660 research outputs found

    Long-range coupling of prefrontal cortex and visual (MT) or polysensory (STP) cortical areas in motion perception

    Full text link
    To investigate how, where and when moving auditory cues interact with the perception of object-motion during self-motion, we conducted psychophysical, MEG, and fMRI experiments in which the subjects viewed nine textured objects during simulated forward self-motion. On each trial, one object was randomly assigned its own looming motion within the scene. Subjects reported which of four labeled objects had independent motion within the scene in two conditions: (1) visual information only and (2) with additional moving- auditory cue. In MEG, comparison of the two conditions showed: (i) MT activity is similar across conditions, (ii) late after the stimulus presentation there is additional activity in the auditory cue condition ventral to MT, (iii) with the auditory cue, the right auditory cortex (AC) shows early activity together with STS, (iv) these two activities have different time courses and the STS signals occur later in the epoch together with frontal activity in the right hemisphere, (v) for the visual-only condition activity in PPC (posterior parietal cortex) is stronger than in the auditory-cue condition. fMRI conducted for visual-only condition reveals activations in a network of parietal and frontal areas and in MT. In addition, Dynamic Granger Causality analysis showed for auditory cues a strong connection of the AC with STP but not with MT suggesting binding of visual and auditory information at STP. Also, while in the visual-only condition PFC is connected with MT, in the auditory-cue condition PFC is connected to STP (superior temporal polysensory) area. These results indicate that PFC allocates attention to the “object” as a whole, in STP to a moving visual-auditory object, and in MT to a moving visual object.Accepted manuscrip

    A Study on the Causal Relationship between Spot Price and Futures Price of Crude Oil and Agricultural Products

    Get PDF
    This paper studies the relationship between the agricultural, energy, and derivatives markets. This study empirically analyzes how the results of previous studies on the Granger causality between oil price and the spot price of agricultural products appear in the futures market by using the Toda and Yamamoto (1995)’ causality test. There are two main findings. First, 7 bidirectional causalities and 27 causalities between oil and 6 agricultural products are found, providing strong evidence of a causal relationship. Second, causality is found between oil prices and grain and oilseed type agricultural products, and the spot price of oil has relatively more causalities on agricultural product prices than the futures price of oil. Lastly, testing each period shows that a financial crisis can strengthen the relationship between the agriculture markets and the energy market

    Brain Functional and Structural Networks Underpinning Musical Creativity

    Get PDF
    Musical improvisation is one of the most complex forms of creative behavior, which offers a realistic task paradigm for the investigation of real-time creativity. Despite previous studies on the topics of musical improvisation, brain activations, and creativity, the main questions about the neural mechanisms for musical improvisation in efforts to unlocking the mystery of human creativity remain unanswered. What are the brain regions that are activated during the improvised performances of music? How do these brain areas coordinate activity among themselves and others during such performances? Whether and how does the brain connectivity structure encapsulate such creative skills? In attempts to contribute to answering these questions, this dissertation examines the brain activity dynamics during musical improvisation, explores white matter fiber architecture in advanced jazz improvisers using functional and structural magnetic resonance imaging (MRI) techniques. A group of advanced jazz musicians underwent functional and structural magnetic resonance brain imaging. While the functional MRI (fMRI) of their brains were collected, these expert improvisers performed vocalization and imagery improvisation and pre-learned melody tasks. The activation and connectivity analysis of the fMRI data showed that musical improvisation is characterized by higher brain activity with less functional connectivity compared to pre-learned melody in the brain network consisting of the dorsolateral prefrontal cortex (dlPFC), supplementary motor area (SMA), lateral premotor cortex (lPMC), Cerebellum (Cb) and Broca’s Area (BCA). SMA received a dominant causal information flow from dlPFC during improvisation and prelearned melody tasks. The deterministic fiber tractography analysis also revealed that the underlying white matter structure and fiber pathways in advanced jazz improvisers were enhanced in advanced jazz improvisers compared to the control group of nonmusicians, specifically the dlPFC - SMA network. These results point to the notion that an expert\u27s performance under real-time constraints is an internally directed behavior controlled primarily by a specific brain network, that has enhanced task-supportive structural connectivity. Overall, these findings suggest that a creative act of an expert is functionally controlled by a specific cortical network as in any internally directed attention and is encapsulated by the long-timescale brain structural network changes in support of the related cognitive underpinnings

    Neural signatures of hyperdirect pathway activity in Parkinson’s disease

    Get PDF
    Parkinson’s disease (PD) is characterised by the emergence of beta frequency oscillatory synchronisation across the cortico-basal-ganglia circuit. The relationship between the anatomy of this circuit and oscillatory synchronisation within it remains unclear. We address this by combining recordings from human subthalamic nucleus (STN) and internal globus pallidus (GPi) with magnetoencephalography, tractography and computational modelling. Coherence between supplementary motor area and STN within the high (21–30 Hz) but not low (13-21 Hz) beta frequency range correlated with ‘hyperdirect pathway’ fibre densities between these structures. Furthermore, supplementary motor area activity drove STN activity selectively at high beta frequencies suggesting that high beta frequencies propagate from the cortex to the basal ganglia via the hyperdirect pathway. Computational modelling revealed that exaggerated high beta hyperdirect pathway activity can provoke the generation of widespread pathological synchrony at lower beta frequencies. These findings suggest a spectral signature and a pathophysiological role for the hyperdirect pathway in PD

    Model-free reconstruction of neuronal network connectivity from calcium imaging signals

    Get PDF
    A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically unfeasible even in dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct approximations to network structural connectivities from network activity monitored through calcium fluorescence imaging. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time-series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the effective network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (e.g., bursting or non-bursting). We thus demonstrate how conditioning with respect to the global mean activity improves the performance of our method. [...] Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good reconstruction of the network clustering coefficient, allowing to discriminate between weakly or strongly clustered topologies, whereas on the other hand an approach based on cross-correlations would invariantly detect artificially high levels of clustering. Finally, we present the applicability of our method to real recordings of in vitro cortical cultures. We demonstrate that these networks are characterized by an elevated level of clustering compared to a random graph (although not extreme) and by a markedly non-local connectivity.Comment: 54 pages, 8 figures (+9 supplementary figures), 1 table; submitted for publicatio

    Trade liberalization and ready-made garments industry in Bangladesh

    Get PDF
    The study aims at examining the effect of trade liberalization on ready-made garments (RMG) industry in Bangladesh.It employs Johansen-Juselius Cointegration test and Vector Error Correction Modeling (VECM) on yearly data from January 1990 through September 2011. The results reveal a significant long-term relationship between RMG export of Bangladesh and the three tested explanatory variables (merchandise export of China and India plus domestic inflation in Bangladesh). The Granger Causality test shows the presence of dynamic relationship between the performance of RMG export of Bangladesh and the value of merchandise export from China and India. However, this dynamic relation is non-existent in relation to the inflation factor

    Neural Network Dynamics of Visual Processing in the Higher-Order Visual System

    Get PDF
    Vision is one of the most important human senses that facilitate rich interaction with the external environment. For example, optimal spatial localization and subsequent motor contact with a specific physical object amongst others requires a combination of visual attention, discrimination, and sensory-motor coordination. The mammalian brain has evolved to elegantly solve this problem of transforming visual input into an efficient motor output to interact with an object of interest. The frontal and parietal cortices are two higher-order (i.e. processes information beyond simple sensory transformations) brain areas that are intimately involved in assessing how an animal’s internal state or prior experiences should influence cognitive-behavioral output. It is well known that activity within each region and functional interactions between both regions are correlated with visual attention, decision-making, and memory performance. Therefore, it is not surprising that impairment in the fronto-parietal circuit is often observed in many psychiatric disorders. Network- and circuit-level fronto-parietal involvement in sensory-based behavior is well studied; however, comparatively less is known about how single neuron activity in each of these areas can give rise to such macroscopic activity. The goal of the studies in this dissertation is to address this gap in knowledge through simultaneous recordings of cellular and population activity during sensory processing and behavioral paradigms. Together, the combined narrative builds on several themes in neuroscience: variability of single cell function, population-level encoding of stimulus properties, and state and context-dependent neural dynamics.Doctor of Philosoph
    corecore