked

data?

Apply feedback–based technique

to identify subsets of the data

set; and find the useful domain

specific information within the

subset.

Rodrigues de

Oliveira et al. [232]

How can the enterprise stakeholders

take advantage of Linked Data?

Offer Linked data provisioning

through multimedia support for

content enrichment.

Halb et al. [233]

What are the theoretical foundations

for Linked Data traversal that can lead

to the identification of data sources dur-

ing the search period?

Proposed semantic query that is

based on the computability of

queries.

Hartig and Freytag

[234]

How is data published into the Linked

Open Data cloud?

Querying using SPARQL Hausenblas [235]

How is quality data assessed in Linked

Open Data (LOD)?

A framework called, Sieve, is

deployed for flexibly expressing

quality assessment methods as

well as fusion methods.

Mendes et al. [236]

Is REST and Linked Data complimen-

tary styles?

The similarities and divergence

are discussed.

Page et al. [237]

Continued on next page
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Table 2.2 – continued from previous page

Challenges Proposed Solutions Author(s)

How is data integrated at the user in-

terface level with linked data offering

uniformity?

Visualization tool is deployed. Paulheim [238]

How do we ensure the scalability of

Linked Stream Data (i.e., data coming

from streaming sources such as sensors)

integrated with Linked Data?

Continuous Query Evaluation

over Linked Streams (CQELS) is

proposed.

Le–Phuoc et al.

[239]

How are changes tracked in a Linked

Data environment?

Events are proposed for tracking

changes.

Urdiales–Nieto and

Aldana–Montes

[240]

Furthermore, as already posited, Linked Data follows the graph model. Graphs are natural ways of

building relationships between arbitrary real–world entities and it appears every aspect of our digital lives

follows some form of graph. The inherent graph phenomenon can be seen in online collaboration services,

crowd–sourcing, online social networks, online purchases, and multi–player gamification platforms.. A typical

graph which establishes a relationship between authors and the prizes they have won (w) and where they are

born (b) is shown in Fig. 2.19.

Source: [241]

Figure 2.19: Graph or Network Relationship Between Authors, the Prizes they have Won and where
they are Born
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Most recently, the enterprises that are leading adopters of graph techniques are:

Facebook Open Graph (FOG): Facebook Open graph facilitates the establishment of real–world rela-

tionship of a Facebook user through her virtual storyline. For example, the graph API allows the user’s activ-

ities to be tracked through likes, downloaded applications, purchases, timeline posts, and so on. The tracked

activities can then be shared with friends and this allows for a translation of virtual world community into real-

world activities. (More is available on the FOG at https://developers.facebook.com/docs/concepts/opengraph/

overview/)

Google Knowledge Graph (GKG): Google relies on semantic-base techniques to enhance the user

search experience by implementing the knowledge graph. The idea of the knowledge graph is to pick a user’s

search term and based on the other similar searches by other users, Google is able to recommend other

searches that the user can do without the user explicitly asking for those new search terms. The advantage

is that, the user is presented with a single view of distributed search which aids in minimizing the search

time that requires the user to jump from one website to the other in search of related materials. Further,

the knowledge graph has aided Google to improve on the page ranking. (More is available on the GKG at

http://www.google.ca/insidesearch/features/search/knowledge.html)

Bing One-ups Knowledge Graph (BOKG): This service relies on the Encyclopedia Britannica to

provide results to user search queries on Bing. However, if the search term is not found inside the Britannica,

the query is extended to other online–based thesaurus such as Wikipedia and Freebase. The whole concept of

the knowledge graph deployment is to enhance data organization and presentation of query results. (More is

available on the BOKG at http://thenextweb.com/microsoft/2012/06/07/bing-challenges-googles-knowledge-

graph-with-new-britannica-encyclopedia-partnership/)

Twitter Interest Graph (TIG): Twitter interest graph isolates users based on their likes and dislikes

which form their interests. This concept encapsulates the user from the generic social graph which is depen-

dent on user nodes (or your relationship to others). Rather, interest graph facilitates a type of relationship

where users of common interest are linked. Equally, the dislikes or the things that are not of interest to indi-

vidual members within the Twitter community can also be extended or explored to discover other knowledge.

(More is available on the TIG at http://blogs.ischool.berkeley.edu/i290-abdt-s12/2012/11/25/analyzing-the-

twitter-social-graph/)

In view of the fact that graphing has achieved significant success, emerging NoSQL databases have

adapted the idea. In essence, graph NoSQL databases (a.k.a., Networked databases by Ritter [242] can be

employed to build data storages in a way that can aid in simple queries as well as establishing relationship

between the data without writing relational database queries. Relational databases rely on keys and join

operations which makes searching tedious and time consuming in data silos. Thus, some enterprises today

prefer to store their data in graph databases so that they can improve on the query time [243] [244]. Graph

databases support edge–centric query and analysis which aids in the simplification of complex queries [241]

[245] [246]. Moreover, graph databases are transactional and are optimized for cross–record connections. At
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the moment, examples of NoSQL graph databases as listed in http://nosql-database.org/ are Neo4J, Infinite

Graph, InfoGrid, HyperGraphDB, and GraphBase.

2.5.5 Summary

Web services which are network–oriented applications have become inseparable from mobile cloud comput-

ing. Most of the mobile applications that are deployed from enterprise applications, social media, mobile

collaboration apps, and so on all rely on Web services to exchange data between the various system com-

ponents. Though a lot of standards have been proposed for the deployment of Web services, the dominant

standards are SOA and REST. Hence, cloud services providers expose their services APIs using either of the

two standards which aids developers to interact with the cloud product from mobile applications. However,

studies on the topic area show that the REST architectural design is more cost effective in distributed mobile

networks though the SOA also has its advantages (e.g., interoperability). The REST protocol is found to be

lightweight, loosely–coupled, and can lead to higher scalability.

Also, the semantic web, which is originally proposed for better knowledge discovery at the machine–level,

is gaining widespread enterprise adoption. More importantly, linked data which is the practical expression

of the semantic web follows the graph model. This phenomenon makes the design of architectures a natural

fit. Furthermore, accessing data in a graphed storage environment reduces latency.

However, there is a huge research gap between the performance of linked data when the primary consumers

are mobile devices. For instance, how are updates in nodes in the graph propagated using the optimal path?

How can mobile devices reliably propagate updates to nodes in a graph database?

The questions can be endless and requires a lot of research dedication.

2.6 Conclusions and Research Questions

In the near future, the enterprise landscape will adopt mobile technology to empower more than a third of its

workforce to support ubiquitous access to services according to the LANDest White Paper published under

the title “Mobility Tipping Points” . This expectation is influenced by the evolvability and advancement in

two macro fields: mobile computing and cloud computing. Cloud computing is the era where services are

exposed by providers to consumers over the network as applications, servers, etc. on pay-as-you-go bases.

While there are several reasons why companies are embracing cloud computing (including cost optimization

on IT infrastructural budget), the quality of service indices are promising. For instance, cloud computing

platforms offer guarantees such as high scalability, availability, fault–tolerance, and. These services have been

classified as Software as a Service (SaaS), Platform as a Service (PaaS),and Infrastructure as a Service (IaaS).

In order to compliment the anytime–accessibility feature of the cloud with anywhere–accessibility, some

researchers proposed the adoption of Mobile Cloud Computing (MCC). This is to facilitate mobile devices

such as smartphones and tablets to consume cloud–hosted services. Despite the advances in mobile technology
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in terms of connectivity, storage, and processing power, the mobile technology has challenges that directly

translates into mobile cloud computing. Some of the challenges are: sporadic disconnections, fluctuating

bandwidth, and tightly controlled energy budget that is dictated by the device’s battery. The direct effect

of these challenges are high communication latency, inability to propagate data and information within the

mobile network, and challenges with data and application state management.

Also, the attitude of consumers and enterprises recently calls for a new research approach. It is a common

phenomenon to see users who own multiple mobile devices and they expect to have application and data

consistency across the various devices. This expectation is further fueled by the enterprise workforce who

need to access services on the go and cannot be tied to a single platform. Moreover, enterprises are exposing

multiple cloud services which are relevant for consumers. The era of supporting n–devices to access cloud

services is referred to as Ubiquitous Cloud Computing (UCC). The extension on the UCC paradigm to

facilitate the accessibility of m-cloud services is called the Personal Cloud.

Based on the architectural designs to meet the expectations of the UCC, the mobile landscape has wit-

nessed several application deployments. In Table 2.3, some services with their features are provided.

Table 2.3: Some Existing Mobile Cloud Services

Platform/Service Feature Architecture

ownCloud Privately owned by the Univer-

sity of Saskatchewan. The ser-

vice allows personalized file man-

agement as well as file sharing

with others.

Supports multiple mobile plat-

forms and desktops but the

back–end is a single IaaS

provider.

DropBox Public cloud service for file shar-

ing. It can also be used for per-

sonal file management

Supports multiple mobile plat-

forms and desktops but the

back–end is a single IaaS

provider.

SkyDrive Public cloud service for file shar-

ing. It can also be used for per-

sonal file management

Supports multiple mobile plat-

forms and desktops but the

back–end is a single IaaS

provider.

Continued on next page
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Table 2.3 – continued from previous page

Platform/Service Feature Architecture

Google Drive Public cloud service for file shar-

ing. It can also be used for

personal file management. Also,

the service integrates other SaaS

platforms offered by Google such

as reminders.

Though the service supports only

Google services, it is designed to

integrate multiple IaaS and SaaS

offerings by the company.

Amazon S3 Public cloud service for file stor-

age. The mobile API is available

for developers and the company

has its own mobile Apps.

The back–end is a single IaaS

provider from Amazon.

BlackBerry Synchroniza-

tion Service

Specifically designed for users of

BlackBerry devices to synchro-

nize their information.

Offered to/for only BlackBerry

device users.

Android Sync Software Specifically designed for users of

Android devices to synchronize

their information.

Offered to/for only Android de-

vice users.

iCloud Specifically designed for users of

iOS devices to synchronize their

information.

Offered to/for only iOS device

users. The company (i.e., Apple)

may offer other platform support

in the future

Locker Project This is a personal container for

sharing files.

Synchronizes files from different

social media platforms.

MEGA Similar to DropBox and Amazon

S3, MEGA can be used for file

storage, management, and shar-

ing.

This is offered by a single IaaS

service provider.

RackSpace This is an aggregation service

that can be employed to organize

data from other IaaS providers

This is offered by a single IaaS

service provider but the idea is

to support services integration to

other services providers.

Looking at the above services (in Table 2.3), it can be seen that the business–to–consumer (B2C) services

model is adopted by providers to deliver content but there is no real support for services integration with
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other providers. For instance, users are not enabled to access DropBox files from Amazon S3 and the vice

versa. The way the existing services are deployed means users have to live with the chaotic divergent of

services and decide on which services to use based on their quality of service (QoS) offerings.

While this chapter has extensively reviewed the area, the question on how to enable enterprises to facilitate

mobile consumers (i.e., the employees or other companies) to access cloud services in the era of the UCC is

not answered adequately. Specifically, there are some open questions which are considered as the research

questions to be addressed in this dissertation. The questions are outlined below:

A. How can consumer consistent experience be ensured?

There is the need to reduce the latency in mobile networks especially when consuming cloud services.

Previous works attempted to address the issue of resources state synchronization in mobile networks in real

time. However, the personal cloud in its infancy requires further outlook on answering the following questions:

(i) How can new updates be detected and pushed to the consumer irrespective of which service is updated?

(ii) How can application consistency be ensured from the user’s perspective?

(iii) How can group data and file synchronization be ensured?

(iv) How can soft real-time data accessibility in the mobile network be enforced?

B. How can the aggregation of the services and subsequently deliver them to the consumer’s

multiple devices be ensured?

The reviewed works show strong approval for the adoption of cloud services brokerage to integrate multiple

services as well as multiple devices of a single user. However, there are some questions that need to be

answered regarding the brokerage service.

(i) How can the scalability of the broker be improved?

(ii) How can concurrency be supported?

(iii) How can fault tolerance be ensured?

(iv) What is the efficient way to authenticate the user/s from the m–cloud sources and audit?

In conclusion, these questions will be addressed by proposing a personal cloud computing architecture (in

chapter 3) that will be evaluated based on the following quality of service (QoS) factors:

• Scalability,

• Soft-real time synchronization,

• Error tracking and recovery, and

• Audit trail through provenance enforcement.
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Chapter 3

CSB-UCC: Cloud Services Brokerage for Mobile Ubiq-

uitous Cloud Computing

3.1 Overview

The objective of this dissertation is to explore efficient ways enterprises can extend multiple cloud services

offerings to consumers who own n–mobile devices (e.g., smartphones, tablets, notebooks, and wearable de-

vices). To achieve this goal, the dissertation proposes a brokerage service called, Cloud Services Brokerage

for Ubiquitous Cloud Computing (CSB–UCC), that acts as an aggregator that links the devices of a user

to the multi–cloud providers, thereby forming an ecosystem of the personal cloud as suggested by Cantara

[18]. The CSB–UCC is a 4–tier architectural design as illustrated in Fig. 3.1 with multiple sub–layers. The

architecture consists of the consumer devices, an IaaS cloud–hosted broker layer (i.e., broker cloud), 3rd Party

Authentication SaaS–oriented cloud layer, and the various multi–cloud providers. The upcoming discussions

address each of the layers and their sub–layers. The CSB–UCC focuses on identifying the various consumer

devices of a single user and mapping them to the cloud services providers of the same user.

As of now, the existing brokerage frameworks that have been proposed either integrate multiple devices

to a single cloud provider (e.g. Dropbox) or aggregate multiple cloud sources to a single user. The CSB–UCC

is not aggregating the data on the broker as seen in some frameworks such as RackSpace; rather, the former

aims at ensuring services selection on the broker and delivering the integrated multi–cloud services directly to

the n–devices of the consumer. First, the high-level deployment is discussed and secondly, the architectural

composition of the brokerage framework. A detail justification of the design choices is also provided to answer

the research questions raised in Chapter 2.

To address the question of ensuring consistent user experience as described in the previous two chapters,

the designed architecture extends on some earlier research. The architecture adapted techniques such as

ubiquitous cloud computing, and the publish-subscribe broker for real–time synchronization based on the

research by Chen et al. [61] and Ahmed et al. [146] respectively. To address the question of reliability of

the broker, the CSB–UCC is designed as a centralized, and distributed broker. This will enable the work

to evaluate which of the approaches is ideal for higher scalability and concurrency support. The provenance

technique is also investigated by extending on the work of She et al. [124] to ensure audit trail in the entire
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Figure 3.1: The Generic Architectural Design of the CSB–UCC

system. However, for ease of readability, the main components in the generic architecture (Fig. 3.1) are

discussed first. Then, the sub–components are discussed based on the research questions.

3.2 The N-Consumer Device Space (Heterogeneous Consumer De-

vices)

In order to move away from the “walled garden” app deployment where applications or certain services are

enabled by vendors only on certain mobile platforms, I decided to open the accessibility of the CSB–UCC

to all modern smartphone and tablet platforms including the PC. This approach requires studies on data

consumption formats that can enforce platform independent app development. Since today’s cloud services

are exposed mainly as REST API [67], the dissertation adopts the REST Web services mechanism. This

means the mobile device can access data as JSON or XML and file sharing can be facilitated as well based

on the HTTP methods.

Moreover, in today’s heterogeneous networks that consist of Wi–Fi, 3G, and 4/4.5G networks, most of

the consumer devices in client–server and events–driven systems are smartphones and tablets, running native

apps or mobile Web apps. Mobile Web apps provide the platform for a single code base to be deployed on
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variant mobile platforms. The advancement in HTML5 makes the Web app design approach deliver similar

and more improved user experience as native (resident) apps. The mobile browser pattern has become the de

facto standard for mobile applications since the Web is everywhere. One key benefit of adopting the mobile

web methodology is the use of the latest HTML5–oriented web technology frameworks. Web frameworks

such as PhoneGap (http://phonegap.com/), Sencha Touch (http://www.sencha.com/), and jQuerymobile

(http://jquerymobile.com/) support diverse mobile operating systems and allow mobile web developers to

leverage their web technology skills in creating appealing applications. Moreover, these frameworks facilitate

dynamic access capabilities to the device native features. However, there are challenges when the mobile

Web app approach is employed. Due to browser diversity, the applications deployed tend to have different

look and feel and some JavaScript functionalities failed to work on certain platforms (e.g., alert()).

Hence, the first task is to build the mobile side of the application in a way to overcome the issues of

browser diversity. To address this issue, the client side application is built as a Platform Independent Model

that has the specific features of each of the client devices. So, depending on the platform on which the

application is deployed, the application uses the features of that platform to render the same look and feel.

This aids the deployment of the application on the BlackBerry Playbook, Android powered tablets, iPad,

iPhone, Windows 7 Phone, and the PC.

Apart from the Web design approach, the native design using development environments such as Xamarin

can be adopted. More importantly, the aim of the work is to support any type of mobile design regardless of

the underlying design environment. Depending on what the need of the enterprise is, the mobile application

can be designed in any language and only has to interface the CSB–UCC layer through HTTP. Services in

the form of data exchanges and file sharing can all be facilitated.

3.3 Multi-Public/Private Cloud Services

Though the CSB–UCC is a hybrid cloud architecture, each component is serving a distinctive purpose. First,

I focus on the Infrastructure as a Service (IaaS) oriented cloud services. Specific to this work and to define

a clear focus, the IaaS cloud services under consideration will be the Amazon S3, Dropbox, and MEGA

facilities. The facilities are employed primarily as repositories where documents in different formats are

stored. The motivation for using the three facilities is necessitated by the use case where I want to validate

the employment of the CSB–UCC architecture in a group file sharing scenario. For instance, let’s consider

the use case below where I assume the Department of Computer Science at the University of Saskatchewan

wants to adopt the CSB–UCC:

I expect that the students have their own Dropbox and MEGA accounts and service to keep their person-

alized data. On the other hand, we keep a pool of shared materials on the Amazon S3 which can be accessed

by the members of the lab. The assumption is that, materials which are on the S3 facility can be seen by all

including the tracking of changes to the various data. It is impractical to allow the students to keep the shared
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data which comprises of huge application codes in their Dropbox account since most of them subscribed only

for the 2GB free space. However, there is lab funding to pay for more space on the S3 facility to facilitate

data sharing.

The above scenario applies to corporate entities that want to facilitate their employees to access enterprise

data and personalized data via their smart mobile devices. Equally, I expect that students in the department

who want to share resources from their private Dropbox account can do so by just sending the data to the

Amazon S3 facility by a click of a button on the consumer device. However, the main issue to discuss is the

identical security workflow of the three cloud providers. This discussion will further explain the authentication

procedure of the CSB–UCC.

Before discussing the solutions proposed in this dissertation, it is important to state that the University of

Saskatchewan has deployed a cloud computing service for file sharing called ownCloud (https://owncloud.usask.ca/).

This service is similar to DropBox and SkyDrive but it is privately owned and accessible only by members

of the University of Saskatchewan. The CSB–UCC to be discussed in this work varies from ownCloud. The

latter is a file storage while the former is an aggregation service that allows synchronization of data, services,

and applications across multiple cloud services. A cloud service can be aimed at file storage, application state

management, services migration, and information sharing.

3.3.1 The File Sharing IaaS Clouds

The three IaaS cloud services are all utilized as file and documents storages. Firstly, the dissertation discusses

the Amazon S3 service for brevity and show how the security workflow is adopted by the other two IaaS

providers. A data container which is called a “bucket” has to be created initially within which the file

contents are deposited on Amazon S3. The service also allows the data owner to specify customized metadata

of every file uploaded, a feature that encourages the integration of Amazon S3 with other Amazon services.

Furthermore, due to its flexibility, Amazon S3 can be used in a composite enterprise architecture that has

other cloud framework components such as Google App Engine (GAE) and Microsoft Azure. However, it is

important to highlight the peculiar way Amazon S3 enforces security access for data consumption.

The Amazon S3 framework follows the strict security flow defined within the Amazon data protection

policy. The service permits hierarchical access to files including usage permissions (read, create, and modify

operations) which fit well into enterprise-oriented workflows. Based on the AWS Identity and Access Man-

agement (IAM), user policies can be defined. For example, a policy can be defined that grants all access to

a user based on the JSON statement below:

{ ”Statement”: [ { ”Effect”: ”Allow”, ”Action”: ”*”, ”Resource”: ”*” } ] }

Amazon also provides an AWS Management Console which allows users to set group policies and create

user access levels using a graphical user interface. While the security policies promise consumer satisfaction

in terms of data safety and protection, it poses other challenges too especially in mobile networks. Every user

(requester) needs to have an Access Key Id and a Secret Access Key which are assigned by the Amazon IAM
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service when the users of the resources are created. Then, a Hash Message Authentication Code (HMAC)

signature has to be generated with these credentials, which has to be added to the HTTP request headers

for Amazon S3 to authenticate the requester. Based on the signature, Amazon S3 is also able to determine

the access level privileges of the requester. Now, it is interesting to state that the Dropbox service and the

MEGA facility all have the same security workflow as that of Amazon S3.

In an enterprise where the primary consumers of the business information are mobile clients, the security

policy becomes a challenge. For instance, while the data hosted on these IaaS layers have a metadata feature

for easy data manipulation, the same feature contributes to HTTP traffic in wireless networks. So, adding

additional HMAC signature string to the already verbose HTTP header request is a recipe for increasing

latency in a mobile distributed environment which experiences sporadic disconnections. Furthermore, storing

an Access Key Id, Secret Access Key, and a HMAC signature in an application domain on the mobile device

raises other security concerns since these devices can easily find themselves in the wrong hands. Also,

calculating the HMAC signature on the mobile device increases the processing workload of these devices, and

high processing workload directly leads to high energy (battery) consumption.

However, there is a bigger security challenge which has to do with the issuance of the key. That is:

How can multiple students or users be authorized to access a data from a common source (e.g., Amazon S3)

on their devices without giving every user the security keys?

The importance of the above question is the avoidance of storing the security keys within a client appli-

cation domain and denying the user any knowledge of what the keys are. Also, in case the mobile device

gets into the wrong hands, the data cannot be accessed if the security keys are not stored within the mobile

application domain.

The answer to this question is one of the motivations for the design of the CSB–UCC and to allow third

party security integration from the consumer devices. In the next section the dissertation discusses the details

of the SaaS cloud layer which offers OAuth 2.0 security from social media services; specifically, Facebook and

Google+.

3.4 Third Party Authentication and OAuth 2.0

The purpose of the third (3rd) party authentication is to enable security authorization from a user’s so-

cial media subscriptions. Using third party social networking Application Programming Interface (API) in

personalized and enterprise oriented applications is becoming very popular for different reasons. But for

this work, the motivation for the integration with the social networking services is to facilitate business–

to–business (B2B) as well as business–to–consumer (B2C) support for the CSB–UCC framework. The B2B

model facilitates enterprise adoption of the framework to provide an authentication layer for sharing doc-

uments with other enterprises while the B2C model supports direct end–user (i.e. employees or external

customers) access to the enterprise document.
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Furthermore, the social networking feature makes the CSB–UCC usable for different enterprises which

may have varying business workflow as well as business focus. For instance, an enterprise that wants to

support only their internal staff (employees) to access Amazon S3 hosted data can employ the simple login

approach. This approach requires that the user provides a username and a password from the mobile device

to the broker; and the CSB–UCC checks from its repository of users to determine whether the supplied

credentials are valid and matching. Provided the user’s credentials match, the CSB–UCC then fetches the

user’s Amazon S3 credentials and forwards the request to Amazon. In this process of authentication, the

enterprise’ data accessibility is “sandbox” and only legitimate employees can have access to the data. Also,

there is nothing like data sharing; and hierarchical privileges can be enforced. The same simple login can be

used to access personalized data from Dropbox and MEGA. But, another point of call is what happens when

the enterprise is an advertising or marketing company and will like to target multiple customers outside their

facility.

The social networking authentication component allows users of the CSB–UCC to login through Facebook,

or Google+. The authentication through the social networking sites is based on OAuth 2.0 technology.

Thus, when a user opts to login through a social media say Facebook, the broker forwards the request to the

Facebook authentication system where the user will be presented with the option to provide Facebook ID and

password. If the user is a valid Facebook account holder, the broker fetches the user’s credentials including

the Facebook security access token and stores these credentials in the user token repository (a storage area

on the broker). But, in an enterprise where security is paramount and only employees are required to access

the data on the Amazon S3 facility, the system administrators are strongly advised to pre–populate the user’s

accounts including the access tokens from the social media as well. In that case, if a user logs into the system

and the credentials are not already stored in the broker’s repository, the user will be denied access to the

data. The pre–population of the social media access token is also to prevent the creation of fake identities

for malicious purposes on the Online Social Networks since Jin et al. [147] report on the increasing menace.

Another issue that is observed is the possibility of having one user with multiple social media accounts.

To solve this issue with multiple accounts, a graph database is created that links (or maps) the accounts of

each user. Since the work relies on the security tokens which are unique for every user account, the user

only need to specify his/her accounts and the tokens are linked from the various social media forums. Also,

following the OAuth 2.0 technique, an end–user does not need to provide security credentials all the time

until the browser session ends.

A third way that the CSB–UCC is useful in the context of social media is the facilitation of an authenti-

cation approach that this dissertation describes as the hybrid authentication mechanism (i.e. either by social

networking or proprietary personal login). Since enterprises have different needs, it is likely to find some that

may require the hybrid authentication approach in order to meet their business execution workflow. The

proposed framework can deal with such a situation since all the features are available for combinatorial usage.

The social media authentication does not influence the Dropbox and MEGA services as much as Amazon
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S3 since in most cases, the latter facility is employed by enterprises for group access while the former frame-

works are mostly personal. The only advantage it offers Dropbox and MEGA users is the flexibility of using

any account and the broker will determine the exact account that the user is registered with on those IaaS

providers and issue the request with that account.

But, there is a security risk that is worth noting. Since, the OAuth 2.0 technique is employed for logging

through social media, the mobile embedded browser keeps a session of the login details. Hence, when a user

logs into the system on the first occasion through social media say Facebook and the “keep me logged in”

option is checked, the subsequent login (within some time frame) takes the user straight to the application

interface without the option to provide user credentials. Hence, end–users are cautioned to logout of the

application all the time rather than just closing the application. Also, this caution should be a guiding

principle for the high security enterprises that will adopt the CSB–UCC framework. To overcome this risk,

it is recommend that the browser cache and cookies be programmatically cleared each time the application

closes. Also, the user should be signed out automatically after the application is idle for some pre–define

time.

3.5 The Broker Cloud

The cloud services brokerage (or broker) is an application server that can be hosted on any IaaS compute

cloud layer, be it a public cloud (e.g., Amazon EC2) or a private cloud but this work puts forward the latter

platform since I wanted to have more control over the security. The broker is the hub that links all the actors

(i.e., the consumer devices, the 3rd Party Authentication cloud, and the multi–cloud services) in the entire

CSB–UCC architecture. In Fig. 3.2, the anatomy of the broker layer is illustrated with the three HTTP/S

interfaces that are exposed to the actors which are external services. The numbers show the initial order of

activity flow. Next, I discuss the flow execution of the broker.

First of all, when users launch an application on the device, the client side HTTP interface is called (as

shown in step 1) which is primarily the Universal Resource Identifier (URI) of the brokerage server. The

URI call which is treated as a request is immediately intercepted by the Service Coordinator which is the

component that is responsible for the coordination of all the system flow activities. The Service Coordinator

routes the request call through the social media HTTP interface in step 2 to the OAuth 2.0 Engine which

is an external authentication system. Assuming it’s Facebook, the request is sent to the Facebook endpoint

with the credentials.

Typically, when the request is issued to the Facebook OAuth 2.0 system, Facebook provides a login

interface that requires the user to input the username and password; this process is captured in step 3 in

Fig. 3.2. After the successful authentication with Facebook, a response in JSON format is returned to the

broker through the HTTP interface in step 2. The service coordinator sends the response to the User Account

Service Marshup in step 4. The security marshup service has a key/value pair repository that stores the
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Figure 3.2: The Anatomy of the Brokerage Server

responses from the OAuth 2.0 Engine. Since the framework supports several logins, the access tokens of the

same user are mapped in the repository using a hash map. So, the system is able to determine the same user

even if the user has multiple accounts.

Since the CSB–UCC supports multi–cloud services providers, the broker has a component called service

selector which facilitates the user to choose the preferred service. It is important to note that the CSB–UCC

is an application middleware that aggregates the user’s accounts from social media through graphs but it

is not an IaaS or data aggregator. Rather, it is a software layer in front of all the multi–cloud services.

So, assuming a user selects the Amazon S3 option, the broker will then employ its Amazon S3 interface

and send the request to the Amazon security gateway over HTTPS. After the request has passed Amazon’s

security test, the broker fetches the requested object and sends it to the mobile requester. The same case

applies to the Dropbox, MEGA, or any enterprise file or database services if they are selected by the user.

Thus, the broker component also acts as a message router. Assuming the request does not pass the security

requirements of the IaaS providers, the request will be denied.

It is important to note that each IaaS layer has only one account credentials (i.e., one email account as

username and a corresponding password) for every customer’s account. Therefore, though mobile users are

offered the flexibility of using multiple accounts, the broker can only issue a request to the IaaS facilities with

the registered and authorized user account. It is based on this authorized account that the IaaS providers will

assign the Access Key Id and the Secret Access Key. Using these credentials, the brokerage then calculates

the HMAC signature which is SHA–1 Base 64 encoded that is sent as part of the HTTP headers over the
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Internet to the IaaS facilities because it enforces the integrity of the request. For clarity, Fig. 3.3 illustrates

the overview of how the broker graphs the user accounts.

Figure 3.3: The Link Graph Between a User’s Accounts

From the illustration, a user can have an authorized account with which the cloud services can identify

the user. However, the user may own other accounts such as emails and social media services (e.g., Facebook,

Yahoo ID, Google+ etc.). The other accounts are labelled as registered accounts since the user has stored

these accounts on the broker as well. So, what the broker does is anytime the user logs in with any account,

the broker uses the linked data (graph) to map the registered account to the authorized account and issues the

request with the authorized account. Considering a simple use case: assuming User A has a Dropbox account

that is bound to the account name a1.example@usecase.com, then this email is the authorized account. Now,

User A may have other accounts such as a2.example@testcase.ca which when the user tells the broker about

it becomes a registered account. Moreover, the second account can be a social media id. So in case User A

later logs into the system with the second account, the broker can map the second account to the authorized

account and issue the request to the cloud with the authorized account.

Further, it is possible for the registered account to be the authorized account for another cloud layer say

MEGA and in that case, the authorized account of Dropbox becomes a registered account. This scenario

arises when a user employs multiple accounts for multiple cloud services registration. The graph relationship

then becomes advantageous because the user is facilitated to provide any account and the broker will handle

the routing of the request with the appropriate authorized account. But first, the user has to specify during

the initial configurations which accounts are the authorized ones for which services.

At this stage, this work has successfully answered the main research question on how the user/s of the

system can be authenticated from the multi–cloud services. The approach adopted hides the entire existence

of the cloud services from the mobile domain. A mobile requester only interacts with the broker or with the

social networking service. Also, the mobile consumers (both users and applications) have no knowledge of

the security tokens of the cloud services. This can minimize the risk of unauthorized use of the system by

unintended users.
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Moreover, the entire decentralized authentication system enforces multi-level security throughout the

framework. Firstly, the user and the consumer application domain are shielded from the multi–cloud sources

(e.g., Dropbox and Amazon S3) and rather, the user is authorized through a third party (SaaS) security layer

using the OAuth 2.0. Secondly, the SaaS security service is also shielded from acquiring any knowledge of

the existence of the multi–cloud storages/services because the information gathered from the 3rd party cloud

layer is just stored in a repository, and the decision to use the stored data to do the actual authentication to

the m-cloud sources is handled by a different component on the broker.

In the design of the CSB–UCC, two modes are supported: offline and online modes. Assuming the

authentication procedure fails in either steps 1, 2, 3, or 4 in Fig 3.2, the application will switch to the offline

mode where the users are able to access their documents and modify them locally on their devices but they

will not be able to update their files with any of the external cloud storages/services. Further, the users are

not permitted to access shared documents/data which are sent to the cloud sources by other colleagues in

group sharing scenarios in the offline mode. The users also cannot synchronize their personalized Dropbox

files if the application is in the offline mode.

However, the successful authentication process flow automatically switches the application to the online

mode. In that case, all the limitations present in the offline mode are overcome and the users can do “live

synching”, meaning they can be receiving updates from the cloud storages as well as pushing updates to

the backend from the consumer devices in real time. At this point, it is important that we discuss the

remaining components of the broker which are actually functionalities that are activated after the successful

authentication process.

When a user is successful with the OAuth 2.0 security authentication, the application becomes accessible

in the online mode which means the users can perform the CRUD (Create, Read, Update, Delete) operations

within the system. Currently, I summarized these four operations in two verbs in order to support the REST

APIs from the multi–cloud sources. Hence, the system uses the HTTP POST method to either store a new

file/data or update an existing file/data. We employ the HTTP GET method to fetch the files/data from

the multi–cloud sources to the consumer device storage. When a file is deleted (removed) from the system,

we equally treat it as a write operation so we use the POST method to ensure that the file is deleted from

the other end.

Furthermore, when an online user issues an HTTP request, the Service Coordinator redirects the request

to the Data Router component in step 5.

Data Router: The data router pushes the data from a consumer device to any/all of the multi–cloud

services and polling the data from the cloud services to the mobile consumers as shown in step 6 in Fig.

3.2. Since I am dealing with actual data (document files, text, etc.) which are persistently stored on the

cloud services, I decided to build a mapping relationship between the consumer, the cloud sources, and the

files. After the successful creation of a user account, the user is given a unique identifier (id) and the id is

employed to create and name the bucket on the Amazon S3 facility or a folder on the Dropbox or other IaaS
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cloud service. Equally, all the cloud sources are assigned unique identifiers (these IDs are not dependent on

the consumer but rather based on the number of cloud sources that the CSB–UCC can support). The use of

the ID in creating the bucket and the folder is to avoid the duplication of names creation which may hamper

security.

I anticipate that though brokerage services may support multi–cloud providers, the consumers may choose

to use only some services but not all. For instance, the CSB–UCC can be built to support five cloud service

providers but some of the users may opt to use only two or even one while some may use all five. Hence,

each user is tracked by the number of cloud services that the user has subscribed for. Based on the graph

relationship, the data router component identifies the user’s account id (Account) and searches for all the

cloud provider services of the consumer. After the identification of the consumer’s cloud services, the data

router then searches for the users’ folder and data on each of the identified cloud providers.

Further, the uniqueness of the CSB–UCC from other related frameworks is that, the consumer can

also register n–devices (e.g. mobile, tablets, PC) to which data from the cloud sources can be pushed to

automatically. In this regard, auto–sync is performed without explicitly calling for the data.

The Workflow Engine: The workflow engine is responsible for the business activity flow of the CSB–

UCC including error tracking/detection. It is often said there is no “error free” system; so the workflow

engine is designed to handle the error cases as well as the error recovery process.

The resources (data) stored on the cloud sources have states. Since, the cloud providers host the resources

as web services, the data are assigned ETag values. The ETag is a unique string of the web service which

changes whenever there is an update (state change) to that service. The workflow engine uses the ETag

of the client side resources and compares it to the same resource on the cloud and determines whether the

cloud side data is updated if the ETags are not equal. An update on the cloud requires the workflow engine

to notify the data router component which in turn sends the data to the registered mobile devices when

the consumer requests for the data. The ETag usage aids the entire architecture to manage the issues with

distributed stale cache especially in the mobile network.

Furthermore, an error scenario is defined that is handled by the workflow engine. Since heterogeneous

networks (i.e. wireless and wired networks) are being considered, there are potential cases where requests

will not be served before there will be loss of connectivity especially with the mobile consumers. Hence, when

the mobile re–connect, the workflow engine re–issues the request for the resource from the cloud providers.

Device States: Apart from the resources (data) states, the client devices are also assigned states which

are defined simply as: Connected and Disconnected. The client devices that connect are in the Connected

state and are ready to receive data from the cloud providers or push data to the cloud source. The client

devices that loss connectivity or turned off are in the Disconnect state and data is not sent to them by the

data router. Rather, the workflow engine records the disconnect state and waits for the device to reconnect.

So, when the device reconnects, the workflow engine moves the device state to “connected” and the data is

re–sent.
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The HTTPS Interface: The HTTPS interface (also dubbed as the Provider interface in Figure 3.4)

forwards the HTTP requests to the cloud services providers on behalf of the consumer. Write requests

(e.g POST and PUT for creating and updating resources respectively) following the REST protocol are

straightforward since these methods are supported by most IaaS layers (e.g. Amazon WS, Dropbox, etc).

Figure 3.4: The Illustration of how a Single Request from the Consumer Device is Replicated by the
Provider Interface

However, the read request (e.g. GET) requires another consideration. Since the work is based on HTTP

polling, there is the need to design the HTTP request call in a way that does not consume so much bandwidth

with unnecessary requests. Hence, when the consumer makes a single HTTP request from the mobile device,

the provider interface replicates the requests to the various cloud services providers that the consumer owns

and waits for all the responses. The responses from the multi-cloud sources are then returned to the consumer

as a single response. Further, the CSB–UCC framework is extensible with REST API-oriented IaaS cloud

sources. The framework supports REST because the syntactic structure is identical across multiple cloud

providers; which requires single programming effort.

The other components such as Provenance Engine and the Controller will be discussed in detail when we

re–visit the research question.

3.6 Data Update Management in Group Sharing (File Sharing Use

Case)

There are different facets of mobile data management and the issue is an entire research field that requires

independent research. However, for the purpose of discussion, a brief overview of how mobile file sharing in

group usage is facilitated by the CSB–UCC and the back–end is provided regarding the IaaS cloud only. For

other use cases involving data state management, data synchronization, data integrity, etc., the framework

has to be adapted to meet those goals.

Clearly, the transaction of file management and sharing in the CSB-UCC falls within the CAP theorem

as discussed in detail by Lomotey and Deters [148]. The theorem simply states that in a highly distributed
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environment, three desired properties are Consistency of the service, high Availability of the service/system,

and Partition–tolerance to faults; however, only two out of the three properties can be simultaneously

guaranteed. In a group file sharing, there are chances of not having connectivity to the IaaS cloud services

and the fact that the users data are stored on distributed layers (i.e., Dropbox, Amazon S3 and n–consumer

devices) means that partition tolerance is inherent in the architecture. This means the system can only

achieve consistency of data within the system or ensure high availability as the complementary guarantee.

Conventionally, the Dropbox service opts for the availability option which means, the system allows for some

time lag within which the data is synchronized across the multiple mobile platforms. This also means that

there are times when users view outdated data in their Dropbox account on the mobile especially when the

synchronization process is not complete. Moreover, the Dropbox service enforces session consistency. In view

of this, the CSB–UCC is aligned to offer the availability guarantee and compromise on data consistency.

The system can equally guarantee consistency by compromising on availability. To do this, locks can be

introduced on the broker following the ACID approach which ensures that the moment a user is authenticated,

every transaction of that user has to be complete before any other transaction can be initialized by the same

user. However, from the lessons learned in a previously reviewed literature, Lomotey and Deters [148], the

consistency guarantee is less preferred by users. Users want to have access to data and keep working and

later synchronize their data if the need be.

So, availability of the system is guaranteed by providing the offline mode as mentioned earlier in the

previous section. The question now is how to ensure soft real time data synchronization. The answer to this

question leads to the discussion of the last component of the broker which is the Workflow Engine.

The Workflow Engine in in Fig. 3.2 is initialized when the user completes the authentication process

through the OAuth 2.0 Engine. The role of the workflow engine is to issue asynchronous HTTP HEAD

request to the two cloud providers concurrently. The reason requests are issued concurrently is to minimize

the waiting queue if the sequential request technique is adopted. Also, the HTTP HEAD request is issued in

this case because the header information is lighter which is good for the bandwidth utilization. The workflow

engine issues the request to retrieve only the Etag value of the stored data. This value is compared with all

the stored data of the user on the n–consumer devices and mismatch Etag pairs call for synchronization of

the data from either end.

Further, when the user is in the offline mode, the Workflow Engine still polls updates from the cloud

sources and puts the updates in notification mode. So, as soon as a user switches to the online mode, the

workflow engine informs the Service Coordinator which also directs the Resource Router to issue the requests

for the updated files. The proposed workflow engine aids the broker to push the updated resource (files)

states to the consumer devices faster.
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3.7 Re-Visiting the Research Questions

At this point, it is important to re–visit the research questions and highlight those questions that have been

solved and those that are yet to be answered. For brevity, the questions will be repeated and brief overview

of how each is solved is provided.

A. How can consumer consistent experience be ensured?

(i) How can new updates be detected and pushed to the consumer irrespective of which service is updated? :

The users can register their devices on the broker and updates available on the multi–cloud sources

are pushed to them. There are provisions for offline and online modes that detect which of a user’s

n-devices are connected and disconnected.

(ii) How can application consistency be ensured from the user’s perspective? : The user has to subscribe to

m-cloud services on the broker. Updates are then pushed to the connected devices of the user. In the

disconnect state, the broker keeps the updates through notification and when connectivity is restored,

the updates are pushed to the user’s device.

(iii) How can group data and file synchronization be ensured? : From the lessons learned in the CAP theorem,

we propose the weak consistency approach where files are exchanged with changes over a time window.

This gives users high availability to work on files in an offline mode and later synchronize them when

there is connectivity.

(iv) How can soft real-time data accessibility in the mobile network be enforced? : The idea of notification,

and concurrent request issuance to the m-cloud sources are all aimed at ensuring soft–real time data

accessibility. A lot more will be done on this area when we discuss scalability.

B. How can the aggregation of the services and subsequently deliver them to the consumer’s

multiple devices be ensured?

(i) How can the scalability of the broker be improved? : Will be addressed in latter discussions.

(ii) How can concurrency be supported? : This is discussed in section 3.5. Preference is given to the proposed

approach over sequential indexing because the latter can introduce higher latency.

(iii) How can fault tolerance be ensured? : This will be discussed along with scalability.

(iv) What is the efficient way to authenticate the user/s from the m–cloud sources and audit? : There are

three authentication modes provided through username/password credentials, 3rd Party authentication

based on OAuth 2.0, and hybrid authentication that combines the other two. The concept of provenance

will be discussed later.
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3.8 Designing a Distributed Broker Architecture for Scalability in

the CSB-UCC

As argued by Chen et al. [92], building a distributed broker platform can enhance scalability. In view of this

argument, this dissertation explores the distributed broker approach. In Fig. 3.1, the CSB–UCC appears

to be a centralized broker but actually, it is a distributed architecture with hidden components. For clarity,

the architecture is re–designed in Fig. 3.5 and this illustration will guide the discussion in this section. In

Fig. 3.5, the HP represents users with n–devices but the discussion will be more on the CSB–UCC and its

components.

Figure 3.5: The Distributed CSB-UCC Architecture

The CSB-UCC as shown in Fig 3.5 has two components that emanate from the previous design in Fig.

3.1: the Controller and the Sub-proxies. The previous architecture in Fig. 3.1 presents the CSB–UCC as a

centralized broker layer that processes all the incoming and out–going requests from the n–devices and the

multi–cloud sources. But, the enhanced architecture (as shown in Fig 3.5) has sub–proxies, each with the

capability of the previously described broker.
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3.8.1 The Controller

The controller is the main coordinator of the activities between the users plus their n–devices and the multi–

cloud sources. Especially, the mobile nodes issue a request to this layer and the layer determines the best

sub–proxy that can handle the request; and routes the request to that sub–proxy. The response to the mobile

is then sent back directly by the sub–proxy. Fig. 3.6 highlights the sub–components of the controller.

Figure 3.6: The Composition of the Controller

Sub-Proxy ID: Each sub-proxy is an application server that can be hosted on a separate IaaS cloud,

and has a unique identifier. This is to facilitate efficient communication between the controller and the

sub–proxies. This is beneficial to access specific processes as laid–down in the REST design principle.

Sub-Proxy State: The requests which are sent by the mobile participants (i.e., the users) are not

processed by the controller. Rather, they are processed by the Sub–Proxies. So, when the requests arrive,

the controller determines which sub-proxies are in a state that can process a request. There are five states

for every sub–proxy which are:

• Dead State: This means the sub-proxy (or, the application server) is dead and is no longer reachable.

This can be due to fatal errors, failures, or crashes. Sub-proxies in this state are not issued requests by

the controller.

• Alive State: This means that the sub-proxy is reachable.

• Responsive State: This means the sub-proxy is responding to the communication of the controller.

There are cases where the sub-proxies are alive but non-responsive. This can be due to intensive

transaction processing.
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• Busy State: This is when a sub–proxy notifies the controller and other sub–proxies that it does not

want to receive any further requests.

• Available State: This means the sub-proxy is ready to receive new tasks from the broker–layer.

Request Queue: This is a channel where the controller stores the incoming requests as queue based

on a First–Come–First–Serve bases. The queue increases when most of the sub–proxies are dead, busy, and

non-responsive.

Response Queue: The responses are also queued when being delivered to the various mobile nodes.

This queue is specifically for situations where a sub–proxy is not able to deliver a response to the mobile

because of communication failure.

Requester Security: The controller is responsible for the authentication and authorization of the user

activities. This has been described in detail in previous sections.

Conflict Detection Engine: This is where the requests are accessed to see whether they are repeated.

Also, the controller checks that the same task is not sent to two different sub–proxies. Especially, when the

sub–proxies communicate outside the broker layer, there are chances of issuing repeated requests to other

proxies by the controller.

User Profile: This is where the broker stores the activities of the user. This is crucial for audit rail as

will be discussed later when provenance is discussed.

Mobile Channels: This is where the controller delivers the requests to the mobile devices. This channel

is for the delivery of messages that were undelivered directly by the sub–proxies. When the mobile is ready

to receive a response, the controller uses this channel to deliver the response but, when the mobile is not

available, the response is stored in the database.

Proximity Detection: This component determines the location of the requester and directs the mobile

request to the proxy within the best proximity. The details will be discussed in later sections.

Log: The log is the reference repository for the broker to track its internal activities.

Database: This is disk storage where the requested transactions of the mobile users are stored to be

accessed later. When a request is processed and not delivered and the same request is issued, the conflict

detection engine pulls the result from the storage; and this enables the controller not to assign this new

request to any sub–proxy.

3.8.2 The Sub-Proxies

It is important to state that the sub–proxies are application servers that can communicate and exchange jobs

directly without communicating through the controller. The sub–proxies can delegate their tasks to other

peers when they are burdened with a lot of tasks. However, when a sub-proxy dies, even though all the other

sub–proxies are aware of the situation, only the controller can re–assign the job of the dead sub–proxy’s

tasks. The sub–components of the sub-proxy are illustrated in Figure 3.7.
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Figure 3.7: The Composition of a Sub-Proxy

Notification: The notification component is responsible for informing the controller about its status.

The various status of the sub–proxy is discussed in the previous section. The information is delivered over

HTTP (i.e., the Connection Interface).

Process Monitoring: This component checks which transactions are being processed and their status.

The status of a transaction can be Complete or Incomplete.

Process Execution Engine: This is where the transactions are processed. Transactions can be requests

which include: fetching files/data, updating data, creating new data, and so on.

Accepted Job Queue: This component keeps track of the number of jobs that are assigned to the

sub–proxy. The component is crucial for the determination of job assignment by the controller, as we shall

explain later.

Data State: This is to determine whether an existing data has been updated or not. The state of the

data is determined based on the state of the ETag value of each data, which is a REST resource.

Device State: This is to know whether a device is connected or disconnected. Connected devices are in

a state to receive responses directly from the sub–proxy. However, due to the intermittent loss in connectivity

in mobile networks, a device in a disconnect state will not be able to receive a response. In this case, the

response is sent to the controller to store the response in the database.

Storage: This is where all records including the data state, device state, the job queue, etc. are stored.

REST Request: The mobile devices can only interact with the CSB–UCC strictly following the REST

standard.

Proxy: The proxy component is responsible for the request routing, request splitting, and event monitor-

ing. Routing– The CSB–UCC ensures that responses are sent back to the mobile devices for every request.

The updates are also pushed to the appropriate devices as needed. Splitting– The proxy splits the incoming
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requests to the appropriate service providers (i.e., the multi–cloud sources). Since the user can subscribe

to multiple cloud sources, splitting is required to issue the request to the specific service provider. Also,

updates from the cloud providers are split to the specific devices of the user. Events– The event component

interfaces the notification layer and the queue layer to determine the availability of updates or the state of

devices respectively.

Services: The services component is responsible for macro activities such as services selection, API type

detection, REST composition and issuance of appropriate notification. Services Selector– This component

enables the users to choose and select the specific cloud service that the user wants to communicate with. The

services can be IaaS, SaaS, and PaaS. API Type– This component is responsible for the choice between the

REST and SOAP API. REST Composition– Though will not be implemented in the CSB–UCC, the SOAP

API can be supported through protocol transformation. This means, the indicated REST composition layer

will transform the SOAP API to REST when the need arises before delivering it to the mobile end–pont.

3.8.3 Assigning Jobs Based on the Best-Proximity

Recently, several methodologies are being proposed by system designers to achieve soft–real time data and

content exchanges. Edge Computing is one of the techniques that is recently dominating where the comput-

ing power is distributed to logical nodes near client–endpoints; an approach that deviates from centralized

processing [149] [150]. Content providers such as Netflix adopts such techniques to deliver data streams to

their users in perceived real–time. Another major architecture is the Fog Computing which is introduced by

CISCO [151] [152]. Just as cloud computing, Fog Computing extends services to the edge of the network but

its characteristics are proximity to end-users, dense geographical distribution, and support for mobility.

However, this dissertation proposes a communication flow called “best–proximity”. The best–proximity

is not the same as the closest proximity. Since there are multiple sub–proxies, the controller has to determine

which of the sub–proxies can serve a request in the shortest time. In order to explain the concept better to

the reader, Fig. 3.8 is adapted from the generic architecture for our next discussions.

The controller component determines the location of the user when a request is issued and assigns the

task to the sub–proxy with the best option. From Fig. 3.8, we can assume that sub–proxy A is the closest

to User1 hence, it is appropriate to route the request of User1 to that sub–proxy and not sub-proxy B.

This assumption is based on the closest proximity policy. However, this approach does not mean that the

request–response time will always be the best minimal. To explain this further, I consider the scenario below.

For every request, the controller accepts the request and assigns the request to a particular sub-proxy.

The sub–proxy has a processing time (Proc t) to handle the request and response time (Resp t) for which

the response travels back to the mobile node. Assuming the processing time is the same for sub–proxy A

and B, then it will be best to assign the task (i.e., the request) to sub–proxy A which is the closest that

guarantees the shortest response time (or soft real time). However, if the processing time varies, then the

job assignment has to be re–considered. Let us consider the parameters in Table 3.1. In Scenario 1, the best
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Figure 3.8: Determining the Best-Proximity Sub-Proxy

case for the reduction in latency in order to ensure soft–real time request–response is to assign the incoming

request to Proxy A since the total time is 155ms. The total time is calculated as:

Total = Req t + Proc t + Resp t

where Req t is the request time.

Table 3.1: Request-Response Scenario

Scenario Proxy Req t (ms) Proc t (ms) Resp t (ms) Total (ms)

Scenario 1
Proxy A 15 120 20 155

Proxy B 15 120 70 205

Scenario 2
Proxy A 15 120 20 155

Proxy B 15 20 70 105

Furthermore, from Scenario 1, the situation will always favor sub-proxy A if it has lower Req t, and

Proc t or if the sum of all the time components produces the least time. In Scenario 2 however, the best case

for latency reduction is to route the request to sub–proxy B because it has the least total time. Even though

it has a higher Resp t (because it is far from the user), it has a significantly low Proc t probably because its

accepted job queue is shorter.

So, even though closeness is vital for job assignments (as in the case of edge computing and fog computing),

it is not the ultimate factor. Though the proposed best–proximity methodology is previously employed by

Content Delivery Networks (CDNs) frequently [268], this dissertation has shown that the methodology can

be employed in ubiquitous cloud computing systems. The evaluation section will further discuss experiments

to validate this claim.

The next section discusses the employment of the proposed best-proximity technique to ensure sensor–

72



mobile communication.

3.9 Mobile and Sensor Data Sharing Based on the Best-proximity

Use Case

Gamma ray is an electromagnetic radiation with a very high frequency that can be biologically hazardous.

Most workers in the mining, manufacturing, security, and other industries find themselves in such hazardous

environments and governments are trying to contain this issue. While traditionally, high gamma radiation

detection sensors have been manufactured to be carried along, they are not good access point for actual

dosage readings. With the recent advancement in mobile technology, this section proposes a mobile hosting

architecture to enable mobile–to–sensor communication following the best–proximity technique. This means

the sensor can detect the radiation and send readings to a smartphone device of the user. All other near–by

mobile devices (which are authorized) will receive the notification to alert the people in the hazard zone. But

before the discussions, there is the need to explain some distributed mobile computing concepts on services

hosting.

The distributed mobile architecture enables mobile devices to communicate with other autonomous system

components to achieve a common application goal. Mobile hosting (a.k.a., mobile provisioning) [265] is when

the mobile device is facilitated to serve as the service provider node. An advantage of mobile hosting is

turning the mobile host into a multi–user node. Several other enterprises, including the health domain,

find the concept useful since it enhances the management and accessibility of medical data particularly in

remote mobile health data accessibility use cases [201]. More importantly, the recent advancement in sensor

technologies is pushing researchers to develop mobile hosting techniques that will allow direct communication

between sensor devices and mobile hosts.

This section will discuss the area of mobile services hosting especially in a group-sharing scenario and how

it adapts the CSB–UCC. Previous works mainly focus on a single mobile hosting node and how it can behave

as a server regarding security, data management, message synchronization, and load bearing. This dissertation

however focuses on multiple providers of similar service of interest. In a group scenario, the ability to engage

multiple mobile services provisioning nodes will lead to better load balancing. However, the bigger challenge

is how to reduce communication latency and manage the state of the data across the several nodes. This

work therefore proposes an edge-based connection in an attempt to determine the optimal path between the

adjacent mobile hosts. Different modes of mobile-to-mobile service communication are designed by adapting

the services flow patterns that include sequential, parallelism, loop, and choice approaches. The proposed

approaches will be evaluated to determine the best methodology for achieving low–latency communication,

efficient job re–assignment, and error management when communications between the mobile host and the

consumer fails.

However, before moving forward, here are the specific questions that will guide the proposed solution:
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• How is latency reduction addressed in the mobile–sensor group sharing scenario?

• How can task distribution in the group sharing environment be handled in order not to over load one

host?

• How is the situation with failures addressed?

These questions are explored in research collaboration with the Environmental Instruments Canada Inc.

located in Saskatoon, Saskatchewan, Canada.

3.9.1 Mobile–Sensor Data Flow Architecture

The generic architecture of the mobile hosting environment for group sharing is illustrated in Fig. 3.9. The

architecture comprises mobile hosts, sensor tags, and cloud based servers. This is a typical adaptation of

the CSB–UCC. The inclusion of sensor tag support in the architecture further distinguishes it from other

existing works. The use of sensor devices for the purpose of personal radiation measurement, body workout

tracking, etc. is on the increase. More importantly, readings from the sensor can be sent to the mobile hosts

via Bluetooth. The mobile hosts can share this data with adjacent hosts on the edge or push it to the cloud

server for corporate analysis.

Figure 3.9: Generic Architecture of the Mobile–Sensor Data Sharing Environment

Sensor Tag

For clarity, the T1 Sensor Tag (http://processors.wiki.ti.com/index.php/SensorTag-User-Guide) is employed

as the sensor device in this section. This is supported by the CC2541 SensorTag Development Kit. The
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main features of the sensor as highlighted in Fig. 3.9 includes: humidity check, accelerometer detection,

temperature reading, LED notification, and sound notification. In Fig. E.1 (refer to Appendix E), the

component architecture highlights some of the key features.

As research on cyber–physical systems (a.k.a., Internet of Things, IoT) is growing, the mobile hosting

architecture is developed beyond just the smartphone ecosystem. The integration with sensor devices further

proves the need to explore group sharing mobile hosting of services rather than a single node access. These

sensors are wearable and can communicate with the mobile in real time. Since the sensors do not have the

capacity to deliver content directly to the cloud servers because they support only Bluetooth, the primary

source for content delivery is the near–by mobile host. The mobile device that receives the content can deliver

it to the cloud servers through Wi-Fi or 3.5/4G network. The same mobile host can also deliver the content

to other mobile hosts in the same environment.

The Mobile Hosts

The mobile hosts are the smartphone endpoints for the services provisioning. Unlike previous works that

design a single mobile host with multiple consumer nodes, this dissertation focuses on treating all the mobile

nodes as hosts. This means, in a group sharing scenario, every available mobile endpoint can either be a

consumer or a provider. For example, if mobile host AH has the latest reading of dosage from the sensor

device that the other mobile devices do not have, AH becomes a host and all the other mobile devices from

say AH+1, ..., AN become consumers. The main activities of the mobile hosts as highlighted in Fig. 3.10 are

discussed as follows.

Services/Data Hosting

The application state is hosted on the mobile. This includes data in storage and the entire business logic

of the application host. The storage contains the sensor data as well as any other data that is of interest to

the application state. Updates can be made to the data in storage by replacing the entire data state. This

approach is the simplest form of data management in mobile networks. For a more rigorous approach on

synchronization of data in mobile hosting environment, we have published an independent research in [266].

Workflow Formation

The workflow formation is the underlying business logic of the application on the mobile host. The

workflow determines which device to connect to, how the device should connect to other devices, how to

process a request, whether a request should be declined or accepted and so on. More on the workflow will

be discussed in the next section when the flow patterns are introduced.

Event-Based Status

This is to inform the other mobile participants about the status of the mobile host. The status is event-

based so the state of the mobile host determines which status message is sent. The following states are

implemented to inform the mobile requester.

• Available
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Figure 3.10: Main Activities of the Mobile Host

• Unavailable

• Busy

Furthermore, customized HTTP status codes are designed that are returned to the client requesters on

the state of a mobile host. Available is 200, Unavailable comes with no code rather, the connection terminates

or timed out, and Busy status code is 500.

Pushing

The services that are received on the mobile host are pushed to the other hosts that need that service or

to the cloud backend.

Connection Protocol and Management

The mobile host uses the Bluetooth protocol to connect to the sensor devices but 3.5/4G and/or Wi-Fi

to connect to the other external components. The connection to a mobile host can be initialized by the host

or by the client requester (i.e., the service consumer).

3.9.2 The Communication Flow

The major issue surrounding latency and request re–routing depends on the communication flow. The

communication depends on the number of devices within a P2P sharing zone, the number of concurrent
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requests being received by a host (mobile or sensor), and the number of requests being issued by a client

(this includes sensors as well).

First, there is the need to understand the possible number of communication flows as not to overburden a

single device node, and enforce some level of load distribution. In this case, there is the need to understand

the series of the communication flow.

When there is only one mobile host in an area, there is only one communication flow (or loop to itself).

If there are two (2) hosts, there are potential two communication flows, one communication from Host1 to

Host2, and from Host2 to Host1. Since at this stage the focus is only on the communication flow, it is also

assumed the sensors and the clients are hosts. Another way to perceive this is to consider all the devices as

part of the flow. This model then extends as follows:

3 Hosts or Devices = 6 ComFlow

4 Hosts or Devices = 12 ComFlow

5 Hosts or Devices = 20 ComFlow

where ComFlow is the communication flow.

To find the series for the communication flow, assuming N is the number of devices, then the communi-

cation flow will be:

ComFlow = N ∗ (N − 1)

Based on the series we set a maximum threshold for connections that can be handled by a single mobile

host. This threshold is set as a fraction of the communication flow where 2
3 ComFlow works best in terms

of not overburdening the mobile device. This threshold is very important because this is what enables us

to determine whether a mobile host should move to the “Busy” state or remain in the “Available” state as

discussed in the previous sections.

Though the proposed communication flow above appears simple, it is the adaptation of the Ford–Fulkerson

algorithm [267] from the field of graph theory. In this algorithm, for each edge from say host H1 to H2, let

c(H1, H2) be the capacity and f(H1, H2) be the flow. If we want to find the maximum flow from source S to

K, then the following algorithm can be employed:

Equation (i)

∀(H1, H2) ∈ E f(H1, H2) ≤ c(H1, H2)

Equation (ii)

∀(H1, H2) ∈ E f(H1, H2) = −f(H1, H2)
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Equation (iii)

∀H1 ∈ V : H1 6= S and H2 6= K ⇒
∑
w∈V

f(H1, H2)

Equation (iv)

∑
(S,H1)∈E

f(S,H1) =
∑

(H2,K)∈E

f(H2,K)

Equation (i) is the capacity constraint which means the flow along an edge cannot exceed its capacity.

Equation (ii) is the skew symmetry which is the net flow from mobile host H1 to H2 must be the opposite

of the net flow from H2 to H1. Equation (iii) is the flow conservation– the net flow to a node is zero, except

for S, which generates the flow, and the K which is the flow consumer. Otherwise, H1 is S or K. Equation

(iv) is the Value (f) which is the flow leaving from S or arriving at K.

Now that the communication flow and the maximum threshold are explained, the best-proximity concept

is explained.

Edge-based Connection but not Geographical Proximity-based

As stated earlier, most of the on–going works on edge computing focuses on enabling adjacent devices

within the closest–proximity to communicate. This approach is also evidenced in the proposed cloud–edge

architecture by Netflix. Even though the proximity–based approach is perceived to be efficient for latency

reduction in clusters, an interesting observation is made in this work that show that geographical proximity

between the adjacent devices should not be the sole determining factor for latency reduction in mobile-sensor

communication. To explain our observations, the illustration in Fig. 3.11 is used.

Figure 3.11: Request Flow
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This work defines proximity within the concept of Round–Trip Time (RTT) where RTT is the sum of the

time taken for the request from one host to reach the other and the response travel time. In this case, we are

not considering proximity as the distance between the adjacent devices but as time. In most practical cases,

distance is directly proportional to time so the assumption can also be made that the closer the devices, the

shorter the travel time. However, we shall use time in the discussions throughout the section since the goal

is to explore time optimality and not the shortest distance.

From Fig. 3.11, the closest host from H1 is H3 since the RTT is 18ms. If we assume that H3 is unavailable

and/or busy, then the request will be sent to H2 since the RTT between the two hosts is 20ms. The third

option is to connect to H4 in case the rest are unavailable. This description is the typical case with edge

connection that is based on close proximity.

When we consider other factors such as the busy state of a particular host, closeness alone cannot guarantee

latency reduction. From Fig. 3.11, let us denote the entire time required to make a request and receive the

response as T. Then, we can obtain the value of T by summing the RTT and the processing time (PT) of

the request by a host as:

(a) T for H1 to H2 = 20 + 32 = 52ms

(b) T for H1 to H3 = 18 + 70 = 88ms

(c) T for H1 to H4 = 40 + 10 = 50ms

Now, we can see that even though the distance |H1H4| is double that of |H1H2| and |H1H3|, it is best

the request starts between H1 and H4 if we want to reduce latency. If the system experiences failure (e.g.,

loss of message or connection in the middle of a transaction), then the next option is to connect to H2 before

H3. Clearly, this shows that the processing time (PT) of a mobile host is very crucial as we shall see later

in the evaluation and plays a crucial role in the determination of the adjacent edge to connect to in a group

sharing scenario.

We have therefore proposed based on our finding in this work that latency reduction should be viewed

as the minimization of T which is RTT + PT. Determining the RTT is fairly straightforward since modern

mobile devices have GPS and accelerometer. The network signal strength can also be measured so these

features can be combined to determine the approximate RTT. The difficulty is the determination of the PT.

There are several processes running on users’ devices including running background apps and so on. This

makes it challenging to determine the exact busy state of the device. However, we prefer to determine the

PT within an application domain on the mobile host. So, the mobile host application has its processing

threshold as explained in the previous section. In this case, when the mobile host broadcast its name within

a discoverable area, it also sends its threshold value which we consider as the PT. If the mobile host is not

busy, then requests can be sent to it based on the requester’s view of T. It is important to state that the

determination of the entire time (T) is the responsibility of the mobile requester and not the mobile host.

Now that the proposed edge connection is explained, the paper discusses the various flow patterns that
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we explore. The flow patterns are crucial for the way the requests are issued to discoverable mobile hosts as

well as the re-assignment of failed requests (tasks).

Sequential Flow

In the sequential flow, the mobile requesters are enabled to connect to one host at a time. When the

connection fails, another host with the smallest RTT + PT can be contacted. Each requester has its list

of discoverable devices that is implemented as an array that facilitates the requester to know which host to

connect to.

In this approach, the complexity is O(n) so it is much simpler to design. The concern however is going

over the list every time to determine the next available host. Following the linear search, the expected number

of comparisons to make in the list to identify an object is

n if h = 0, and

n + 1

h + 1
if1 ≤ h ≤ n

Where n is the number of iterations and h is the number of times an object appears in the list. Since

the available mobile hosts are unique, only one is stored in a list (no duplications). Thus, the expected

comparisons in the list to find a host is

(n + 2)(n− 1)

2n

In the sequential flow, the mobile requester uses the linear search to find the preferred mobile host in the

list of its discoverable devices. The request is made and when a response is received the flow communication

for that transaction is terminated. However, if the system fails, then the mobile requester has to make the

request to the second most preferred from the list. This can continue until the requester receives the required

or expected response.

Parallelism

The problem with the sequential flow is that, the requester has to send a request and wait for feedback to

determine whether it should make another request to a different host or not. This means if there is system

failure, the requester will take longer time to get a result. The time involves request issuance, travel time,

and the processing time at both the requester and the recipients ends. The sequential flow works best when

in one attempt to an intended mobile host (that has the minimal RTT + PT), a response is received with

no error.

In practical scenarios, this is not the case since failures are bound in mobile wireless networks due to

sporadic disconnections and user mobility. Also, new devices join the community while some people leave the
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Figure 3.12: Parallel Request Flow from the Requester

geographical area. Hence, the parallelism workflow is designed to issue concurrent requests to the available

hosts but with a priority. For clarity, Fig. 3.12 is presented to illustrate the point.

The parallelism approach we propose extends on the sequential flow pattern. Instead of making one

request at a time to the host with the least total time, T, the parallelism approach makes concurrent requests

to all the mobile hosts in the list of available devices. However, the responses are prioritized based on the

value of T.

In Fig. 3.12 for example, the mobile client (i.e., H1) will have the following calculated T values (i.e., RTT

+ PT) in the list before issuing the requests concurrently:

(a) T for H1 to H2 = 17 + 33 = 50ms

(b) T for H1 to H3 = 14 + 40 = 54ms

(c) T for H1 to H4 = 10 + 40 = 50ms

(d) T for H1 to H5 = 22 + 20 = 42ms

(e) T for H1 to H6 = 30 + 38 = 68ms

From the above, the requester will create a priority list (Lp) as an array such that:

string[ ] Lp = { “H5”, “H2”, “H4”, “H3”, “H6”};

Where H5 is of higher priority than H2 in that order. H2 and H4 have the same priority so the device

only puts one ahead of the other. This list facilitates the mobile client, H1, to focus on the order of receiving

the response from the edges. When the response from say H5 is successful, the client will terminate all the

transactions with the other devices. This is to save the communication overhead.

In the event that the transaction with H5 fails, then the client will focus on the next device in the priority

list until the entire Lp list is exhausted.
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Loop

The loop flow basically means repeating a transaction. This can be seen in two phases; repeating a transaction

on the device itself or to an external host. When a transaction fails between a client and a host, the process

can be repeated if the reason for the failure is known.

It is important to state that the loop flow is different from doing the same transaction but with a different

host. For example, a transaction between H1 and H2 is not the same as a transaction between H1 and H3.

In this dissertation, the flow will be considered a loop if and only if the same transaction is repeated

between the same client and host in the previous transaction. The loop flow however is frequent when a

device repeats its own transactions. This includes re-starting a request, re-ordering of a priority list, re-

arranging responses and so on. The transactions on the mobile itself are loops since they are repeated

workflows in the same environment.

Choice

The choice flow is akin to the existing works on how devices communicate with edge nodes. The approach

facilitates a device to connect randomly to any mobile host that is detected. In the best case scenario, the

randomly selected edge is the node with the least total time T.

However, the proposed edge connection based on minimal RTT + PT is not applicable to this flow. This

flow pattern just connects to any edge that is available and at random. To be fair, we did a bit of prioritization

where the list of randomly selected hosts is in the order of the least RTT. In this case, the selection is random

but considers the least travel time between the request and the response. The choice flow pattern typically

emulates the existing works on edge computing that proposes distance based proximity as a sole factor for

latency reduction.

The choice flow pattern is purposefully designed in this work to enable us evaluate the proposed methodol-

ogy against a benchmark of an existing approach. Thus, in the evaluation, more discussions will be presented

on the performance of our approach (i.e., minimal RTT + PT) which is adapted from [268] versus the general

approach (i.e., minimal RTT).

In the next section, the dissertation discuss another major topic, which is provenance with respect to the

CSB–UCC.

3.10 Provenance in the CSB-UCC

The proposed provenance methodology is to answer the question of how to enforce data/services reliability

and audit. For the purpose of discussion and to narrow this very broad topic to the reader, the dissertation

shall consider a healthcare scenario as summarized below.

Assuming the healthcare sector adopts the CSB–UCC to enable healthcare practitioners to use n–devices

for medical data accessibility. That means, a single healthcare practitioner can own multiple devices (e.g.,
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smartphones and tablets) and will like to access any medical information on the go. The healthcare practi-

tioners can also share medical data/files with colleagues. This is a typical personal cloud computing ecosystem

and the advantage here is to promote remote healthcare delivery as well as timely medical information access.

The above scenario helps to formulate some questions that better explain why provenance is crucial for

audit trail. These questions are:

(i) How do we detect unusual request from a physician who own n-devices?.

(ii) How do we know which devices belong to the physicians, and therefore should authorize medical data

accessibility on those devices?.

(iii) How should detected attackers be treated? Outside the scope of this work.

The provenance engine which is proposed on the broker is meant to answer the research questions on

audit trail. As already posited, the physicians can use multiple devices when accessing the medical records.

This creates the need to investigate the best approaches that can enforce protection for the medical data

accessibility. The anatomy of the proposed provenance engine is shown in Fig. 3.13.

Figure 3.13: The Anatomy of the Provenance Engine

The main reason for adopting the provenance approach in the era of n–screen apps is to ensure services

tracking. The provenance methodology as seen from the literature review facilitates tracking of user actions
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within a distributed system. In the proposed system, an HTTP Interface is defined which allows the mobile

participants to reach the broker. Here are the explanations of some of the proposed components:

Access Control Engine: This component is responsible for the determination of whether a request

should be served or not. A request can be in the form of retrieving a medical data, updating an existing

record, or creating a new record. In the event that the system is hacked, attackers can send fake write

requests such as create new records or update existing records, and this must be prevented. Hence, policies

are defined based on some specified factors.

Access Control Factors: There has been the successful deployment of context–aware systems that

defines system accessibility within a context. Context can be time–based, location–based, and role–based.

In this dissertation however, the policy is defined based on the combination of all three factors. The access

control policy is based on an algorithm that the broker runs as shown below:

Access = Time ∩ Location ∩Action

Even though the user is expected to provide username and password pair before logging into the system,

this is not enough to enforce security since that requirement can be compromised. So, when a request is sent

by users, the broker determines the time of the request, the current location of the user, and what action the

user wants to take. The combination of these factors is good enough to determine a genuine or suspicious

request. To understand this further, let’s consider the scenarios below:

1. A user sends a request at 1.00 am (i.e., time) from a drinking bar (i.e., location) to edit the allergy of

a patient (i.e., action)

2. A user sends a request at any time from a different location other than Saskatoon to do anything

3. A user sends a request at any time from any location to delete a medical record

In scenario 1, the request is suspicious when we combine the time and location of the user and the action

to be taken. Why will the allergy of a hospitalized patient be modified that late from a drinking bar? In this

case, the broker will present the user with a set of security questions that must be answered that justifies the

change. Further, the broker will not allow the modification to take effect on the persistent cloud database

server but the modification will be stored as a provenance record on the broker until a supervisor/another

colleague approves the changes. In the event that the request is sent by a hacker, the user will probably not

be able to answer the set of security questions. Better still, the changes will be discarded later when the

physician and the supervisor reject the changes from the provenance record.

In scenario 2, the application can be designed for say physician at the City Hospital in Saskatoon Canada

and their patients within a certain geographical boundary. It is also logical that the physicians can travel

and carry their devices with them. The suspicious question however is, why will a request by a physician

come from say Mexico? In this case, the request is stored as a provenance record and a communication is

established between the physician and a colleague. The physician will have to justify to the colleague why
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the request is necessary; and this colleague can then approve the request. Until that is done, the request will

be stored as a provenance request.

In scenario 3, the delete request is not supported at all since a health information system is being

considered.

The Service Layer: The service layer is the multi–cloud sources.

Management: The management layer determines how the provenance data is controlled. This includes

the provenance writer– which controls all write operations on the provenance record, provenance reader–

which controls how the provenance record is fetched, and the record filter– which aids in organizing the

provenance data.

User Registry: This has been explained in previous sections. The Role Registry is where access roles of

the system users are defined. For instance, some users can only view the medical records and as such, should

not be allowed to make modifications.

Transaction Layer: This is explained in previous sections.

Granularity Control: This component on the broker is responsible for the determination of the depth of

changes that is taking place from the users. Here is where we establish the actual changes that are happening

in the system. One of the major concerns in mobile networks is bandwidth usage and management. Besides,

when the data to be transmitted is small, limited bandwidth can also transmit the data. Hence, I propose

the transmission of delta only technique. This means, I can transmit only the changes of the medical data

across the system components rather than the entire resource state. Let us consider the medical data states

below that describe medications given to a patient:

1. Initial State

{Medication: {Tylenol: {Quantity: 5mg, Prescription Date: October 14 2013, Status: active }}, {Acteomine:

{Quantity: 10mg, Prescription Date: November 02 2013, Status: active}}}

2. Updated State

{Medication: {Tylenol: {Quantity: 5mg, Prescription Date: October 14 2013, Status: active}}, {Acteomine:

{Quantity: 10mg, Prescription Date: November 02 2013, Status: active}}, {Acteomine: {Quantity: 10mg,

Prescription Date: November 10 2013, Status: active}}}

From the initial state and the updated state, the medication list is the same except the addition of new

medication in the updated state on November 10 2013. So, to synchronize this update with the database

on the cloud, previous researchers just move the entire updated state to the database so that the previous

state will be overwritten (or replaced) with the new state. The approach is easier since the determination of

deltas on the mobile can be a daunting task. In this work however, I am able to move only the delta from the

mobile to the database. Hence, instead of moving the entire updated state, only the last medication record

that is applied is moved, and appended to the existing version on the database so that consistency can be

attained.

This is advantageous for the transfer of lightweight data across the fluctuating bandwidth. On the broker
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(specifically the sub–proxies), there is a modification tracker that checks the delta being added and propagates

these changes throughout the system. Since delete is not allowed in the CSB–UCC, the modifications will

only involve an update or a creation of new records. This makes the processing tolerable for the broker. It

is also important to state that, in some rare circumstances, a write operation will not change the state of

a medical record. For instance, if a healthcare professional erroneously hit the submit button when no new

information is added to the system, the new state of the data will be the same as the previous. However, this

will activate the write behavior that requires transfer. This is unnecessary and just consuming bandwidth

that should have been conserved. So, the modification tracker is able to detect this type of actions and

prevents the propagation of such needless transfers. However, the action will be stored in the provenance

storage, which keeps the records on the activities of the healthcare professionals.

3.11 Some Applications that Adapted the CSB-UCC

Currently, there are several applications that have been deployed successfully that adapt the CSB–UCC

framework to meet their specific goals. Some are mentioned and discussed briefly.

3.11.1 The ALILI Framework

The ALILI application by Lomotey and Deters [148] is designed to support personalized and enterprise data

sharing in a groupware. The mobile service supports file sharing from multiple IaaS end–points (Amazon S3

and Dropbox) and aids the updates to be pushed to all of the user’s n–devices. The homepage of the mobile

service is shown in Fig. 3.14. An update by a single user is propagated to all other users who are entitled to

see those changes.

3.11.2 The Med App Framework

The Med App by Lomotey and Deters [153] is a mobile health (mHealth) application that enables the

healthcare practitioners to remotely access the medical data. The data includes patient demographics, vitals,

allergies, and so on. The Med App framework adapts the CSB–UCC framework on the distributed broker

methodology as well as the enforcement of the best–proximity use case. The work was presented with the

best paper awards at the ACM/IEEE ASONAM 2013, FOSINT-SI 2013, and HI-BI-BI 2013.

The user interface of Med App on a mobile platform is shown below in Fig. 3.15.

3.11.3 Hemophilia Injury Recognition Tool (HIRT?)

In this work by Lomotey et al. [154], the Hemophilia Injury Recognition Tool (HIRT?) was developed for,

and with help from, young men with MILD hemophilia. Many people with milder forms of hemophilia are

able to live a normal and active life and have few episodes of serious bleeding. Minor bumps and bruises that

occur with daily life or sports often heal by themselves.
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Figure 3.14: The User Interface of the ALILI App

But once in a while, an injury may be more serious, and it is important to be able to tell the difference.

HIRT? which is a mobile App was developed: 1) as a self-management tool, to help young men with mild

hemophilia assess their symptoms and decide if an injury needs medical attention, and 2) to help them

contact a hemophilia treatment center (HTC).

This self–management App does not replace professional advice. It is designed to prepare users to discuss

their decisions with their health care team. This evidence-based self-management tool helps young men with

mild hemophilia assess an injury and decide when to seek medical attention. It supports a person with mild

hemophilia to make decisions based on his own assessment of physical signs and symptoms. It also suggests

signs that indicate that the injury is getting worse and that he should contact the HTC to prevent long-term

problems. Apart from the App being developed as n–screen service for multiple platforms, the application

also employs the provenance technique proposed to ensure audit trail. The purpose is to aid the research

team of HIRT? keep track of how the designed self–assessment guide is being used across Canada and the

world at large. The application can be downloaded from the App Store. Further details on this work is

provided in Appendix D.

A screen shot of the interface of HIRT? is shown in Figure 3.16.

The project team comprises:

• Richard K. Lomotey – Department of Computer Science, University of Saskatchewan, Canada

• JoAnn Nilson – Saskatchewan Bleeding Disorder Program, Saskatoon, Canada

• Kathy Mulder – Children’s Hospital, Health Sciences Center, Winnipeg, Canada
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Figure 3.15: The User Interface of Med App

• Kristy Wittmeier – Dept. of Paediatrics and Child Health, Univ. of Manitoba, Canada

• Candice Schachter – School of Physical Therapy, University of Saskatchewan, Canada

• Sarah Oosman – School of Physical Therapy, University of Saskatchewan, Canada

• Cathy Arnold – School of Physical Therapy, University of Saskatchewan, Canada

• Ralph Deters – Department of Computer Science, University of Saskatchewan, Canada

Figure 3.16: The User Interface of HIRT?
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3.11.4 MUBaaS: Mobile Ubiquitous Brokerage as a Service

This work proposes a cloud–based application middleware, called Mobile Ubiquitous Brokerage as a Service

(MUBaaS) [155], which enables n–devices of a user to access multiple cloud services end-points in soft–real

time. This is achieved by proposing distributed brokers that coordinates the transactions of the user while

taking load balancing into account. The work is part of the Clandestine Anomaly Game Project by ZenFri.

Inc. Canada, in Manitoba. The loadout menu in Fig. 3.17 is reproduced from http://zenfri.com/loadout-the-

units-and-upgrades-of-clandestine-anomaly/.

Figure 3.17: Loadout Menu of Clandestine Anomaly

Epic sci-fi adventure AR game for mobile devices.

Clandestine: Anomaly is a tower defense game leveraging Augmented Reality (AR) and GPS technology

to create a groundbreaking, unique and immersive mobile gaming experience. Through their mobile device,

players will detect and assemble technology, coordinate campaigns, defend against attacks and neutralize

enemies. Clandestine: Anomaly includes an engaging story where the user’s gameplay choices determine how

the game unfolds.

The project team comprises:

• Richard K. Lomotey – Department of Computer Science, University of Saskatchewan, Canada

• Ralph Deters – Department of Computer Science, University of Saskatchewan, Canada

• Corey King – Zenfri Inc. Manitoba, Canada

• R & D, ZenFri Inc. – Zenfri Inc. Manitoba, Canada

3.11.5 SSCA Spray Quality

This project, that translates into an app as final product, identifies the ASABE spray quality of nozzles

available in North America, within their recommended pressure range. Data are supplied by nozzle manufac-

turers, and are also available from manufacturer catalogues. Only nozzles for which spray quality information

is known are included in this app. Manufacturers bear responsibility for following the ASABE S572 standard

for the determination of spray quality.
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Manufacturers represented are Albuz, Billericay Farm Services (Air Bubble Jet), Greenleaf Technologies

(TurboDrop), Hardi, Hypro, John Deere, Lechler, TeeJet, and Wilger (ComboJet). The SSCA Spray Quality

app is intended to assist spray applicators making the spray application using the spray quality recommended

on product labels, or in accordance with other Best Management Practices related to spray coverage or drift

prevention. It produces tables that show the spray quality of any selected nozzle within the manufacturer

recommended pressure range.

The app has two basic features: The first is to identify the nozzle currently installed on a sprayer, either

by entering the nozzle model number in its search engine or by narrowing the search according to the best

information available. The second feature is to identify a nozzle that meets certain spray quality and flow

rate criteria, by manufacturer and nozzle type. The product can be downloaded from the Apple store.

The App is available for download in the Apple Store

The project team comprises:

• Richard K. Lomotey – Department of Computer Science, University of Saskatchewan, Canada

• Ralph Deters – Department of Computer Science, University of Saskatchewan, Canada

• Tom Wolf – Agrimetrix Research & Training

3.11.6 SSCA Tank Mix

This App is developed for pesticide applicators to help them calculate the water and product requirements

for a spray operation. The purpose of this App is to provide product amount calculations necessary for a

spray operation. The applicator selects application volumes and product rates, and also enters sprayer and

field information to allow estimation of number of tanks required for the field, as well as the number of rounds

possible with a load. A large combination of measurement units is available to meet diverse of users. The

product is available on Apple store and Google Play

The project team comprises:

• Richard K. Lomotey – Department of Computer Science, University of Saskatchewan, Canada

• Ralph Deters – Department of Computer Science, University of Saskatchewan, Canada

• Tom Wolf – Agrimetrix Research & Training

3.12 Summary

This chapter details the architectural design of the Cloud Services Brokerage for Ubiquitous Cloud Com-

puting (CSB–UCC). This is a framework that is designed to answer the specific research questions on the

personal cloud computing which seeks to support mobile ubiquity. The CSB–UCC is a 4-tier architecture

90



that comprises n–device mobile endpoints, a broker platform, 3rd party authentication layer, and multi–

cloud services. The concept of the CSB–UCC is to allow n–device usage to access multi–cloud services. Some

applications that are deployed on the architecture are the ALILI framework which supports file sharing in

a groupware, and the Med App which supports n–screen access in mobile health (mHealth). The specific

research questions in this work are highlighted below with a short description of how they are solved.

A. How can consumer consistent experience be ensured?

(i) How can new updates be detected and pushed to the consumer irrespective of which service is updated? :

The users can register their devices on the broker and updates available on the multi–cloud sources

are pushed to them. There are provisions for offline and online modes that detect which of a user’s

n–devices are connected and disconnected.

(ii) How can application consistency be ensured from the user’s perspective? : The user has to subscribe

to multi–cloud services on the broker. Updates are then pushed to the connected devices of the user.

In the disconnect state, the broker keeps the updates through notification and when connectivity is

restored, the updates are pushed to the user’s device.

(iii) How can group data and file synchronization be ensured? : From the lessons learned in the CAP theorem,

we propose the weak consistency approach where files are exchanged with changes over a time window.

This gives users high availability to work on files in an offline mode and later synchronize them when

there is connectivity. Also, the exchange of deltas in a data is proposed in the system rather than

propagating the entire data state.

(iv) How can soft real-time data accessibility in the mobile network be enforced? : The idea of notification,

and concurrent request issuance to the multi–cloud sources are all aimed at ensuring soft–real time

data accessibility. The best-proximity access is proposed which ensures requests are responded to in

the shortest time.

B. How can the aggregation of the services and subsequently deliver them to the consumer’s

multiple devices be ensured?

(i) How can the scalability of the broker be improved? : The distributed broker architecture is proposed

rather than the centralized broker technique. This is to ensure efficient load balancing.

(ii) How can concurrency be supported? : The broker determines how many multi–cloud sources are avail-

able and replicates the requests to those cloud sources simultaneously. This approach is expected to

outperform the sequential indexing which can introduce higher latency.

(iii) How can fault tolerance be ensured? : The distributed broker ensures that when a single node fails, the

other nodes can continue to serve the mobile requests.
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(iv) What is the efficient way to authenticate the user/s from the m–cloud sources and audit? : There are

three authentication modes provided through username/password credentials, 3rd Party authentication

based on OAuth 2.0, and hybrid authentication that combines the other two. Furthermore, a provenance

methodology is proposed that combines policies with user roles to ensure services tracking and audit

trail. The provenance relies on the location, action and time of access to decide whether users can

perform some roles or not.
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Chapter 4

Experiments/Evaluations

The designed architecture, the CSB–UCC: Cloud Services Brokerage for Ubiquitous Cloud Computing, is

evaluated in this chapter to determine whether the quality of service (QoS) factors that were set are achieved.

In the concluding sections of chapter 2 (i.e., section 2.4), the following QoS factors are listed to be evaluated:

• Scalability,

• Soft–real time synchronization,

• Error tracking and recovery, and

• Sensor and mobile data flow.

The QoS factors are set to determine whether the major research goals are answered. If not, what are

the challenges and limitations that prevent the realization of those goals. For the purpose of evaluation, the

architecture will inherit the features of the ALILI framework, the Med App, and the Clandestine Anomaly

system as mentioned in section 3.10. This is to enable a practical setup of n–device to multi–cloud services

ecosystem. The idea is that, files/data will be stored on various cloud sources and the work will evaluate the

time window within which the files are propagated to the various devices. The same approach can be adapted

to evaluate the scalability and error tracking. When the need arises in cases where heavy usage is required,

simulation techniques are put forward. Further, the broker is built in the Erlang programming language

(refer to Appendix C for some code snippets) while the security interface to the 3rd Party authentication

cloud is built in C#.

In the next sections, the experimental goals are highlighted. These goals are skewed towards the specific

research questions under discussion in this dissertation.

4.1 System Requirements and Experiment Goals

In the experiment, the following mobile devices in Table 4.1 are employed. The mobile devices under con-

sideration are outside the IaaS cloud environment. These devices are purchased specifically for our projects

and have less than 5% resource utilization.

The factors that influence client–server interaction such as communication latency, scalability and reli-

ability in a Wi–Fi network are measured and the empirical data is recorded by an observer (Fig. 4.1). In
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Table 4.1: The Mobile Devices and their Capacity

Device

Type

OS Processor Speed

(GHz)

Cores RAM (GB) Storage

(GB)

BlackBerry

Playbook

BB Tablet

OS

1.07 Dual–core 1.00 16.00

iPad3 Apple iOS 1.40 A5X (dual–core) 1.00 16.00

Asus Trans-

former

Prime

Android 4.0 NVIDIA Tegra3,

1.30

Quad–core 1.00 32.00

NOKIA Lu-

mia 900

Windows

Phone OS

1.40 Single–core 0.512 16.00

PC Windows 7

System 32

Intel Core i5, CPU

650 @ 3.20GHz

3.19GHz

Dual–core 4.0 500.00

a situation where heavy workloads are needed, simulation is done with a load generator which is built in

Erlang/OTP 17.1 (http://www.erlang.org/).

Figure 4.1: Experimental Set–up

The broker component is hosted on Amazon EC2 instances. To validate the argument of the distributed

architecture and the feasibility of the proposed best–proximity policy, several Amazon instances hosted in

different regions are required. The multi–cloud sources (mostly IaaS) services under consideration are outlined

in Table 4.2. I obtained six (6) different Amazon instances each at two locations, North Carolina in the USA

and Asia Pacific (Sydney) in Australia. The system capacities are outlined in Table 4.3. This work also puts
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forward the fault–injection technique to validate the error tracking claim.

Table 4.2: The Multi–Cloud Sources

Cloud Service OS Data Storage

Capacity

Data Type Stored File Size

(Payload)

DropBox N/A 5GB Files 300 MB

MEGA N/A 50GB Files 700 MB

Amazon S3 N/A Unlimited Files 3 GB

Internal Server Windows 7

Enterprise

500GB JSON in CouchDB 100 MB

Table 4.3: The Amazon EC2 Servers for Hosting the Distributed Broker

CPU RAM

(GB)

Storage (GB) Region

Intel Xeon E5410@2.33 GHz 1.70 250 North Carolina

Intel Xeon 5506@2.16 GHz 1.70 250 North Carolina

Intel Xeon 5506@2.12 GHz 1.70 250 North Carolina

Intel Xeon 5506@2.80 GHz 1.70 250 North Carolina

Intel Xeon 5506@2.40 GHz 1.70 250 North Carolina

Intel Xeon 5506@2.33 GHz 1.70 250 North Carolina

Intel Xeon 5506@2.17 GHz 1.63 250 Asia Pacific (Sydney)

Intel Xeon 5506@2.82 GHz 1.63 250 Asia Pacific (Sydney)

Intel Xeon 5506@2.15 GHz 1.73 250 Asia Pacific (Sydney)

Intel Xeon 5506@2.17 GHz 1.44 250 Asia Pacific (Sydney)

Intel Xeon 5506@2.64 GHz 1.45 250 Asia Pacific (Sydney)

Intel Xeon 5506@2.11 GHz 1.64 250 Asia Pacific (Sydney)

Intel Xeon @2.12, 2.33 GHz 16.00 1000 Saskatoon (Internal Server)

Though Amazon Web Services (AWS) offer infrastructure instances that support Linux OS, the windows

environment is selected for all instances so that the operating system will not be an influential factor in

the determination of results. During the purchase, Amazon recommends the North Carolina region as the

closest to my location in Saskatoon. In my estimation, the Asia Pacific (Sydney) region is farther away.

This concept will be valuable later when the best–proximity use–case is evaluated. Further, all the Amazon

instances support moderate network performance.

The following is an outline of the experiments to be conducted to determine how the implemented archi-

tecture deals with the QoS factors in line with the major research goals.
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Goal 1: Soft-real time synchronization

In the view of this work, latency can be a hindrance for the facilitation of consistent user experience.

Thus, the experimental set up focuses on how the architecture addresses the minimization of the window

between updates and their propagation.

Experiment 1 : Testing the performance of the benchmark platforms (i.e., DropBox, Amazon S3, and

MEGA).

Experiment 2 : Propagation of the files/data which are updated on the IaaS cloud services to the various

mobile devices where the broker is centralized.

Experiment 3 : Propagation of files/data where the broker is centralized and overloaded.

Experiment 4 : Propagation of the files/data which are updated on the IaaS cloud to the mobile nodes

where the broker is distributed.

Experiment 5 : Evaluation of the proposed load context proximity access.

Experiment 6 : Data Propagation in the mobile–sensor system.

Goal 2: Scalability testing of the brokerage platforms

In today’s services computing economy, there is the surge in system user base (known as “Big Users”).

This calls for systems to support high throughputs and sustain heavy workloads during peak periods. Thus,

the scalability of the designed architecture will be tested.

Experiment 7 : Scalability of the centralized broker.

Experiment 8 : Scalability of the distributed broker.

Goal 3: Error tracking and fault recovery

Systems can fail, and certainly when a centralized broker fails, the entire system can become inaccessible.

However, as the distributed broker is proposed in this work, there is the need to evaluate how the system

reacts when a node fails. This creates the need to investigate how the controller re–assigns the task of dead

sub–proxies to other proxies.

The error tracking will also be tested in the mobile–sensor network.

Goal 4: Audit trail through provenance enforcement

This experiment will evaluate the proposed provenance policy that is based on system assess following

the three context information such as location, time, and action to be taken.

4.2 Evaluation of the Propagation Window

In latency sensitive scenarios, fractions of a second will appear insignificant but when the consumers plus their

devices increase within the system, few fractions can turn into intolerable seconds. The update propagation

window of the implemented CSB–UCC architecture is evaluated to determine the total time to receive updates

on the participating consumer devices. The evaluation at this stage focuses on the propagation window within

which the broker is able to push updates to the client devices. The window is measured based on the response
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times in a mobile–cloud interaction. In reality, users can update their files on the IaaS directly without the

involvement of the broker; so, the experiment is setup in a way that updates are pushed to the three IaaS

clouds (i.e., Dropbox, MEGA, Amazon S3) directly from the consumer devices outside the broker. The

reason for this experiment is to test how slow or fast it takes to propagate updates to the mobile nodes in

groupware environment. For instance, when user A updates a file service on MEGA, how long does it take

for user B to receive this update? The experiment is conducted with the mobile devices in an 802.11g Wi–Fi

environment. The results are actual experimental values from the ALILI mobile application.

The experiments are conducted using the client devices that are put forward, and considering every IaaS

cloud, the update propagation time is observed . The experimental setup also involves separate experiment

for the centralized broker and the distributed broker. The upcoming sections discuss the detail experimental

setups and the results.

4.2.1 Resource Synchronization in the Entire System

The experiment here is on the determination of the update propagation window for each of the IaaS using the

proposed broker. The assumption in this experiment is that, the mobile devices are available and reachable

over Wi–Fi. Furthermore, there are several pre–conditions that can be set for this test, but, I focus on the

case where updates take place outside the broker as shown in Fig. 4.2. This test case is employed because

in reality, cloud services can be interacted with through several interfaces such as web browser, client apps,

console, and dashboards. This means it is impractical to confine users to the usage of only one form of

exchange through the broker. However, the propagation of the update from the IaaS to the mobile nodes

can only be done by the CSB–UCC.

The test at this stage is carried out by measuring the propagation window for an HTTP GET request

from the IaaS cloud to the subscribed mobile devices through the CSB–UCC. As shown in Fig. 4.2, I update

the records on the IaaS sources using the HTTP POST method from the PC through the University LAN

over a gigabit Ethernet connection. The mobile devices connect to the Internet through the University of

Saskatchewan secure Wi–Fi network using 802.11g. The CSB–UCC is hosted on the Amazon EC2 instances as

outlined in Table 4.3. The file records, represented as File 1, File 2, and File 3, on the IaaS are newly created

records and the aim is to propagate them to the mobile nodes. Practically, users can also update existing

records and the updates must be propagated. However, the propagation window is minimal compared to

the creation of new records of similar file size from real world use case observations such as Dropbox. Thus,

this experiment focuses on the creation of new file records since that can potentially lead to the worst case

scenario on file transfer time. The total update propagation window is represented in Fig. 4.3.

The total propagation window then is:

Total T ime = T1 + T2 + T3 + T4

The files used in the experiment are approximately 2 MB each in size. The experiment consists of

97



Figure 4.2: Setup for Testing the File Propagation

Figure 4.3: Four–Time Frames for the Total Propagation Time

maximum 2.4 GB file size and this is analyzed across the various devices. In the next sections, the results are

reported. For most part of the discussion, the focus is on the determination of the average of the collected

dataset. Also, the test is repeated twenty (20) times on each round starting from 100 MB file size to 2.4 GB

for all experiments on the update propagation window.

Experiment 1a: Measuring the Base Propagation Window of Dropbox

In order to evaluate the proposed techniques, there is the need to determine the average propagation window

of the various IaaS providers. Starting with Dropbox, the facility has a mobile version that is supported

by the client devices under consideration. So, the Dropbox mobile app is installed on the consumer devices

for pre–testing. The observer updates the files on the Dropbox server through the PC, and monitors the

propagation window for the update to be synchronized on the consumer devices. It is important to state

that the files are uploaded directly on the Dropbox server through the browser and not through the Dropbox

folder on the PC. This is to eliminate the delay/latency when uploading the files to the actual Dropbox
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facility which can be dependent on network availability.

The average update propagation window for the various consumer devices is plotted in Fig. 4.4. In

this experiment (which is described as the base result in this work), the average of the propagation window

between the maximum and minimum file sizes (x-axis) is determined for all the devices. Also, the maximum

and minimum propagation window (in seconds) are recorded as shown in Table 4.4. The results here form

the bases (i.e., the benchmark) for comparison with other results. Since this is the performance of the

Dropbox facility in the mobile network, it will mean that any system that is offered must strive to achieve

similar/approximate propagation window to guarantee user satisfaction.

Figure 4.4: Update Propagation Window on Dropbox

Table 4.4: Summary of the Dropbox Result

Playbook iPad3 Transformer NOKIA

Average (s) 360.79 408.44 478.05 652.12

Maximum Window (s) 662.44 761.35 827.35 1115.23

Minimum Window (s) 51.22 65.56 107.56 217.56

Experiment 1b: Measuring the Base Propagation Window of Amazon S3

This experiment is similar to the previous but I seek to establish the base results for the Amazon S3 facility.

Unlike Dropbox that has mobile apps, Amazon has Software Development Kits (SDKs) specifically for the

mobile to enable data access on Amazon S3. Thus, I adapted the Amazon SDK for iOS for the iPad3 and

the Android SDK for the Transformer Prime device. Further, the .Net SDK and the Java SDKs are adapted
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for the NOKIA and Playbook devices respectively. This is to enable me determine a reasonably sound base

file propagation window of the Amazon S3 facility on each device.

The observer updates the files on the Amazon S3 facility through the PC, and monitors the propagation

window for the update to be synchronized on the consumer devices. The average update propagation window

for the various consumer devices is plotted in Fig. 4.5. The average of the propagation window, the maximum,

and minimum windows are recorded in Table 4.5.

Figure 4.5: Update Propagation Window on Amazon S3

Table 4.5: Summary of the Amazon S3 Result

Playbook iPad3 Transformer NOKIA

Average (s) 291.93 368.17 480.63 612.27

Maximum Window (s) 524.93 665.66 860.00 1108.00

Minimum Window (s) 50.04 59.44 95.44 145.16

Experiment 1c: Measuring the Base Propagation Window of MEGA

This experiment is set up to establish the base update propagation window for the MEGA facility. Like

Dropbox, MEGA has a mobile App that can be deployed directly on the smartphone and tablet devices with

end–to–end encryption. As of the time of performing this experiment, MEGA has Apps for the iOS, Android

and the BlackBerry. For the NOKIA phone which is windows powered, I adapted the C# SDK.

Similar to experiments 1a and 1b, the observer updates the files on the MEGA S3 facility through the

PC, and monitors the propagation window for the update to be synchronized on the consumer devices. The
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average update propagation window for the various consumer devices is plotted in Fig. 4.6. The average of

the propagation window, the maximum, and minimum windows are recorded in Table 4.6.

Figure 4.6: Update Propagation Window on MEGA

Table 4.6: Summary of the MEGA Result

Playbook iPad3 Transformer NOKIA

Average (s) 300.93 375.17 478.51 623.60

Maximum Window (s) 533.93 672.66 842.00 1117.00

Minimum Window (s) 59.04 66.44 103.44 154.16

It is important to state that all the three experiments (experiment 1a, 1b, and 1c) are conducted outside

the proposed CSB–UCC. The reason is to establish the benchmark for update propagation time on the

devices when any of the IaaS cloud services are employed. There are certain observations made though they

are not the focus of this work. For instance, the Amazon S3 facility shows the minimal latency for update

synchronization, followed by MEGA and Dropbox shows the highest latency. Also, in terms of the mobile

devices, there is a consistency in the output. In the order of retrieving updates, the devices that show the

most optimal time are: Playbook, iPad3, Transformer Prime, and NOKIA. The NOKIA device however

shows high latency because it is the device with the most feature constraints in comparison to the rest.

This means the processing capacity is limited. The phenomenon that is unexplainable is the relatively poor

performance of the Android device which has a Quad-core processor.

Now that the benchmark result is observed, the next experiments focus on the employment of the CSB–

UCC. The major goal that will be guiding the experimental setups is to determine whether the system aids

multiple users to achieve data consistency in soft real–time.
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Experiment 2a: Measuring the Propagation Window of Dropbox (Centralized Broker)

This is the first experiment to test the proposed Cloud Services Brokerage for Ubiquitous Cloud Computing

(CSB–UCC). The experiment here focuses on the performance of the centralized CSB–UCC in the scenarios

where it is used to aggregate data from Dropbox to the mobile nodes. The broker is centralized means it

is hosted on a single Amazon EC2 instance as an application server. In this experiment, files are directly

placed on the Dropbox facility, but it is the duty of the CSB–UCC to determine the update and push that

update to the mobile devices that subscribe to the system. This means the update propagation time follows

the diagrammatic illustrations in Fig. 4.2 and Fig. 4.3. As already posited, the importance of the CSB–UCC

framework is to allow n–devices to communicate with multi–cloud sources. Hence, the idea here is to test

the performance of the framework with regards to Dropbox and subsequently validate the result against the

benchmark result of Dropbox.

To perform the experiment, the observer updates the files on the Dropbox server through the PC, and

monitors the propagation window for the update to be synchronized on the consumer devices. However there

is an important observation that needs to be highlighted. That is, since the broker acts as a middleware that

handles all incoming and outgoing communications, the broker will always be handling more workloads than

just receiving requests from the four mobile devices. So, in this experimental setup, I actually simulate the

activities of several users on the broker by using the load generator to mimic actual requesters. The requests

are issued to retrieve the files within the same range of 100 MB to 2.4 GB. I observed that for varying

number of users, the centralized broker shows resilience for about 3200 users. Within this use case, the result

of the centralized broker is within close approximation to the benchmark Dropbox result. For brevity, the

summarized outcome is provided in Table 4.7.

Table 4.7: Summary of the Dropbox Result (Centralized Broker with Approx. 3200 Users)

Playbook iPad3 Transformer NOKIA

Average (s) 360.37 410.01 475.29 660.99

Maximum Window (s) 662.47 762.92 824.59 1117.93

Minimum Window (s) 61.59 67.13 104.80 220.26

During the experiment, the load generator keeps sending requests to keep the broker busy while I monitor

the update propagation window on the actual devices for the requests that they are supposed to receive.

When the users of the system go beyond 3200 (representing about 28800 requests) it is observed that the

propagation window increases significantly. Also, the maximum number of users I can mimic is 3405 for

which the broker becomes non–responsive. The result of the overloaded centralized broker is summarized in

Table 4.8.
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Table 4.8: Summary of the Dropbox Result (Centralized Broker with Over 3200 Users)

Playbook iPad3 Transformer NOKIA

Average (s) 742.29 810.94 932.26 1303.21

Maximum Window (s) 1389.20 1525.07 1640.10 2221.33

Minimum Window (s) 117.45 128.21 199.01 427.08

Experiment 2b: Measuring the Propagation Window of Amazon S3 (Centralized Broker)

Using the same centralized broker, I evaluate the performance of the broker in terms of update propagation

from the Amazon S3 facility. In this experiment, the files are directly dropped on the Amazon S3 facility

and the CSB–UCC propagates the files to the mobile end–points. To perform the experiment, the observer

updates the files on the Amazon S3 facility through the PC, and monitors the propagation window for the

update to be synchronized on the consumer devices. Also, the requests are issued to retrieve the files within

the same range of 100 MB to 2.4 GB. I observed that for varying number of users, the centralized broker

shows resilience for about 3214 users. This number is just about 14 users more than the Dropbox scenario.

Within this use case, the result of the centralized broker is within close approximation to the benchmark

Amazon S3 result. The result is tabulated in Table 4.9. Similar to experiment 2a, the load generator keeps

sending requests to keep the broker busy (mimicking 3214) users while I monitor the update propagation

window on the actual devices for the requests that they are supposed to receive.

Table 4.9: Summary of the Amazon S3 Result (Centralized Broker with Approx. 3214 Users)

Playbook iPad3 Transformer NOKIA

Average (s) 324.94 370.38 473.52 603.52

Maximum Window (s) 571.63 667.87 837.93 1064.54

Minimum Window (s) 54.74 61.65 99.37 147.36

When the users of the system go beyond 3214 (representing about 28900 requests) it is observed that

the propagation window increases significantly. Also, the maximum number of users I can mimic is 3462 for

which the broker becomes non-responsive. The result of the overloaded centralized broker is summarized in

Table 4.10.

Table 4.10: Summary of the Amazon S3 Result (Centralized Broker with Over 3214 Users)

Playbook iPad3 Transformer NOKIA

Average (s) 582.90 633.96 900.63 1140.76

Maximum Window (s) 1036.36 1142.73 1593.74 2012.19

Minimum Window (s) 95.53 105.61 189.00 278.53
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Experiment 2c: Measuring the Propagation Window of MEGA (Centralized Broker)

The final experimental setup with the centralized broker focuses on the update propagation window from the

MEGA facility. In this experiment, the files are directly dropped on the MEGA facility and the CSB–UCC

propagates the files to the mobile devices. To perform the experiment, the observer updates the files on the

MEGA facility through the PC, and monitors the propagation window for the update to be synchronized on

the consumer devices. Also, the requests are issued to retrieve the files within the same range of 100MB to

2.4GB. It is observed that for varying number of users, the centralized broker shows resilience for about 3206

users. This number is just about 6 users more than the Dropbox scenario and 8 less than the Amazon S3

scenario. Within this use case, the result of the centralized broker is within close approximation to the base

MEGA result. The result is tabulated in Table 4.11. Similar to experiments 2a and 2b, the load generator

keeps sending requests to keep the broker busy (mimicking 3206 users) while the update propagation window

is monitored on the actual devices for the requests that they are supposed to receive.

Table 4.11: Summary of the MEGA Result (Centralized Broker with Approx. 3206 Users)

Playbook iPad3 Transformer NOKIA

Average (s) 329.24 376.97 482.38 617.89

Maximum Window (s) 575.93 674.46 903.33 1068.13

Minimum Window (s) 59.04 68.24 105.77 150.95

When the users of the system go beyond 3206 (representing about 28854 requests) it is observed that

the propagation window increases significantly. Also, the maximum number of users I can mimic is 3431 for

which the broker becomes non–responsive. The result of the overloaded centralized broker is summarized in

Table 4.12.

Table 4.12: Summary of the MEGA Result (Centralized Broker with Over 3206 Users)

Playbook iPad3 Transformer NOKIA

Average (s) 631.81 664.40 911.69 1184.36

Maximum Window (s) 1105.20 1281.48 1707.29 2028.38

Minimum Window (s) 113.31 115.33 199.91 286.65

Since the centralized CSB–UCC has shown its capacity to handle concurrent requests from averagely

3200 users, there is the need to explore other techniques to increase this threshold value. Thus, the proposed

distributed architecture of the CSB–UCC is tested in the upcoming experiments.

Experiment 3a: Measuring the Propagation Window of Dropbox (Distributed Broker)

The distributed CSB–UCC architecture is tested by hosting the (i.e., the sub–proxies) on six (6) Amazon

EC2 instances. All the amazon EC2 instances are located in North Carolina region. The controller is hosted
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on the Windows server in Saskatoon so that it can distribute the load across the various distributed nodes.

Again, the aim is to evaluate the performance of the CSB–UCC in the scenarios where it is used to

aggregate the files from Dropbox to the mobile nodes. Identical to the centralized broker, the files are

directly dropped on the Dropbox facility and the CSB–UCC is expected to determine the update and push

that update to the mobile devices that subscribe to the system. The only difference here is that, the identified

update is assigned to a particular node of the broker to handle. Thus, as the requests are increasing, the

broker will be distributing the tasks to several of the nodes.

To perform the experiment, the observer updates the files on the Dropbox server through the PC, and

monitors the propagation window for the update to be synchronized on the consumer devices. Similarly,

the broker is flooded with several requests to keep the system busy. The load generator sends requests to

simulate the activities of about 20026 users (representing about 180234 requests). The result is reported in

Table 4.13. The experiment is conducted with similar range of file size from 100 MB to 2.4 GB.

Table 4.13: Summary of the Dropbox Result (Distributed Broker with Approx. 20026 Users)

Playbook iPad3 Transformer NOKIA

Average (s) 409.44 461.23 540.85 779.07

Maximum Window (s) 750.81 856.83 935.20 1322.83

Minimum Window (s) 71.82 76.85 122.56 254.60

The maximum number of users before the system starts exhibiting signs of higher than accepted latency

is 20087.

Experiment 3b: Measuring the Propagation Window of Amazon S3 (Distributed Broker)

This experiment inherits the same setup as that of experiment 3a. The idea is to determine the update

propagation window on the Amazon S3 facility when the broker is distributed. To perform the experiment,

the observer updates the files on the Amazon S3 facility through the PC, and monitors the propagation

window for the update to be synchronized on the consumer devices.

The load generator sends requests to simulate the activities of about 20098 users (representing about

180882 requests). The result is reported in Table 4.14. The experiment is conducted with similar range of

file size from 100 MB to 2.4 GB. The maximum number of users before the system starts exhibiting signs of

high latency is 20114.

Experiment 3c: Measuring the Propagation Window of MEGA (Distributed Broker)

This experimental setup is similar to experiments 3a and 3b. The idea is to determine the update propagation

window on the MEGA facility when the broker follows the distributed architecture. To perform the exper-

iment, the observer updates the files on the MEGA facility through the PC, and monitors the propagation
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Table 4.14: Summary of the Amazon S3 Result (Distributed Broker with Approx. 20098 Users)

Playbook iPad3 Transformer NOKIA

Average (s) 374.68 444.75 558.34 757.66

Maximum Window (s) 663.30 804.12 991.63 1338.55

Minimum Window (s) 58.55 71.80 113.48 182.90

window for the update to be synchronized on the consumer devices. The load generator sends requests to

simulate the activities of about 20077 users (representing about 180693 requests). The result is reported

in Table 4.15. The experiment is conducted with similar range of file size from 100 MB to 2.4 GB. The

maximum number of users before the system starts exhibiting signs of high latency is 20092.

Table 4.15: Summary of the MEGA Result (Distributed Broker with Approx. 20026 Users)

Playbook iPad3 Transformer NOKIA

Average (s) 367.34 427.58 564.23 709.39

Maximum Window (s) 641.16 763.75 1056.74 1222.66

Minimum Window (s) 67.43 78.72 123.60 177.07

4.2.2 Discussion of Experiments on the Propagation Window

The results from Experiments 1a – 1c, 2a–2b, and 3a–3c give an idea about how the CSB–UCC influences

latency in mobile distributed systems. All the nine (9) experiments focus on the determination of data

propagation window in an n–device to multi–cloud ecosystem. Throughout the experiments, the file sizes

are kept within the range of 100 MB to 2.4 GB. In experiments, 1a – 1c, I investigate the data propagation

window of existing mobile enterprise solutions such as the Dropbox mobile App, the Amazon SDK for

mobile, and the MEGA mobile Apps. The reason for the evaluation of these public offerings is to determine

the base (benchmark) values with which I can compare/validate the performance of our proposed CSB–UCC

architecture.

In experiments 2a – 2c, six (6) results are reported on the employment of the CSB–UCC as a centralized

broker. The CSB–UCC is hosted on Amazon EC2 instance and the propagation window is determined

using the client devices. With regards to services accessibility on Dropbox, I realized that up to 3200 users

(representing approximately 28800 requests) can be supported to retrieve updated data within a time that is

close to the base result for Dropbox. The number of requests is the number of files that can be retrieved using

the HTTP GET method. However, users beyond 3200 experience a significant delay in the data propagation.

Also, it is observed that the centralized broker supports 3214 (representing about 28900 requests) when

propagating data from the Amazon S3 facility within close approximation to the base results on Amazon S3

App. Moreover, the centralized broker enables about 3206 users (representing approximately 28854 requests)
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to be served when connected to the MEGA facility. Within the stipulated range of supported number of

users, we observed that the update propagation window is reasonably close to the base values. The delay is

within some insignificant seconds more than the base value.

However, in real world, the users of a system can be more than an average 3200 users. This creates the

need to enhance the system capacity to maintain similar propagation window but with bigger user support.

Thus, the distributed architecture of the CSB–UCC is tested with six active nodes. I realized that the

following number of users can be supported: Dropbox – 20026 users (representing about 180234 requests),

Amazon S3 – 20098 users (representing about 180882 requests), and MEGA – 20077 users (representing about

180693 requests). The distributed broker architecture raises the number of supported users to approximately

20000 because each node has the capacity of a centralized server.

For clarity, a summarized overview of the results are presented in Table A.1 in Appendix A. Considering

the three public cloud services, I report the results obtained for each client device. The result includes the

maximum propagation window within the file size range (Max Window) in seconds, the minimum propagation

window (Min Window) in seconds, and the Average (Avg) in seconds. These results are recorded for each

set of experiments which includes the base (benchmark) results (Base), the centralized broker within a

supported user range (Centralized), the overloaded centralized broker (Overloaded), and the distributed

broker architecture (Distributed).

By focusing only on the Avg, I calculate the average propagation window relative to the base result. This

is an attempt to determine how slow or fast the proposed system performs against the benchmark results.

This is calculated based on the formula:

Average Propagation Window Relative to the Base Result = AvgB – AvgM

where AvgB is the benchmark average result for each IaaS mobile service and AvgM is the average result

for each experimented broker architecture. So, assuming I want to calculate the average propagation window

relative to the benchmark result for the Playbook using Dropbox, the result for the centralized broker is

360.79 - 360.37 which equals 0.42. This means that on average, the update propagation window of the

centralized broker is 0.42 seconds faster than the Dropbox App on the Playbook device. Furthermore, the

average propagation window relative to the base result for the Playbook using Dropbox when the distributed

CSB–UCC is employed is 360.79 409.44 which equals -48.65. This means the average propagation window is

48.65 seconds slower when the distributed architecture is employed to propagate the updates from Dropbox

in comparison to the Dropbox mobile App on the Playbook.

From the results, it is observed that clearly the delays which are introduced when the centralized server

is overloaded can be intolerable. Depending on the domain that will adopt the CSB–UCC, waiting for

several minutes to retrieve an update can be time wasting. Especially, in mission critical systems, the luxury

of waiting for updates for minutes may not be afforded. Thus, such systems can adopt the distributed

architecture approach to ensure load distribution that can lead to reduction in the propagation window.

However, the distributed architecture is not a viable approach if the workload is minimal (at least within
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the test range of up to 3200 users). In this case, the centralized architecture can be adopted because the

propagation window is relatively same. The caveat with the centralized architecture however is the fact that

when the broker crashes, the entire system can become non–usable since the broker acts as an application

router. A possible solution is to keep a backup copy of the application state that can be employed is the vent

of failures.

Though the distributed architecture shows great promise, it can also lead to higher cost in terms of

expenses to buy several IaaS nodes for hosting, and system management. The distributed architecture

means the application states will be hosted on multiple servers and enabling a coordinator to manage the

communication flow in decentralized manner. In such cases, the management requires extra efforts when it

comes to the detection of faults and maintenance. So, with the pros and cons highlighted, the adoption of

the CSB–UCC architecture should be guided by the need of the enterprise regarding latency minimization,

the workforce base of the enterprise, and the level of financial/cost commitment.

Next, the proposed best-proximity use case is tested.

4.2.3 The Best-Proximity Based Job Assignment

In this section, the proposed best–proximity methodology is evaluated. This experiment is applicable only

to the distributed architecture of the CSB–UCC. The position taken in this dissertation is that, the case

of assigning jobs to the sub–proxy within the closest proximity in a distributed architecture is not enough

reason to attain real time service delivery. Rather, this work argues that the job assignment should be sent

to the sub–proxy (or the distributed node) that produces the minimal latency during the execution of system

jobs in the cloud. This argument is validated by proposing the best–proximity use case which is dependent

on the formula below:

Total Time = Reqt + Asgnt + Proct + Respt

Where Reqt is the request time form the mobile node, Asgnt is the time taken for the controller to assign

the request to the appropriate sub–proxy plus the time taken for the request to reach the sub–proxy, Proct

is the request processing time of the sub-proxy, and Respt is the response time of the sub–proxy to the

mobile node. The formula means the best–proximity is the use case that returns the least total time rather

than just assigning requests to nodes that are closest to the mobile participant. For the purpose of later

discussions on location–specific tests, Table 4.16 is provided that gives an overview of how the various servers

are geographically dispersed. The values are taken from Google Map.

Hosting the Controller in Saskatoon

To conduct this experiment, I use the iPad3 mobile device in Saskatoon where I evaluate the Med App system

that is deployed based on the distributed CSB–UCC architecture. The controller is also hosted on the internal

server (i.e., the windows 7 enterprise system) in Saskatoon. One sub–proxy is hosted on Amazon EC2 instance
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Table 4.16: Geographical Distance Between the Servers

Location Destination Approx. Distance (km)

Saskatoon North Carolina 3379.50

Saskatoon North Virginia 3468.90

Saskatoon Sydney 13682.10

Saskatoon Tokyo 8322.10

Saskatoon Singapore 13410.10

North Carolina Sydney 15465.80

North Carolina Tokyo 11110.91

North Carolina Singapore 15868.13

North Carolina North Virginia 374.33

in North Carolina (NC) which is the closest location to Saskatoon according to Amazon’s recommendation.

Then, a second sub–proxy is hosted on the Amazon EC2 instance in Asia Pacific – Sydney (AP) which is

farther away from Saskatoon, where both the requester and controller are located. The experimental set–up

is shown in Fig. 4.7.

Figure 4.7: Set–up for the Evaluation of the Proximity Accessibility

The controller connects to the sub–proxies through the University of Saskatchewan LAN network. In order

to achieve almost identical processing time to the data source, CouchDB database (http://couchdb.apache.org/)

is installed on every EC2 instance where the proxy is located. This means, there will be no variance in the

travel time to the data source by the sub–proxy. This also allows for equal payload consideration for all the

nodes. A data payload under consideration which is hosted in the CouchDB database is shown in Fig. 4.8.

This data is sample survey information stored from the Med App users.
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Figure 4.8: Request–Response Payload from CouchDB

Since the CouchDB is hosted on the same environment as the sub–proxy, the Proct is considered as

the time taken for the proxy to process a request and retrieve the data from the database as well. In the

experiment, I issue requests from the mobile to the controller to retrieve the information in the database.

The results from the experiment are plotted in Fig. 4.9 and the detail breakdown is provided in Table 4.17.

It is important to state that this experiment is repeated using several other nodes in the Asia Pacific (Tokyo)

region, Asia Pacific (Singapore) region, and North Virginia. For brevity, the section discusses the experience

with the Asia Pacific (Sydney) region in comparison with the North Carolina region, and the other results

are provided in Appendix B since the trend is similar.

Table 4.17: Breakdown of the Proximity Access (Time in ms) – Sydney

Proxy Reqt Asgnt Proct Respt Total

Scenario 1 (Equal

Workload)

Proxy A (NC) 21 7 122.33 55 205.33

Proxy B (Sydney) 21 37 126.67 125 309.67

Scenario 2 (Double

Sydney Workload)

Proxy A (NC) 21 7 120.43 57 205.43

Proxy B (Sydney) 21 37 183.45 149 390.45

Scenario 3 (Double NC

Workload)

Proxy A (NC) 21 7 190.85 62 280.85

Proxy B (Sydney) 21 37 127.12 124 309.12

Scenario 4 (Quadruple

NC Workload)

Proxy A (NC) 21 7 312.71 70 410.71

Proxy B (Sydney) 21 37 126.38 125 309.38

The experiment is conducted by following four (4) different scenarios. Since it is determined from previous
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Figure 4.9: The Proximity Test – Sydney

experiments that a single sub–proxy can handle up to about 3200 user requests, I kept the sub proxies busy

with 1000 users each in Scenario 1. This means both proxies are having equal workloads.

Proxy A (NC) is the proxy in North Carolina which is within the closest proximity per the geographical

difference between the mobile requester and the proxy. Proxy B (Sydney) is the proxy hosted in Asia Pacific

(Sydney) region. Based on the closest proximity logic, it will be expected that Proxy A will always serve

requests in the shortest possible time, an attempt that can further aid services delivery in soft–real time

in mobile cloud ecosystems. This is the assumption made in the current state of techniques such as edge

computing. Considering the experiment in Scenario 1 where the workload is equal, Proxy A shows the fastest

request processing time with the least total time of 205.33ms in comparison to Proxy B which gives total time

of 309.67ms. The mobile request time (Reqt) is approximately 21ms for all the scenarios because the mobile

has the same location distance to the controller. The time for the controller to reach the closest proxy (i.e.,

Proxy A in North Carolina – NC) is approximately 7ms while Proxy B in Asia Pacific (Sydney) is reachable

at approximate time of 37ms. These observations are synonymous with all the scenarios. Again, in Scenario

1, Proxy A is able to send the response to the mobile at approximate time of 55ms while Proxy B takes

approximate 125ms to communicate the response to the mobile. These are the determining factors since the

processing time are almost identical with the equal workload. In Scenario 1, the controller will assign the

job to the proxy within the closest proximity (i.e., Proxy A) because the game changer is the Asignt and the

Respt. This further validates the existing position taken by some cloud services providers that the requests

should be sent to server nodes within the closest proximity.

Next, a second experimental setup is prepared called Scenario 2 where I double the workload of Proxy B

in Asia Pacific (Sydney). Doubling the workload means the user base is increased to 2000 while the user base
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for Proxy A remains at 1000. As Scenario 1, all the determinants are the same except for the fact that the

processing time (i.e., Proct) of Proxy B has increased. Also, a marginal increase in the response time (i.e.,

Respt) is observed since the size of data affects the data transfer rate across the bandwidth. But, clearly, the

reason for the increase in the total time is because of the significant increase in the processing time of Proxy

B which has its workload doubled. At this point, it is clear that all scenarios that involve the increment of

the Proct component on Proxy B will favour Proxy A. Hence, the appropriate node to send the request to

in order to achieve optimal request–response time is Proxy A (the closest proxy to the mobile) even though

closeness is not the deciding factor in this scenario.

The third set up, which is Scenario 3, is the case where the workload is reversed and Proxy A in North

Carolina has its workload doubled to 2000 users and Proxy B has 1000 users. Here, it is observed that the

Proctt of Proxy A has increased significantly in comparison to Proxy B. Eventually, it has resulted in a high

latency for Proxy A which is the closest to the mobile participant. Though the total time is marginally

smaller than that of Proxy B, it is obvious the processing time is a major factor that can hamper sof–real

time data transfer in mobile ecosystems.

In Scenario 4, the workload of Proxy A is quadrupled, and this means it has to serve the maximum

capacity of users. Proxy B on the other hand serves 1000 users and now the leap in the total time can be

seen as a result of the increased Proct. It is noteworthy to state that at maximum user capacity, Proxy A

sends the ”busy” status to the controller so if the close proximity technique is adopted, then the controller

has to queue the requests to be served later. This will further increase the processing time as well as the

job assignment time. However, in the best–proximity use case, the requests will be sent to the farther server

for processing instead of queuing. In this scenario, it will be appropriate to send requests to the far away

sub-proxy in North Virginia and still achieve request-response optimality.

However, questions can be asked whether the location of the controller played a key role in the request–

response time that eventually translated into the factors influencing latency. This question is key because

it can be argued that hosting the controller on a local computer in Saskatoon and making requests to the

closest sub–proxy in North Carolina could be the reason and not that in most cases, contextual information

such as processing demand of the system should be considered. The quest to answer this question led to the

setup of another experiment that has the controller hosted first in North Carolina. The upcoming discussions

explain further.

Hosting the Controller in North Carolina

Identical to the earlier setup, the iPad3 mobile device is used to evaluate the Med App system as the

distributed version of the CSB–UCC. It is important to point that the user is still in Saskatoon. However,

the controller is hosted on one of the Amazon EC2 instances in North Carolina. One sub–proxy is hosted

on Amazon EC2 instance in North Carolina (NC) which is the closest location to to the controller. Then,

a second sub–proxy is hosted on the Amazon EC2 instance in Asia Pacific – Sydney (AP) which is farther
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away from both the controller in North Carolina and the mobile user in Saskatoon.

The controller connects to the sub–proxies through an Ethernet connection that guarantees 500 MB/s

upload and download. The CouchDB database is also installed on all the sub–proxies required for the

experiment. this is to avoid travelling cost regarding data access or better still maintain consistent view

of the travel time since none is required. This means, there will be no variance in the travel time to the

data source by each sub–proxy under consideration. The same data payload which is shown in Fig. 4.8 is

employed which contains sample survey information of the Med App.

Since the CouchDB is hosted on the same environment as the sub–proxy, the Proct is considered as the

time taken for the proxy to process a request and retrieve the data from the database as well.

Commencing the experiment, a request is issued from the mobile (while in Saskatoon) to the controller

(in North Carolina) to retrieve the information in the database either in North Carolina or Sydney. The

results from the experiment are plotted in Fig. 4.10 and the detail breakdown is provided in Table 4.18. It

is important to state that this experiment is repeated using several other nodes in the Asia Pacific (Tokyo)

region, Asia Pacific (Singapore) region, and North Virginia. The results here will be discussed based on the

experiment regarding the Asia Pacific (Sydney) region in comparison with the North Carolina region. In

Appendix B, the other results from the other regions are provided. The discussions are sent to the Appendix

to avoid repetition of text since the results are mostly identical.

Figure 4.10: The Sydney Proximity Test with Controller in North Carolina

The experiment is conducted by following four (4) different scenarios just as done previously with the

hosting of the controller in Saskatoon. Since it is determined from previous experiments that a single sub–

proxy can handle up to about 3200 user requests, each sub proxy is kept busy with 1000 users each in Scenario

1. This is to ensure equal workload on both proxies.
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Table 4.18: Breakdown of the Proximity Access (Time in ms) – Sydney with Controller in North
Carolina

Proxy Reqt Asgnt Proct Respt Total

Scenario 1 (Equal

Workload)

Proxy A (NC) 34 6 125.12 55 220.12

Proxy B (Sydney) 34 32 127.33 125 318.33

Scenario 2 (Double

Sydney Workload)

Proxy A (NC) 34 6 122.92 57 219.92

Proxy B (Sydney) 34 32 190.3 149 405.3

Scenario 3 (Double NC

Workload)

Proxy A (NC) 34 6 199.43 62 301.43

Proxy B (Sydney) 34 32 126.42 124 316.42

Scenario 4 (Quadruple

NC Workload)

Proxy A (NC) 34 6 364.25 70 474.25

Proxy B (Sydney) 34 32 127.96 125 318.96

Proxy A (NC) is the proxy in North Carolina which is within the same geographical location as the

controller. Proxy B (Sydney) is the proxy hosted in the Asia Pacific (Sydney) region. Based on the issue

being investigated, the focus is on both the influence of the controller and the proximity between requesters.

Since the controller and Proxy A are all in North Carolina, it is easy to draw conclusion that requests from

that region will be served faster. What even makes this case special is the fact that the requester is also in

Saskatoon that is closest to both the controller and the Proxy A. Considering the experiment in Scenario

1 where the workload is equal, Proxy A shows the fastest request processing time with the least total time

of 220.12ms in comparison to Proxy B which gives total time of 318.33ms. The mobile request time (Reqt)

is approximately 34ms for all the scenarios because the mobile requests are coming to the controller from

a bounded location (i.e., the University of Saskatchewan Campus). The first observation is that, there is

an increase in the Reqt from 21ms in the previous setup. This is because the controller is now away from

Saskatoon so there is a cost associated with the request time. The time for the controller to reach the closest

proxy (i.e., Proxy A in North Carolina – NC) is approximately 6ms while Proxy B in Asia Pacific (Sydney)

is reachable at approximate time of 32ms. It can be seen that compared to the previous setup, the task

assignment time is almost the same for Proxy A but there is a drop in the task assignment task to Proxy B.

An explanation for this is the fact that inter–cloud communication is faster compared to hosting the service

locally in the other scenarios. Furthermore, in Scenario 1, Proxy A is able to send the response to the mobile

at approximate time of 55ms while Proxy B takes approximate 125ms to communicate the response to the

mobile. These observation is identical to the previous setup because in the CSB–UCC, proxies send responses

directly to the requesters. So, regardless of the time consumed by other system components, the response

time will be the same for the same job demand.

In the experiment, it is seen that the main sources of latency are the processing time, the task assignment

time, and the response time. But, the crucial factor is the response time and the task assignment durations.

The fact that the processing demand is almost similar for both proxies means the controller will assign
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incoming tasks to Proxy A since it has the least time to respond to a request. This further validates the

assumption that requests should be routed to the proxy within the closest location. Here, it is observed that

the location of the controller also plays part because we can say that the time to Proxy A is significantly less

than the time to reach Proxy B due to location.

A second experiment is provided called Scenario 2 where the workload of Proxy B is in Asia Pacific

(Sydney) is doubled. Doubling the workload means the user base is increased to 2000 while the user base

for Proxy A remains at 1000. As Scenario 1, all the determinants are the same except for the fact that the

processing time (i.e., Proct) of Proxy B has increased. Also, a marginal increase in the response time (i.e.,

Respt) is observed since the size of data affects the data transfer rate across the bandwidth. But, clearly, the

reason for the increase in the total time is because of the significant increase in the processing time of Proxy

B which has its workload doubled. At this point, it is clear that all scenarios that involve the increment of the

Proct component on Proxy B will favour Proxy A. Hence, the appropriate node to send the request to in order

to achieve optimal request–response time is Proxy A (the closest proxy to the mobile) even though closeness

is not the deciding factor in this scenario. Another observation is that, apart from the task assignment time

that varies in both scenarios, the location of the controller is of no effect. It can happen probably if there

time difference is significant as may be seen later.

The third set up, which is Scenario 3, is the case where the workload is reversed and Proxy A in North

Carolina has its workload doubled to 2000 users and Proxy B has 1000 users. Here, it is observed that the

Proctt of Proxy A has increased. Considering that all factors are same from the previous two setups, the

increment in latency can be attributed to the workload demand.

In Scenario 4, the workload of Proxy A is quadrupled, and this means it has to serve the maximum

capacity of users. Proxy B on the other hand serves 1000 users and now the leap in the total time can be seen

as a result of the increased Proct. The system at maximum capacity sends ”busy” state notice so requests

will not be served at such saturation level.

In this experiment involving the re–location of the controller to North Carolina, it is seen that not much

has changed compared to keeping the controller in Saskatoon. The reason is because, as the user request

time has increased, the inter–cloud communication is faster. This also means that any attempt to reduce the

task assignment time will give the system consistent performance regardless of the location of the controller.

What is seen in the scenarios is the fact that the processing time and the response time should be considered

hand–in–hand when building such edge–based architectures.

But, what is worth noting is the fact that the re-location of the controller changed the task assignment

time marginally. This means, the location of the controller could prove to be an important factor. However,

the question is how far will the performance of the CSB–UCC be influenced by the location of the controller?

The previous two experiments evaluate the controller from Saskatoon and North Carolina. Since this locations

are relatively close, it is important to examine what happens when the controller is far from the requester.

Arguments can be raised that the good performance and the stability of the results in previous setups is due
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to the fact that the controller is relatively closer to the requester. To probe this issue further, a third setup

is provided that hosts the controller in the Asia Pacific region. The next section discusses this setup.

Hosting the Controller in Asia Pacific (Sydney)

A third experimental setup is put forward to evaluate the CSB–UCC using the iPad3 mobile device. The

Med App service is employed in this experiment. The mobile user resides in Saskatoon just as the case with

the other setups. However, the controller is hosted on one of the Amazon EC2 instances in the Asia Pacific

region; specifically Sydney. One sub–proxy is hosted on Amazon EC2 instance in North Carolina (NC) which

is the closest location to to the mobile user (or requester) while the second sub–proxy is hosted on a Amazon

EC2 instance in Asia Pacific – Sydney (AP) which is farther away from the mobile requester but within the

same geographical location as the controller.

The controller connects to the sub–proxies through an Ethernet connection that guarantees 500 MB/s

upload and download. Similarly, CouchDB database is also installed on all the sub–proxies required for the

experiment. this is to avoid travelling cost regarding data access or better still maintain consistent view

of the travel time since none is required. This means, there will be no variance in the travel time to the

data source by each sub–proxy under consideration. The same data payload which is shown in Fig. 4.8 is

employed which contains sample survey information of the Med App. Again, the Proct is considered as the

time required to process a request (which includes data retrieval from the database).

This experiment is unique because the requester if far from the controller (which is the initial access

point of the CSB–UCC). To begin with, the user sends a request from Saskatoon using the mobile to the

the controller in Sydney. This request includes the demand to retrieve an information from the associated

CouchDB databases that are hosted on each instance of Amazon EC2.

The results from the experiment are plotted in Fig. 4.11 and the detail breakdown is provided in Table

4.19.

Table 4.19: Breakdown of the Proximity Access (Time in ms) – Sydney with Controller in Sydney

Proxy Reqt Asgnt Proct Respt Total

Scenario 1 (Equal

Workload)

Proxy A (NC) 98 34 125.29 55 312.29

Proxy B (Sydney) 98 7 126.98 125 356.98

Scenario 2 (Double

Sydney Workload)

Proxy A (NC) 98 34 123.06 57 312.06

Proxy B (Sydney) 98 7 191.34 149 445.34

Scenario 3 (Double NC

Workload)

Proxy A (NC) 98 34 203.22 62 397.22

Proxy B (Sydney) 98 7 128.22 124 357.22

Scenario 4 (Quadruple

NC Workload)

Proxy A (NC) 98 34 369.22 70 571.22

Proxy B (Sydney) 98 7 126.44 125 356.44

The experiment is conducted based on the four (4) different scenarios proposed in the previous setups but
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Figure 4.11: The Sydney Proximity Test with Controller in Sydney

the controller in this case is hosted in Sydney. Lessons from past experiences also aided in how the workload

should be distributed starting with 1000 to 3200 users for a single node.

Hence, the experiment started with Scenario 1 that has 1000 users on all nodes to ensure balanced

workload.

Proxy A (NC) is the proxy in North Carolina while Proxy B (Sydney) is the proxy hosted in the Asia

Pacific (Sydney) region and it is closest to the location of the controller. Again, what is important here is to

analyse the impact of the location of the controller on the CSB–UCC. In this setup, it is not easy to guess or

assume which sub–proxy will have the best performance result because of the variability of the determining

factors. Considering the experiment in Scenario 1 where the workload is equal for both platforms, Proxy

A shows the fastest request processing time with the least total time of 312.29ms in comparison to Proxy

B which gives total time of 356.98ms. As suspected however, the mobile request time has increased (more

than double the other setups) and this cause the request time (Reqt) to go up to 98ms. Furthermore, what

is surprising even though could be expected is the fact that the task assignment time is almost the same

as the case where the controller is hosted in North Carolina. This phenomenon arises because the request

is just reversed between the two components and the distance between the two systems will not play any

role. What can influence the result will be the processing capacity threshold of each server hosting the

controller. In this experiment however, the two servers (i.e., the North Carolina controller hosting sever

and the Sydney controller hosting server) have similar capacity. The request time in comparison to the first

setup has increased since Sydney is by far a distance from Saskatoon. The time for the controller to reach

the closest proxy (i.e., Proxy B in Sydney) is approximately 7ms while Proxy A in North Carolina – NC is

reachable at approximate time of 34ms. Furthermore, in Scenario 1, Proxy A is able to send the response
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to the mobile at approximate time of 55ms while Proxy B takes approximate 125ms to communicate the

response to the mobile. Based on the end result, the CSB–UCC will send the incoming jobs to Proxy A in

this case because of the less time required to process a request.

However, looking at the results closely after several repetitions of the experiment (30 times), it can be

seen that there is a relative increase in latency compared to hosting the controller closer to the requester.

This is because the request time has increased drastically. What is noteworthy however is that, the increased

request time affected both setups. In other words, regardless of whether Proxy A is closer to the user or

Proxy B, increased request time cause transactions in both setups to increase. So, just as in the case of

hosting the controller in North Carolina, the factors that play a major role in increasing the latency are the

task assignment time, processing time, and the response time. In the case of Scenario 1, the major reason

for choosing North Carolina to send the request is the response time. This can also validate the argument of

those proponents who prefer to send requests to edge nodes.

A second experiment is provided called Scenario 2 where the workload of Proxy B is in Asia Pacific

(Sydney) is doubled. By so doing, the workload of Proxy B is increased to 2000 while the user base for

Proxy A remains at 1000. As Scenario 1, all the determinants are the same except for the fact that the

processing time (i.e., Proct) of Proxy B has increased. Also, a marginal increase in the response time (i.e.,

Respt) is observed since the size of data affects the data transfer rate across the bandwidth. But, clearly,

the reason for the increase in the total time is because of the significant increase in the processing time of

Proxy B which has its workload doubled. If the experiment continues with increasing workload of Proxy B,

all latency–sensitive scenarios will favour Proxy A. This is because the Proct component on Proxy B will

keep increasing.

The third set up, which is Scenario 3, is the case where the workload is reversed and Proxy A in North

Carolina has its workload doubled to 2000 users and Proxy B has 1000 users. Here, it is observed that the

Proctt of Proxy A has increased. Considering that all factors are same from the previous two setups, the

increment in latency can be attributed to the workload demand.

In Scenario 4, the workload of Proxy A is quadrupled, and this means it has to serve the maximum

capacity of users. Proxy B on the other hand serves 1000 users and now the leap in the total time can be seen

as a result of the increased Proct. The system at maximum capacity sends ”busy” state notice so requests

will not be served at such saturation level.

Looking at the results in this experimental setup (where the controller is hosted in Sydney) gives a lot of

insight into how the proposed best–proximity use case is relevant. From all the three setups that focus on

where the controller should be hosted, it turns out that the location of the controller does not give any special

advantage to any of the proxies. In fact, inter–cloud communications are stable to ensure faster information

exchanges across system components however, the processing cost and the response time are crucial.
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Discussions and Further Application of the Proximity-Based Technique

From the four scenarios in the three major setups regrading the location of the controller, it can be seen that

the issuance of mobile requests to the cloud hosted application server nodes within the closest proximity does

not guarantee request–response time optimality. Rather, the proposed best–proximity methodology which

is proposed in this dissertation is an efficient way to reduce latency and further minimize the transaction

time. The designed distributed architecture of the CSB–UCC therefore follows the best–proximity approach

to serve the mobile participants in order to achieve time optimality.

In real world scenarios, there will be instances where requests from certain geographical regions will be

more than other regions in competition for services and products accessibility. If the closest proximity between

the mobile users and the application server is the de facto logic, the heavy workload can cause significant

delays that can defeat the purpose. Thus, this work has made headway by proposing a better approach where

the jobs need to be assigned based on the combination of factors such as the request processing time, the

request assignment time, and the proximity between the mobile requester and the application server.

Another lesson that is learnt from this section is the fact that translating distributed back end archi-

tectures to mobile systems may fail. As seen in the experimental results, regardless of location, inter–cloud

communication exchanges are fast but location plays part in mobile communications. For instance, while it

took almost the same time for communication exchanges between the server in Saskatoon–to–North Caroline

and Saskatoon–to–Sydney, the mobile request time in both cases is doubled.

Now that the best–proximity use case is explained with initial experimental results, the next section will

discuss how the approach is adopted to ensure sensor–mobile communication.

4.3 Testing the Sensor–Mobile Communication

The agility of the CSB–UCC is further proven by its adoption to enable mobile–sensor communication. Sec-

tion 3.9 detailed the design of the mobile–sensor ecosystem. This work is part of a research collaboration with

the Environmental Instruments Canada Inc. who are manufactures of sensor devices. The implementation

is deployed on a mobile device of the following specifications: iPod Touch – OS: Apple iOS 7.0.4, Resolu-

tion: 1136–by–640–pixel resolution at 326 pixels per inch, Processor: ARM Cortex–A9 Apple A5 dual–core 1

GHz, Storage: 32GB, RAM: 512MB. The communication between the sensor devices and the smartphones is

Bluetooth. The communication between the smartphones is via Wi–Fi or Bluetooth. In the experiment, we

restrict the communication between the mobile hosts (i.e., the smartphones) via Bluetooth for consistency

with communications with the sensors. In this experiment, the sensor under consideration is the CT007 and

the CC2541 SensorTag.
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4.3.1 Linear Search Algorithms

This search explores the most optimal linear algorithm for searching through the array list of discoverable

mobile hosts. In the field of graph theory and computing, linear search can follow the following designs:

forward iteration, reverse order, recursive and sentinel. In order to evaluate the various communication flow

patterns for better latency optimality, we first aim to determine the most efficient linear algorithm for the

work.

The experiment here evaluates the time cost of searching through the array list of devices on the mobile

before making the request to the desired mobile host on the edge. In the experimental setup, we consider

fifteen (15) smartphones (actual devices and simulators) and four (4) T1 Sensor Tag devices that can all be

discoverable via Bluetooth. This brings the total number of devices to nineteen. The primary goal in this

work is to determine the best linear search approach that can further boost the performance of the sequential

flow when measured against the other flow patterns. The result for the various linear operations is graphed

in Fig. 4.12.

Figure 4.12: Search Duration of the Linear Algorithms

In the linear experiment, the index location of a stored item is crucial. In most cases, if the information

of the desired mobile host is located in the first index, then the search will exit and the time will be equal

for all algorithms. However, the desired terms can also be found in the last index which is the worst case

scenario for the forward iteration. Hence, in the test, we put forward three setups. The first involves finding

the desired mobile host before the middle index, the second is finding the host at the middle index, and

the third is finding the host after the middle index. The array contains list of 19 devices only so this is a

manageable situation. The results presented are the overall performance of each algorithm after repeating

the experiment for each set–up twenty times.
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Starting with the reliability of the linear algorithms, it is observed that the correctness of each of the

algorithm is 100% in searching through the 19 discoverable devices. The number of devices is small but in

most practical use cases, not too many devices are required to make a Bluetooth connection. It is possible

however that if the number of devices increases beyond 19, some errors can occur. Currently, the error is

0% for each of the algorithm. This means, the option on which linear algorithm to employ in the search for

mobile hosts in the device list should not be based only on the reliability (in terms of correctness and error)

since all the algorithms prove to be reliable.

Since the objective of the work is on latency reduction in the edge–based data sharing sensor–mobile host

environment, our observations in the experiment (plotted in Fig. 4.12) are more interesting. After going

through the proposed setups, we realized that the reverse order algorithm does better in terms of the search

time through the list. The graph shown is the collective average of all the experimental setups. The average

time required to go through the list are recorded as follows:

• Forward Iteration : 0.0219 seconds

• Recursive : 0.0221 seconds

• Reverse Order : 0.0141 seconds

• Sentinel : 0.0208 seconds

From the result, the reverse order takes approximately 50% less of the time required in the forward

iteration and the recursive. Hence, we decided to employ the methodology as the bases for the sequential

search in the subsequent experiments.

4.3.2 Latency Analysis with the Edge-Based Architecture

In this experimental setup, we seek to evaluate the latency reduction of the proposed flow patterns. In

Section 3.9, the following flow patterns are highlighted: sequential, parallel, loop, and choice. The purpose

of this experimental setup is to test the validity of the arguments raised throughout the dissertation on the

need to focus on the minimization of the total time T rather than just the distance (i.e., proximity). The

flow patterns that we test are the sequential flow (that uses the reverse order search through its list), the

parallelism flow, and choice.

Choice in this case represents the existing approaches for edge–based connection that relies on the minimal

RTT (i.e., the round–trip time) only to determine the edge to connect to. The parallelism flow issues the

request to every discoverable mobile host and sensor the response is prioritized based on the minimal T, where

T = RTT + PT. The same concept applies to the sequential flow except for the fact that the connection to

other nodes is linear.

To perform the experiment, we engage users in the same building but different units (rooms) to enable

us have different RTT values. This experiment is also ideal to real world use cases since we can consider the
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building walls as obstacles to the data flow in a Bluetooth environment. In Table 4.20, we record the various

values we received. The experiment is separated into four groups with five (5) trials each. Each trial is

repeated at least twenty times to avoid any bias. In the first group, we considered the ideal case where there

is no error and the request at first time receives a response. This is the expectation for any cyber–physical

system but the reality is different. The second group is where we disconnect 5 devices out of the 19 through

fault injection. The 5 devices broadcast their presence but do not serve the requests so the requester has to

issue another request to a different node until the desired data is received. The second group is extended to

10 disconnected nodes and 15 disconnected nodes. In Table 4.20, DN stands for Disconnected Nodes.

Table 4.20: Sensor–Mobile Latency Test

State Sequential Parallelism Choice

PT (s) RTT (s) T (s) PT (s) RTT (s) T (s) PT (s) RTT (s) T (s)

No Error

0.1547 0.0970 0.2517 0.1406 0.0980 0.2386 0.4788 0.0940 0.5728

0.1592 0.0890 0.2482 0.0984 0.0982 0.1966 0.3377 0.0930 0.4307

0.1566 0.0910 0.2476 0.0944 0.0934 0.1878 0.4123 0.0980 0.5103

0.1601 0.0930 0.2531 0.0880 0.0940 0.1820 0.3896 0.0910 0.4806

0.1655 0.0970 0.2625 0.0996 0.0920 0.1916 0.4479 0.0940 0.5419

Total 0.2526 Total 0.1993 Total 0.5073

5 DN

0.2366 0.1940 0.4306 0.1211 0.0990 0.2201 0.3871 0.1990 0.5861

0.2451 0.1880 0.4331 0.1223 0.1070 0.2293 0.4766 0.1820 0.6586

0.2321 0.1950 0.4271 0.1180 0.1088 0.2268 0.5113 0.1920 0.7033

0.2373 0.1970 0.4343 0.1178 0.1082 0.2260 0.3561 0.1920 0.5481

0.2366 0.1770 0.4136 0.1217 0.1067 0.2284 0.4012 0.1730 0.5742

Total 0.4277 Total 0.2261 Total 0.6141

10 DN

0.4714 0.3130 0.7844 0.1133 0.1510 0.2643 0.7343 0.2640 0.9983

0.4832 0.3070 0.7902 0.1422 0.1490 0.2912 0.6636 0.2891 0.9527

0.4836 0.3170 0.8006 0.1210 0.1720 0.2930 0.5731 0.3086 0.8817

0.4691 0.3420 0.8111 0.1332 0.1440 0.2772 0.5783 0.3012 0.8795

0.4511 0.4010 0.8521 0.1412 0.1850 0.3262 0.6322 0.2956 0.9278

Total 0.8077 Total 0.2904 Total 0.9280

15 DN

0.9428 0.5301 1.4729 0.1441 0.1711 0.3152 0.9892 0.5041 1.4933

0.8931 0.4722 1.3653 0.1623 0.2304 0.3927 1.0340 0.5507 1.5847

Continued on next page
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Table 4.20 – continued from previous page

Sate Sequential Parallelism Choice

0.9022 0.5801 1.4823 0.1522 0.2166 0.3688 1.0440 0.4999 1.5439

0.9062 0.5011 1.4073 0.1452 0.2271 0.3723 1.1000 0.5939 1.6939

0.8871 0.5322 1.4193 0.1524 0.2730 0.4254 1.0607 0.5123 1.5730

Total 1.4294 Total 0.3749 Total 1.5778

In the no error scenario, the average total time, T, for a request–response scenario is 0.2526 seconds for

the sequential flow, 0.1993 seconds for the parallelism flow, and 0.5073 seconds for the choice flow. The

parallelism flow proves to be the most efficient while the choice flow is the worst case for the three flow

patterns. For the sequential flow and the choice flow patterns, the values of the processing time (PT) are

significant because it is the sum of the processing time of the requester and that of the mobile host. With the

parallelism, the processing time of the requester is the time required to send the concurrent requests to the

discoverable devices. The processing time of the connected mobile host remains the same for any algorithm.

However, the PT of the various algorithms varies due to the processing cost of the requester.

When the results are observed closely, it is realized that the choice flow which emulates the existing

approach for edge–based connection demonstrates the worse latency not necessarily because all the factors

return higher time intervals. In fact, there are instances, where the RTT (i.e., the request and response

travel time) component of the choice flow is better than that of the sequential flow that follows our proposed

algorithm. However, the total time, T, is bigger because the choice flow disregards the need to consider the

processing time (PT) of the connected mobile host. Thus, even though some instances show that the RTT

of the choice flow pattern is minimal (because it is just focusing on connecting to the closest node on the

edge), the time is longer.

The time factor in the parallelism flow pattern is only influenced by the response time and it is only when

error occurs that the response order has to change, which can cause an increase in time. Another observation

from the result is that, there is a direct proportional relation between the number of disconnected nodes (i.e.,

representing the number of error) and the request processing time. This observation is seen in the sequential

flow and the choice flow scenarios. Thus, as the error on data accessibility from the edges increases, it takes

more time to re–route the request to another node until the desired data is retrieved from a mobile host.

However, the parallelism approach exhibits fairly stable time across the categories because there is no

extra cost (in terms of time) for processing a request. The result clearly shows that our proposed approach

for latency reduction that considers two factors, i.e., RTT and PT, is better than existing approaches that

only considers the RTT in edge–based networks. The parallelism approach however shows the most optimal

time though the sequential methodology is better than the exiting choice flow pattern.

As also mentioned earlier in the previous section, we studied two design techniques for the parallelism
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flow which are terminate and non–terminate techniques. The results discussed so far all follow the terminate

technique since it outperforms the non-terminate. In comparison, we present the performances of the two

techniques in Fig. 4.13.

Figure 4.13: Parallelism Approaches

Considering the nineteen (19) devices for testing, we record the various durations required when there is

no error (i.e., zero disconnected devices), 5 disconnections, 10 disconnections, and 15 disconnections. The

disconnections are plotted on the x–axis and the duration for receiving the message is on the y–axis. Terminate

means when the mobile requester receives a desired response based on the priority order (discussed earlier),

the connection closes and the requester disregards all the other concurrent requests and the transaction ends.

The Non-Terminate approach is when the mobile requester sends the request, receives a desired response,

and waits for all the other responses before closing the transaction. This also means the transaction only

terminates when responses are received for all the concurrent requests. The result (graphed in Fig. 4.13) is

simplified in Table 4.21.

Table 4.21: Terminate Vrs Non–Terminate Parallelism Flows

State Terminate (s) Non–Terminate (s) Percentage Increase (%)

No Error 0.19932 0.2016 1.14

5 Errors 0.22612 0.2931 29.62

10 Errors 0.29038 0.3916 34.86

15 Errors 0.37888 0.4279 12.94

The percentage increase represents the extent to which the non-terminate flow consumes extra time in

comparison to the terminate approach.
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From the results, we can conclude that the terminate approach saves more time than the non-terminate

approach. Thus, it is justifiable to employ the terminate technique as a latency reduction measure in the

edge–based mobile hosting environment.

4.3.3 Error and Request Re–Assignment

In the last experimental setup, we evaluate the reliability of each flow pattern in terms of accessing data in a

group sharing environment when there is failure. Since errors are bound in wireless communication mediums

(e.g., Bluetooth), sensor data (e.g., readings from the T1 Sensor Tag) will experience delayed responses or

failures. Also, there is no guarantee that communication between the adjacent edges will be seamless since

users are mobile within a shared-space.

In this experiment, we employed with the fault–injection technique where we evaluate specifically, the

accuracy of re–assignment of a transaction to the next desired node. We define transaction within the concept

of retrieving sensor data from a mobile host. With fault injection, the idea is to request a data and ”kill” the

intended host so that another host within the discoverable list of devices can be contacted. We carefully keep

terminating the transactions unexpectedly until at least 5 iterations can be made before the desired sensor

information is retrieved. The result is presented in Fig. 4.14 and Fig 4.15.

Figure 4.14: Correctness of Task Re–Assignment

In Fig. 4.14, we studied the correctness of re–assigning a task to the next desired node following the

underlying principle of each flow pattern. We found that the parallelism flow has better accuracy with the

task assignment than the other two flow patterns. A reason for this observation is that, the parallelism

approach focuses only on the responses since the requests are concurrent. The flow pattern only considers

the responses and their order of arrival. Practically, the first response with the desired data is selected so
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there is only little room for error. The Choice flow pattern however outperforms the sequential flow in terms

of correctly assigning tasks. This happened because the choice flow ignores the processing time of the mobile

host (TP) and only focuses on the request-response travel time (RTT). This means, the algorithm focuses on

only one factor and the chances of identifying/determining a smaller RTT over another is higher than doing

extra calculations.

Figure 4.15: Tasks Assignment to Wrongly Identified Mobile Host

The sequential flow sees its correctness value dropping as the fault increases because we are comparing

two factors (the RTT and PT) and the number of comparisons are doubled. Another reason is because the

PT factor of the host device is not stable and changes can occur between the time a request is issued and

a response is received. Future works have to focus deeper on addressing the dynamism of PTs in the entire

architecture.

In both Fig. 4.14 and Fig. 4.15, it is observed that the flow patterns that are least in terms of correctly

re–assigning a task hive higher error rate in terms of wrong task assignment.

4.3.4 Summary

The concept of mobile services hosting is gaining more attention most recently due to the expansion and

diversity of macro fields such as Internet of Things (IoT) and Cyber–physical systems. With mobile hosting,

services (including data and application states) can be provisioned from mobile devices such as smartphones

and tablets; emulating actual servers. This can greatly improve on mobile–to–mobile communication. More-

over, other forms of data (e.g., sensor data) can be collected from sensor devices and sent to the mobile host

to be made available to other devices.

The area of mobile hosting has witnessed studies that focus on a single provisioning node. However, today’s
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cyber–physical systems require group sharing since sensor information can be gathered from heterogeneous

sources. The problem in such situations however is the ability to reduce latency through the minimization of

communication overhead. Latency reduction is critical because delays in the accessibility of the services in

the mobile hosting and sensor system can lead to undesired situations such as information misreading, failed

request delivery, wrong ordering of responses, and so on.

This work explores the area of mobile services hosting and the ability to share sensor information espe-

cially in a group–sharing scenario. The paper adapted the concept of edg–based services accessibility from

distributed cloud computing to create the mobile hosting environment. However, the work advanced on

the area by proposing the idea of accessing the services from an adjacent node with the minimal time that

considers the total travel time of the request and response (RTT) plus the processing time (PT) of the host.

This is the typical scenario that the CSB–UCC is advocating for. Existing works only consider the most

optimal travel time of the request between the adjacent nodes on the edge. Furthermore, we studied varied

transactional flow patterns that can facilitate better performance regarding the minimization of latency.

The work is evaluated to determine the best approach for achieving low–latency communication and

efficient job re–assignment. The preliminary evaluations show that the proposed consideration for the optimal

RTT + PT is better than the existing approaches that evaluate latency solely on the optimal RTT. Also, the

results show that the parallelism flow pattern is better than the other two which are the sequential and choice

flow patterns. It is important to state that this work in conjunction with the Environmental Instruments

Canada Inc. adopted the best–proximity technique for the mobile–sensor–data sharing.

In summary, the contributions in regards to the support of sensor communication of the proposed CSB–

UCC includes:

• Proposed mobile hosting architecture for group data sharing. Existing works only focus on the feasibility

of the idea while enterprise grade applications on mobile provisioning are few. Existing techniques

including the SOPHRA [201] framework do not support sensors.

• Proposed and evaluate different communication flow patterns based on sequential, parallelism, loop,

and choice methodologies.

• It is observed that optimal time for a response is not dependent on optimal distance between the

adjacent mobile and sensor nodes but factors such as the processing load on the host, and request

travel time should be collectively considered.

• Failed communications can be re–routed to the adjacent node that has the next better optimal request–

response time.

In most of the scenarios, the parallelism flow pattern is better at latency minimization. There is however

more room for improvement on the current state of the work. First, there is the need to study more

rigorous error management techniques when communications between the mobile host and its consumer
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fails. In a mobile hosting environment, errors can be introduced at two levels, communication failure and

system failure on the host. Therefore, the two can be studied in detail in another work. Another issue for

future consideration is energy conservation on the mobile devices since most applications in mobile hosting

environment run constantly either in the foreground or background.

In the next section, the attention of the dissertation will switch to scalability testing of the CSB–UCC.

This is another major consideration of the dissertation.

4.4 Testing for Scalability

In order to determine the performance of the CSB–UCC during peak loads (i.e., increasing work demand),

the scalability test is conducted. In this work, the workload represents the increasing number of mobile users’

requests in the system. This experiment requires heavy users and deviates from the previous experiments in

terms of the required numbers to determine the actual workload capacity. Thus, a load generating tool, which

is built in Erlang and identical to the Apache Bench software (http://httpd.apache.org/docs/2.2/programs/ab.html),

is used as the client to send concurrent HTTP requests to the CSB–UCC for resources at a controlled rate.

The load generating tool is installed on the windows 7 enterprise edition server with the specifications in

section 4.1 in the laboratory. The set–up for the load capacity testing of the CSB–UCC is illustrated in

Figure 4.16.

Figure 4.16: Set–up for the Scalability Test

The computer on which the load generator is running connects to the controller component of the CSB–

UCC through a Gigabit Ethernet connection. The load generator is configured to simulate the activities

of concurrent users of the system in multiples of 30000. The total number of concurrent HTTP requests
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that the users can send ranges from 10000 to 1000000. The load generator is configured to return the mean

throughput (i.e., the rate at which jobs are completed, measured in request per second) every 10 seconds. In

the experiment, the throughput is observed for six different set–ups where the system is centralized (i.e., only

1 broker) and distributed where the brokers are increased from 2 brokers to 6 brokers. Each of the broker

(which is the same as sub–proxy) is deployed on an Amazon EC2 instance in North Carolina.

The point here is to get an idea about how the CSB–UCC will behave in different workload scenarios

whether centralized or distributed. When the system is distributed, the request handling tasks include

the delegation of the load to the various sub–proxies (or brokers) by the controller. The load generator is

configured to send concurrent HTTP requests to the CSB–UCC to consume the data that reside on the

CouchDB database (as described in section 4.2.3). This experiment is conducted with the data payload from

the Clandestine Anomaly Game. It is important to state that the size of the data is not under consideration

here because the experiment is not retrieving the actual data from the back-end; rather, only the behavior

of the system is being simulated regarding how it cost the CSB–UCC to retrieve the data. Also, the inter–

arrival time (which represents the time between successive arrivals) is 10 seconds for 10000 requests. Thus,

the arrival rate (which represents the number of jobs arrived per second) is 0.1 per second for every 10000

requests.

The results from the scalability test are graphed in Fig. 4.17 and the summary of values is presented in

Table 4.22. The results reported are not single runs, but the averages of the repeated runs. Each experiment

is repeated twenty (20) times and the standard deviation between the results within the repeated run is

small (2.4 is recorded as the maximum standard deviation value throughout the entire experiment). In the

first experiment, I focused on the centralized broker which is shown in the graph as 1 Broker. Starting from

10000 requests, the minimum throughput processed by the centralized broker is 2991 requests/second and

the maximum throughput is approximately 32652 requests/second. The average (i.e., the mean) throughput

is approximately 24632 requests/second. As shown in the graph, it is observed that the throughput value

increases until the system almost stabilizes from 160000 requests. This range shows throughput value of

around 32600 until a maximum capacity is reached at 250000 requests. The centralized broker then becomes

non-responsive or crashes at this point. This shows that a centralize broker can handle up to about 30000

mobile users if those users are issuing approximately 8.3 requests/second. In the real world use case however,

there can be more than this number of users or their request can be more than 8.3 requests/second.

So, the second set–up considers the performance of the system with two sub–proxies (i.e., 2 Brokers).

For brevity, the reader is referred to Table 4.22 and Fig 4.17 to check the maximum, minimum, mean

capacity, and maximum request capacity of each set–up in order to avoid the repetition of text. With 2

sub–proxies (2 Brokers), it is observed that the throughput value increases until the system almost stabilizes

from 410000 requests. This range shows throughput value of about 60300 request/second until a maximum

request capacity is reached at 520000 requests. The system then becomes non–responsive or crashes at this

point. This performance is approximately double that of the centralized broker assuming we maintain the
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Figure 4.17: The Scalability Test of the CSB-UCC

Table 4.22: The Scalability Testing

1 Broker 2 Brokers 3 Brokers 4 Brokers 5 Brokers 6 Brokers

Minimum Throughput

(request/second)

2991 3022 3122 3002 3504 3507

Maximum Throughput

(request/second)

32652 60502 93765 135001 166767 198902

Mean capacity (re-

quest/second)

24632 44874 64539 80373 93083 112692

Maximum Request capac-

ity (request/second)

250000 520000 790000 1000000 1000000 1000000

same mobile request rate at 8.3 requests/second.

With 3 Brokers, it is observed that the throughput value increases until the system almost stabilizes

from 700000 requests. This range shows throughput value of about 90127 requests/second until a maximum

request capacity is reached at 790000 requests. The system then becomes non–responsive or crashes at this

point. This performance is approximately triple that of the centralized broker assuming we maintain the

same mobile request rate at 8.3 requests/second.

When there are four sub–proxies (i.e., 4 Brokers), it is observed an increase in the throughput until the

value stabilizes from 930000 requests. This range shows throughput value of about 130000 requests/second

until a maximum request capacity is reached at 1000000 requests. The system then becomes non-responsive

or crashes at this point.
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In the set–up for 5 and 6 Brokers, the load generator could not issue more than a million requests. So,

both experiments are limited to 1000000 requests capacity. I could not conclude this is the maximum number

of users that 5 to 6 brokers can serve since the limitation is not from the system but from the experimental

set–up. However, even though the maximum value is pegged at 1 million requests, it is observed that the

throughput values have improved compared to the initial set–ups. With 5 Brokers, the throughput increases

until it stabilizes from 960000 requests. This range shows throughput value of about 166600 requests/second.

At the million request mark, the approximate throughput is 166767 requests/second. When the 6 Broker

set–up is employed, a million requests shows approximate maximum request rate of 198902 requests/second.

From the entire scalability test, it is observed that for a single broker, approximately 30000 users who

own on average 8 mobile devices and can make 1 request/second from each device, to access services can be

supported. There is an increase in the number of users by approximately 30000 for each additional sub–proxy

that is added to the system. Another important observation from the graph is that, all the six brokers seem

to have equal throughput at the beginning of the requests. The reason for this is that, the controller keeps

sending the requests to one broker until that broker reaches saturation (where the broker starts sending busy

message back to the controller). It is from this point that the controller will start sending the requests to

another node. Hence, we realized that if the total request is say 170000, the throughput will be approximately

the same for all the 6 brokers since at this number, regardless of the number of active brokers, only one broker

will be working.

4.5 Fault-tolerance

Finally, I evaluate the performance of the distributed CSB–UCC approach in the event that the sub–proxies

are dead and/or non–responsive. This experiment is important to determine the behavior of the system since

in reality, some of the sub–proxies will die and will not serve requests. We approach this experiment by

adopting the fault injection methodology. In all, there are six sub-proxies and each is designed to handle

requests. The sub–proxies are deployed on different Amazon EC2 instances.

Then a constant medical data payload of 100 MB is employed to send messages across the system. The

experimental result is shown in Table 4.23. Four separate tests are conducted where the first one involves all

six proxies being alive and responsive. The result is similar to the first experiment, and then I intentionally

crashed one of the sub–proxies, which put it in a dead state and leaving only 5 alive. It is expected that the

time frame will increase but the actual increment is so marginal. I then crashed two sub–proxies and later

three sub–proxies are crashed. In each case, there is a marginal increase, which shows the high rate at which

the controller re–assigns the tasks of the dead sub–proxy to the other responsive sub–proxies following the

best–proximity methodology.

In terms of the overall performance however, when all the sub–proxies are dead leaving one, the perfor-

mance of the distributed system will be approximately the same as the centralized system. This is true also
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Table 4.23: Fault Injection Analysis

Number of Requests
Processing Time (ms)

All Alive 1 Dead 2 Dead 3 Dead

100 80.40 87.04 94.15 101.56

200 84.20 92.78 102.07 122.33

300 88.04 93.64 112.87 134.88

400 90.23 98.19 128.20 142.74

500 92.32 101.77 133.59 156.73

600 96.34 116.40 144.61 172.01

700 102.33 122.09 166.98 194.09

800 112.87 131.12 173.22 121.55

900 121.33 142.12 181.98 123.14

1000 133.11 149.65 196.55 136.29

for the scalability testing.

4.6 Summary

This chapter described the various experiments that were conducted to validate the design choices of the

Cloud Services Brokerage for Ubiquitous Cloud Computing (CSB-UCC). The experimental set-ups seek to

evaluate the performance of the CSB–UCC in line with the research goals on the reduction of the services/data

propagation window in an n–device to multi–cloud ecosystem. The first part of the experiment focuses on the

minimization of the update propagation window between the mobile devices and the cloud services. Using a

Wi–Fi network, the experiments are conducted using the Playbook, iPad3, Transformer prime, and NOKIA

Lumia 900. Further, public cloud services providers such as Dropbox, Amazon S3, and MEGA are employed

as the services sources. The evaluation of the propagation window of the mobile versions of these products

is conducted to determine the base (benchmark) results to which we can compare our own results. The

propagation windows of the centralized and distributed architectures of the CSB–UCC are then evaluated.

Also, the proposed best–proximity use case which dictates that distributed loads should not be assigned

at all times based on the closeness between the mobile requester and the cloud application node is evaluated.

The scalability of the various architectures is also evaluated as well as the fault–tolerance of the CSB–UCC.

The summary of the experiments are listed below based on the goals.

Goal 1: Soft-real time synchronization

• Part 1 : Evaluated the update propagation window of the proposed system. In comparison to the

existing mobile versions, it is observed that the centralized architectures can concurrently support 3200

mobile users (who own 4 devices) to propagate files of up to 2.4 GB within reasonable time. Beyond
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this number, the distributed architecture has to be adopted which can support up to approximately

20000 users.

• Part 2 : Evaluated the proposed best–proximity methodology versus the close proximity technique

which can be employed to ensure real time services delivery. The evaluation shows that not all cases of

assigning tasks to the closest application server minimize latency. Rather, factors such as the request

travel time, request assignment time, request processing load, and response time should be considered

collectively. The distributed application server node that returns the minimal time when the sum of the

time of all the factors are considered should be the most appropriate server to assign the task according

to the best–proximity rule

Furthermore, the agility of the CSB–UCC is proven regarding the support for sensor devices. The

system supports sensor–mobile data sharing and adopts the proposed best–proximity technique to

disseminate information. Test results show that soft real–time data synchronization can be achieved.

Goal 2: Scalability testing of the brokerage platforms The CSB–UCC is evaluated based on the

centralized architecture and the distributed broker architecture with up to six brokers. It is observed that

approximately 30000 users can be supported to issue 8.3 requests/second in the case of the centralized broker.

For every additional broker (sub–proxy) which extends the centralized system to a distributed system, the

user support base increases by 30000.

Goal 3: Error tracking and fault recovery Based on the fault injection technique, an analysis is

done on the time within which tasks are re–assigned when some proxies fail. It is observed that the job is

re–assigned within a very small window; about 60ms being the highest re–assignment time.

Goal 4: Audit trail through provenance enforcement Though this is listed as one of the experiments

to be conducted, it is deferred to another work where it will be treated as an independent research.
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Chapter 5

Conclusion and Future Work

5.1 Summary and Contributions

This dissertation presented a cloud brokerage framework called, the Cloud Services Brokerage for Ubiquitous

Cloud Computing (CSB–UCC), which facilitates n–devices to access multi–cloud services. With the recent

advancement in mobile and cloud computing technologies, there are several services that are of interest to

consumers at both personal and enterprise levels. These services range from data and file sharing across

different cloud platforms, and application sharing. Furthermore, recent product releases such as wearable

devices (e.g., Apple Watch) creates the need for ubiquitous access. To facilitate this, several mobile end–

points need to be supported to communicate with the multiple cloud services and resources. The era of

supporting n–devices to access multi–cloud services is described as the Personal Cloud Computing or the

Ubiquitous Cloud Computing (UCC).

As of now, the UCC is in its infancy with not many works seen on its architectural deployment apart from

some speculations that brokerage platforms can be adopted to design the architecture. Moreover, the option

of supporting the consumerization of multiple cloud services by mobile users especially in the enterprise

creates the need to provide services audit trail. Also, open questions to address are how to ensure consumer

consistent experience and how to aggregate the n–devices with the multi–cloud sources.

To address the above issues, the proposed Cloud Services Brokerage for Ubiquitous Cloud Computing

(CSB–UCC) is deployed as a cloud–hosted application brokerage service that integrates the n–devices with the

multi–cloud services. The mobile can establish connection to the brokerage platform through HTTP. There

are three authentication methodologies that are designed based on 3rd party OAuth 2.0, username/password

pairs, and hybrid authentication (i.e., the combination of the other two) to access the cloud services. Further,

the broker relies on channels to determine the users, their registered devices, and their subscribed cloud ser-

vices to propagate updates. The n–devices supported in this work includes smartphones, tablets, notebooks,

and sensors.

The CSB–UCC is a distributed broker architecture but can be employed as a centralized broker depending

on the workload and user–base. The dissertation studied existing approaches on efficient ways of extend-

ing cloud services to mobile devices and the dominant techniques include mobile edge computing and fog

computing. With these techniques, existing services providers seek to address the issue of latency in data
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propagation through the assignment of tasks to the application broker node within the closest geographical

proximity. However, the CSB–UCC deviates from this provision. Rather, the best–proximity use case is

put forward which relies on the combination of factors such as request time from the mobile to the broker,

the processing time of the broker, and the response time. Subsequently, the evaluations show that the best

proximity methodology is better. Also, the CSB–UCC puts forward a provenance mechanism that relies on

the combination of mobile context awareness and the role of the user to ensure proactive audit trail. Thus,

the proposed provenance considers the location of the user, the time of the request, and the user action before

a request is granted. Since several domains have their own requirements, the policy can change.

The evaluations show that the centralized CSB–UCC can support approximately 3200 users to propagate

their data from public cloud services such as Dropbox, Amazon S3, and MEGA in a group file sharing

scenarios to n–devices (where n=4 and the file size is up to 2.4 GB). This support base guarantees the

same consistent user experience as the available services provided by the cloud owners. The system with six

distributed broker nodes can support up to 20000 users with similar user experience without intolerable delay.

Also, the experiments on the scalability shows that a single broker node of the CSB–UCC can support up to

a maximum of approximately 32300 requests/second. In cases that a distributed node fails, the CSB–UCC

takes a relatively short time to re–assign the task to another node.

The contributions and findings of the dissertation are summarized below.

i An architecture of the mobile ubiquitous cloud computing, called CSB–UCC, is researched and de-

veloped which facilitates n–devices of a single user to access multi–cloud services in groupware and

personalized situations.

ii The CSB–UCC can be adopted as a centralized brokerage service or distributed brokerage service

depending on the size of the users and the system peak load. This further enables agility of the system

for different enterprise transactional needs.

iii When adopted as a distributed architecture, the best–proximity use case is proposed that ensures that

transactions are assigned to the broker node that can provide latency optimization when factors such

as proximity between the mobile and the broker, and the processing time of the broker are considered

collectively.

iv In the distributed architecture, error and failure scenarios are accounted for by re-assigning the tasks

of failed nodes to other active nodes. In the centralized architecture however, failure is a huge risk but

backup of the broker state can be kept.

v The proposed system supports sensor data sharing which is key in today’s ubiquitous system architec-

tures. In this regard, sensors can connect to mobile devices and share information that may be required

by users.
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vi To ensure system audit trail, provenance is proposed based on mobile context awareness (i.e., time and

location) and user’s role.

vii Several award winning applications and services have adopted the CSB–UCC. Examples include the

Hemophilia Injury Recognition Tool (HIRT?), and the Clandestine Anomaly Augmented Reality Game.

5.1.1 Designed the Cloud Services Brokerage for Mobile Ubiquitous Computing

(CSB–UCC)

There is rapid adoption of cloud computing recently by enterprises to deliver product and services to clients

and customers. At the same time, mobile computing technologies are being improved. Thus, some enterprises

have discovered the need to combine these two macro fields (i.e., cloud computing and mobile computing)

to deliver next generation applications. This is known as Mobile Cloud Computing (MCC). Cloud services

providers especially from the commodity cloud suppliers are guaranteeing high services availability for anytime

access. The importance of cloud computing for companies and consumers, as detailed in Chapter 2, is

enormous. Some of the advantages of cloud computing include: cost management as companies can cut

down on their internal IT budget, improved maintenance culture as the task of infrastructure manageability

is delegated to the cloud service provider, and soft-real services accessibility.

Some services provisioning models are: Software-as-a-Service (SaaS) - services as applications, Platform-

as-a-Service (PaaS) - services for development, testing, interfaces, etc. and Infrastructure-as-a-Service (IaaS)

- services that support virtualization such as network, servers, etc.

However, cloud computing alone cannot provide the needed requirements for services delivery to consumers

since providers need to ensure anywhere access. This is where the mobile cloud computing comes in handy.

With the MCC, the anytime access capability of the cloud can be complemented by the anywhere access

feature of mobile computing. But what is more crucial is the recent attitude of services consumers. Most

mobile users own multiple devices such as smartphones, tablets, body sensors, and smartwatches. The

consumers then expect to have application, services, and data consistency across these devices. As well,

users have several cloud services subscriptions and there is the need to facilitate these divergent services to

be consumed in a single dimensional workflow. Supporting n–devices to access multi–cloud services is termed

Ubiquitous cloud computing (UCC) or the personal cloud.

Currently, there is not enough research on the personal cloud. There has been some studies on Mobile

Back-end-as-a-Service (MBaaS) which seek to ensure efficient server–side design for mobile services support.

While MBaaS is not directly linked to the personal cloud, the initial designs seek to enable third party services

integration into mobile specific applications. This includes the design of back-end layers that can facilitate

user authentication from third parties and so on. This again leads to the open gap between research on the

personal cloud and the existing up and coming solutions.

Based on the research goal in this dissertation, the designed CSB–UCC offers services convergence solution.
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This means when adopted, users can be facilitated to access cross-cloud platform services on their n–devices.

In Table 5.1, the key features that distinguish the CSB–UCC from the other existing solutions are highlighted.

Table 5.1: Features of the CSB–UCC

Feature Explanation

Authentication The CSB–UCC supports hybrid authentication mechanism (i.e. either

by social networking or proprietary personal login) based on OAuth 2.0

and password/username usage. This is achieved by proposing a graph

technique for mapping users credentials across different cloud services.

In this case, two account types are maintained on the brokerage service

that checks registered accounts and authorized accounts. Registered

accounts are the credentials that are created with the service providers

and authorized accounts may be other credentials own by the user which

are stored on the broker. The idea of providing the hybrid authentication

technique is to help users better manage their credentials.

Aggregation As of now, the existing frameworks that have been proposed either in-

tegrate multiple devices to a single cloud provider (e.g. Dropbox) or

aggregate multiple cloud sources to a single user. The CSB–UCC is not

aggregating the data on the broker as seen in some frameworks such as

RackSpace; rather, the aim is to ensure services selection on the bro-

ker and delivering the integrated multi–cloud services directly to the

n–devices of the consumer.

Audit The CSB–UCC is deigned to employ provenance techniques to ensure

transparent audit trail. Existing services at best allows users to know

who made changes to information but are not able to prevent actions

that may not be required by other users; especially regarding group

sharing scenarios. The proposed provenance technique in the CSB–UCC

enables users to perform actions based on contextual data and access

level. Context is defined in this work as time and location.

Ubiquitous Device

Support

The CSB–UCC is designed to support n–devices such as sensors and

smartphones. Most of the services mentioned earlier support only smart-

phones. However, supporting ubiquitous computing will require consid-

eration for sensors. This is what puts the proposed framework in a pole

position for future adoption.

Continued on next page
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Table 5.1 – continued from previous page

Features Explanation

Agility One of the major issues with enterprises is the ability to accommodate

infrastructural changes. Besides, though an enterprise will be offering a

single service now (e.g., IaaS), there are chances that the service offering

can be expanded in the future. Unlike the previously highlighted services

in Table 2.3, the CSB–UCC supports integration with IaaS, SaaS, and

PaaS. The Section 3 explains how this is achieved with DropBox, MEGA,

Amazon S3, Maqetta, and so on.

Cost The CSB–UCC can be adopted as a centralized broker or a distributed

broker. This is good for managing both small scale and large scale

services. Since test results confirm the capacity of each architecture,

enterprises can adopt say the centralized architecture to support about

3000 users who may own up to 4 devices with soft real–time need. This

is also a good way to mange the cost of buying more virtual servers that

may be required for a large scale distributed service.

The proposed CSB–UCC is in use in several real world systems. Since the system promises high scalability,

it is adopted by ZenFri Inc. Canada in the deployment of the Clandestine Anomaly augmented reality game.

This project is described by the New Media Manitoba as the biggest game property in the history of Manitoba.

The project is part of MITACS partnership.

5.1.2 Sensor Data Sharing

Today, users are seen with several ubiquitous devices such as smartphones, tablets, smartwatches, body

cameras, and sensors. Some sensors can facilitate the detection of bio–hazards that otherwise cannot be

detected by other personalized devices. For instance, gamma rays are electromagnetic radiation with a very

high frequency that can be biologically hazardous. Most workers in the mining, manufacturing, security, and

other industries find themselves in such hazardous environments and governments are trying to contain this

issue. While traditionally, high gamma radiation detection sensors have been manufactured to be carried by

users, they are not good access point for actual dosage readings. With the recent advancement in mobile

technology, the dissertation proposes a mobile hosting architecture to enable mobile-to-sensor communication

following the edge–based technique. This means the sensor can detect the radiation and send readings to

a smartphone device of the user. All other near–by mobile devices (which are authorized) will receive the

notification to alert the people in the hazard zone. A crucial obstacle to overcome is latency reduction and

efficient request routing in the mobile–to–sensor eco–system.
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In this regard, the CSB–UCC is adopted by the Environmental Instruments Canada Inc. to facilitate

the dissemination of sensor data sharing in the n–devices economy. The high dosage readings by the sensor

can be transmitted to the nearby mobile so that notifications can be fired up or the data can be sent to the

cloud back–end. The proposed work is tested and the results show that detected radiations are sent in soft

real-time to the mobile devices.

Furthermore, we can advance on the mobile provisioning architecture by developing a mobile hosting and

sensor ecosystem for high radiation detection (e.g., gamma rays). In recent time where workers in different

enterprises are exposed to hazardous conditions, the risk can be minimized through sensor technologies.

While sensors have limitations on data reporting and proactive action taking, we can combine them with

mobile systems to ensure efficient message delivery.

In this dissertation, the sensor can detect high radiation and when the data is sent to the smartphone,

the latter can vibrate, push notification, send email or SMS, and make quicker dosage counts which can

aid the user to move away from a hazardous zone. The proposed system takes into account the ability to

disseminate information to all near-by mobile devices (if there are several users in an enclosed high radiation

area). A bigger challenge is how to reduce communication latency and ensure faster information dissemination

between the sensor and the mobile. This is the reason the edge–based connection is proposed in an attempt to

determine the optimal path between the adjacent mobile hosts. To ensure mobile–to–mobile/sensor service

communication, this work therefore proposes an edge–based connection in an attempt to determine the

optimal path between the adjacent mobile hosts. Different modes of mobile-to-mobile service communication

are designed by adapting the services flow patterns that include sequential, parallelism, loop, and choice

approaches. The work is evaluated to determine the best approach for achieving low–latency communication,

efficient job re–assignment, and error management when communications between the mobile host and the

consumer fails.

Since currently mobile devices are not equipped to determine gamma radiations, we have to rely on specific

sensors that can determine the radiation (e.g., CT007 ) in this work. Preliminary evaluations focus on the

determination of the best approach for achieving low-latency communication, efficient job re-assignment, and

error management when communications between the mobile and the sensor fails.

The work is evaluated to determine the best approach for achieving low–latency communication and

efficient job re–assignment within the sensor–mobile ecosystem. The preliminary evaluations show that the

proposed consideration for the optimal RTT + PT is better than the existing approaches that evaluate

latency solely on the optimal RTT (where RTT is the request response time and PT is the processing time

of a mobile). Also, the results show that the parallelism flow pattern is better than the other two which

are the sequential and choice flow patterns. In summary, the dissertation makes the following contributions

regarding the use of the CSB–UCC to support sensor data management:

• Proposed mobile hosting architecture for group data sharing.

• Proposed different communication flow patterns based on sequential, parallelism, loop, and choice.
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• It is observed that optimal time for a response is not dependent on optimal distance between the

adjacent mobile nodes but factors such as the processing load on the host, and request travel time.

• Failed communications can be re-routed to the adjacent node that has the next better optimal request-

response time.

• In most of the scenarios, the parallelism flow pattern is better at latency minimization.

In presenting the work on the sensor technology, I will like to acknowledge the efforts of the following

individuals who helped with programming, experimentation, data collection, and manufacturing: Sihn Pham

(Graduate student at the Department of Computer Science), Kai Kaletsch (Environmental Instruments

Canada Inc.), and Prof. Ralph Deters (Department of Computer Science, University of Saskatchewan)

5.1.3 Provenance

One of the key requirements in data consumption in mobile ubiquitous computing systems is to maintain

audit trail. This is to determine who does what. This question is also important in this dissertation especially

when designing a framework such the the CSB–UCC that supports n–devices in a multi–cloud computing

environments. One of the enterprises that adopted the CSB–UCC through a research collaboration is the

health sector; specifically the Saskatoon Health Region.

In the medical sector, the use of mobile devices promises new opportunities for healthcare delivery. There

is increasing number of patient–specific apps that aid the user to perform self–assessments, check eating

habits, track physical activities, and so on. On the other hand, the beneficiaries of the mHealth paradigm

are physicians and healthcare practitioners. They are able to access the Electronic Health Record (EHR)

from their mobile devices and carry out diagnoses when required. This leads to advantages such as remote

healthcare delivery, location–independent accessibility of medical data, and fostering strong relationship

between patients and physicians. Moreover, the consumer attitude today dictates that users own multiple

devices such as smartphones, tablets, notebooks, etc. Furthermore, consumers want to have services and

data accessibility across their devices. For instance, at the basic level, consumers want to access their emails

across varying devices on the go as well as have services in synchronization across the devices. This requires

the deployment of a new paradigm of applications, which is often referred to as N–Screen applications or the

ubiquitous cloud computing.

The problem that arises now is the enforcement of security in such n–screen enabled mHealth environment.

The fact that the physicians can have multiple mobile devices that house medical records calls for the

facilitation of data protection policies. If this is not enforced, there is the risk of losing information to

unintended persons. This can lead to breach in privacy, medical data pollution, and attacks on the medical

system.

In this work, the methodology of provenance is explored to ensure that data access control in an mHealth

environment is provided. Provenance is a methodology that maintains the life-cycle history of processes and
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data. The methodology is investigated and a variation of it that blends with policy–based access control in

a mobile distributed environment is proposed.

A secure proxy layer that tracks the activities of the physicians and enforces some security policies is

proposed. While provenance aids the tracking of the actions and activities of the physicians, the policy aids

the enforcement of trust. The policy is enforced based on the combination of factors such as time, location,

and the action that the user wants. For instance, physicians are required to provide further information if it

is detected that they are in a drinking bar at 2:00 am and want to change a patient record on visits.

From the extensive work on provenance, work is yet to be commenced on the adaptation of the idea to

solve security issues on N-Screen application support. Primarily, this dissertation believes that any action

taken by the physicians should be logged; and this is actually how most Health Information Systems (HIS)

operate. The focus therefore is on how secure accessibility of the medical data can be enforced in an N-Screen

system, as well as the reduction of the risk of a request being made to the HIS by unwanted users due to an

error or misplacement of the mobile device by a physician. Thus, the work explored several questions on how

to detect unusual requests, how an attack should be treated, and how to build a reactive n–screen service.

The dissertation proposes three access control factors. There has been successful deployment of context–

aware systems that defines system accessibility within a context in previous works. Context can be time–

based, location–based, or role–based. Thus, the dissertation proposes a policy that the CSB–UCC runs that

is based on factors such as time of information access, location where the request is being made, and the

action to be taken by the requester.

The combination of these factors prove to enforce the deployment of a reactive system where if any of the

factors are not satisfied can lead to denial of service. In other words, certain requests will be denied based

on the time the request is being issued even if the location and action are not suspicious. This applies to any

of the factors that fails as well.

The proposed provenance technique can be an extension to the SOPHRA [201] project which seeks to

enforce mobile hosting in the medical sector. On–going works on the Haemophilia Injury Recognition Tool

can also witness the adoption of the proposed provenance technique.

5.1.4 Best–Proximity Services Delivery

Most enterprises are eager to bring their digital contents closer to the consumers. This has led to the research

on Edge–Computing and Fog Computing. Both approaches seek to extend services to consumers based on

their geographical location. The best–proximity is not the same as the closest proximity in this work. Since

there are multiple layers in the CSB–UCC, a component is designed called, the controller, which determines

the node that can serve a request in the shortest time.

The decision to route a request is based on location, processing time, and request round travel time. The

evaluations prove that the proposed approach can be adopted as an extension to Fog and Edge Computing

since the results are better at request optimality.
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In evaluating the methodology, it is seen that the issuance of mobile requests to the cloud hosted applica-

tion server nodes within the closest proximity does not guarantee requestresponse time optimality. Rather,

the proposed best proximity methodology in this dissertation is an efficient way to reduce latency and further

minimize the transaction time. The designed distributed architecture of the CSB–UCC therefore follows the

best–proximity approach to serve the mobile participants in order to achieve time optimality.

If the closest proximity between the mobile users and the application server is the de facto logic, the

heavy workload can cause delays that can defeat the purpose. Thus, this dissertation has made headway by

proposing a better approach where the jobs need to be assigned based on the combination of factors such as

the request processing time, the request assignment time, and the proximity between the mobile requester

and the application server.

While the approach proposed is not entirely new in the field of distributed systems, it is a headway in

the mobile ubiquitous computing field. One lesson from the experiment is the fact that distributed systems

must be mobile–focused to guarantee faster services delivery rather than just taking existing legacy service

for wired networks and deploying them for mobile services.

5.1.5 Error Tracking and Request Re–assignment

Since the mobile environment can experience errors (e.g., termination of connection), there is the need to

investigate the best approaches that can aid the mobile architecture to be resilient. For instance, how does

the system recover from connection error? And how does the system determine faults and react accordingly

to the error?

The distributed version of the CSB–UCC is built to handle several nodes (called sub–proxies). States

are defined for each sub–proxy which ensures that the requests which are sent by the mobile participants

(i.e., the users) are processed. When the requests arrive, the controller determines which sub–proxies are in

a state that can process a request. There are five states for every sub–proxy which are:

Dead State– This means the sub–proxy (or, the application server) is dead and is no longer reachable.

This can be due to fatal errors, failures, or crashes. Sub-proxies in this state are not issued requests by

the controller. Alive State– This means that the sub-proxy is reachable. Responsive State: This means the

sub-proxy is responding to the communication of the controller. There are cases where the sub–proxies are

alive but non-responsive. This can be due to intensive transaction processing. Busy State– This is when a

sub-proxy notifies the controller and other sub–proxies that it does not want to receive any further requests.

Available State– This means the sub-proxy is ready to receive new tasks from the broker–layer.

Experimental results show that when a sub–proxy becomes unavailable, the requests of that proxy is sent

to another active sub–proxy in soft real–time.
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5.1.6 Best Paper Awards

Parts of the results in this dissertation have been published and the works have received best paper award

recognitions as follows.

• Best Paper Award presented to Richard Lomotey and Ralph Deters for their work on “Efficient Mobile

Services Consumption in mHealth” at the 2013 IEEE/ACM International Conference on Advances in

Social Networks Analysis and Mining (ASONAM 2013), and the International Symposium on Network

Enabled Health Informatics, Biomedicine and Bioinformatics (HI-BI-BI 2013), Niagara Falls, Canada,

August 2013.

• Best Paper Award presented to Richard Lomotey and Ralph Deters for their work on “Topics and

Terms Mining in Unstructured Data Stores” at the 2nd IEEE International Conference on Big Data

Science and Engineering (BDSE 2013), Sydney, Australia, December 2013.

• Best Paper Runner–Up Award presented to Richard Lomotey, Yiding Chai, Shomoyita Jamal, and

Ralph Deters for their work on “MobiCrop: Supporting Crop Farmers with a Cloud–Enabled Mobile

App” at the 2013 6th IEEE International Conference on Service Oriented Computing & Applications

(SOCA 2013), Kauai, Hawaii, USA, December, 2013

5.1.7 Some Real–World Applications Built as Part of this Dissertation

• Hemophilia Injury Recognition Tool (HIRT?)

• Clandestine Anomaly Game Project

• SSCA Spray Quality

• SSCA Tank Mix

5.2 Future Work

5.2.1 Cybersecurity and Mobile Data Assurance

This work is just the beginning and the community has a lot more to do. There is the need to explore security

issues beyond the concept of just authentication in ubiquitous cloud computing environments. Security

involves the detection of impersonations and violations of data and services usage. As mobile devices such

as smartphones, tablets, and notebooks are being used to access enterprise services and applications, there

is the need to provide resilient security measures. With the recent launch of smart wearable devices such as

Apple watch, users will tend to start accessing cloud hosted data on this devices.
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While the use of mobile devices provides convenience, it is also the focus of cyber attacks. Cybersecurity

measures are being proposed especially regarding information encryption and secure transfer protocols but

a lot more is needed.

In future works, this dissertation can be extended to explore mobile context-based information sanitization

as an advancement on current standards. Information sanitization has to do with hiding sensitive information

from unintended users. When contextual information is considered, even when the device gets into the wrong

hands, sensitive information will not be divulged.

This can further assure the confidentiality, integrity, and availability of information exchanged across

mobile–cloud services. Moreover, the use of mobile devices to share personalized information such as in-

dividual health records (through wearable devices) requires not just data protection and privacy, but the

authenticity of the information. For instance, the Apple Watch can be used to send health data such as heart

pulse to a user’s physician directly. If a friend or family is wearing the watch, then how does the medical

facility detect that the collected data is not from the registered patient but from another user? One way to

avoid this is to treat wearable devices as medical kits by users but it is not going to be an efficient approach.

This calls for studies on noise detection in data as well as information assurance.

Also, though the dissertation proposed a provenance technique (based on the combination of mobile

context and user’s role), there is the need for evaluations to determine its pros and cons. The provenance

methodology proposed in this work fits the medical domain but may not be relevant in other domains. The

fact that contextual information (such as time and location) and a user’s role aided in auditing medical

systems does not mean the same can be applied directly to say mobile banking. For instance, while it is

suspicious for medical data to be updated from a drinking bar at midnight, it cannot be same for a user

who is making mobile payment from a drinking bar at midnight. In this case, it is impractical to translate a

provenance technique directly from one domain to another.

It is therefore desirable that future works should explore domain specific challenges and how they can be

generalized to meet cross-enterprise needs. Though the generalization may not be accomplished at the policy

level, technical requirements can be studied to offer such cross–enterprise audit trails.

5.2.2 Mobile Data Analytic-as-a-Service (AaaS)

There is high–dimensional data at our disposal (known as, ”Big Data”) today that requires a new look at

storage, processing, and data management. While big data currently does not have a universally accepted

definition, some works have explored the area as: big transaction data (i.e., exponential increase and diversity

in the volume of transaction data), big interaction data (i.e., increase in open data such as social media and

device data), and big data processing (i.e., increasing processing demand on high-dimensional data) [156].

However, other works define big data within the concept of the 5V model [157]. The 5V stands for Volume –

massive data size, Variety – unstructured data, Velocity – change from batch data to streaming data, Value

– cost associated with data, and Veracity – data pollution that needs cleansing to determine usefulness of
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information.

Looking at the 5V model, it is obvious mobile users have key roles in every aspect of big data. The

volume, velocity, and variety are all direct results of increasing mobile usage to access any information on

the go. This creates the need to start designing enterprise systems that can enhance big data support.

The CSB–UCC can be enhanced to offer supports for the management, storage, and mining of mobile data.

Specifically, the framework can be advanced to become mobile data analytic-as-a-service platform. Achieving

this will require further studies on different styles of storages (structured vs. unstructured), unstructured

data mining, ubiquitous data management (including sensor data), and data stream processing.

The analytic-as-a-service platform can be viewed from different perspectives. Firstly, it can be seen as a

platform for big data mining where the focus will be on knowledge discovery and mining processes. So, as

information is being received from mobile users from their n–devices, the platform can be doing real-time

mining of the streaming data. Secondly, the analytic-as-a-service platform can be used as a data management

layer. Data management can be considered from the storage perspective or transactional perspective. Since

streams require high performance computing platforms, the distributed CSB-UCC can be adopted to coor-

dinate which information should be processed as streams and which ones can be stored as batch for further

mining purposes.

So, what is the state of the Analytic–as–a–Service (AaaS)?

Analytics-as-a-Service (AaaS)

IBM Research has identified AaaS as an area that can offer business value [249]. This is because AaaS is

able to aid in the transformation of unstructured data into business creation ventures. In this regard, IBM

pushed for the creation of an AaaS platform that can aid end–users and companies to submit their data

(in either structured or unstructured format) for analytic purposes. This platform is meant to reduce the

financial burden on companies from maintaining in-house data analysts; the same view is shared by EMC

[250], SAS [251], Sun et al. [252], and Deepak et al. [253].

The goal of a research conducted by Lomotey and Deters [157] is to build a data analytics tool specifically

for terms mining from unstructured data sources. The focus is on document–style NoSQL storage though

the tool can be applied to any other form of storage. In order to achieve this goal, there is the need to also

understand the intricacies of unstructured data mining. Unfortunately, unstructured data mining is equally

a fairly new area which is yearning for research attention. That work further presented an overview of the

area on unstructured data mining and how applicable some concepts can be to our work. On the whole, most

of the methodologies are based on Natural Language Processing (NLP) which is inherited from Artificial

Intelligence, Linguistics, and Ontological Semantics.

To enhance the data mining process, scientist in both the academia and industry are beginning to explore

the best methodologies that can aid in the unstructured data mining process; especially in the context of

textual data mining. As a result, we have witnessed some methodologies such as: Information Retrieval algo-

145



rithms based on templates [254], Association Rules [255], Topic tracking and topic maps [256], Term crawling

(terms) [257], Document Clustering [258], Document Summarization [259], and Re–usable Dictionaries [260].

Though existing works on the AaaS are focusing on quality of service (QoS) improvement, it is desirable

if the architectures will focus on enabling data access from these personalized and detached devices. In this

regard, the proposed cloud services brokerage in this dissertation can be enhanced.

The process of enhancing the CSB–UCC has already began in earnest to achieve the AaaS status. Initial

works on unstructured data mining and the architectural design of the AaaS are published in [157] and [261].

It is important to note at this point that the work by Lomotey and Deters [261] received the Best Paper

award at the 2nd International Conference on Big Data and Engineering (BDSE 2013) in Sydney, Australia.

However, the adaptation of the architecture to meet mobile–specific challenges is still far.

5.2.3 Autonomic Computing Architecture

The designed Cloud Services Brokerage for Ubiquitous Cloud Computing (CSB–UCC) employs job re–

assignment techniques to maintain system performance when failure occurs at certain nodes. The evaluation

of the approach proves effective especially when considering the window within which jobs are re-assigned.

However, the current state of the CSB–UCC does not have any provision for automatic system recovery of

such failed nodes. This means the maintenance of failed nodes (in dead state as described in the disserta-

tion) requires human input. In mission critical systems and latency–sensitive architectures, this can lead to

undesired situations. It is therefore preferred if the CSB–UCC can have some self–healing capabilities.

One approach that can be adopted in this regard is Autonomic computing which can be explained as

the features of distributed architectures that address self–healing without user inputs anytime there is sys-

tem failure. Autonomic computing can therefore become a very key part of building mobile ubiquitous

architectures that can support seamless user experience. In most cases, mobile ecosystems experience in-

terrupted services due to issues such as: user mobility in geographically unsupported wireless areas, device

constraint features that can prevent heavy workload processing, unstable wireless connectivity characterized

by fluctuating bandwidth, and limited battery life.

Autonomic computing can therefore be employed in mobile–cloud architectures to guarantee seamless

application and data management in case any of the aforementioned issues arises. This can be explored by

opting for methodologies such as offloading of maintenance capabilities to the cloud so that whenever client

nodes experience failures, they can be re-activated.

So, why autonomic computing?

Recently, researchers have employed autonomic computing to achieve the following: Dynamic scale up of

workload distribution in cloud computing environments [262], Ensuring trustworthiness in distributed cloud

computing systems [263], and Collaborative Report Management in distributed systems [264].

The advancement on the CSB–UCC to include autonomic computing capabilities can further drive enter-

prises to manage infrastructure budgets better with little to spend on administration. But more importantly,
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it will guarantee services and product re–alignment whereby new products can be deployed without concerns

about failures in services delivery.
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Appendix A

Results on the Propagation Window

Table A.1: Overall Summary of the Results on the Propagation Window

Dropbox
Device Set-up Max Window (s) Min Window (s) Avg (s) Average Propagation

Window Relative to
the Base Result (s)

Playbook

Base 662.44 51.22 360.79 N/A
Centralized 662.47 61.59 360.37 0.42 faster
Overloaded 1389.20 117.45 742.29 381.5 slower
Distributed 750.81 71.82 409.44 48.65 slower

iPad3

Base 761.35 65.56 408.44 N/A
Centralized 762.92 67.13 410.01 1.57 slower
Overloaded 1525.07 128.21 810.94 402.5 slower
Distributed 856.83 76.85 461.23 52.79 slower

Transformer

Base 827.35 107.56 478.05 N/A
Centralized 824.59 104.80 475.29 2.76 faster
Overloaded 1640.10 199.01 932.26 454.21 slower
Distributed 935.20 122.56 540.85 62.8 slower

NOKIA

Base 1115.23 217.56 652.12 N/A
Centralized 1117.93 220.26 660.99 8.87 slower
Overloaded 2221.33 427.08 1303.21 651.09 slower
Distributed 1322.83 254.60 779.07 118.08 slower

Amazon S3

Playbook

Base 524.93 50.04 291.93 N/A
Centralized 571.63 54.74 324.94 33.01 slower
Overloaded 1036.36 95.53 582.90 290.97 slower
Distributed 663.30 58.55 374.68 82.75 slower

iPad3

Base 665.66 59.44 368.17 N/A
Centralized 667.87 61.65 370.38 2.21 slower
Overloaded 1142.73 105.61 633.96 265.79 slower
Distributed 804.12 71.80 444.75 76.58 slower

Transformer

Base 860.00 95.44 480.63 N/A
Centralized 837.93 99.37 473.52 7.11 faster
Overloaded 1593.74 189.00 900.63 420.00 slower
Distributed 991.63 113.48 558.34 77.71 slower

NOKIA

Base 1108.00 145.16 612.27 N/A
Centralized 1064.54 147.36 603.52 8.75 faster
Overloaded 2012.19 278.53 1140.76 528.49 slower
Distributed 1338.55 182.90 757.66 144.89 slower

167



MEGA

Playbook

Base 533.93 59.04 300.93 N/A
Centralized 575.93 59.40 329.24 28.31 slower
Overloaded 1105.20 113.31 631.81 330.88 slower
Distributed 641.16 67.43 367.34 66.41 slower

iPad3

Base 672.66 66.44 375.17 N/A
Centralized 674.46 68.24 376.97 1.8 faster
Overloaded 1281.48 115.33 664.40 289.23 slower
Distributed 763.75 78.72 427.58 52.41 slower

Transformer

Base 842.00 103.44 478.51 N/A
Centralized 903.33 105.77 482.38 3.87 slower
Overloaded 1707.29 199.91 911.69 433.18 slower
Distributed 1056.74 123.60 564.23 85.72 slower

NOKIA

Base 1117.00 154.16 623.60 N/A
Centralized 1068.13 150.95 617.89 5.71 faster
Overloaded 2028.38 286.65 1184.36 560.76 slower
Distributed 1222.66 177.07 709.39 85.79 slower
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Appendix B

Best-Proximity Experiments

Figure B.1: The Proximity Test – North Virginia

Table B.1: Breakdown of the Proximity Access (Time in ms) – North Virginia

Proxy Reqt Asgnt Proct Respt Total
Scenario 1 (Equal
Workload)

Proxy A (NC) 21 7 120.43 56 204.43
Proxy B (NV) 21 16 121.24 94 252.24

Scenario 2 (Double NV
Workload)

Proxy A (NC) 21 7 120.61 54 202.61
Proxy B (NV) 21 16 174.09 97 308.09

Scenario 3 (Double NC
Workload)

Proxy A (NC) 21 7 181.98 59 268.98
Proxy B (NV) 21 16 122.33 94 253.33

Scenario 4 (Triple NC
Workload)

Proxy A (NC) 21 7 276.13 61 365.13
Proxy B (NV) 21 16 121.47 95 253.47
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Figure B.2: The Proximity Test – Tokyo

Table B.2: Breakdown of the Proximity Access (Time in ms) – Tokyo

Proxy Reqt Asgnt Proct Respt Total
Scenario 1 (Equal
Workload)

Proxy A (NC) 21 7 124.19 53 205.19
Proxy B (Tokyo) 21 34 118.47 120 293.47

Scenario 2 (Double
Tokyo Workload)

Proxy A (NC) 21 7 121.33 56 205.33
Proxy B (Tokyo) 21 34 180.21 136 371.21

Scenario 3 (Double NC
Workload)

Proxy A (NC) 21 7 192.37 60 280.37
Proxy B (Tokyo) 21 34 115.87 120 290.87

Scenario 4 (Quadruple
NC Workload)

Proxy A (NC) 21 7 312.71 72 412.71
Proxy B (Tokyo) 21 34 119.14 121 295.14

Figure B.3: The Proximity Test – Singapore
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Table B.3: Breakdown of the Proximity Access (Time in ms) – Singapore

Proxy Reqt Asgnt Proct Respt Total
Scenario 1 (Equal
Workload)

Proxy A (NC) 21 7 119.42 57 204.42
Proxy B (Singapore) 21 40 128.39 131 320.39

Scenario 2 (Double
Singapore Workload)

Proxy A (NC) 21 7 122.41 59 209.41
Proxy B (Singapore) 21 40 212.17 140 413.17

Scenario 3 (Double NC
Workload)

Proxy A (NC) 21 7 200.46 82 310.46
Proxy B (Singapore) 21 40 133.67 129 323.67

Scenario 4 (Quadruple
NC Workload)

Proxy A (NC) 21 7 337.21 87 452.21
Proxy B (Singapore) 21 40 131.22 130 322.22

Figure B.4: The Proximity Test with Controller in North Carolina – North Virginia

Table B.4: Breakdown of the Proximity Access (Time in ms) – North Virginia with Controller in
North Carolina

Proxy Reqt Asgnt Proct Respt Total
Scenario 1 (Equal
Workload)

Proxy A (NC) 34 7 122.33 55 187.3
Proxy B (NV) 34 14 120.99 33 201.99

Scenario 2 (Double NV
Workload)

Proxy A (NC) 34 6 121.41 26 187.41
Proxy B (NV) 34 14 179.44 38 265.44

Scenario 3 (Double NC
Workload)

Proxy A (NC) 34 6 187.44 31 258.44
Proxy B (NV) 34 14 120.72 33 201.72

Scenario 4 (Tripple NC
Workload)

Proxy A (NC) 34 6 268.41 37 345.41
Proxy B (NV) 34 14 120.41 33 201.41
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Figure B.5: The Proximity Test with Controller in North Carolina – Tokyo

Table B.5: Breakdown of the Proximity Access (Time in ms) – Tokyo with Controller in North
Carolina

Proxy Reqt Asgnt Proct Respt Total
Scenario 1 (Equal
Workload)

Proxy A (NC) 34 6 127.13 53 220.13
Proxy B (Tokyo) 34 28 120.41 120 302.41

Scenario 2 (Double
Tokyo Workload)

Proxy A (NC) 34 6 124.09 56 220.09
Proxy B (Tokyo) 34 28 191.34 136 389.34

Scenario 3 (Double NC
Workload)

Proxy A (NC) 34 6 197.43 60 297.43
Proxy B (Tokyo) 34 28 118.87 120 300.87

Scenario 4 (Quadruple
NC Workload)

Proxy A (NC) 34 6 330.66 72 442.66
Proxy B (Tokyo) 34 28 121.13 121 304.13

Table B.6: Breakdown of the Proximity Access (Time in ms) – Singapore with Controller in North
Carolina

Proxy Reqt Asgnt Proct Respt Total
Scenario 1 (Equal
Workload)

Proxy A (NC) 34 6 120.54 57 217.54
Proxy B (Tokyo) 34 38 126.99 131 329.99

Scenario 2 (Double
Tokyo Workload)

Proxy A (NC) 34 6 121.43 59 220.43
Proxy B (Tokyo) 34 38 209.16 140 421.16

Scenario 3 (Double NC
Workload)

Proxy A (NC) 34 6 202.18 82 324.18
Proxy B (Tokyo) 34 38 124.06 129 325.06

Scenario 4 (Quadruple
NC Workload)

Proxy A (NC) 34 6 346.18 87 473.18
Proxy B (Tokyo) 34 38 120.33 130 322.33
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Figure B.6: The Proximity Test with Controller in North Carolina – Singapore
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Appendix C

Erlang Code Snippets of the CSB-UCC

Figure C.1: Generic Server (Genserver) Module
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Figure C.2: Processing the Request Line
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Figure C.3: Get Connection Details

176



Figure C.4: Managing the Response Including Error
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Figure C.5: REST URIs
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Figure C.6: Sample Function Calls
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Figure C.7: Connection States
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Figure C.8: Processing the Requests by Splitting Paths
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Appendix D

The Haemophilia Injury Recognition Tool (HIRT?)

App

D.1 Overview of HIRT?

This section reproduces the earlier published work by Lomotey et al. [154] [247]. The importance of the
section is to highlight the research of the mobile assessment guide in conjuction with the CSB–UCC; and
further justify the results presented earlier in the thesis.

D.2 Awards and Recognition

• Bayer Hemophilia Awards Program (BHAP)

• MITACS Funded in three consecutive Awards

• Showcasing at the World Federation of Hemophilia Conference in Melbourne, Australia

• Featured in the Saskatoon Region Reporter, The StarPhoenix, and CBC News

• Won the BHAP Alumni Global Webinar vote

• Won the Connected to the Community awards (here: http://cwta.ca/about-cwta/connected-to-the-
community/) by the Canadian Wireless Telecommunications Association (CWTA)

D.3 Overall Scope of the Project

People with Haemophilia are persons (mostly men) who have a blood disorder that prevents blood clotting
during injury. The condition can be classified into varying degrees depending on the blood clotting factor
such as mild, moderate, or severe.

Across Canada, physiotherapists had seen situations where young men with mild haemophilia waited too
long to come in for treatment after an injury. The clinicians and the physiotherapists (i.e., the comprehensive
care colleagues) had also noticed this. The question therefore is why this was happening? During interactions
with some physiotherapists, there were suggestions for the provision of new booklets to people with mild
haemophilia; but, we wondered if that was the best approach. In order to arrive at the best possible solution
to provide quality information to the young men with the condition, we followed the following steps.

Understanding the Issue
In the initial work by Nilson et al. [248], young Canadian men (18–30 years old) with mild haemophilia

were interviewed to learn more about their knowledge, attitudes and behaviours. Meetings were also held
with the focus groups (i.e., physiotherapists) across Canada. This aided the research group to study what
the underlying issues were.

What are the Issues
From the study of the evidence in step 1, it was realised that paper–based booklets will not just be used

by the target group but they may not be considered relevant.
Decision Pathway
Several workflows are developed based on the interviews with the young men with mild hemophilia.
The Results
Clearly, there was a need to adopt a more modern approach to aid the young men with mild hemophilia

to assess minor injuries when they occur.
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The Way Forward
The answer to the final question in step 4 carries a lot of weight. It is one thing developing a mobile

application but it is another thing building the application to provide a better option than a booklet. The
mobile app must be informative enough to encourage the young men with hemophilia to report the injury
to the physiotherapists. Besides, the mobile specific challenges such as intermittent loss of connectivity in
distributed architectures must be overcome. Thus, collaboration with computer scientists at the University
of Saskatchewan is formed with members of the Canadian Physiotherapists in Haemophilia Care (CPHC) to
help develop an electronic and convenient mobile app. This collaboration is sponsored by Bayer Haemophilia
Award Program (BHAP) through the Bayer Caregiver Award , and MITACS Accelerate Programme . The
partnership has led to the research and development of the Haemophilia Injury Recognition Tool (HIRT).

From the interview conducted for the 25+ young men with mild haemophilia, the message was clear.
The young men we spoke with felt that HTC staff ”over–reacted” when they came in with an injury. They
also felt that most of the existing patient education information did not apply to them. This evidence-based
self–management tool helps young men with mild haemophilia assess an injury and decide when to seek
medical attention.

It is also important to state that there is a reason why the App is emphasizing on ”young men”. Our
research included young men 18-30(5) years old; therefore, our evidence on these knowledge gaps included
this group. The App addresses the issues specifically for this age group. This entire group had haemophilia
A or B and were of the Mild form of haemophilia which is 5-50 percent of the clotting factor (which they have
a deficit of) circulating in their blood. This study was a Canadian study with participants from different
provinces.

The Application Process Flow
The application process flow that guides the user through steps of activities is illustrated in Fig. D.1.

The users commence from Start as the number 1 step where they are guided to select English or French.
The user is then taken to the next screen which displays a message asking whether the injury is severe to the
head, neck, or abdomen. Injuries to these areas of the body are potentially fatal and must not be ignored.
For these injuries, the user is directed to go to the nearest Emergency Room (ER) as the number 2 step.
For other injuries of a muculoskeletal nature (i.e., muscle or joint injuries the user is encouraged to use
HIRT?. The next step contains information on how to perform the initial self–assessment number 3 step.
The self–assessment includes:

• Looking for pain at the injury site, pain at rest, and pain when moving the injured limb or putting
weight through the limb,

• Loss of movement,

• Warmth to touch, and

• Swelling at injury site.

In the application, drop–down boxes provide additional details on how to examine any of the symptoms
listed. If none of the condition listed above is present, the user will be reminded in 24 hours to do the
self–assess again as step 4. If any of the conditions are present, then the user is taken to the next level to
apply first aid, this is also part of step 4. The application of first aid is also series of activities which are
summarized below:

• Compression: Use tensor bandage or elastic sleeves,

• Rest: Stop activity such as walking, sports, use sling etc.,

• Elevation: keep the injured limb above the level of your heart, and

• Ice: Use crushed ice or gel pack.

After this, the young man will be reminded to re–assess the injury after 1 hour where the step three
actions will be repeated. If the condition is getting worse, the user is advised to contact the Hemophilia
Treatment Center (HTC). If the condition is getting better, the YMWMH is reminded after 24 hours to
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Figure D.1: Process Flow

repeat the self-assessment; this is labeled as step 5. After 24 hours, if the condition of the injury is worse, the
user is advised to the HTC. If there is improvement, the user is reminded to re-assess the injury in 2 days from
the previous assessment; this is step 6. If the condition of the injury is worse than the last assessment, the
user is advised to go to the HTC. Otherwise we congratulate the user since it appears the injury is resolved.

The application contains list of HTCs throughout Canada. The list is organized by province so the users
can locate the nearest facility. The HTC list contains phone numbers, and, the users are enabled to dial
directly from the application. At the end of the self-assessment, the users are reminded to provide feedback.
However, the feedback can be provided anytime during the use of the application; not necessarily when the
assessment is over. Thus, the users have quick links screen to provide feedback or dial HTC.

The screen flow of the Haemophilia Injury Recognition Tool (HIRT?) is presented in Figs. D.2, D.3, D.4,
and D.5.
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Figure D.2: Language and Welcome Screen
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Figure D.3: Initial Assessment and First Aid Screens

186



Figure D.4: Notice to be Reminded and Guide
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Figure D.5: Survey Form and Re–Assessment Reminder
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Appendix E

Components of the Mobile–Sensor Architecture

Figure E.1: Component Architecture of the Mobile–Sensor Environment

E.1 Sensor Device

There are specific gamma radiation sensor devices such as the one built by the Canadian Environment
Instrument, the CT007. This is labelled as (a) in Figure E.1. The sensor device provides the following data:
gamma radiation readings, battery level, timestamps of readings, and GPS location. The architecture (in
Fig. E.1) provides a good view of the software layer and components. The primary means of communicating
with the sensor device is via Bluetooth. Thus, a Bluetooth protocol is built on the OS Layer of the device
to enable communication with other devices. On top of the OS layer is the abstraction layer that contains
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several software abstractions.

These include system clock, accelerometer, and radiation engine. To use these abstractions, software
modules are provided in C programming language. These C modules can be called just as software delegates
to access a particular component of the sensor device.

There are two major operations that can be performed on the sensor which are determined by the READ
EXEC MODEL and the WRITE EXEC MODEL. The former facilitates the readings of the data from the
sensor device by the mobile while the latter enables data to be written to the sensor device. The device has
a CRUD PROCESS CONTROLLER which coordinates the request from the mobile or other sources on the
type of operation. The CRUD operations are defined as follows: C– create new data, R– read existing data,
U– update existing data, and D– remove existing data. There are two storage components of the device
which are SRAM and FLASH.

We rely on the SYSTEM CLOCK to timestamp the radiation readings. Furthermore, the device has a
FREQUENCY COUNT that determines at what intervals radiation requests should be pushed to the mobile.
A practical challenge is the determination of the time of readings if the mobile host and the sensor device have
different time settings. This issue is handled by the SYNC RTC component. This component synchronizes
the real–time clock (RTC) using the timestamp from the perspective of both the mobile host and the sensor
device.

E.2 The Mobile Hosts

The mobile hosts are the smartphone endpoints for the services provisioning. if mobile host, say AH, has the
latest reading of data from a near–by sensor device and another mobile device does not have that data, then
AH becomes a host and all the other mobile devices from say AH+1, , AN become consumers. The main
components of the mobile hosts are labelled as (b) in Fig. E.1. For brevity, the implementation details of
mobile hosting are omitted.

The sensor data reading on the mobile is done through our implemented mobile client view app. The app
runs on the mobile OS and uses multi network interface. The Bluetooth protocol is employed to connect with
the sensor device (e.g., CT007) and the Wi-Fi/4G is for interactions with the cloud computing components.
The mobile host has a component for detecting connected and disconnected sensor devices (i.e., C/D). When
there is disconnect, the mobile re–initiates the connection with the sensors. We ensure that no data is loss
within this period since the sensor device will write readings to its memory when the application disconnects.

Furthermore, the mobile app also has the READ MODEL and the WRITE MODEL to ensure that sensor
information is retrieved from the mobile database or written to.

The data in the mobile database is synchronized by the SYNC SC (system clock) component. This is to
ensure that outdated readings are not confused with new readings in the analysis of the gamma radiation
level. Apart from the specific radiation readings from the sensor, there are other readings that are collected
from the mobile which otherwise are not derived from the sensor. The mobile specific data that we collect are
the geolocation data, camera information, accelerometer readings, and timestamps of such data. Notification
services are also integrated to inform the user of high radiations through push notification, buzzer, and
vibration.

This message tells the user that the gamma radiation level at the current location is too high. The app
works in both the background and foreground modes. This means users can always be informed whether
they are actively using the app or not.

E.3 Cloud Services

E.3.1 Applications and Personal Devices

Apart from the sensor which reads gamma radiations, the system is designed to interact with other types of
sensor devices to read the device specific information. Example is the SensorTag to enable us capture the
following data: humidity, LED, accelerometer, and GPS.
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E.3.2 Push Notification

These are third party services from Google and Apple that allow us to send messages to the mobile notification
center. This enables the user to access the necessary information in real time.

E.3.3 Analysts

This is a back-end layer provided for specific domain users. There are three potential users of sensor devices:
personal, agency, and corporate. Personal usage is when the users store history of the sensor readings over
a period of time to determine the various places that have certain levels of gamma radiation. This can be
within a building or a particular location. Agencies such as homeland security can also use this information
from several of their users to perform other tasks based on the analysis. Other corporations (e.g., mining
sector) can use the collected information to advise employees. The location where the information is stored
is determined by the enterprise that is using the app.
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