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Abstract

Cloud computing is an emerging research area that has drawn considerable interest

in recent years. However, the current infrastructure raises significant concerns about

how to protect users’ privacy, in part due to that users are storing their data in

the cloud vendors’ servers. In this paper, we address this challenge by proposing

and implementing a novel middleware, called Uno, which separates the storage of

physical data and their associated metadata. In our design, users’ physical data

are stored locally on those devices under a user’s full control, while their metadata

can be uploaded to the commercial cloud. To ensure the reliability of users’ data,

we develop a novel fine-grained file replication algorithm that exploits both data

access patterns and device state patterns. Based on a quantitative analysis of the

data set from Rice University [Shepard et al., 2011], this algorithm replicates data

intelligently in different time slots, so that it can not only significantly improve data

availability, but also achieve a satisfactory performance on load balancing and storage

diversification. We implement the Uno system on a heterogeneous testbed composed

of both host servers and mobile devices, and demonstrate the programmability of Uno

through implementation and evaluation of two sample applications, Uno@Home and

Uno@Sense.
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Chapter 1

Introduction

With the recent advances in cloud computing, one critical challenge faced by

commercial clouds, such as Google, Amazon S3, Evernote, and Dropbox, is data

privacy. Although the benefits brought by those public clouds are undeniable, such

as guaranteed data availability, and access from anywhere in any device, the users’

concerns about data privacy are never eliminated. In contrast, customers such as

small business companies have been reluctant to store sensitive data in these cloud-

based storage services for privacy concerns [Feng et al., 2011].

The fundamental dilemma is that whenever users’ data are stored in the cloud

vendors’ machines, they have little control over the data, which may be leaked due to

hacker intrusions or unexpected mistakes, or used by the vendors for business purpose

like advertising. Even after significant efforts have been invested into assuring privacy

through approaches such as better isolation and protection mechanisms [Takabi et al.,

2010], few companies are willing to use Google Drive or Dropbox to synchronize

highly sensitive information, such as internal financial reports, because a data leak

could cause significant consequences, especially in today’s society that malicious

cyber-attacks are becoming increasingly more outrageous [Cashell and of Congress.

Congressional Research Service, 2004].

1



Besides, the pricing strategy is still not attractive if people want to use more than

the free tier. We are hesitate because we are doubt the value of the current cloud

storage can give us, let alone we have paid for the storage for our personal devices

such as smartphones, tablets and computers. Those personal devices can give us

impressive storage freedom near our hands.

In this thesis, we address these challenges on privacy by separating data into

content (physical data) and metadata, and only keeping metadata with cloud

vendors. In other words, we still rely on the public cloud’s infrastructure for data

synchronization, but only to the extent that we trust them with storing the metadata

of critical files, i.e., the file names, their creation and modification dates, and so

on. This way, a user can easily browse and access another file in another device, as

if those files were synchronized with a common cloud storage service, but without

any concerns on leaking the contents of the files themselves. Consequently, we are

interested in whether we can achieve the same level of reliability with this approach

compared to storing all data in cloud vendors’ machines, as the primary challenge

is that individual users’ devices are much less reliable. To this end, we develop a

novel replication algorithm to increase the availability of files. This algorithm aims

to maximize the likelihood that critical files will continue to be made available even

when their original storing devices have been turned off, and its design is based on

a quantitative analysis of real file and device usage traces made available by Rice

University [Shepard et al., 2011].

Based on the replication algorithm, we develop Uno, a unified object-oriented

storage and backup system that seamlessly ties cloud vendors’ storage services

with privacy-sensitive user needs. Its architecture is shown in Fig. 1, where

heterogeneous devices exploit the existing cloud infrastructure for storing metadata,

but exchange physical data directly between themselves for improved user access and

data availability. Note that data sharing is not limited to conventional data, but also

includes real-time sensor data streams when applicable, e.g., a user may access the

current readings of sensors on their smartphone remotely. A practical, economical

2



Public Cloud Vendor

Metadata
Data Content 

Exchange

Metadata upload

Replication 
instruction

replica

replica

Metadata upload

re
pl

ic
at

e

Figure 1: The diagram of Uno platform.

advantage of Uno is that because it only stores metadata on cloud service providers,

its sharing and synchronization is not limited by their quota policies and pricing

plans. Finally, Uno is also more convenient than remote desktop applications in that

it allows scalable inter-operation between heterogenous devices: instead of developing

remote desktop interface between any two devices, Uno only requires each new device

to support a common set of APIs to join the existing “private device cloud”.

The key contributions of Uno are as follows. First, to our best knowledge,

Uno is the first distributed storage system that explicitly addresses the challenges

to store privacy-sensitive data of users. Second, to specifically handle those

devices that have a lower availability than cloud vendors’ servers, Uno provides

an adaptive replication algorithm that dynamically evaluates the value of files, and

replicates them across devices to maximize data availability. Finally, Uno provides

APIs to application developers, whose effectiveness are demonstrated through two

case studies, Uno@Home and Uno@Sense. We also present evaluation results

to demonstrate that both applications have reasonably acceptable performance at

runtime.
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The rest of this theis is organized as follows. In Chapter 2, we describe the most

relevant related work. Chapter 3 illustrates the design of Uno. Chapter 4 describes the

implementation details of Uno, and its replication mechanism. Chapter 5 evaluates

the performance of Uno through replication mechanism validation and Chapter 6

presents two case studies. This theis ends with conclusions in Chapter 7.
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Chapter 2

Related Work

Cloud based storage has drawn considerable interest in both industry and academia in

recent years [Armbrust et al., 2009]. One major challenge that concerns enterprise and

personal users to use commercial vendors’ storage services is privacy. Although recent

works [Jia et al., 2011], [Pearson, 2009] and [Chen et al., 2011] have been trying to

solve this issue through advanced encryption techniques and anonymous P2P sharing,

our research effort with Uno explores the possibility to prevent the privacy issues in

the first place, by only storing physical data locally as opposed to in the cloud. In

this sense, Uno works in a similar manner as classic networked file systems such as

Andrew File System (AFS) [Howard et al., 1988, Kistler and Satyanarayanan, 1992]

and Google File System (GFS) [Ghemawat et al., 2003]. Specifically, Uno adopts

AFS’s idea to store the owners’ data locally rather than collecting them into a central

server. Uno also uses heartbeat messages for liveness detection, similar to GFS.

The design of Uno faces similar challenges on replication and availability as

previous distributed storage systems. For example, Ivy [Muthitacharoen et al.,

2002] is a read/write peer-to-peer based file system allowing users to store data

in a distributed environment, in which cross-platform replication, inconsistency,

conflicts and flexibility are significant issues. To address the replication problem,

[Veeraraghavan et al., 2009] proposes Polyjuz, a fidelity-aware mobile platform
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replication system; to solve the inconsistency problem, [Parker Jr et al., 1983]

considers a mutual detection method, and [Petersen et al., 1997] proposes flexible

update methods for weakly consistent replication; to address conflicts, [Kumar and

Satyanarayanan, 1995] and [Reiher et al., 1994] use file type recognition and content

semantics to detect update orders.

Uno’s replication model is remarkably different from these previous work in that

Uno takes into account the unique file access and device availability patterns in

personal devices, as well as develops efficient algorithms that make decisions based

on a variety of factors such as load-balancing, energy efficiency, and bandwidth

availability, to maximize the likelihood that the files will be available upon users’

needs. Another work, Eyo [Kaashoek et al., 2010], presents a device transparent

personal data synchronization platform, and puts special focus on version control.

Finally, two industry commercial products share the similar idea with Uno by only

using local personal devices as the storage base. One is BitTorrent Sync [BitTorrent,

2013] which allows users to synchronize their documents and files among their personal

devices in a P2P fashion. The other is aeroFS [Air Computing, 2013] which allows

the user to synchronize their documents and files as well, but in a file system fashion.

However, Uno is quite different from the two products that the basic concept is

different. Uno treats all personal devices as a whole, not as individual devices, so the

user does not need to synchronize manually. The Uno replication system is capable of

handling synchronization and replication issues, and the user, therefore, only need to

request to access the data. In addition, Uno uses object oriented abstraction which

can handle not only documents and files, but apps and sensors as well.
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Chapter 3

Design Principle of Uno

3.1 The Uno System Core

The design principles of Uno stem from its adoption of the principle of separation of

physical data and metadata. The physical data refer to the actual file contents, while

the metadata refer to the meta information of these files, such as their names, access

control lists, and last modification dates. Uno stores physical data in devices under

the owner’s control, while the metadata can be synchronized and accessed from any

device with the help of commercial cloud computing services. This way, the cloud

vendor’s servers can be considered as metadata keepers because they reliably store all

metadata of documents.

To manage data and resources (e.g., sensors on smartphones) under this data

model, Uno proposes an object-oriented resource abstraction, where heterogeneous

resources and entities, such as sensors or documents, are unified into objects with

their own operations. For example, although a document object may be updated,

a sensor object may be read-only. In fact, the object concept in Uno is extremely

flexible: the storage devices themselves, such as the smartphones or users’ computers,

are also mapped into objects, so that a unified access control model is applicable.

7



Based on this model, each object is represented by both metadata and (optionally)

physical data. All metadata are uploaded and synchronized into the cloud service

back-end periodically, so that all devices have access to these metadata. For example,

upon obtaining the name, size, and version of a document that is stored on another

device through its shared metadata, a user can quickly decide whether this object

is the desired one or not. On the other hand, metadata can also be used to control

users’ access rights: if a smartphone is put into the offline mode, its metadata will

be updated to reflect this change, and any future accesses from other devices will be

notified of this change. Finally, a third use of metadata is in the replication phase.

Given the current metadata of different devices, such as their spare memory and

battery level, Uno can decide where to replicate files according to users’ needs under

timing and energy constraints.

One natural use of metadata is to create a resource sharing graph that enables

Uno to keep track of legitimate user accesses. The graph is bipartite with the vertices

on one side as devices, and the vertices on the other side as resources. To construct

the sharing graph, each computing device reads the metadata as input, and generates

the sharing graph as well as historical changes as output. The sharing graph is

periodically updated so that all devices will have a consistent view on these updates

over time.

3.2 The Replication Subsystem

Since Uno is running on personal devices, we need a mechanism to prevent from

data loss or data unavailability. Different from those data replication services in data

centers [Mohd. Zin et al., 2012], our design stems from observations on the unique

characteristics and usage patterns of users’ mobile devices. These observations are

drawn based on the Livelab dataset [Shepard et al., 2011]. First, we find that these

user devices are highly mobile, and exhibit relatively diversified online or offline usage

patterns. The average online ratio of a device is only about 30% (Fig. 2), meaning

8



that we can hardly guarantee its availability over long periods of time. Second, these

devices are usually battery powered, and their storage and bandwidth are significantly

limited. Third, the data usage of these devices are highly personalized and unique

according to the users’ needs. For example, we illustrate three different apps’ usage

patterns in Fig. 3. Note that we treat the app usage traces and data access traces as

the same, because each app only accesses its dedicated data on the mobile devices.

As shown here, each device’s availability and data access is highly divergent from

each other: some may have very high availability while the others can be very low.

Considering the availability and access variances, we seek to maximize the availability

of most frequent data objects for users’ accesses. We present the algorithm design in

Chapter 4.3.
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3.3 The Simplified API Design

Uno is developed not only to directly interact with the end user, but also support

APIs to third-party developers to construct additional applications. Currently, Uno

supports the following APIs: list(), publish(), backup(), and search().
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3.3.1 list()

This interface provides a simple way to browse the available objects from a given

device. It allows users to retrieve object lists in different levels, such as active devices,

documents in a particular device, or sensors across the entire Uno collection. The

sharing graph will first check accessibility information to ensure that the user has

enough privilege to query the corresponding objects before they can obtain more

fine-grained information.

3.3.2 publish()

This interface publishes certain objects as available for other users/devices, by

essentially uploading its metadata into the backend cloud server. Note that the

physical data remains in the owner’s machine, but the user may not explicitly publish

such information into the cloud. After publishing the metadata, the sharing graph is

updated accordingly, where a new graph is constructed and replaces the old copy. This

approach is lightweight: publishing metadata is much faster compared to uploading

physical data in practice, and all changes are made visible within a sufficiently short

time scale.

3.3.3 backup()

The API backup() provides a simple interface such that a user can back up their

physical data from one device to one or more other devices. This API is also called

extensively in the replication phase (discussed in Chapter 4.3), but it can also be

initiated by the third-party developer.

3.3.4 search()

This API is necessary in two folds: one is to initiate a keyword based search in

the sharing graph for any matches based on metadata, and the second is to start a

10



distributed search on individual devices to locate any matches in the physical data.

Note that the latter operation is considerably more expensive compared to the former

because it requires the participation of multiple devices. In practice, such a search

operation is allowed only if the user has sufficient privilege to access the remote

objects.
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Chapter 4

Implementation of Uno Operations

Following the design principles of Uno, we discuss in details how we turn those

principles into implementation.

4.1 Core Architecture

The core architecture of Uno contains two processes on each participating device,

which we call the master process and the client process. Note that the master and the

client are running on the same device, whether it is a PC, a laptop, or a smartphone.

Indeed, there is no separate, dedicated server node, since all devices form a peer-to-

peer relationship to share data. The advantage of this approach is that all devices can

make decisions autonomously without being affected by any single point of failure.

The master node interacts with the metadata stored by the cloud vendors directly.

Given that it is extremely rare for the public cloud vendor’s service to be unavailable,

the master process on each device can run very reliably without being affected by the

downtime of its peer devices. Each master process contains four major components,

shown in Fig. 4: the object metadata cache, the front service, the query processor,

and the replication subsystem. The object metadata cache maintains all metadata

information from all devices, and stores them locally on the current device. Whenever

one device needs to access objects remotely, its master process will invoke the front

12
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Figure 4: The master server diagram of Uno system

service to initiate a request. Such a request is sent directly to the target device,

which will be handled by the corresponding query processor. Specifically, the query

processor will check the latest local sharing graph (which is always synchronized

through the cloud service) to decide whether the access is legitimate. If it is, the query

processor will send a response containing the requested object data back. Finally,

to ensure proper load balancing and improve availability of data, the replication

subsystem periodically checks the current status of the cloud through the metadata

updates, and issues replication requests to appropriate devices.

On the other hand, the client process on each Uno device plays the role of

managing the local physical data, extracting their metadata, and sending updates

to the master process periodically (via IPC). Additionally, the client process keeps

track of the usage of every single remote access, and monitors status change of the

device. Its architecture is shown in Fig. 5.

13



Object Abstraction

File 
Object

Media 
Object

App 
Object

Sensor 
Object

Android OS Layer

File
Media 

File
App Sensor

Usage & Status 
Tracking

Unified Application Interface

IPC

Uno Client Service Layer

Upper Applications

Master Process

Figure 5: The client diagram of Uno system (using an Android device as an example)

4.2 Object accesses

As each device relies on the use of access rights to decide whether an access will

be legitimate, there are three types of access rights: public, group, and off-line.

The reason to maintain these three privileges is to accommodate different users’

needs when publishing objects. The users can also mark objects as completely

offline by stopping updating metadata. Once the metadata staleness is detected

by other devices, it will be removed. As part of the object attributes, the access right

information of an object can either be updated through periodic heartbeats, or by

explicitly invoking the publish() API.

Finally, if a device is offline, its metadata will be temporarily marked as offline

in that case. Of course, a user can always completely remove an object by stopping

reporting its metadata, so that all other devices will quickly detect that such metadata

is stale, and will need to be removed. As part of the object attributes, the access

right information of an object can either be updated through periodic heartbeats, or

by explicitly invoking the publish() API to update the metadata pool maintained on

other devices.

The detailed procedure for object access works as follows. Imagine the master

process on a device now initiates a request to another object on a remote device. By

14



looking up the metadata stored locally, the master process determines the (name,

location) pair of the target device, if permitted by the access rights; otherwise, the

master process will abort this request because it knows the remote device will not

accept this request. Next, the master process needs to check if the destination object

is available or not, by sending a heartbeat message to the remote device. If the

destination object is available, the master process will establish a TCP connection

for transmitting physical data. If not, the master device will abort its action. If

the two master processes on the sender and receiver devices successfully establish a

TCP connection, the object’s physical data can be securely exchanged. Note that, in

practice, there may be multiple target devices that keep replicas of the same object.

Whenever a request is made, the master process chooses target devices in a load-

balanced manner, so that no single device will become the bottleneck of the entire

system.

4.3 Replication Algorithm

Before we discuss the replication algorithm, we introduce the notations which will be

used in this section in Table 1.

Table 1: Notation table

R(t) = [R
(t)
ij ] the feasible replication match at slot t

p(t) = [p
(t)
i ] the device availability vector at slot t

A(t) = [A
(t)
i ] the object availability vector at slot t

f (t) = [f
(t)
i ] the object access frequency vector at slot t

γ(t) = [γ
(t)
i ] the replication factor vector at slot t

b(t) = [b
(t)
i ] the device storage budget vector at slot t

p
(t)
max the maximum availability among all devices
D the total number of devices
K the total number of objects
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We first define the device availability p
(t)
i within the time slot t as the fraction of the

device’s online time among the total time of the slot (Eq. 4.1). If we replicate object

γ
(t)
i times across all available devices, the object’s availability A

(t)
i is defined in Eq. 4.2,

where the replication assignment matrixR
(t)
ij is defined in Eq. 4.3. Besides, the number

of replicas necessary for object i should be related to the object’s access frequency f
(t)
i ,

because the mobile devices are storage and energy constrained. Therefore, we do not

need to place extra replicas somewhere if the object is seldom accessed. Therefore,

we use a sigmoid function to control the replication factor γ
(t)
i in Eq. 4.4. Observe

that by its design, Eq. 4.4 can restrict the replication factor in a scale between 10%

and 90% of the total number of devices, so that the replication can neither decrease

the availability too much at the low access level, nor can overwhelm the devices to

make too many replication copies.

p
(t)
i =

T
(t)
online

T
(t)
total

(4.1)

A
(t)
i = 1−

D∏
i=1

(1− p(t)i R
(t)
ij ) (4.2)

R
(t)
ij =

1 replicate object i to device j,

0 otherwise.
(4.3)

γ
(t)
i = d

D

1 + e−5(f
(t)
i −0.5)

e (4.4)

Our goal of the replication algorithm is to maximize the availability among all

objects under the constraints of the replication factor and device storage budget. Each

object is associated with an access frequency f
(t)
i such that f

(t)
i A

(t)
i means the effective

availability when an object is accessed. Therefore, we can define the optimization

problem as:

maximize
R

(t)
ki

K∑
k=1

f
(t)
k (1−

D∏
i=1

(1− p(t)i R
(t)
ki )),

subject to

K∑
k=1

R
(t)
ki ≤ b

(t)
i ,

D∑
i=1

R
(t)
ki = γ

(t)
k .

(4.5)
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In other words, the maximization problem is a replication assignment problem

that maximizes the total effective availability under the limited storage constraints.

The problem is similar to the replication placement problem in P2P networks [Ye

and Chiu, 2007], where it is proved to be NP-complete. Therefore, we solve this

problem through a greedy approach in Algorithm 1. The sorting of f (t) and p(t) costs

O(KlogK + DlogD), then the algorithm iterates all K objects, where each of which

needs to probe at most D devices for replication. Overall it runs in O(K ·D) time.

Thus, the total complexity is O(K ·D).

To better understand the performance of the greedy algorithm, we want to

evaluate its approximation ratio. To this end, by using Monte Carlo methods, we

can empirically evaluate its performance, and found that the algorithm is at least a

1.2-approximation of the optimal solution. More specifically, since the problem itself

is NP-Complete, we cannot get the optimal solution OPT by exhaustive search in

polynomial time. Instead, we derive a super-OPT solution z∗ in Eq. 4.6 by setting

the device availability vector p(t) to [p
(t)
max, ..., p

(t)
max]. That is, z∗ is defined as follows:

z∗ =
K∑
k=1

f
(t)
k (1−

D∏
i=1

(1− p(t)maxR
(t)
ki )) (4.6)

It is obvious that z∗ ≥ OPT. Next, we evaluate the performance of our greedy

algorithm by running the Monte Carlo test on the greedy algorithm and compare it

with z∗. Our results (Fig. 6) show the greedy algorithm can achieve more than 83%

of super-OPT results, which means the algorithm is at least 1.2-approximation.

4.4 Local object management

One essential issue for the client process on each device is that it needs to detect if an

object has been recently changed. For example, it needs to detect modified documents

as soon as such documents are saved. A brute-force way is to keep a list of all the

objects, and periodically scan the local file system. Unfortunately, this approach will
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Figure 6: Monte Carlo Test for Greedy Algorithm

Algorithm 1 Greedy-Search

Input: p(t), f (t),b(t),γ(t)

Output: R(t)

1: init R(t) ← 0
2: sort descendly f (t) and p(t)

3: for k = 1 to K do
4: replica = 0
5: for d = 1 to D do
6: if b

(t)
d > 0 then

7: reduce b
(t)
d by 1

8: mark R
(t)
kd as 1

9: increase replica by 1
10: end if
11: if replica ≥ γ

(t)
k then

12: break
13: end if
14: end for
15: end for
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reduce both the operating system’s performance and the user experience considerably.

Instead, Uno resolves this issue by listening to the file system’s low level events, and

if there is a change (e.g. deletion), the client process captures this signal, extracts any

metadata change, and initiates an update through the cloud front service. Multiple

implementation techniques that we adopt are summarized in Table 2, where multiple

OS systems are supported using different OS-specific APIs.

Table 2: Object changes notification implementation.

Operating System Implementation Approach

Linux/Unix inotify [Kerrisk, 2010]
Windows NTFS Change Journal Records [Microsoft, 2010]
Android FileObserver [Google, 2010]
iOS/OS X File System Events [Apple, 2010]
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Chapter 5

Evaluation of Uno Replication

Subsystem

In this chapter, we systematically present the evaluation results for Uno’s replication

subsystem. We verify our replication policy by demonstrating its performance with

the data set from Rice University, which covers 24 students’ iPhone usage for more

than one year. It tracks each user’s app usage, device status and power, and other

parameters. We use the app usage and device status to evaluate our replication

system. For our experiment scenario, we choose a set of 21 users’ data, whose data

are complete, among all data available. In total, 1, 125, 786 data object requests from

these dataset traces are replayed in our simulations. In particular, we split each user’s

app usage trace half by half; the first half is used for training while the second for

testing.

During the training phase, we perform the data analysis in time slots. Each

time slot is a 4-hour period, so we have 6 slots in any day. For each time slot, we

analyze each app’s usage pattern to derive its data access pattern, as well as each

device’s online rate. Next, we perform data replication based on our replication

algorithm. Each device has the storage budget of 150 units. Finally, in the testing

phase, we evaluate whether an app can access its data from any one of multiple replicas
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successfully. In addition, since both app usage patterns and device status patterns

are dynamically changing over time, we periodically update those information and

collect real-time statistics from our simulations.

5.1 Availability Rate

The measured availability rate, defined as Navailable

Ntotal
, is the number of successful accesses

among the total number of accesses for an arbitrary data object. When the replication

algorithm is applied, the average rate is improved to 90.89%, in contrast to the online

rate of individual devices (Fig. 8), which is measured as just 34.46% on average. The

results are plotted in Fig. 7, where 15 out of 21 users’ trace obtain an availability rate

greater than 90%, while only two devices cannot reach 80%. Overall, the improvement

is huge (about 200%) compared to the device online rate. In addition, we also

investigated the reason of the lower availability rates in this experiment. It turns

out that a couple of requests are made by those devices in the 5th and 6th time slots,

which are the lowest in the availability rate among all devices. This explains the low

availability rate as observed.
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5.2 Number of Replicas

In our replication policy, the value γ
(t)
k is related to the object frequency by Eq. 4.4,

which is supposed to achieve both high data availability and low cost. In this

experiment, we collect all the 21 devices’ average γ
(t)
k values across all apps at all

time slots. The average γ
(t)
k values across all devices is 1.15. The γ

(t)
k is used to decide

the replication at each time slot, but the total number of replicas for a resource is

still unknown. Assume we have 6 time slots, the total number of replicas can be up

to 1.15 × 6 = 6.9. Fortunately, our evaluation (Fig. 9) shows we have much fewer

replicas that the average number is about 3.36, which reduces around 50% of the

storage. One possible reason is that the device usually sustains its high online rate to

the next time slot where the same replication in the next slot has no cost (the replica

has already existed).
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5.3 Load and Storage Balance

Throughout the experiment, we counted each device’s number of received requests.

As is shown in Fig. 10, the top 2 devices has about 25% more load than the next 5

devices. We observe that each of the device has a very high availability compared to

other devices. These two hotspots become the most popular replicators so that they

increase the chance of being selected as the service device when accessing an object.

Besides them, the next 5 devices are similar to each other, which indicates they are

relatively well balanced, but have lower service rate than the top devices. In addition,

the remaining devices’ service rates form a long-tail distribution because the lower

the availability rate, the smaller the chance it will be selected. We also investigate

storage balance among all devices, where Fig. 11 shows that the storage load is quite

balanced. In this figure, 18 devices have reached their budget limits but there is still

available space in the whole system. Besides, we find the storage budget affects the

balance a lot. Shown in Fig. 12, we can see that the increase of budget (although

can potentially increase the availability) brings more balance problem because both

load and storage variance will increase. Thus, we would not recommend to set a huge

budget even if the device allows.
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Figure 12: Balance change with storage budget

5.4 Tradeoff of Time Slot Length

Recall that we have set the time slot length as 4 hours. This section gives an empirical

evaluation of this decision. Table 3 displays a series of experiment results by tweaking

the time slots from 1 to 12 hours. According to the table, we have found a good

tradeoff to be located between 3-hour or 4-hour time slots, for the following reasons:

1) only those time slots that are not higher than 4-hour can provide good availability

rate performance; 2) compared to 3-hour or 2-hour time slots, the 4-hour selection

achieves a good combined performance on the number of replicas, storage overhead,

and load balancing. Therefore, we conclude that the 4-hour time slot selection is a

good tradeoff.

Table 3: The major metrics at different time slot.

Availability Replicas Storage Load Balance

Slot mean var. mean var. mean var. mean var.

1h 94.5 3.1 10.5 0.7 455.1 619.8 11836 7791
2h 93.4 4.0 9.1 0.9 315.9 523.1 11686 9286
3h 90.9 6.9 8.1 1.8 237.4 487.3 11296 9799
4h 91.3 4.7 7.1 0.7 259.2 491.4 11388 10368
6h 89.1 6.7 6.8 0.9 208.3 465.7 11077 10155
8h 87.0 6.6 5.8 0.6 173.3 405.8 10823 11131
12h 85.0 6.2 5.0 0.4 199.5 465.8 10596 12490
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Chapter 6

Uno-based Application Case

Studies

In this chapter, we demonstrate the flexibility of Uno’s system APIs by designing

and implementing two applications, which are deployed on a testbed that consists of

heterogeneous types of devices, including one PC and several Android smartphones.

These two applications are Uno@Home and Uno@Sense, where Uno@Home is a file

sharing application across smartphones, much like Dropbox, and Uno@Sense is a

sensor sharing service that allows different users to view each other’s sensor readings

remotely.

6.1 Case Study 1: Uno@Home for File Sharing

To evaluate Uno@Home, we develop it on the Android 2.3.4 operating system and

deploy it over three Google Nexus S smartphones and a desktop on the University’s

wireless network, and evaluate its performance for over 24 hours. During this period

of time, the battery on a smartphone drops from roughly 90% to 20%. A screenshot

of this Android app is shown in Figure 13a.
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(a) Uno@Home (b) Uno@Sense

Figure 13: The Sample App View

In this experiment, we generated files in sizes of 2.5MB, 5MB, 10MB, 20MB,

50MB and 100MB, then tried to access those files from smartphones remotely. Those

files were transmitted over the wireless network in a peer-to-peer fashion, and we

compare the obtained statistics with Dropbox and Google Docs for the same file

sizes. Fig. 14 shows the comparison of uploading time. For files of relatively small

size (up to 20MB), we observe that all three approaches achieve similar performances

and the total elapsed time increases linearly with the size of files. However, Google

Docs does not support uploading large files from smartphones, so we cannot measure

the performance of large file transfers in 50MB and 100MB cases. For the remaining

two approaches, Uno@Home performs better at 50MB file size, but gets surpassed by

Dropbox at 100MB file size. The possible reason is that our implementation is not

as optimized for larger files as Dropbox, which exploits bandwidth more effectively.

Next, we evaluate the downloading performance of these three approaches, and

the results (Fig. 15) are similar: Uno@Home performs comparably well to Dropbox

and Google Docs at file sizes up to 50MB, but its performance becomes worse sharply

at 100MB, which probably can be attributed to the less optimized network stack of

Uno compared to Dropbox.
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Figure 14: Upload Performance of
Uno@Home
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Figure 15: Download Performance of
Uno@Home

Energy consumption is another significant issue we need to evaluate. In Fig. 16,

we plot our evaluation results on real-time battery levels and dynamic power

consumption. To compare between normal usage and Uno@Home, we set up a

standardized benchmark to control the operation of the smartphone (Table 4). In

this benchmark, we let Uno@Home perform back-and-forth file transfers. This leads

to a steeper decrease in remaining energy compared to the case when Uno@Home is

turned off. Fig. 16 and 17 illustrate the battery level and dynamic power consumption

of Uno@Home compared to normal usage when running this benchmark, respectively.

As expected, Uno@Home consumes additional energy compared to when it is turned

off. In total, about 600MB of data were replicated and the battery life was shortened

by about 300 minutes, which indicates Uno@Home costs 0.5 minutes of battery life

in order to replicate 1MB data.

Finally, we also evaluate the memory footprint of Uno@Home, by measuring its

application size and runtime memory usages. Table 4 compares application size and

runtime memory consumption of Uno@Home to other commonly used applications in

Android smartphone. As shown, both application size and memory consumption are

relatively lightweight compared to other applications.
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Figure 16: Battery Level of
Uno@Home
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Figure 17: Dynamic Power of
Uno@Home

Table 4: The Android runtime footprint of Uno@Home and Uno@Sense

Application name Runtime memory App size CPU usage

Gmail 29 MB 9, 850 KB < 1%
Google Docs 29 MB 4, 660 KB < 1%
Dropbox 24 MB 3, 550 KB < 1%

Google Services 23 MB 2, 820 KB 2%
Android Keyboard 21 MB 930 KB < 1%

Google Maps 21 MB 292 KB < 1%
Google + 20 MB 23, 500 KB < 1%

Uno@Home 19 MB 192 KB < 1%
Uno@Sense 19 MB 204 KB < 1%
Google Search 16 MB 44 KB < 1%

6.2 Case Study 2: Uno@Sense for Sensor Sharing

In the second case study, we implement a sensor sharing cloud on the Uno platform,

which we call Uno@Sense. This study allows users to share their sensor readings

(such as accelerometer and location data) between different devices, and access

remote sensor readings directly, which is beneficial for applications such as crowd

sensing [Philipp et al., 2011]. A screenshot of this application is shown in Figure 13b.

Specifically, we carry out the experiment as follows: we deploy a total of four

smartphones to users, which are divided into two groups: one group of users followed

normal usage as shown in the Table 5, with a one-hour idle time between application
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Table 5: Typical Evaluation Benchmark Specs

Normal Usage Test Case Duration (hours)

Gmail Gmail 0.5h
- Uno@Home/Uno@Sense 1h

Google Reader Google Reader 0.5h
- Uno@Home/Uno@Sense 1h

Facebook Facebook 0.5h
- Uno@Home/Uno@Sense 1h

Google Music Google Music 0.5h
- Uno@Home/Uno@Sense 1h

Google Maps Google Maps 0.5h
- Uno@Home/Uno@Sense 1h

Youtube Youtube 0.5h

transitions. The second group, on the other hand, used the idle time to run the

Uno@Sense application, where the user either remotely retrieved a sensor’s instant

readings (in the first two idle periods), or activated sensor logging for the remaining

idle periods.

Fig. 18 and 19 show the energy comparison results, including battery level

and power consumption measurements. As expected, Uno@Sense performs worse

than normal application usage. Specifically, the average battery lifetime is reduced

by 375 minutes, in exchange for 9, 161, 518 sensor readings. This translates into

approximately 0.00245 seconds of battery life for each sensor reading. Although

this decrease in battery lifetime may appear significant, it is in fact an overestimate

because in this experiment, we turned on all sensors to record as fast as possible. In

practice, fewer sensor samplings will be made, leading to less energy consumption.

To demonstrate this point, we also evaluate the sense-on-request policy in Fig. 20

and 21. Specifically, the sensor object has a method read that permits retrieving

its instant readings. However, this method will cost considerable energy if we turn

on the sensor all the time to wait for the immediate readings request. To solve this

issue, Uno turns off the sensors until the reading request arrives, which enables a

corresponding sensor, and takes a single sample before the sensor is turned off again.

Observe that with this policy turned on, the sensing tasks become much more energy
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efficient. Finally, we also measured the application size and memory cost, where the

results are similar to that of Uno@Home, as shown in Table 4.
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Figure 18: Battery Level of
Uno@Sense
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Figure 19: Dynamic Power of
Uno@Sense
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Figure 20: Battery Level of Sense-
on-request Policy
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Figure 21: Power Consumption of
Sense-on-request Policy
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Chapter 7

Conclusions

In this thesis, we present Uno, which presents a novel object-oriented architecture

for sharing heterogeneous computing, storage, and sensing resources across multiple

platforms in a privacy-aware way. The key contribution is to store the data

content locally across multiple personal devices instead of uploading them to the

cloud servers and to provide the simplified programming environment to developers.

We also proposed a fine-grained statistical replication system to guarantee the

availability of data contents. Through the data analysis from Rice University and

two sample applications, and the two case studies, we systematically demonstrated

the effectiveness of Uno. Therefore, we believe that Uno is a good alternative to

preserve a user’s data privacy from commercial cloud vendors.
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