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ABSTRACT 

Musical improvisation is one of the most complex forms of creative behavior, which 

offers a realistic task paradigm for the investigation of real-time creativity. Despite previous 

studies on the topics of musical improvisation, brain activations, and creativity, the main 

questions about the neural mechanisms for musical improvisation in efforts to unlocking the 

mystery of human creativity remain unanswered. What are the brain regions that are activated 

during the improvised performances of music? How do these brain areas coordinate activity 

among themselves and others during such performances? Whether and how does the brain 

connectivity structure encapsulate such creative skills? In attempts to contribute to answering 

these questions, this dissertation examines the brain activity dynamics during musical 



improvisation, explores white matter fiber architecture in advanced jazz improvisers using 

functional and structural magnetic resonance imaging (MRI) techniques. A group of advanced 

jazz musicians underwent functional and structural magnetic resonance brain imaging. While the 

functional MRI (fMRI) of their brains were collected, these expert improvisers performed 

vocalization and imagery improvisation and pre-learned melody tasks. The activation and 

connectivity analysis of the fMRI data showed that musical improvisation is characterized by 

higher brain activity with less functional connectivity compared to pre-learned melody in the 

brain network consisting of the dorsolateral prefrontal cortex (dlPFC), supplementary motor area 

(SMA), lateral premotor cortex (lPMC), Cerebellum (Cb) and Broca’s Area (BCA). SMA 

received a dominant causal information flow from dlPFC during improvisation and prelearned 

melody tasks. The deterministic fiber tractography analysis also revealed that the underlying 

white matter structure and fiber pathways in advanced jazz improvisers were enhanced in 

advanced jazz improvisers compared to the control group of nonmusicians, specifically the 

dlPFC - SMA network. These results point to the notion that an expert's performance under real-

time constraints is an internally directed behavior controlled primarily by a specific brain 

network, that has enhanced task-supportive structural connectivity. Overall, these findings 

suggest that a creative act of an expert is functionally controlled by a specific cortical network as 

in any internally directed attention and is encapsulated by the long-timescale brain structural 

network changes in support of the related cognitive underpinnings.   

 

INDEX WORDS: Brain Activity, Functional Magnetic Resonance Imaging (fMRI), Diffusion 

Weighted Magnetic Resonance Imaging (DW-MRI), Diffusion Tensor Imaging (DTI), 

Blood-Oxygen-Level-Dependent (BOLD), Functional Connectivity (FC), Granger 

Causality (GC), Fiber Tractography, Deterministic Fiber Tracking, Fractional Anisotropy 

(FA), Quantitative Anisotropy (QA) 

  



BRAIN FUNCTIONAL AND STRUCTURAL NETWORKS UNDERPINNING MUSICAL 

CREATIVITY 

 

 

 

 

by 

 

 

 

 

KIRAN DHAKAL 

 

 

 

 

 

 

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy 

in the College of Arts and Sciences 

Georgia State University 

2020 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by 

Kiran Dhakal 

2020  



BRAIN FUNCTIONAL AND STRUCTURAL NETWORKS UNDERPINNING MUSICAL 

CREATIVITY 

 

 

by 

 

 

KIRAN DHAKAL 

 

Committee Chair:  Mukesh Dhamala 

 

Committee:     Martin Norgaard 

Brian D. Thoms 

Douglas R. Gies 

Vadym Apalkov 

 

Electronic Version Approved: 

 

 

Office of Graduate Services 

College of Arts and Sciences 

Georgia State University 

August 2020  



iv 
 

DEDICATION 

To my loving parents, brother Keshav Dhakal 

Caring wife Swikriti 

And my beautiful daughters Aatmika and Advika 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

ACKNOWLEDGEMENTS 

I am deeply indebted to many wonderful people who have supported me during my 

graduate study and research for a Ph.D. First and foremost, my sincere thanks go to my Ph.D. 

supervisor Dr. Mukesh Dhamala, who provided me enormous opportunities in the research field 

of my interest. He motivated me and put in a lot of effort and his invaluable expertise being 

available for extensive discussions. It would not have been possible to write this thesis without 

his endless help, support, and patience. I would like to acknowledge Dr. Martin Norgaard for 

always being so generous and for his expertise and precious time. I am very grateful to my 

dissertation committee members and all the members of the Neurophysics Research Group.  

 I would like to extend my sincere thanks to Dr. Xiaochun He, Dr. Mike Crenshaw, Dr. 

Brian D. Thoms, Dr. Murad Sarsour, Dr. Andrew J. Butler, and the department chair Dr. 

Sebastien Lepine, for their support and invaluable suggestions. I am very thankful to the Brains 

and Behavior (B&B) program at Neuroscience Institute for supporting me with B&B Fellowship 

& B&B travel awards. Also, I would like to thank GSU Study Abroad Program for awarding 

international education scholarship two times, which provided excellent opportunities not only to 

learn and explore the cutting-edge research and culture abroad but also to share our research with 

the international audience.  

A big thanks go to my parents for their love and support throughout my life and for 

giving me the strength to chase my dreams. Also, I am very grateful to my brother Keshav 

Dhakal who supported me in all my pursuits. My special thanks to my loving wife, Swikriti, for 

all her devotion and love. Her sacrifices and encouragement throughout my career are truly 

undeniable. Finally, I would like to thank all the beautiful people, families, friends, and relatives 

who inspired and always supported me towards my graduate studies. 



vi 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ........................................................................................................ V 

LIST OF TABLES ...................................................................................................................... IX 

LIST OF FIGURES ..................................................................................................................... X 

LIST OF ABBREVIATIONS .................................................................................................... XI 

1 INTRODUCTION............................................................................................................. 1 

1.1 Overview ....................................................................................................................... 1 

1.2 Brain Imaging: Modalities and Measurements ......................................................... 3 

1.3 Structure of the Dissertation ....................................................................................... 5 

2 CONNECTIVITY MEASURES AND FIBER PROPERTIES .................................... 6 

2.1 Directed connectivity measures .................................................................................. 6 

2.2 Fiber properties ............................................................................................................ 8 

3 BRAIN ACTIVITY AND FUNCTIONAL NETWORK INTERACTION ............... 10 

3.1 Introduction ................................................................................................................ 10 

3.1.1 Improvisers manipulate elements on different hierarchical levels ...................... 11 

3.1.2 Improvisations consist of concatenated motor movements ................................... 13 

3.1.3 Previous studies of musical improvisation used overt movement tasks ............... 13 

3.1.4 Vocalizing and imagery improvisations ................................................................. 15 

3.2 Materials and Methods .............................................................................................. 17 

3.2.1 Participants ............................................................................................................. 17 



vii 

3.2.2 Experimental conditions ........................................................................................ 19 

3.3 Data Acquisition and Analysis .................................................................................. 21 

3.3.1 Behavioral data analysis ........................................................................................ 21 

3.3.2 Functional magnetic resonance imaging (fMRI) data ......................................... 22 

3.3.3 Network Connectivity analysis ............................................................................... 23 

3.3.4 Functional connectivity .......................................................................................... 24 

3.3.5 Directed functional connectivity ............................................................................ 24 

3.4 Results ......................................................................................................................... 25 

3.4.1 Behavioral results ................................................................................................... 25 

3.4.2 Brain activations ..................................................................................................... 26 

3.4.3 Network activity ...................................................................................................... 30 

3.5 Discussion .................................................................................................................... 35 

3.6 Conclusion ................................................................................................................... 41 

4 WHITE MATTER FIBER TRACTS AND STRUCTURAL NETWORK ............... 41 

4.1 Introduction ................................................................................................................ 41 

4.2 Materials and Methods .............................................................................................. 45 

4.2.1 Participants ............................................................................................................. 45 

4.2.2 Behavioral tests and MRI scanning ...................................................................... 46 

4.2.3 Data Acquisition and Preprocessing ..................................................................... 46 

4.3 Data Analysis .............................................................................................................. 47 



viii 

4.3.1 Behavioral data analysis ........................................................................................ 47 

4.3.2 Diffusion weighted imaging data analysis ............................................................ 47 

4.4 Results ......................................................................................................................... 48 

4.4.1 Behavioral results ................................................................................................... 48 

4.4.2 White matter fiber tracts results ............................................................................. 49 

4.5 Discussion .................................................................................................................... 55 

4.6 Conclusion ................................................................................................................... 59 

5 SUMMARY ..................................................................................................................... 59 

REFERENCES ............................................................................................................................ 65 

APPENDICES ............................................................................................................................. 72 

Appendix A ............................................................................................................................. 72 

Appendix A.1 ...................................................................................................................... 72 

Appendix A.2 ...................................................................................................................... 74 

Appendix A.3 ...................................................................................................................... 76 

Appendix A.4 ...................................................................................................................... 77 

 

  



ix 

LIST OF TABLES 

Table 3.1 Participants Musical Background and Demographic Data ................................... 17 

Table 3.2 Brain Activations for various contrasts ................................................................... 27 

Table A.1.1 Average ratings of improvised vocalization ......................................................... 73 

Table A.1.2 Average ratings of pre-learned vocalization ........................................................ 73 

  

 

  



x 

LIST OF FIGURES 

Figure 3.1 Jazz Melodies and experimental task paradigm .................................................... 21 

Figure 3.2 Brain Activations during vocalized and imagery improvisation.......................... 29 

Figure 3.3 Brain Activations during overall improvisation .................................................... 29 

Figure 3.4 Maximum probability mapping .............................................................................. 30 

Figure 3.5 Functional connectivity during prelearned and improvised condition ............... 31 

Figure 3.6 Functional connectivity during vocalized and imagery condition ....................... 32 

Figure 3.7 Network interaction during prelearned and improvised condition ..................... 33 

Figure 3.8 Network interaction during vocalized and imagery condition ............................. 35 

Figure 4.1 Region-based white matter fiber tracts .................................................................. 50 

Figure 4.2 Track-specific white matter fiber tracts ................................................................. 51 

Figure 4.3 Region-based normalized quantitative anisotropy ................................................ 53 

Figure 4.4 Track-specific normalized quantitative anisotropy............................................... 54 

Figure 4.5 Functional and structural network ......................................................................... 55 

Figure A.1.1 Brain activations during imagery and vocalized condition .............................. 75 

Figure A.1.2 Region-based generalized fractional anisotropy ................................................ 76 

Figure A.1.3 Track-specific generalized fractional anisotropy .............................................. 77 

  

  



xi 

LIST OF ABBREVIATIONS 

BA                                                                                                                            Brodmann Area 

BCA                                                                                                                               Broca's Area 

BOLD                                                                                             Blood Oxygen Level Dependent  

Cb                                                                                                                                    Cerebellum  

DCM                                                                                                       Dynamic Causal Modeling 

DICOM                                    Digital Imaging and Communications in Medicine (Image format) 

dlPFC                                                                                                Dorsolateral prefrontal cortex 

DMN                                                                                                             Default Mode Network 

DT                                                                                                                  Diffusion tractography  

DTI                                                                                                           Diffusion Tensor Imaging  

DWI                                                                                                     Diffusion Weighted Imaging 

ECN                                                                                                       Executive Control Network 

EEG                                                                                                             Electroencephalography 

FA                                                                                                                   Fractional Anisotropy 

FC                                                                                                                Functional Connectivity 

FDR                                                                                                                  False Discovery Rate 

fMRI                                                                                 Functional Magnetic Resonance Imaging 

FWE                                                                                                                     Family Wise Error 

GC                                                                                                                         Granger Causality 

GFA                                                                                            Generalized Fractional Anisotropy 

GLM                                                                                                          Generalized Liner Model 

GQI                                                                                               Generalized Q-sampling Imaging  

IFG                                                                                                                  Inferior Frontal Gyrus 

II                                                                                                                         Imagine improvised 

IMG                                                                                                                       Imagine (Overall) 

IMP                                                                                                                              Improvisation 

IP                                                                                                                         Imagine prelearned  



xii 

L                                                                                                                                                  Left 

LPM                                                                                                            Lateral premotor cortex  

M                                                                                                                                                Male 

MFG                                                                                                                  Middle frontal gyrus  

MNI                                                                                                 Montreal Neurological Institute 

MR                                                                                                                     Magnetic resonance 

NIFTI                                          Neuroimaging Informatics Technology Initiative (Image format) 

NQA                                                                                           Normalized Quantitive Anisotropy 

PAC                                                                                                   Primary Auditory Cortex (A1)  

PL                                                                                                                                      Prelearned 

PMD                                                                                                            Dorsal Premotor Cortex 

PrCG                                                                                                                       Precentral Gyrus 

QA                                                                                                                  Quantitive Anisotropy 

QSDR                                                                                 Q-Space Diffeomorphic Reconstruction  

R                                                                                                                                                Right 

RCB                                                                                                                        Right cerebellum 

ROIs                                                                                                                     Regions of Interest 

SC                                                                                                                 Structural Connectivity  

SMA                                                                                                        Supplementary motor area 

STG                                                                                                           Superior Temporal Gyrus 

TE                                                                                                                                     Echo Time 

TIP                                                                                                        Topology-Informed Pruning  

TR                                                                                                                            Repetition Time 

VI                                                                                                                      Vocalize improvised 

VOC                                                                                                                     Vocalize (Overall) 

VP                                                                                                                      Vocalize prelearned  

 

 



1 

1 INTRODUCTION  

1.1 Overview   

Creativity, in general, is defined as an ability to create or generate something novel that is 

meaningful and valuable. From everyday situations to the pinnacles of science, creativity is seen 

as the ultimate ability that allows individuals to solve problems they have not encountered 

previously. Expert creativity is an extreme ability, predominantly shaped with domain-specific 

skills, experience, and strategies, also involve the domain-general ideas and responses. Experts 

are people who can produce exceptional performances even in new situations or complex 

environments, find and fix their cognitive limitations, and execute new strategies quickly and 

more effectively than novices [1]. Creative behaviors that unfold the expert's outstanding 

performances can take many forms in many domains, from sports, arts, diverging thinking, 

problem-solving to music. Specific examples include the unique movements of an expert 

basketball player bypassing defenders from the opposing team, the actual wording of a 

professional presenter using an outline, or the musical improvisation of an advanced jazz 

saxophonist who can continuously create and play new melodies.  

Creative behaviors within the real-time constraints add not only the cognitive complexity 

but also demand online information processing, spontaneous production, and prompt execution 

and monitoring. These creative behaviors may be guided by larger consciously chosen goals (i.e., 

dunking the basketball), yet individual lower-level actions in support of those goals may happen 

so quickly that conscious evaluation is impossible (i.e., weaving past unforeseen opponents on 

the court). The lower level actions depend on an automated, yet flexible process developed 

through experience. The skilled speaker can seamlessly incorporate audience questions without 

hesitation, just like the expert basketball player can bypass defenders from the opposing team. 
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Through experience and practice, a collection of effective responses to environmental cues are 

stored in procedural memory. Inefficient or incorrect responses are culled, and successful 

responses remembered. This builds up a set of particular cues that trigger automated responses. 

This automated process, not dependent on conscious evaluation, has traditionally been thought of 

as inflexible. However, recent research indicates that it is possible to generate novel responses 

below consciousness if these responses are guided by specific goals [2]. Indeed, the expert jazz 

improviser sometimes plays material never played before, just like the basketball player may 

suddenly invent a new move without conscious contemplation. How this stored information is 

used and manipulated in real-time is still poorly understood.  

Recent creativity studies have employed neuroimaging methods to explore the underlying 

neural basis of creativity in different domains. Although the findings suggest some common and 

distinct activations patterns across domain-specific and domain-general creative behaviors, 

including music, drawing, dance, and writing  [3], how expert creativity reflects on brain activity 

and network connectivity is largely unknown. Further, how the neurocognitive mechanisms of 

expert creativity vary during constrained performances and free, spontaneous artistic 

performances and how such skills are facilitated by the underlying white matter fiber architecture 

is not well understood. Here, in our study, we incorporated the jazz musical improvisation to 

investigate the neuronal correlates of creativity in advanced level jazz improvisers, while being 

in the fMRI recording, improvisers performed improvisatory vocalization and imagery tasks. 

And, using diffusion weighted MRI, we examined the underlying white matter fiber properties of 

advanced jazz improvisers and compared the findings with the control group of nonmusicians.  
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1.2 Brain Imaging: Modalities and Measurements  

The human brain is a complex and highly dynamic biological system made up of more 

than 100 billion nerves that communicate and coordinate with the body system for the proper 

organized functioning. It consists of around 100 billion neurons, the cells that transmit 

information inside the brain [4]. A typical neuron possesses three different parts; dendrites, the 

cell body (or soma), and the axon. The dendrites propagate the electrochemical stimulation 

received from other neural cells to the cell body or soma, the soma contains the nucleus and 

maintain the cell and keep the neuron functional, whereas the axon, the elongated fiber that 

extends from the cell body to the terminal endings, often covered with myelin, and transmits the 

neural signal [5-9]. On a larger scale, the human brain is divided along the middle into left and 

right interconnected hemispheres and consists of three main parts: cerebrum, cerebellum, and 

brainstem. All large-scale brain functional activities and structural changes can be influenced by 

the action potential firing in axons [7]. Brain functional and structural imaging adds new insight 

into our understanding of the origins of human cognition and skill development 

Recent advancements in neuroimaging technology have provided state-of-the-art methods 

on understanding the brain mechanisms for behaviors, including human creativity. This 

dissertation describes the brain functional and structural networks underpinning musical 

creativity based on the study of advanced jazz improvisers in neuroimaging experiments. 

Neuroimaging data were collected using a magnetic resonance imaging (MRI) scanner with a 

field strength of 3.0 Tesla, which is around 60,000 times stronger than the earth's magnetic field. 

We used the blood-oxygenation level-dependent (BOLD) contrast-based functional MRI (fMRI) 

technique to study the brain functional network activity and connectivity, and the diffusion-
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weighted MRI (DW-MRI or dMRI) to study the brain’s structural network, white matter fiber 

architecture. Both imaging modalities are non-invasive brain imaging methods.  

The biological tissue of our body, including the brain, consists of water molecules 

containing two hydrogen atoms and one oxygen atom. Each hydrogen atom has a single proton 

in its nuclei and acts as a tiny magnet that spins around its own magnetic axis. In the presence of 

the strong magnetic field inside the MRI scanner, randomly spinning hydrogen protons align 

themselves along the magnetic field, resulting in the net magnetization in the direction of the 

magnetic field, which becomes the source of MR image production [8, 9]. These hydrogen-

protons in a magnetic field can absorb and transmit energy at the specific processional 

frequency, known as Larmor frequency [8, 9]. By applying a radio frequency (RF) pulse at 

Larmor frequency, the net magnetization will be tipped out of normal alignment, causing protons 

to shift their state that results in the transverse magnetization.  After the RF excitation, protons 

release absorbed energy resulting in the net magnetization recovery to its aligned position with a 

spin-lattice relaxation process called T1 relaxation. Over time, the dephasing of protons caused 

by spin-spin interactions (T2 relaxation) results in the signal loss in the receiver coil. Further, the 

magnetic inhomogeneities contribute to faster dephasing of spins. The relaxation time due to the 

combination of all dephasing influences is called T2* relaxation and is the basis of the fMRI 

signal [9].  

Functional MRI is an indirect measurement of the local neuronal activity by detecting the 

changes in blood oxygenation over time in the area of the brain is in use. The fMRI images are 

based on this physiological contrast of blood dependency and thus termed as "blood-oxygen-

level-dependent” (BOLD) signal or bold contrast imaging [9, 10]. The regional blood 

oxygenation level changes can be attributed to the overall changes in the synaptic input to the 
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neuronal population of that region and its intrinsic processing [11, 12]. A combined effect of the 

energy demand and vascular changes following a neuronal activity leads to an oversupply of 

oxygen via oxygen-rich blood flow to the region, thus increasing the MR signal intensity [9, 13].  

In addition to T1 and T2 imaging for anatomical structure, white matter fiber pathways 

can be mapped with diffusion MRI using the diffusion properties of water molecules in 

biological tissue. Diffusion weighted imaging is based on the random Brownian motion of water 

molecules in tissue and provides insight into the microscopic details of tissue architecture and 

white matter fiber tracts [14-16]. Diffusion MRI allows for spatial mapping of the diffusion 

signals [16, 17], by combining the pulse-gradient spin-echo (PGSE) sequence [18] and the 

spatial mapping of the diffusion coefficients [19]. Different local tissue structures and the 

molecular organization have different effects on the water diffusion dynamics, resulting in the 

hindered and restricted diffusion in the presence of biological barriers and free diffusion without 

any boundaries and barriers [9, 20]. Brain white matter structure has coherent fibrous 

architecture; thus, it will allow diffusion in one direction resulting in highly anisotropic 

measures, whereas water diffuses isotropically in less coherent structures like grey matter. Such 

anisotropic diffusion becomes a key measure in diffusion tracking, which has shown sensitivity 

for the study of white matter connectivity, integrity, and development, and reveals the fiber 

architecture, the trajectories, and the axonal directions [13, 14, 16, 21-31]. 

1.3 Structure of the Dissertation  

Chapter 2 includes a brief description of network connectivity measures and fiber properties.  

Chapter 3 contains the details about functional MRI investigation of the advanced jazz 

improvisers.  I will describe the study design, data collection procedure, data preprocessing and 
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analysis, and discuss our findings of the functional network, brain activity, and connectivity 

dynamics during musical improvisation and prelearned conditions.  

Chapter 4 includes the diffusion weighted MRI investigation of the advanced jazz improvisers 

and the control group of nonmusicians. I will discuss our findings of the brain’s structural 

network, white matter fiber architecture, and diffusion properties in advanced jazz improvisers 

compared to nonmusicians. 

Chapter 5 summarizes the main conclusions of these studies. 

 

This dissertation is based upon the following first two works in the list: 

1. Dhakal K, Norgaard M, Adhikari BM, Yun K, and Dhamala, M. "Higher Brain Activity with 

Less Functional Connectivity during Musical Improvisation"                                                                             

      DOI:10.1089/brain.2017.0566 Brain Connect 9: 296-309 (2019)  

2. Dhakal K, Norgaard M, and Dhamala M. “Enhanced White Matter Fiber Tracts in Advanced 

Jazz Improvisers.” NeuroImage (Under Review)                                        

3. Dhakal K, Norgaard M, and Dhamala M. “Whole-brain functional connectivity during 

musical improvisation.” (In preparation, 2020)    

 

2 CONNECTIVITY MEASURES AND FIBER PROPERTIES 

2.1 Directed connectivity measures  

              Brain connectivity analysis is widely used in neuroscience with neuroimaging data to 

infer the brain’s functional and structural organization. Undirected functional connectivity 

measures include symmetry measures, such as pairwise correlation, ordinary coherence spectra, 

phase synchronization index, to tell us how different brain regions are functionally dependent on 
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each other. Asymmetric measures, such as Granger Causality and dynamical causal modeling 

(DCM) based coupling, can tell us about causal influences from one region to another region in 

the brain.  

Granger Causality (GC) [32] and Dynamic Causal Modeling (DCM) [33] are the two 

most predominantly used methods on exploring the directional connectivity measures using 

functional neuroimaging. Although both methods have their own merits and demerits, one of the 

key differences between them is GC considers dependencies among measured responses, 

whereas DCM relies on probabilistic graphical modeling. In this work, we used GC analysis to 

uncover the patterns of information flow among the brain regions of interest (ROIs).   

Granger causality (GC) is based on Wiener’s idea of linear prediction, using 

autoregressive modeling of time series [34]. It was put forward with practical implementation by 

Clive W.J. Granger in 1969, who was a recipient of the 2003 Nobel Prize in Economics. For two 

simultaneously measured time series such as 1: X1(1), X1(2), ………, X1(t), ………, and  

2: X2(1), X2(2), ………, X2(t), ………, Granger causality can be estimated using either 

autoregressive modeling (parametric methods) or by using direct Fourier or wavelet transforms 

(nonparametric) spectral decomposition approach [35-37]. We can obtain the noise covariance 

matrix (Σ), the transformation function (H(f)), and the spectral density matrix (S(f)) from these 

time series, such that S(f) = H(f) Σ H*(f). The noise covariance matrix (Σ) is computed from the 

residual errors of the prediction models, and the transfer function H is obtained from the matrix 

inverse of the Fourier transforms of the coefficients in the prediction models. For non-stationary 

process, S, H, and Σ can be estimated using the wavelet transforms-based non-parametric 

estimation [35, 36], so that these quantities become the function of both time and frequency 

domains.  
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The spectral GC from 2 to 1, M2→1(f) can be obtained as  

                      𝑀2→1(𝑓) =  −𝑙𝑛
𝑆11(𝑓)−(𝛴22− 

𝛴2
12

𝛴11
) |𝐻12(𝑓)|2

𝑆11(𝑓)
                                                          (2.1) 

where, by interchanging 1 and 2, one can compute the spectral GC from 1 to 2, M1→2(f). 

The time-domain Granger causality can be obtained by integration over the entire frequency 

range.  

The total interdependency measures of statistically inter-related two non-stationary 

processes 1 & 2, consists of sub-measures and can be expressed as;  

        M1,2  = M1→2 + M2→1 + M1.2                                                                                                                             (2.2) 

where M2→1 and M1→2 are one-way directional delayed causal flow from 2 to 1 and 1 to 2, and 

M1.2 is non-delayed instantaneous causal flow. 

 

2.2 Fiber properties      

Diffusion weighted imaging (DWI), and fiber tractography are widely used tools to 

describe the underlying white matter diffusion properties and fiber integrity in health, 

development, and disorders. DWI is based on the random Brownian motion of water molecules, 

utilized to track the anisotropic diffusion mechanism corresponding to the white matter structure 

and fiber tracts.  Several reconstruction methods are available to carry out fiber tracking, both 

model-based methods (parametric approach) and a model-free approach (non-parametric 

approach), with their strength and weakness.  

The multi-tensor model [38], the ball-and-sticks model implemented in bedpost FSL 

toolbox [22], and neurite orientation dispersion and density imaging (NODDI) [39] model are 

commonly used model-based methods which consider a predefined diffusion distribution 

function or pattern. Although the model-based methods need a few samples, a complicated 
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model might lead to overfitting while getting the whole distribution [27]. The constrained 

spherical deconvolution (CSD) method implemented in the MRtrix toolbox is considered as a 

model-based and model-free approach that accounts for the fiber orientation distribution function 

(ODF). Still, the deconvolution depends on the signal response. The CSD methods may benefit 

from both model-based and model-free approaches; this suffers from model violation, model 

mismatch, and the false fiber crossing geometry [40, 41].  

The diffusion spectrum imaging (DSI), q-ball imaging (QBI), and generalized q-sampling 

imaging (GQI) are widely used model-free methods. Since DSI and QBI methods only work on 

grid data, and shell data respectively, the GQI method which is adopted in DSI studio toolbox 

(http://dsi-studio.labsolver.org/) has the obvious advantage as this works perfectly for both grid 

data, shell data as well as multi-shell, and non-grid-non-shell data [27, 28, 42, 43]. Further, GQI 

quantifies the density of diffusing water, and the orientation distribution function (ODF) of 

diffusing spins can be measured in terms of spin distribution function (SDF), which has greater 

sensitivity and specificity to white matter characteristics and fiber pathology [27, 28]. The q-

space diffeomorphic reconstruction (QSDR) implemented in DSI Studio reconstructs the GQI 

diffusion pattern directly in the standard neuroimaging template, thus enabling template 

construction, connectome fingerprints, and connectometry analysis to get density-based 

measurements such as Quantitative Anisotropy (QA), rather than Fractional Anisotropy (FA). 

The FA measurement is a voxel-specific diffusion index shared by all-fiber population within a 

voxel, which is estimated using diffusion tensor imaging probabilistic tracking, a method that 

relies on the movement of water molecules (i.e., diffusivity, how fast water molecules move 

along axonal fiber tracts) [14, 15]. On the other hand, QA measurement is a fiber-specific 

diffusion index specific to each fiber population, which is calculated using the peak orientations 

http://dsi-studio.labsolver.org/
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of the spin distribution function, which quantifies the diffusion density of water molecules along 

the fiber tracts [27]. QA is reported to have lower susceptibility to partial volume effects of 

crossing fibers and free-water, resulting in a better resolution with QA-aided tractography, which 

is known to outperform the FA-aided tractography [28, 44]. In our diffusion MRI investigation 

(explained in chapter 4), we used the DSI Studio toolbox that has adopted the GQI approach, 

QSDR reconstruction, and QA-aided deterministic fiber tractography.  

 

3 BRAIN ACTIVITY AND FUNCTIONAL NETWORK INTERACTION 

3.1 Introduction 

Musical improvisation is an excellent model to study human creativity in which the 

output is created in real-time and revision impossible. Similar to innovative verbalizations or 

movement sequences, musical improvisation is only possible because choices are constrained by 

stylistic rules and physical limitations [45]. Expert practitioners who have internalized these 

rules and practiced the related motor movements can produce amazingly intricate improvisations. 

Despite some previous studies, the neural underpinnings of expert’s improvising performance; 

what and how brain areas are involved during musical improvisation are not clearly understood. 

Here, we designed a new functional magnetic resonance imaging (fMRI) study, in which, while 

being in the MRI scanner, advanced jazz improvisers performed improvisatory vocalization and 

imagination as main tasks and performed a pre-learned melody as a control task. We 

incorporated an imaginary musical task to avoid possible confounds of mixed motor and 

perceptual variables in previous studies.   

This spontaneous process may involve divergent brain activation and connectivity 

patterns. One emerging idea is that creative behavior, such as musical improvisation, involves 
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the dynamic interaction of the default mode network (DMN) and the executive control network 

(ECN)[46]. Interestingly, these two networks are usually associated with different tasks and are 

typically not active concurrently. DMN activity is associated with spontaneous and self-

generated thought, including mind-wandering, mental stimulation, social cognition, 

autobiographical retrieval, and episodic future thinking whereas, ECN activity is associated with 

cognitive processes that require externally-directed attention, including working memory, 

relational integration, and task-set switching [46]. Improvisation may involve the interaction 

between an automatic bottom-up process (DMN) that may supply possible choices and a top-

down control process (ECN) that may guide those choices according to hierarchical rules [47, 

48].  

3.1.1 Improvisers manipulate elements on different hierarchical levels 

The hierarchical structure of tonal music is a central constraint that may be used by the 

ECN to evaluate and select choices offered up by the DMN. Musical events, henceforth referred 

to as notes, are organized into two independent hierarchical structures related to rhythm and 

pitch, respectively [49]. The lowest level of the rhythm hierarchy relates to distances in time 

between individual notes. Higher levels relate to note groupings. Meter refers to a rhythmic 

reference that typically is constant throughout large sections of music. For instance, in a musical 

piece in waltz meter, timings of individual notes are related to a rhythmic framework in which 

every third instance is emphasized. Similarly, pitches are organized hierarchically with the 

individual frequency distance between two notes referred to as an interval, small note groupings 

as motives, slightly longer groupings as phrases, and longer sections as choruses. 

Koechlin and Jubault (2006) [50] suggested Broca’s area (BCA) and its right homolog 

are specifically involved in the hierarchical organization of actions, whereas other areas in the 
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frontal lobe process temporal organization. Accordingly, “appropriate actions are selected as 

subordinate elements that compose ongoing structured action plans rather than from occurrences 

of temporally distant events” (p. 963). Specifically, Koechlin and  Jubault (2006) predict that 

phasic activations are different for action selection on three hierarchical levels in a button-

pressing task [50]. Premotor regions control the selection of individual motor movements while 

posterior BCA is engaged at the second level, the boundaries between simple action chunks 

(collection of basic information units). The third and highest hierarchical level could be defined 

as groupings of simple action chunks. Koechlin and Jubault showed experimentally that anterior 

BCA regions are specifically involved in the selection and inhibition of these action chunk 

groupings [50]. Recently, Alamia et al. (2016) showed that disruption to BCA by transitory 

application of transcranial magnetic stimulation inhibited participant’s ability to chunk nonmotor 

sequences [51]. 

Skilled improvisers manipulate elements within the tonal and rhythmic hierarchies to 

create and violate the expectations of the listener. On a lower level, improvisers may repeat 

motives or introduce tension by employing notes from outside the dominant tonality. On a higher 

level, improvisers describe organizing their entire solo around an architectural design [52, 53]. 

Independent of training, listeners within a musical culture learn to decode expectations and 

violations much the same way they learn their native language [54]. Furthermore, it appears that 

these fulfilled or violated predictions may elicit emotions in the listener [55, 56]. Listeners 

appear to prefer music that contains a balance of predictability and novelty as related to their 

individual background [57]. We would expect the involvement of BCA and other regions related 

to the ECN during musical improvisation as available choices has to be evaluated and selected 

according to these intricate hierarchical musical rules. 
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3.1.2 Improvisations consist of concatenated motor movements 

One of the most cited theoretical frameworks for cognition behind improvisation is the 

Pressing’s framework, which is centered around concatenated motor movements [45]. Indeed 

reviews of large corpora of jazz improvisations have identified numerous repeated musical 

patterns that more than likely are generated using corresponding motor chunks [58]. On a higher 

level, the motor chunks are likely selected according to higher-level plans for action chunk 

groupings [53]. Though Pressing’s framework does not specifically include action chunk 

groupings, the verbal accounts of improvisers would appear to indicate that they often 

concentrate on this higher hierarchical level. In addition, experimental research shows that 

melodic patterns are more frequent in improvisations done while conscious involvement is 

attenuated through engagement with a secondary unrelated task [59]. This would indicate that 

less cognitive engagement with the improvisation inhibits the improviser’s ability to vary and 

design improvisations around higher hierarchical plans, instead of relying on a smaller repertoire 

of repeated motor chunks. In other words, when a secondary task engages the ECN, the lack of 

control may result in the improviser using more stereotypical patterns offered up by the DMN. 

3.1.3 Previous studies of musical improvisation used overt movement tasks 

There is some support for the interaction between the DMN and the ECN during musical 

improvisation from previous neuroimaging research. However, much of this research used only 

pianists who performed supine in an MRI scanner on very short keyboards limiting ecological 

validity and generalizability to other instruments. Berkowitz and Ansari (2008) investigated 

neural correlates of musical improvisation in a study in which trained pianists played either novel 

or pre-learned rhythmic and melodic sequences while functional magnetic resonance imaging 

(fMRI) data were collected [60]. A brain network was identified based on activations in the 
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dorsal premotor cortex (PMD), the rostral cingulate zone of the anterior cingulate cortex, and the 

inferior frontal gyrus (IFG) during improvisation compared to pre-learned condition. However, 

the participants were classically trained pianists with no prior experience of jazz improvisation. 

Due to the lack of improvisational training, it is possible that the ECN was heavily engaged 

during this study as participants were grappling with the novel improvisational task. In addition, 

the musicians played on a keyboard with only five notes, severely limiting note choices. 

Another study by Limb and Braun (2008) used a similar contrast and found that the entire 

dorsolateral prefrontal region was attenuated during improvisation, partially contradicting the 

activations found by Berkowitz and Ansari. Limb and Braun investigated brain activity while 

jazz pianists played either a pre-learned melody or an improvised solo over the same 

accompaniment [61]. The six participants in this study were advanced improvisers who were 

accompanied by a jazz rhythm track and played a 35-note keyboard.  Limb and Braun concluded 

that conscious control processes are less active during improvisation and theorized that the 

medial prefrontal regions could generate the improvised output without conscious involvement. 

In this case, the DMN may have been able to guide improvisational choices due to the high level 

of improvisational training of the participants. Indeed, another study that included expert 

improvisers, and included interaction found increased activation in frontal control regions [62]. 

Here the extra cognitive resources related to interpreting and responding to another musician 

during improvisation may be responsible for the activation related to the ECN. 

Manzano and colleagues investigated improvisations by a group of professional classical 

pianists, by studying overlaps and differences in brain activity during both pseudo-random key 

presses and piano improvisation [63]. The activity in both modes of generation was significantly 

higher in IFG, which included the dorsolateral prefrontal cortex (dlPFC), bilateral insula, and 
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cerebellum (Cb) compared to a control condition. They concluded the activation pattern reflects 

a generic process that is independent of the overall goal. Again, the activation of frontal control 

regions may have been related to the task of selecting novel keypresses, which is unfamiliar to 

classical pianists used to only performing pre-learned music. 

To reconcile previous contradictory findings related to prefrontal control regions, a recent 

study by Pinho compared activation during an emotional play condition (play happy or fearful 

melody) with a pitch-set condition [64]. The pitch-set conditions (pitch-set vs. emotional) 

induced a comparably greater activation of the bilateral dlPFC, extending throughout the middle 

frontal gyrus into the PMD in the right hemisphere. In addition, there was greater activity in the 

bilateral parietal lobes. The reverse contrast (emotional vs. pitch-set) revealed comparably 

greater activation of the left dorsomedial prefrontal cortex in the superior medial gyrus, the left 

medial orbital gyrus, and bilateral insula, extending into the amygdala. They interpreted the 

results as suggesting the dlPFC activation during improvisation with a limited number of pitches 

is due to subjects holding the pitch-set in working memory. On the other hand, during the 

emotional condition, subjects relied on implicit associations between valence and musical output. 

Concerning connectivity, the emotional condition was associated with increased connectivity 

between dlPFC and the DMN. Beaty et al. (2016) suggested that the dlPFC may exert a top-

down influence over generative processes stemming from the default network during the 

strategic expression of emotionally based improvisation [46]. 

3.1.4 Vocalizing and imagery improvisations 

Participants engaged in overt motor movements in all previous studies. Though attempts 

were made to control variables, the current study bypassed potential confounds related to overt 

movement by including an imaginary task. It is well established that auditory perceptual and 
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secondary motor regions can be activated during covert auditory imagery. This effect has been 

observed during internal auditory discrimination [65], auditory imagery of a musical score [66], 

and even during passive listening [67]. In a study with advanced pianists, Meister et al. (2004) 

found a bilateral frontoparietal network was active during both play and imagery. The only 

difference was that during imagining activation in the contralateral primary motor cortex and 

bilateral posterior parietal cortex was not observed [68]. Interestingly, the level of motor 

activation is dependent on the subject’s knowledge of the actual movements necessary to play 

the music even in listening only conditions, and this association can be trained over just a couple 

of days [69]. Finally, expert musicians often use mental imagery explicitly during both practicing 

and actual performance; for a review, please see Keller (2011) [70]. 

We investigated differences in activations between vocalizing and imagery pre-learned 

and improvised music. Specifically, the participants vocalized or imagined singing well-known 

melodies and continued to improvise over those melodies and the related chord structure. This 

task allowed for the recruitment of expert jazz improvisers who played several different primary 

instruments. We hypothesized that the improvisation minus pre-learned contrast would activate a 

network similar to networks identified in previous research related to music improvisation. This 

would include BCA in IFG, the dlPFC, premotor areas, parietal association areas, and the 

cerebellum. We also hypothesized that the contrast would include the BCA for the following 

reason: As the four included melodies were well-known, participants would more than likely 

have learned to combine related motor movements into larger chunks representing longer phrases 

of the melodies. On the other hand, improvisations would involve selecting and inhibiting 

unwanted motor chunks. Furthermore, during improvisation, those chunks may be selected 

according to architectural plans on a higher hierarchical level. We did not have predictions 
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related to changes in connectivity as earlier studies utilizing the contrast between improvisation 

and memory retrieval did not report related changes in connectivity. We did, however, 

hypothesize that the STG would be part of a network-based on our prior electroencephalography 

study [71] and the location of the auditory cortices.  

3.2 Materials and Methods 

3.2.1 Participants  

Twenty-four male advanced jazz improvisers (4 left-handed, 20 right-handed; mean age  

standard deviation (sd)=31.9±13.6 years) were exclusively recruited for this study. A criterion 

for participation was expertise in jazz improvisation. Participants had at least six years of 

professional experience (mean  sd=21.313.5 years) on jazz improvisation (see Table 3.1). 

Almost all the participants had previous education in a University System School of Music 

(n=23); average schooling years for all participants was 16.2 years (sd=1.8 years). Participants 

were also required to know how to read music. Primary instruments included piano (n=5), 

saxophone (n=11), guitar (n=2), trumpet (n=2), drums (n=1), trombone (n=1), French horn 

(n=1), and bass (n=1). All participants had normal or corrected to normal vision and reported 

normal neurological history. Participants provided written and signed consent forms and were 

compensated for their participation in the experiment. Institutional Review Board for Joint 

Georgia State University and Georgia Institute of Technology Center for Advanced Brain 

Imaging, Atlanta, Georgia, approved this study.   

Table 3.1 Participants Musical Background and Demographic Data 

Age, the primary musical instrument, and years of experience (Jazz Experience). Participants, 

shown in bold italic faces in the table, had all runs with improper timing duration during task 

performances and were excluded from the data analysis 
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Participant 

No. 

Age 

(Years) 

Years of Experience 

(Jazz Improvisation) 

Primary 

Instrument 

01 31 24 Piano 

02 57 50 Piano 

03 41 31 Saxophone 

04 43 34 Piano 

05 33 22 Piano 

06 20 6 Guitar 

07 35 24 Saxophone 

08 22 10 Saxophone 

09 26 15 Saxophone 

10 41 33 Saxophone 

11 77 60 Saxophone 

12 23 11 Saxophone 

13 19 10 Saxophone 

14 26 18 Piano 

15 30 18 Contra/Double 

Bass 

16 21 12 Trombone 

17 28 14 Drum Set 

18 23 14 Saxophone 

19 23 12 Saxophone 

20 23 7 French Horn 
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21 42 33 Trumpet 

22 38 28 Saxophone 

23 22 15 Guitar 

24 22 11 Trumpet 

 

3.2.2 Experimental conditions 

Prior to fMRI recording, participants were familiarized with the four tasks: Vocalize Pre-

learned, Vocalize Improvised, Imagine Pre-learned, and Imagine Improvised.  During the pre-

learned conditions, participants were prompted to vocalize or imagine one of the four melodies 

(Au Privave, Now’s the Time, Blues for Alice, and Billies Bounce) (Figure 3.1 (A)), which were 

memorized and rehearsed prior to the day of the experiment. All four melodies are based on a 

standard 12-bar blues chordal progression. And, participants were familiar with the melodies 

prior to the testing. In addition, they were tested on competency upon arrival. Participants were 

instructed to imagine singing during the imagery condition and to sing (vocalize) during 

vocalization. These four melodies were chosen from the Bebop era of jazz, as the complexity of 

these melodies is comparable to expected improvisations [52]. During Imagine Pre-learned 

condition, participants were instructed to imagine melodies without any overt vocalizations. 

These performances of pre-learned melodies from memory require little to no creativity. Results 

from both pre-learned conditions were contrasted with the two improvised conditions: Vocalize 

Improvised and Imagine Improvised, during which participants vocalized or imagined a 

spontaneously improvised melody over the blues chord progression. We did not require 

participants to vocalize melodies and improvisations at the quality of a trained jazz singer. Here, 

we simply asked the musicians to vocalize as they would during a practice session (non-wind 
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instrumentalists) or during casual practice without the instrument. Such practice is common 

among jazz musicians, and jazz students are typically asked to vocalize improvisations as a 

pedagogical tool [52].  

No metronome beat was audible during the experimental conditions, but before each trial, 

there was an audible beat representing a two-measure count-in (for 3.6 s). Participants vocalized 

or imagined the cued melody twice and then went directly into a two-chorus improvisation over 

the same harmonic progression. Participants indicated that they switched from melody to 

improvisation by pressing a button.  

Upon arrival at the testing site, participants provided informed consent and were 

familiarized with the task. They went through practice sessions at a mock scanner to reduce 

anxiety and make sure they performed all experimental tasks correctly prior to going into the 

scanner for actual functional runs. They were asked to remain still, not to move their heads or 

other parts of their body during the recording session. An fMRI compatible microphone was 

used for auditory recording. To constrain head motion, foam pads were used as support in the 

head coil.  The task sequences were displayed in a screen inside the scanner via the E-prime 

program “E-prime_V2.0.10.242” (https://www.pstnet.com/eprime.cfm). All trials began with the 

instructional cue, followed by the two-measure audible count. After the count-in, participants 

were required to complete the cued task, at first performing the pre-learned melody twice and 

then the improvisation over two blues choruses. A button press preceded improvisation once 

participants performed the pre-learned melody twice. There was a rest period before the start of 

another trial, and during the rest period, participants were instructed not to do anything, remain 

still, and focus on the central crossbar on the screen. All trials followed the same structure over 

time (Figure 3.1 (B)) and were randomly selected with no repetition, so each run contained 

https://www.pstnet.com/eprime.cfm
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vocalized and imagined trials of each of the four melodies. Each experiment was composed of 3 

functional runs, with eight randomized trials in each run. Each functional had a 30 s rest period 

at the beginning and the end. 

 

Figure 3.1 Jazz Melodies and experimental task paradigm 

Four melodies (A): Au Privave, Now’s the Time, Blues for Alice, and Billie’s Bounce that were 

used in the experiment. (B) Task paradigm during a functional run; each functional run starts 

with initial 30 seconds rest followed by a task trial that included 6.1 seconds instructional cue 

that displays whether to vocalize or imagine a given melody, 3.6 seconds, two-measure count 

audio metronomes. Participants were instructed to press a response key inside the scanner after 

at the end of each task in a trial.   

 

3.3 Data Acquisition and Analysis 

3.3.1 Behavioral data analysis 

Behavioral data were recorded on the computer that also ran the E-prime program 

displaying the experimental task sequences.  The audio output (vocalized melodies and 
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improvisations) was recorded as MP3 files using an fMRI scanner compatible microphone. 

Stimulus onset time and the time between the onset of a condition and the button press (start of 

improvisation) in each trial were recorded. Audio files were analyzed to determine participants’ 

performance accuracy in reproducing the cued melodies. The improvisations were evaluated to 

ensure they implied the dictated blues chord progression. Any performed conditions with 

improper timing (taking a long or short time duration) were not included in data analysis. 

Participants were excluded from further analysis based on improper trial durations. The average 

time duration for each trial was 32 s melody followed by a 32 s improvisation.   

3.3.2 Functional magnetic resonance imaging (fMRI) data 

The whole-brain MR imaging was done on a 3-Tesla Siemens scanner available at 

Georgia State University and Georgia Institute of Technology Center for Advanced Brain 

Imaging, Atlanta, Georgia. The functional scans were acquired with T2*- weighted gradient 

echo-planar imaging (EPI) sequence: echo time (TE)=30 ms, repetition time (TR)=1970 ms, flip-

angle=90, field of view (FOV)=204 mm, matrix size=68×68, voxel size=3×3×3 mm3 and 37 

interleaved axial slices with a thickness of 3 mm each. High-resolution anatomical images were 

acquired for anatomical references using a magnetization-prepared rapid gradient-echo sequence 

with TR=2250 ms, TE=4.18 ms, flip-angle=9, voxel size=1×1×1 mm3. 

Functional MRI data were preprocessed by using Statistical Parametric Mapping 

(SPM12, Welcome Trust Centre, London, http://www.fil.ion.ucl.ac.uk/spm). The preprocessing 

steps involved slice timing correction, motion correction, co-registration to individual anatomical 

image, and normalization to Montreal Neurological Institute (MNI) template [72]. The spatial 

smoothing of the normalized image was done with an 8-mm isotropic Gaussian kernel. A 

random-effect, model-based, univariate statistical analysis was performed in a two-level 

http://www.fil.ion.ucl.ac.uk/spm
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procedure. At the first level, a separate general linear model (GLM) was specified according to 

the task sequences. The conditions: rest, vocalize pre-learned, vocalize improvised, imagine pre-

learned, and imagine improvised and six motion parameters were included in GLM analysis. The 

six motion parameters were entered as nuisance covariates and were regressed out of the data. 

Individual contrast images from the first-level analysis were then entered into a second-level 

analysis for a separate one-sample t-test, which gives brain activations for that condition versus 

baseline comparison condition. The resulting summary statistical maps were then thresholded 

and overlaid on high-resolution structural images in MNI orientation. The activation clusters 

were identified under the statistical significance p < 0.05, family-wise error (FWE) correction, 

for multiple comparisons correction and cluster extent k > 20; except in improvisation versus 

pre-learned contrasts with p < 0.0005 uncorrected FWE and cluster extent k > 20.   

3.3.3 Network Connectivity analysis   

The regions of interest (ROIs) were based on activation t-maps during overall 

improvisation (vocalize improvised+imagine improvised) compared to overall pre-learned 

(vocalize pre-learned+imagine pre-learned) condition except for primary auditory cortex in the 

temporal region, which is based on our hypothesis. We defined six ROIs, a sphere of 6 mm 

radius in MarsBar (http://marsbar.sourceforge.net/). The center coordinates were: (-54, 11, 17) 

for Broca’s area (BCA) in inferior frontal gyrus (IFG), (-24, -10, 53) for the left lateral premotor 

area (lPMC) in middle frontal gyrus (MFG), (-9, 5, 68) for the left supplementary motor area 

(SMA), (30, -67, -22) for the right cerebellum (RCb), (-54, 11, 29) for the left dorsolateral 

prefrontal cortex (dlPFC) and (63, -10, 2) for the primary auditory cortex in superior temporal 

gyrus (STG).  The time courses from all the voxels within each ROI and all subjects were 

extracted for the above-mentioned experimental task conditions. The ensemble-mean removed 

http://marsbar.sourceforge.net/
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segmented time series from separate voxels; task blocks (for stimulus on period only) and 

subjects were treated as trials for reliable estimates of the network measures. 

3.3.4 Functional connectivity 

Average time series for a trial was calculated for each subject from all ROIs. We then 

calculated pairwise correlation coefficients from trial to trial between two ROIs. To estimate the 

average effect, we used Fisher’s z-transformation [73-75] on correlation values. The correlation 

values were converted to their equivalent Fisher’s z-values (z = arctan h(r)) and computed 

average Fisher’s z-value. The average Fisher’s z-values were then used to calculate the grand 

average z-value, the statistical significance level p, and the corresponding correlation coefficient 

for each pair of ROIs. Inter-regional correlation analysis was performed in overall musical 

improvisation and pre-learned and in vocalize and imagery conditions. 

3.3.5 Directed functional connectivity 

We performed the Granger causality (GC) analysis to characterize the directional 

information flow between ROIs. Blood oxygen level dependent (BOLD) signals are believed to 

originate from smoothing of neuronal activity by the hemodynamic response function [76, 77], 

we constructed hidden neural signals by hemodynamic deconvolution for each ROI data as 

suggested in previous studies [77-81] and used these deconvolved fMRI-BOLD time series for 

directed connectivity calculation. The ensemble-mean removed, segmented deconvolved time 

series from separate voxels and subjects were treated as trials for reliable estimates of the 

network measures. We calculated the frequency-dependent GC spectra [82] for pairs of ROIs. 

The significant GC spectra and hence the significant network interactions were defined by 

setting a GC threshold above the random-noise baseline. We constructed a set of surrogates by 

randomly permuting trial data from each participant and task condition. To compute the GC 
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threshold value, we used a random permutation technique [83, 84], and the threshold value was 

based on the null hypothesis that there was no statistical interdependence between nodes when 

trials were randomized. We computed GC spectra from all possible pairs of ROIs with a 

minimum of 1000 random permutations and picked maximum GC on each permutation. The 

threshold for GC spectra at significance p<10-6 was obtained by fitting the distribution with a 

gamma-distribution function [35], and this threshold value was used to identify a significantly 

active directed network activity among ROIs. Conditional GC analysis was carried to rule out the 

mediated interactions among the ROIs and to retain only the direct network interactions. We also 

computed the time-domain GC values for significantly active network directions from each 

participant and performed paired t-tests on these values to find the significant network 

modulation during the various musical task conditions.  

 

3.4 Results  

3.4.1 Behavioral results 

All recorded pre-learned and improvised vocalizations audio files were analyzed to 

assure the number of notes during the pre-learned and improvised conditions were not 

significantly different. A paired t-test found that there was not any significant difference in note 

count between the two conditions. Imagined tasks were monitored during recording, and later, 

recorded files were examined to make sure there were no confound vocalizations during 

imagined tasks. At the end of each recording session, participants reported that they performed 

the tasks as accurately as possible.  

Any trial or session with improper behavior response time, either too long or too short 

response duration, was not included in data analysis. Trials were monitored during data 



26 

acquisition and compared to the expected length. Based on the tempo given by the metronome 

played at the beginning of each trial, vocalizing or imagining twice the improvisations or the 

melodies, should take about 32 s, so only the trials with durations between 28 s to 38 s were 

included in data analysis. Four participants (participant number: 7, 11, 20, and 23), shown in 

bold italic faces in Table 3.1 had all sessions with improper response time duration and were 

thus excluded from fMRI data analysis. Excluding 4 participants resulted in the mean age ( 

standard deviation (std)) and mean years of experience ( std) from 31.913.6 years and 

21.313.5 years to 30.9±13.3 years and 20.212.8 years respectively. 

In addition, the vocalization trials were rated for accuracy independently by two expert 

jazz musicians not affiliated with the study using the Consensual Assessment Technique [85]. 

Accuracy was rated on a seven-point Likert Scale with 1 being “extremely inaccurate” and 7 

being “highly accurate.” Accuracy for the improvisation trials was defined as “pitches imply 

underlying blues chord progression and rhythms imply a steady pulse.” We should note that due 

to technical difficulties, we only recorded the audio from 13 participants though vocalizations 

were monitored during the data acquisition. Mean ratings ( std) were 6.34 (0.35) and 6.01 

(0.37) for the pre-learned and the improvised vocalizations respectively. Table A.1.1 and Table 

A.1.2 in the appendix include the subject wise and run wise rating details for improvised 

vocalization and prelearned vocalization, respectively.    

3.4.2 Brain activations 

Brain activations were studied with all possible contrasts: vocalize improvised (VI) 

versus vocalize pre-learned (VP), imagine improvised (II) versus imagine pre-learned (IP), 

overall improvisation (VI+II) versus overall pre-learned (VP+IP). Each of these tasks was also 

compared to the rest as a baseline. During each improvisational task, there was significantly 
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higher brain activation compared to pre-learned conditions, but there was no activation the other 

way around. The brain activations during any improvised or pre-learned tasks or any 

combination of tasks were always significantly higher when compared to rest, but no activation 

was observed when comparing rest to the other conditions. Significant brain activations are listed 

in Table 3.2.  

Table 3.2 Brain Activations for various contrasts 

The table includes information about the anatomical locations, cluster sizes, t-value (z-score), 

and MNI coordinates for brain activations during various contrasts. The brain activations listed 

in the table for contrasts compared with rest are under statistical significance p<0.05, FWE 

correction, for multiple comparisons correction, and cluster extent k>20. The brain activations 

that compare two task conditions are for p< 0.0005 (uncorrected FWE) and k>20. 

 

Contrast Cluster 

size 

Brain region Brodmann 

area 

Voxel t 

(z-equivalent) 

MNI 

coordinates 

x, y, z 

 

IMP 

versus 

PL 

115 

98 

 

34 

26 

L SMA 

L BCA (IFG) 

L dlPFC 

L lPMC (MFG) 

R Cb 

Area 6 

Area 44 

Area 9 

Area 6 

5.21 (4.06) 

6.88 (4.62) 

5.07 (3.98) 

4.63 (3.74) 

4.77 (3.82) 

-9, 5, 68 

-57, 11, 17 

-54, 11, 29 

-24, -10, 53 

30, -67, -22 

 

 

IMP 

versus 

Resta 

107 

 

 

49 

34 

 

R Rolandic 

Operculum 

R STG 

R STG 

L SMA 

L STG 

L STG 

L Pons 

Area 4 

Area 41 

 

Area 6 

 

 

 

12.84 (6.50) 

9.04 (5.57) 

8.96 (5.54) 

8.70 (5.46) 

8.45 (5.38) 

8.32 (5.34) 

9.08 (5.58) 

63, -4, 14 

63, -10, 2 

51, -34, 11 

-3, 2, 71 

-57, -4, -4 

-57, -13, 2 

-9, -40, -40 

PL 

versus 

Resta 

51 

 

23 

 

R STG 

R PrCG 

L STG 

L STG 

 8.40 (5.36) 

7.09 (4.90) 

8.48 (5.39) 

6.92 (4.83) 

54, -13, -1 

63, -4, 14 

-54, -16, 2 

-63, -25, 5 



28 

VI 

versus 

VP 

 

39 

 

 

L IFG 

 

 

Area 45 

 

5.62 (4.26) 

 

 

-60, 11, 23 

 

 

 

II 

versus 

IP 

 

127 

 

 

75 

 

 

22 

L IFG 

L MFG 

L PrCG 

R SMA 

L SMA 

L Cingulate Gyrus 

L SFG 

Area 44 

 

 

Area 6 

5.88 (4.39) 

4.45 (3.64) 

4.29 (3.54) 

5.18 (4.04) 

5.03 (3.96) 

4.51 (3.67) 

4.86 (3.87) 

-57, 11, 17 

-45, 2, 41 

-45, -1, 29 

12, 2, 59 

-3, 5, 62 

-12, 5, 50 

-24, -10, 59 

VOC 

versus 

Resta 

62 

 

 

24 

R Rolandic 

Operculum 

R STG 

R STG 

L STG 

 12.66 (6.46) 

9.09 (5.58) 

9.03 (5.56) 

9.36 (5.66) 

63, -4, 14 

45, -22, 8 

54, -13, 2 

-42, -16, 35 

IMG 

versus 

Resta 

27 R SMA 

L SMA 

Area 6 

Area 6 

8.22 (5.31) 

7.16 (4.92) 

3, -1, 68 

-3, -7, 71 

BA, Brodmann area; BCA, Broca’s area; Cb, cerebellum; dlPFC, dorsolateral prefrontal cortex; 

FWE, family-wise error; IFG, inferior frontal gyrus; II, imagery improvisation; IMG, overall 

imagery (II+IP); IMP, overall improvisation (VI+II); IP, imagery prelearned; L, left; lPMC, 

lateral premotor cortex; MFG, middle frontal gyrus; MNI, Montreal Neurological Institute; PL, 

overall prelearned (VP+IP); PoCG, postcentral gyrus; PrCG, precentral gyrus; R, right; SMA, 

supplementary motor area; STG, superior temporal gyrus; VI, vocalized improvisation; VOC, 

overall vocalization (VI+VP); VP, vocalized prelearned 

 

Both imagery and vocalized improvisatory tasks were associated with significant changes 

in the lateral prefrontal cortex (Figure 3.2). During overall improvisation compared to pre-

learned condition, we observed widespread activations in left inferior frontal gyrus (IFG) that 

included the Broca’s area (BCA), referred as IFG unless it is stated, dorsolateral prefrontal cortex 

(dlPFC), motor areas; lateral premotor cortex (lPMC) in middle frontal gyrus (MFG), referred as 

MFG and left supplementary motor area (SMA) plus the right cerebellum (RCb) (Figure 3.3). 

Maximum probability mapping using SPM Anatomy toolbox (http://www.fz-juelich.de/inm/inm-

1/EN/Forschung/_docs/SPMAnatomyToolbox/SPMAnatomyToolbox_node.html) further 

confirmed the higher and significant Broca’s activation in IFG during improvisation (Figure 

3.4).  

http://www.fz-juelich.de/inm/inm-1/EN/Forschung/_docs/SPMAnatomyToolbox/SPMAnatomyToolbox_node.html
http://www.fz-juelich.de/inm/inm-1/EN/Forschung/_docs/SPMAnatomyToolbox/SPMAnatomyToolbox_node.html
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Figure 3.2 Brain Activations during vocalized and imagery improvisation   

The brain activations for improvised vocalization (VI) versus pre-learned vocalization (VP) and 

improvised imagery (II) versus pre-learned imagery (IP) 

 

Figure 3.3 Brain Activations during overall improvisation 

The brain activations for overall improvised performance (vocalized improvisation plus imagery 

improvisation) versus overall prelearned performance (vocalized prelearned plus imagery 

prelearned). The color intensity represents t-statistics, and the activations are overlaid on the 

Montreal Neurological Institute structural template brain in neurological orientation.  

Cb, cerebellum, lPMC, lateral premotor cortex, SMA, supplementary motor area, and IFG, 

inferior frontal gyrus, includes both Broca’s area (BCA) and dorsolateral prefrontal cortex 

(dlPFC) 
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Figure 3.4 Maximum probability mapping 

The overlap between the activation clusters and brain structures defined with maximum 

probability mapping in SPM Anatomy, the overlaid color cluster represents the functional 

activations on Broca’s area (BCA) in the left inferior frontal gyrus (IFG) during improvisation 

compared to prelearned condition. Hotter the color, higher activation.  

 

3.4.3 Network activity 

We performed connectivity analysis among the six nodes: IFG, dlPFC, lPMC, SMA, 

RCb, and superior temporal gyrus (STG, primary auditory cortex). Inter-regional correlation 

analysis, as described earlier, was used to see whether these regions were functionally connected. 

Figure 3.5 shows the functional connectivity during pre-learned (PL) and improvisation (IMP) 

condition, indicating that there was less functional connectivity during IMP compared to PL. 

Figure 3.6 shows the functional connectivity during vocalize (VOC) and imagery (IMG) 

conditions; we found less functional connectivity during imagery compared to vocalize. Only the 
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functionally significant connections (significance level, p < 0.05) are shown in the figures with 

their corresponding correlation coefficient and p-values.  

 

Figure 3.5 Functional connectivity during prelearned and improvised condition 

Functional connectivity during overall prelearned (PL) performance (vocalize prelearned plus 

imagery prelearned), and overall improvised (IMP) performance (vocalized improvisation plus 

imagery improvisation). Only functionally significant connections (p<0.05) are shown here with 

corresponding correlation coefficient r and p-value. IFG, Broca’s area at inferior frontal gurus, 

lPMC, lateral premotor cortex, RCb, right cerebellum, STG, primary auditory region at superior 

temporal gyrus, SMA, supplementary motor area, dlPFC, dorsolateral prefrontal cortex 
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Figure 3.6 Functional connectivity during vocalized and imagery condition 

Functional connectivity during overall vocalization (VOC) (prelearned vocalization plus 

improvised vocalization) and overall imagery (IMG = prelearned imagery+improvised imagery) 

task within musical improvisation and prelearned performances. Only functionally significant 

connections (p < 0.05) are shown in the figures with their corresponding correlation coefficient 

r and p-value. 

 

We computed GC spectra to assess directional network interactions among the six nodes. 

Pairwise-GC spectra were calculated separately for the improvised and pre-learned conditions, 

both including vocalize and imagery conditions. We used the permutation threshold criteria to 

find significant causal interaction directions (details in Materials and Methods, subsection 3.3.5). 

The significant causal connections (schematic representation) with significant functional 

connections among these nodes are shown in Figure 3.7. Figure 3.7 shows the significant 
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network interactions during PL (left panel) and IMP (right panel) conditions. The thickness of 

the line represents the strength of the causal interactions, as shown in each plot. The node 

pointed to by the arrowhead receives the causal influence from the node that line starts from. 

During pre-learned conditions, we found bidirectional interactions between dlPFC to all other 

nodes except RCb and SMA. Unidirectional causal influence was found from RCb to SMA. 

There were unidirectional causal influences from IFG to SMA, IFG to lPMC and IFG to RCb, 

which were found mediated from other nodes and hence were ruled out. We found significant 

unidirectional causal influence from STG to other nodes except to RCb (no functional correlation 

between STG and RCb, Figure 3.5). During improvisation (right panel in Figure 3.7), the 

network interactions from dlPFC to STG and SMA to RCb were ruled out as they were found to 

be mediated. During improvisation, we found the bidirectional interactions from dlPFC and RCb, 

unidirectional causal influence from dlPFC, and STG to lPMC and from lPMC to SMA.  

 

Figure 3.7 Network interaction during prelearned and improvised condition 
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Schematic representation of significant causal interaction directions among six nodes. The 

significant causal interaction for overall prelearned (PL) performance and overall improvised 

(IMP) performance, as determined by using permutation threshold criteria (p<10-6), are shown 

by a solid line with an arrowhead; the width of the line represents the connection strengths 

(maximum Granger Causality values), thicker the lines more the causal strength. The red stars 

(left panel) represent an increase in network interaction directions (p<0.05) when the causal 

strength during overall prelearned is compared with overall improvisation. 

 

We performed the analysis to find out how causal interactions changed during different 

task conditions. The time-domain GC values calculated from the entire frequency range from all 

the participants were compared across task conditions for statistical significance using paired t-

tests. When the causal interaction strengths during pre-learned were compared to the causal 

interaction strengths during improvisation condition, the directed interactions from dlPFC and 

RCb to SMA were found significantly increased (p<0.05) and is indicated by a red star (Figure 

3.7). No other interaction directions changed significantly. We also compared the causal 

interaction strengths between task conditions (imagine and vocalize) within musical IMP and PL. 

We found significant increases (p<0.05) in bidirectional interactions between dlPFC and SMA 

and unidirectional interaction from RCb to SMA during vocalize pre-learned condition compared 

to vocalize improvised condition, as marked by a red star (left panel, Figure 3.8). During 

imagine pre-learned compared to imagine improvised significant increases (p<0.05) in the 

directed causal interactions were found from Broca’s area (IFG) to RCb and SMA, and dlPFC to 

SMA as marked by a red star (right panel, Figure 3.8). We showed only the directions, which 
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are functionally connected with task conditions, and causal interactions are significant, ruling out 

the mediated interaction from the conditional GC analysis.          

 

Figure 3.8 Network interaction during vocalized and imagery condition 

Network interaction modulation. Significant changes in network interactions (p<0.05) are 

marked with a red star during vocalized prelearned compared with vocalized improvisation in 

the left panel (VOC), and imagery prelearned compared with imagery improvised in the right 

panel (IMG). A red star represents the increase in network interaction.      

 

3.5 Discussion                                                                                                                                  

Here we investigated fMRI BOLD responses during vocalized or imagined musical 

performance of melodies retrieved from memory (pre-learned condition) followed by 

improvisations (improvised condition) on the same chordal structure. In the current paradigm 

improvised and pre-learned conditions, both gave rise to similar motor actions, only the mode of 
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creation was different. The neural correlates behind this difference were the focus of the current 

research. We found that musical improvisation is characterized by significant changes in frontal 

cortices, increased widespread activity in the left IFG including Broca’s area (BCA), dlPFC, and 

extended to the motor areas lPMC in the middle frontal gyrus (MFG), SMA and RCb (Figures 

3.2, 3.3 and 3.4). Interestingly, the functional connectivity, as measured by correlations, was 

significantly less during improvisation (Figure 3.5). The causal interaction strengths during pre-

learned conditions from dlPFC and RCb to SMA were significantly increased compared to the 

improvisation (Figure 3.7). Furthermore, we found the significant increase in the directed causal 

interactions from dlPFC and RCb to SMA (left panel, Figure 3.8) during vocalize pre-learned 

compared to vocalize improvised, and from IFG to RCb and SMA, and dlPFC to SMA (right 

panel, Figure 3.8) during imagine pre-learned compared to imagine improvised. Below we 

discuss why improvisation leads to increased node activation but decreased connectivity from 

higher-level prefrontal control to motor planning areas. 

Cognitive processes underpinning musical improvisation include fitting responses to an 

overall architectural structure, combining discrete chunks into an action chain, and selecting 

individual auditory and motor chunks [45, 64]. The activation of BCA during improvisation in 

the current study may indicate the central role of BCA in the generation, and selection, and 

execution of action sequences. Specifically, BCA has been implicated in higher-order chunking 

mechanisms that are central to hierarchically organized sequences [51]. Tonal music is 

hierarchically organized both according to tonal and rhythmic hierarchies [49], and tonal jazz 

improvisations show statistical distributions similar to other tonal music [86]. Therefore, BCA 

may control the selection and concatenation of auditory chunks that together form a syntactically 

pleasing sequence that displays these hierarchies [47]. However, this interpretation of the 
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activation does not explain why connectivity during improvisation (IMP) is less than during pre-

learned (PL) performance. The regional brain (node) BOLD response can be attributed to: the 

synaptic input to the neuronal population of that region and its intrinsic processing [11, 12]. The 

intrinsic processing dominantly contributes to the overall activity (up to approximately 79%) 

[87]. Consistent with these findings, it is reasonable to assume that the elevated activity in IMP 

compared to PL is most likely to be related to the additional cognitive load fulfilled by intrinsic 

neural processing in each brain area rather than greater coordination among areas as in PL. We 

offer two explanations for this observed phenomenon; one related to Broca’s involvement in 

evaluation processes and another related to the translation of abstract information to motor 

commands. 

It is possible the higher node activity in the cognitive control areas is related to ongoing 

evaluation of ideas [48] but that most of those ideas were initially appropriately alleviating the 

need to communicate corrective information to the motor areas. New research investigating the 

role of IFG in a traditional alternative uses creativity task indeed found that left IFG is 

specifically involved in the evaluation of creative ideas after they have been generated by neural 

structures associated with the default mode network [88]. During musical improvisation, the real-

time demands of the task most likely involve continuous generation with concurrent evaluation 

[89]. This is in opposition to traditional creative tasks like poetry generation [90] and painting 

[91], in which the lack of time constraints allow for the separate generation and evaluation 

stages. In the current study, we postulate that the subjects, who were advanced improvisers with 

extended knowledge of the dictated harmonic context, the bottom-up generative processes served 

up mostly appropriate ideas [61]. Though frontal cortical regions monitored the output more 

closely during improvisation due to the novelty of the generated responses (higher activation), 
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the initial ideas were mostly appropriate. Therefore, the output of the executive network 

evaluation did not need to be communicated to motor regions (less connectivity). On the other 

hand, during the pre-learned condition, an exact auditory picture retrieved from memory was 

constantly being compared to the actual output and detailed adjustments communicated 

continuously from executive control areas to motor planning regions resulting in higher 

connectivity. However, since no retrieval and concatenation of novel output was required, 

activation of the ECN areas was less than in the improvisation condition.  

It has recently been suggested that musical improvisation, as well as other creative 

behaviors, rely on a constructive interplay between the DMN and ECN [46]. Indeed, the 

activation of control areas and the coupling of the ECN and the DMN appears to be directly 

related to the amount of goal-directed processing necessary for the task. Pinho et al. (2016) 

compared two types of improvisation tasks and found a network similar to the network identified 

in the current study (frontal-motor) during a task in which participants were required to use a 

specific pitch set during improvisation. They identified a different network (frontal to DMN) in a 

task in which improvisers were simply required to communicate emotions. In the current study, 

we compared network activity between specified nodes as opposed to Pinho et al. (2016) [64], 

who used a seed region to identity two different networks. In addition, we used the pre-

learned/improvised contrast, whereas Pinho compared two types of improvisation. Nonetheless, 

it is interesting that their pitch set condition pointed to a network where dlPFC was connected to 

motor regions similar to the network we identified. However, we found less connectivity in this 

network during improvisation compared to pre-learned. It may be that the highly-constrained 

pitch set improvisation condition in some ways was more similar to our pre-learned condition. 
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Future research could evaluate the effect of constraints and goal-directedness on top-down 

control and related connectivity during improvisation (Beaty, 2016)[46].   

Another possible explanation for the observed node activation accompanied by attenuated 

connectivity may be related to the role of IFG in translating abstract information to motor 

commands. This process has been described in another domain that is associated with the 

production of hierarchically organized structures: language [92]. The traditional role of BCA as 

related to speech production has recently been investigated further [93]. It appears the area is 

engaged in mediating the interaction between temporal and frontal regions by translating abstract 

information into articulatory code. However, as this code is implemented by the motor cortex, 

BCA is surprisingly silent [93]. In the current study, this same translation of the auditory image 

of the retrieved longer pre-learned melodies into motor commands may account for the increased 

connectivity during the pre-learned condition. Even during imagery, the motor planning areas are 

known to be active, presumably requiring a translation process [94]. Yet, as above, no 

concatenation of novel output following syntactic rules was required in this condition as the pre-

learned melodies are retrieved in a fully intact form (less node activation). We postulate that the 

translation of auditory image to motor commands is needed less during improvisation because 

auditory chunks offered up by the default network are already linked to their related motor 

commands (less connectivity). Yet, BCA is still engaged in concatenation of these chunks (more 

node activation). Future research could investigate this idea by manipulating the links between 

auditory image and motor commands of chunks used during improvisation. This could be done 

in an instrumental improvisation task by changing the key in which improvisations are 

performed from a familiar key where auditory image and motor commands are linked to an 

unfamiliar key [95]. 
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The areas that exhibited increased activation during improvisation in the current study 

were dlPFC, lPMC, SMA, and RCb. The dlPFC is also associated with goal-directed behaviors 

that are consciously monitored, evaluated, and corrected as described above and is a central part 

of the ECN. Specifically, dlPFC may be involved in inhibiting habitual responses [63]. Thus, the 

activation of left dlPFC during improvisation may indicate top-down control, attentional 

monitoring, and evaluation, which are consistent with previous studies and consistent with 

functions of the ECN [47, 60]. The activation of the motor planning areas, lPMC in MFG, and 

SMA during improvisation may be due to the process of selecting single motor acts or single 

sensorimotor associations associated with the hierarchical organization of the human behaviors 

[50]. These areas have also been implicated in previous research involving various music 

improvisation tasks [47]. Finally, the Cb may be associated with movement coordination and 

maintenance of an internal pulse [96, 97]. Cerebellar activation has specifically been observed 

when subjects move to both heard and imagined music [98] 

In the current study, we did not find differential activations in medial prefrontal and 

parietal regions in the pre-learned versus improvisation contrasts [61]. We, therefore, did not find 

a specific support for the activation of the DMN during improvisation [64]. This difference, 

compared to previous findings, is most likely due to the current paradigm using vocalization and 

imagery. Future studies using the current paradigm with a larger sample size should investigate 

both the role of the ECN evidenced in the current study and the complementary contribution of 

the DMN. Furthermore, future studies should investigate the role of expertise using the current 

paradigm. The current sample only included experts, and the available audio recordings of 

improvisations were all judged highly accurate, reflecting both adherence to the underlying 

harmonic progression and rhythmic pulse. The little discrepancy during performances does not 



41 

reflect in cluster level activation in the brain during vocalized improvisation, and the details are 

discussed in Appendix (A.1).  We had audio from only 13 subjects to analyze, and an obvious 

limitation of the current paradigm is the lack of ratings for the imagined trials where only overall 

timing could be used for trial validation. The strength of this study compared to the previous 

studies is that the potential confounds of the overt movement were avoided in musical 

improvisation. Although the brain activations result of contrasting the vocalize-condition with 

the imagine-condition or vice-versa are not considered in the result section, we have looked at 

these contrasts, and the details are discussed in Appendix (A.2).  

 

3.6 Conclusion 

In conclusion, we found differences in activation and connectivity between the closely 

matched performance of prelearned and improvised melodies. To our knowledge, this is the first 

study to investigate this contrast using vocalization and imagery tasks. The observed node 

activations during improvisation appear to confirm the central role of Broca’s area in the creation 

of novel musical output. Yet, the accompanying attenuation of connectivity supports the idea of 

limited top-down control. It is possible that this apparent disassociation between node activity 

and functional connectivity is central to the cognitive underpinnings of real-time creativity.  

 

4 WHITE MATTER FIBER TRACTS AND STRUCTURAL NETWORK  

4.1 Introduction 

Human cognition and behavior arise from neuronal interactions over brain-structural 

networks. These neuronal interactions cause changes in structural networks over time. How a 

creative activity such as musical improvisation performance changes the brain structure is largely 
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unknown. Examining the brain circuitry for creativity by using advanced brain imaging 

techniques has been an active field of research in recent years in efforts to understand the neural 

underpinnings of human creativity. Musical improvisation being one of the most complex forms 

of creative behavior, has been used to understand real-time creativity, where revision is not 

possible. As reviewed in contemporary literature [3, 46, 99], variations in brain activity and 

connectivity refer to the heterogeneity of the participant's background, their learned skills, 

experience, and creative expertise. In a recent neuroimaging study of advanced jazz musicians, 

we explored the divergent brain activation and connectivity patterns during musical 

improvisation and non-improvisation tasks. This functional magnetic resonance imaging (fMRI) 

study revealed higher regional activity in the inferior frontal gyrus (IFG), including the 

dorsolateral prefrontal cortex (dlPFC) and Broca’s area (BCA), lateral premotor cortex (lPMC), 

supplementary motor area (SMA) and cerebellum (Cb), with less functional connectivity in 

number and strength during musical improvisation compared with pre-learned melody [100]. The 

directed functional connectivity further revealed that dominant information flow is from the 

lateral prefrontal cortex to the supplementary motor area in both conditions. The central roles of 

BCA, dlPFC, lPMC, and SMA have been widely discussed in creativity, both in domain-specific 

and domain-general abilities [3]. Although the studies have reported the consistent recruitment of 

the lateral prefrontal cortex and SMA in creative tasks, the network interaction patterns are 

varying across studies. During musical improvisation, the real-time demands of the task most 

likely involve continuous generation with concurrent evaluation [89]. Acquired skills, training, 

experience, and knowledge, enable advanced improvisers to produce spontaneous performances, 

automatically controlling the interplay between perception, attention, and memory. This may 

result in an attenuated network interaction during improvisation, a state that has been referred to 
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as hypofrontality [101].  These processes could result in the observed pattern of increased node 

activation and decreased connectivity during improvisation [100]. 

It is largely unknown how such divergent activity and connectivity patterns in experts 

emerge from the underlying brain structural organization and fiber architecture. While 

considering the dynamic functional states of activity and connectivity during creative 

performances, it is important to consider the behavioral consequences in the microscopic 

structural organization as well, particularly in white matter fiber properties.  To characterize the 

brain structure, studies have investigated the variation in grey matter and white matter properties, 

associated with expert populations related to their cognitive skills, training/practice, experience, 

creativity, and behavioral expertise [102-106]. Despite the growing evidence of structural brain 

differences between musicians and nonmusicians, whether and how the underlying white matter 

fiber properties reflect the neural activity and network interaction is not clearly understood. 

Comparing musicians with nonmusicians, significant differences have been found in the corpus 

callosum, arcuate fasciculus, internal capsule, corticospinal tracts, superior longitudinal 

fasciculus, superior temporal gyrus, cerebellar peduncle, inferior-fronto-occipital fasciculus, 

uncinate fasciculus, inferior longitudinal fasciculus and fiber tracts connecting posterior superior 

temporal gyrus and middle temporal gyrus [102].  

Previous studies have mainly investigated structural pathways and direct fiber trajectories 

in terms of fractional anisotropy (FA), using diffusion tensor imaging (DTI), a method that relies 

on the movement of water molecules (i.e., how fast water molecules move along axonal fiber 

tracts) [14, 15]. Variations in FA in white matter microstructure have been reported at both the 

individual and group levels [107, 108]. But inconsistency in findings across studies might be due 

to types of musician studied, including whether trainee or advanced level, skills, experience & 
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expertise, improvisers or non-improvisers in addition to the properties measured and analysis 

methods. FA provided from the DTI method is an ensemble measurement and suffers from a 

partial volume effect, which may lead to inaccurate anisotropic measurement in complex fiber 

structures such as crossing fibers, free water diffusion in ventricles, and non-diffusive particles 

[44]. Here, we study the brain structural differences between advanced jazz improvisers and 

nonmusicians (control group). We examined the white matter diffusion properties in terms of 

quantitative anisotropy (QA), using the Q-Space diffeomorphic reconstruction (QSDR) approach 

[27, 44] implemented in DSI studio toolbox (http://dsi-studio.labsolver.org/). The QA measure 

used in this study is different than the traditionally used fractional anisotropy (FA). The 

measurement of QA is based on the model-free nonparametric approach, which calculates the 

density distribution of water diffusion. QA is calculated from the peak orientations on a spin 

distribution function and is reported to have lower susceptibility to partial volume effects of 

crossing fibers and free-water, resulting in a better resolution with QA-aided tractography, which 

is known to outperform the FA-aided tractography [28, 44]. Since QA is sensitive to the 

compactness of the fiber bundle, the normalization of QA (NQA) reduces the variability 

resulting in a stabilized spin-density measurement across subjects. In addition to NQA measures, 

we have examined the generalized fractional anisotropy (GFA), whose calculation is also based 

on the orientation distribution function [24] and has a high correlation with FA [109].  

The regional and track-specific analysis is based on the functional network reported in 

our previous fMRI study of the same advanced jazz improvisers [100]. The regional analysis 

includes brain areas dlPFC in IFG, lPMC in MFG, SMA, cerebellum (RCb), and superior 

temporal gyrus (STG), whereas the track-specific connectivity analysis includes the fiber 

pathways connecting those brain areas.  The regional and track-specific fiber architecture were 

http://dsi-studio.labsolver.org/
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investigated using the QSDR approach to test whether there were any significant differences in 

their underlying white matter diffusion properties and how this structural architecture varied 

from the control group of nonmusicians. We compared both the track-specific and regional NQA 

measures of advanced jazz improvisers with a control group of nonmusicians. Secondly, we 

compared the regional and track-specific anisotropy measures of advanced jazz improvisers with 

their brain activity and connectivity pattern, to assess the consistency of the white matter fiber 

integrity and the brain functional states, especially the lateral prefrontal and supplementary 

motor areas and network interaction between those areas. 

 

4.2 Materials and Methods  

4.2.1  Participants 

We studied two groups of healthy adults, matched as closely as possible in gender, age, 

and handedness.  The “improvisation” group consisted of 20 advanced jazz improvisers (mean 

age  standard deviation (sd)=30.9±13.3 years). For jazz-improviser, a criterion for participation 

was expertise in jazz improvisation. Jazz improvisers had at least six years of professional 

experience (mean  sd=20.212.8 years) on jazz improvisation (see Table 3.1). Almost all the 

jazz improvisers had previous education in a University System School of Music; average 

schooling years for all participants was 16.2 years (sd=1.8 years). Improvisors were also required 

to know how to read music. Primary instruments included piano (n=5), saxophone (n=9), guitar 

(n=1), trumpet (n=2), drums (n=1), trombone (n=1) and bass (n=1). The “control” group 

consisted of 20 nonmusicians (mean age  standard deviation (sd)=29.4±4.4 years) who never 

past childhood played a musical instrument and had no previous music education.  

All participants had normal or corrected to normal vision and reported normal 
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neurological history. Participants provided written and signed consent forms and were 

compensated for their participation in the experiment. Institutional Review Board for Joint 

Georgia State University and Georgia Institute of Technology Center for Advanced Brain 

Imaging, Atlanta, Georgia, approved this study.  

4.2.2 Behavioral tests and MRI scanning  

Upon arrival at the testing site, participants provided informed consent and were 

familiarized with brain imaging methods. They went through practice sessions at a mock scanner 

to reduce anxiety and make sure they are comfortable about the MRI before going into the 

scanner for actual diffusion weighted imaging (DWI). They were asked to remain still, not to 

move their head or other parts of their body during the recording. Foam pads were used as 

support in the head coil to constrain head motion.  

4.2.3 Data Acquisition and Preprocessing  

            Diffusion-weighted imaging (DWI) data were acquired along 60 sampling directions. The 

b-value was 1000 s/mm2. The b-value is a factor that measures the degree (strength and timing) 

of the diffusion weighting applied. The slice thickness was 2mm. A pair of images with no 

diffusion weighting (b0 images) was also acquired. We converted DWI data from DICOM to 

NIFTI format by using the dicom to nii (dcm2nii) toolbox part of the MRIcron. During this step, 

a b-value and b-vector file were generated along with the standard NIFTI file. Next, we 

performed standard eddy current correction using the FMRIB Software Library v6.0 processing 

software package (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide) on DWI data for head 

motion and eddy correction. Next, we imported DWI data in DSI-Studio (http://dsi-

studio.labsolver.org/) and examined by a quality control procedure to ensure its integrity and 

quality [110]  

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide
http://dsi-studio.labsolver.org/
http://dsi-studio.labsolver.org/
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4.3 Data Analysis 

4.3.1 Behavioral data analysis  

Behavioral data for advanced jazz improvisers were recorded on the computer that also 

ran the E-prime program displaying the experimental task sequences.  The audio output 

(vocalized melodies and improvisations) was recorded as MP3 files using an fMRI scanner 

compatible microphone. Stimulus onset time and the time between the onset of a condition and 

the button press (start of improvisation) in each trial were recorded. Audio files were analyzed to 

determine participants’ performance accuracy in reproducing the cued melodies. The 

improvisations were evaluated to ensure they implied the dictated blues chord progression. Any 

performed trials or runs with inappropriate duration (taking a long- or short-time duration) were 

dropped and thus not included in data analysis. Behavioral data analysis were already discussed 

in the previous chapter, see details in subsections 3.3.1 and 3.4.1. 

4.3.2 Diffusion weighted imaging data analysis 

For each participant, we estimated the anisotropic diffusion parameters mean GFA and 

mean NQA, using the Q-space diffeomorphic reconstruction (QSDR) approach [28, 44] 

implemented in DSI Studio (http://dsi-studio.labsolver.org). QSDR is a model-free generalized 

Q-sampling imaging (GQI) approach, which calculates the density distribution of water diffusion 

at different orientations using a high- resolution standard brain atlas constructed from 90-

diffusion spectrum imaging datasets in the ICBM-152 space. In QSDR, DSI Studio first 

calculates the quantitative anisotropy (QA) mapping in the native space and then normalizes it to 

the MNI QA map. We performed Quality Check to make sure the “Neighboring DWI 

correlation,” the R-squared values between the subject QA and MNI QA map, were significant 
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enough. The lowest “Neighboring DWI correlation” value was 0.8, which is significantly higher 

than the suggested R-squared value of 0.6. 

A whole brain tractography was performed. A deterministic fiber tracking algorithm [27, 

28, 44] was used. The QA threshold was 0.12. The angular threshold was randomly selected 

from 15 degrees to 90 degrees. The step size was chosen randomly from 0.5 voxels to 1.5 voxels. 

The fiber trajectories were smoothed by averaging the propagation direction with a percentage of 

the previous direction. The percentage was randomly selected from 0% to 95%. Tracks with a 

length shorter than 30 or longer than 200 mm were discarded. A total of 100000 tracts were 

calculated.  We applied Topology-Informed Pruning (TIP), which increases the accuracy by 

using the topology of a tractogram itself to identify the candidate of false connections for 

removal [111]. For each participant, GFA and NQA were estimated for all the possible tracts 

crossing five brain areas, namely the dlPFC, the lPMC, the STG, the RCb, and the SMA and the 

fiber pathways connecting these areas. The dlPFC in this study refers to a combined cluster of  

Brodmann area 9 (dlPFC) and 44 (Broca's area) in the left inferior frontal gyrus (IFG) identified 

in our fMRI study [100]. To ensure consistency across subjects, we normalized the QA measure 

by scaling the subject-wise maximum QA value to 1. Normalization of QA assumes that all the 

subjects have the same compactness of white matter. To avoid any bias among participants, an 

identical set of tracking parameters was used for jazz improvisers and control nonmusicians.   

 

4.4 Results  

4.4.1 Behavioral results  

The behavioral data were analyzed to make sure the task performances of the advanced 

jazz improvisers. Any trial or run with inappropriate performance duration, either too long or too 
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short duration, was not included in the data analysis. Trials were monitored during data 

acquisition and compared with the expected length. Four participants (participant numbers 7, 11, 

20, and 23, shown in bold italic faces in Table 3.1) had all runs with inappropriate performance 

duration and were excluded from fMRI data analysis and thus are also excluded here in diffusion 

weighted imaging data analysis. Excluding those four improvisers resulted in a mean age – SD 

and mean years of experience – SD of 30.9 – 13.3 years and 20.2 – 12.8 years, respectively. The 

“control” group consisted of 20 nonmusicians (mean age  standard deviation (sd)=29.4±4.4 

years) who rarely played a musical instrument and had no previous music education. Behavior 

results for advanced jazz improvisers are already discussed in the previous chapter; see details in 

subsection 3.4.1. 

4.4.2 White matter fiber tracts results  

To determine diffusion parameters, we first performed whole-brain tractography, 

followed by limiting the white matter tracts to those passing through the 5 predefined seed 

regions, namely—the dlPFC, the lPMC, the STG, the RCb, and the SMA, and explored the fiber 

pathways connecting these regions. The selection was based on our previous fMRI study of the 

same advanced jazz improvisers, where these five regions showed higher brain activations 

during improvisation compared to pre-learned [100]. In Figure 4.1, we show fiber tracts crossing 

through seed region dlPFC, and in Figure 4.2, we show the underlying fiber pathways between 

dlPFC and SMA for a representative participant. Here, fibers are colored-coded to represent their 

orientation, where “red” indicates fibers along the X-axis (i.e., left-right), “green” indicates fibers 

along the Y-axis (i.e., anterior-posterior), and “blue” indicates fibers along the Z-axis (i.e., 

inferior–superior). 
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Figure 4.1 Region-based white matter fiber tracts 
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Fiber tracts crossing through seed region dlPFC left dorsolateral prefrontal cortex for a 

representative participant. Tracts shown in red indicate a fiber direction from left to right or vice 

versa. Blue indicates a fiber direction from anterior to posterior or vice versa. Green indicates a 

fiber direction from superior to inferior or vice versa.  

 

 

Figure 4.2 Track-specific white matter fiber tracts 

Fiber pathway connecting dlPFC and SMA for a representative participant. Tracts shown in red 

indicate a fiber direction from left to right or vice versa. Blue indicates a fiber direction from 
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anterior to posterior or vice versa. Green indicates a fiber direction from superior to inferior or 

vice versa. dlPFC, dorsolateral prefrontal cortex, SMA, supplementary motor area 

 

A detailed comparison of diffusion parameters GFA and NQA was performed on fibers 

crossing through the five specified seed regions and the underlying fiber pathways connecting 

them. In Figure 4.3 and Figure 4.4, we show the regional and track-specific NQA for advanced 

jazz improvisers and control nonmusicians. Advanced jazz improvisers showed significantly 

higher NQA measures in lateral prefrontal and motor areas (dlPFC & lPMC) and the fiber 

pathways connecting dlPFC to motor areas (dlPFC-lPMC & dlPFC-SMA), whereas the GFA 

difference between advanced jazz improvisers and nonmusicians was not significant. In Figure 

A.1.2 and Figure A.1.3 in the Appendix, we also show regional and track-specific GFA for 

advanced jazz improvisers and nonmusicians. Further, we checked the consistency of the 

functional interaction pattern of information flow from dlPFC to SMA during task performances, 

as observed in our previous fMRI study [100], with the underlying fiber pathways connecting 

dlPFC and SMA. The dlPFC-SMA fiber pathway in advanced improvisers is enhanced with 

higher NQA measures compared to nonmusicians. In Figure 4.5, we show the result of overall 

dlPFC-SMA directional connectivity, as revealed by the Granger Causality (GC) analysis 

method using our functional MRI data. Similar connectivity results were reported in our previous 

fMRI study [100]. The left panel (A) represents the information flow from dlPFC to SMA during 

pre-learned (PL) and improvised (IMP) conditions, whereas the right panel (B) represents the 

enhanced fiber pathway connecting dlPFC and SMA in advanced jazz improvisers. Interestingly, 

the connectivity is higher the pre-learned condition compared to improvisation between these 

two areas.  
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Figure 4.3 Region-based normalized quantitative anisotropy 

Region-based normalized quantitative anisotropy (NQA) for advanced jazz improvisers and 

control nonmusicians. Compared to nonmusicians, advanced jazz improvisers have significantly 

higher NQA measures in lateral prefrontal regions (dlPFC & lPMC)  
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Figure 4.4 Track-specific normalized quantitative anisotropy 

Track-specific normalized quantitive anisotropy for advanced jazz improvisers and control 

nonmusicians. Compared to nonmusicians, advanced jazz improvisers have significantly higher 

NQA measures in the fiber pathways connecting lateral prefrontal (dlPFC) and motor areas 

(lPMC & SMA) 

 



55 

 

Figure 4.5 Functional and structural network 

Schematic representation of significant causal interaction directions and structural connectivity 

between the dorsolateral prefrontal cortex (dlPFC) and supplementary motor area (SMA).  

(A) Causal flow from dlPFC to SMA during prelearned and improvisation conditions. The red 

stars (left panel) represent an increase in network interaction directions (p<0.05) when the 

causal strength during overall prelearned is compared with overall improvisation. (B) 

Underlying white matter fiber pathway connecting dlPFC and SMA. Overlaid arrowhead 

represents the corresponding causal directionality in the functional network  

 

4.5 Discussion                                                                                                                                                

In this study, we investigated the track-specific and regional fiber tractography of 

advanced jazz improvisers and compared the findings with a control group of nonmusicians. We 

analyzed the anisotropic diffusion properties GFA and NQA for fibers crossing in previously 
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defined brain regions and the underlying fiber pathways connecting them. We found the region-

based fiber crossings and the underlying white matter pathways in advanced improvisers 

characterized by higher fiber integrity (NQA), especially in the frontal motor regions and the 

connecting fiber pathways as compared to nonmusicians. When we checked the consistency of 

the functional interaction pattern of information flow from dlPFC to SMA during task 

performance, with the underlying fiber pathways connecting dlPFC and SMA, we found the 

dlPFC-SMA fiber pathway in advanced improvisers is enhanced with higher NQA measures 

compared to nonmusicians. These results suggest the white matter fiber properties have 

behavioral consequences that reflect the functional architecture of creative expertise. On the 

other hand, we found no significant differences in GFA measures in the frontal motor regions 

and the connecting fiber pathways as compared to nonmusicians.  

Previous DTI studies of musicians have mainly discussed the diffusion properties of the 

underlying white matter microstructure in terms of FA using the probabilistic tractography 

methods. Most of the studies have tended to use the long-range white matter tracts or literature 

driven brain regions as their regions of interest. However, these studies have yielded somewhat 

inconsistent findings, as some report high FA values [112-114] and other reports low FA values 

[115, 116] in musicians and other creative individuals (for a review, see Moore 2014 [102]). 

Such inconsistency may be due to several factors including, methods, types of musicians, 

experience, expertise level, training, skills, and creative potential. In this study, we examined the 

NQA instead of FA using the deterministic fiber tractography, the Q-Space diffeomorphic 

reconstruction (QSDR) approach [27, 44], which calculates the density distribution of water 

diffusion at different orientations. We also examined GFA using the same deterministic QSDR 

method, which is similar to FA. But, the NQA measure used in this study is different than the 
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traditionally used fractional anisotropy (FA). QA is reported to have lower susceptibility to 

partial volume effects of crossing fibers and free-water, resulting in a better resolution with QA-

aided tractography, which outperforms the FA-aided tractography [28, 44]. Since QA is sensitive 

to the compactness of the fiber bundle, the normalization of QA (NQA) reduces the variability 

resulting in stabilizing the spin-density measurement across subjects. On the other hand, 

generalized FA (GFA) suffers from the same partial volume effect as FA, and its value decreases 

in fiber crossing or voxels with partial volume effect [27, 28].  

We found significantly higher NQA in several brain regions of advanced improvisers 

compared to nonmusicians, specifically in dlPFC in IFG, lPMC in MFG, both of which were 

associated with higher node activity during musical improvisation [100]. In addition, the fiber 

pathways connecting these regions are characterized by higher NQA, specifically the fiber 

pathways between the frontal (dlPFC) and motor regions (lPMC & SMA). NQA in the fiber 

pathway between dlPFC and SMA, the connection associated with the information flow during 

musical improvisation, is significantly higher in advanced improvisers compared to 

nonmusicians, suggesting that the underlying fiber integrity may serve as the basis for functional 

connectivity. On the other hand, we found no significant differences in regional GFA measures 

and the connecting fiber pathways in jazz improvisers as compared to nonmusicians in the 

frontal motor regions (dlPFC, lPMC & SMA) and fiber pathways connecting these regions.  

Cognitive processes underpinning musical improvisation include fitting responses to an 

overall architectural structure, first selecting individual auditory and motor chunks, and then 

combining these chunks into an action chain [45, 64]. The areas that exhibited increased 

activation during improvisation in our previous study were dlPFC, lPMC, SMA, and RCb [100]. 

The dlPFC is associated with goal-directed behaviors that are consciously monitored, evaluated, 
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and corrected and is a central part of the executive control network (ECN). Specifically, dlPFC is 

involved in inhibiting habitual responses [117]. The involvement of left dlPFC during musical 

tasks presumably indicates topdown control, attentional monitoring, and evaluation [60, 118]. 

The activation of the motor planning areas lPMC in MFG and SMA during improvisation may 

be due to the process of selecting single motor acts or single sensorimotor associations associated 

with the hierarchical organization of the human behaviors [50]. 

Concerning the connectivity between ECN and motor regions, the elevated white matter 

fiber anisotropy of these regional crossings in advanced jazz improvisers may underline the 

increased performance and activity during creative cognition, working memory tasks, practice, 

and training [113, 119, 120]. Further, the enhanced frontal-motor fiber pathways characterized 

by higher NQA may be due to these behaviors. Although there was less causal effect during 

improvisation compared to pre-learned conditions, net information flow is always from dlPFC to 

SMA in both conditions. The structural connectivity of the advanced jazz improvisers may 

subserve as the basis for their functional interaction during musical tasks. With the highly 

enhanced underlying white matter fiber pathways, the output of the executive network evaluation 

may need minimal communication to motor regions during real-time musical improvisation 

compared to prelearned performance. In other words, enhanced fiber tracts in experts may 

subserve as the basis of efficient execution of their overlearned skills and strategies when it 

comes to creating seemingly novel feats.  

There are several limitations to this study. First, NQA measures yielded significant 

findings compared to the GFA measures, but unfortunately, there is no way to assert the 

accuracy of tractography. However, it is noteworthy that NQA-aided tractography has been 

shown to be a better approach for examining fiber properties, which can filter out noisy fiber 
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tracts and yield results in a higher spatial resolution due to its lower susceptibility to partial 

volume effects [28].  The goal here was to compare the differences between expert jazz 

improvisers and control nonmusicians and explore the underlying white matter architecture 

associated with the functional states during task execution, but future work would benefit from 

comparing the samples of experts from different creative domains and analyze the whole brain 

architecture.  Further, expanding the investigations in other creative domains like literary 

creativity, drawing creativity, dance, etc. might extend the understanding of the structural 

organization in domain-specific and domain-general creativity. 

 

4.6 Conclusion  

         In this study, we investigated the white matter fiber properties of advanced jazz 

improvisers by conducting the QSDR deterministic tractography analysis. The elevated NQA 

measures in advanced jazz improvisers indicate enhanced task-supportive structural connectivity 

in improvisers compared to nonmusicians. The enhanced white matter fiber architecture in 

advanced jazz improvisers is consistent with the frontal to supplementary motor functional 

connectivity, which altogether points to the neural basis of expert’s real-time creative 

performance.  

 

5 SUMMARY  

               The present dissertation investigated the brain functional and structural basis of musical 

creativity of advanced level jazz improvisers using functional MRI and diffusion MRI methods. 

In the functional MRI study, we examined brain activity and connectivity during improvisation 

and compared the findings with the pre-learned condition. In the diffusion MRI study, we 



60 

explored track-specific and region-based white matter fiber properties of advanced jazz 

improvisers and compared the results with nonmusicians.  

            In the functional MRI investigation, the activation analysis showed musical 

improvisation compared with prelearned melody is characterized by significantly higher activity 

in left inferior frontal gyrus (IFG) that included the Broca’s area (BCA), dorsolateral prefrontal 

cortex (dlPFC), motor areas, lateral premotor cortex (lPMC) in middle frontal gyrus (MFG), and 

left supplementary motor area (SMA) plus the right cerebellum (RCb). The cross-correlation 

analysis revealed the functionally correlated connections between these activated regions, higher 

functional connectivity during the pre-learned condition, both in number and strength, compared 

to improvisation. Further, using Granger causality analysis, we discovered the information flow 

pattern during the functional states of improvisatory and pre-learned conditions. Whether it is the 

pre-learned or improvised condition, there is a causal flow from lateral prefrontal regions to 

motor areas, especially from the dorsolateral prefrontal cortex (dlPFC) to supplementary motor 

areas (SMA), and the strength is higher during pre-learned condition compared to improvisation. 

Most of the previous studies revealed the involvement of almost all of the lateral prefrontal, 

frontal, and motor regions during creative tasks but with varying network interaction patterns [3, 

46, 61-64, 99, 103, 117, 118, 121-131]. The inconsistent connectivity pattern might be due to the 

diverse expertise level and the level of cognitive demand during production, memory retrieval, 

information processing, and task execution in real-time. Jazz improvisation being one of the 

complex forms of musical creativity, overall brain activity, and connectivity pattern along with 

the structural changes [103, 113, 132-137], depends on participants' expertise level, skills, and 

knowledge.  
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In diffusion-weighted MRI, the fiber tractography analysis revealed enhanced track-

specific and regional white matter fiber integrity in advanced jazz improvisers compared to 

nonmusicians. Specifically, there was a higher normalized quantitative anisotropy in the lateral 

prefrontal cortex and the supplementary motor area. Using the connectivity measurement, we 

further discovered the white matter structure of advanced jazz improvisers, the enhanced fiber 

pathways connecting the dlPFC and SMA characterized by higher NQA compared to 

nonmusicians. The elevated NQA measures in advanced jazz improvisers indicate enhanced 

task-supportive structural connectivity in improvisers compared to nonmusicians. The enhanced 

white matter fiber architecture in advanced jazz improvisers is consistent with the frontal to 

supplementary motor functional connectivity, which altogether points to the neural basis of 

expert’s real-time creative performance. These results point to the notion that an expert's 

performance under real-time constraints is an internally directed behavior controlled primarily by 

a smaller brain network, that has enhanced task-supportive structural connectivity. Overall, these 

findings suggest that a creative act of an expert is functionally controlled by a smaller cortical 

network as in any internally directed attention and is encapsulated by the long-timescale brain 

structural network changes in support of the related cognitive underpinnings.   

As a primary interest, our fMRI research mainly focused on a functional network 

consisting of brain regions involved in real-time creative behavior (musical improvisation). We 

observed a divergent activity and connectivity pattern (higher activity with less functional 

connectivity) during improvisation, which we think has a strong neurophysiological basis of 

blood-oxygenation dependent (BOLD) fMRI origin.  The regional BOLD response can be 

attributed to the synaptic input to the local neuronal population and its intrinsic processing [11, 

12] that dominantly contributes to the overall activity (up to approximately 79%) [87]. 
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Consistent with these findings, it is reasonable to assume that the ongoing cognitive load is 

fulfilled by undergoing regional intrinsic neural processing resulting in elevated regional activity 

rather than greater coordination among activated regions. On the other hand, the participants in 

our study, who were expert improvisers with extended knowledge of the dictated harmonic 

context, the improvisatory performances benefit from associative bottom-up processes [138] thus 

might be resulting in the attenuated executive control (ECN). We didn’t see such divergent 

activity and connectivity patterns explored in musical creativity (improvisation) literature.  

Future studies should investigate whether and how such patterns exist or vary across domain-

specific or general creative behaviors and whether such patterns vary in participants with 

different levels of expertise.  

Our functional connectivity analysis was mainly based on a specific network of brain 

regions characterized by higher activity during musical improvisation compared to prelearned 

condition. The brain regions with significantly higher activation are mostly localized in the left 

hemisphere, which includes the dorsolateral prefrontal cortex (dlPFC), lateral premotor 

cortex(lPMC), left supplementary area (SMA), Broca’s Area (BCA) in left inferior frontal gyrus 

(IFG). Such a left-lateralized activity pattern in experts aligns with the left-hemispheric 

dominance for internalized tasks, context-dependent habituated behaviors, and processing [138, 

139]. One of the brain regions that we were expecting to see involved during improvisation was 

left medial prefrontal region of default mode network (DMN), whose role is explained in the 

generation of improvised output without conscious involvement in a study of six professional 

pianists where they played a 35-note keyboard [61]. In this case, the DMN may have been able 

to guide improvisational choices due to the high level of improvisational training of the 

participants. Whereas in another study by Donnay et al. (2014) [62] that included expert 
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improvisers, increased activation in frontal control regions is reported, which may be due to the 

extra cognitive resources related to interpreting and responding to another musician during 

improvisation may be responsible for the activation related to the ECN. One should note that the 

regional brain activation may vary in strength and number by changing the level of significance 

and clustering threshold during brain activation analysis, which might influence the network 

level activity and connectivity pattern. The recent improvisation studies are leaning towards 

exploring the whole brain dynamics, has explored the involvement of other brain network like 

salience network, language network in dynamic interplay of the DMN and ECN [137, 140].  

Currently, we are extending our network connectivity analysis further to explore the whole brain 

connectivity dynamics during the constrained, prelearned condition and the free, spontaneous 

improvisation in real-time.  

Although the contemporary research findings suggest some common and distinct 

activations patterns across domain-specific and domain-general creative behaviors, including 

music, drawing, dance, and writing [3], how the individual creative ability, expertise, and quality 

of improvisation influence the neurocognitive dynamics is not clearly understood. Recent SPM-

EEG study of jazz guitarist [138] explored the dual-process model of creativity depending upon 

the dominance and relaxation of the ECN. High-quality improvisations were characterized by 

left frontal-lobe processing, whereas the right hemispheric processing was associated with less 

creative improvisation [138]. Even though we have rated the vocalized audio files (both 

improvised and prelearned melodies) in our study, performances were not rated for the quality, 

but instead, were rated for accuracy using the Consensual Assessment Technique [85]. Accuracy 

for the improvisation trials was defined as “pitches imply underlying blues chord progression 

and rhythms imply a steady pulse.” We should note that due to technical difficulties, we only 
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recorded the audio from 13 participants though vocalizations were monitored during the data 

acquisition.  

In our fMRI study, we incorporated musical imagery, and vocalization task instead of 

play condition to avoid any possible motor confounds during musical improvisation. Even 

without actual play tasks, we found significantly higher activations in premotor and 

supplementary motor areas (lPMC & SMA), and cerebellum, instead of the primary motor 

cortex. Further, the network interaction pattern, unidirectional information flow from dlPFC to 

SMA, and lPMC to SMA adds new insights of action-planning and motor sequencing in real-

time musical creativity, which aligns with the Bashwiner’s musical creativity motor system 

(MCMS) model [141]. The activation of left dlPFC during improvisation may indicate top-down 

control, attentional monitoring, and evaluation, which are consistent with previous studies and 

consistent with functions of the ECN [47, 60].  

Our diffusion MRI investigation was primarily focused on the track-specific and region-

based tractography analysis based on the functional network of brain areas and their connections 

explored in our function MRI investigations.  We mainly explored the anisotropic diffusion of 

white matter fiber tracts in terms of Quantitive Anisotropy (NQA), which is calculated from the 

peak fiber orientations on a spin distribution function [27]. The normalized QA measures in 

white matter fiber tracts of regions in the lateral prefrontal cortex (dlPFC & lPMC) and 

connecting pathways to the supplementary motor area (SMA) were elevated in expert 

improvisers which indicate the enhanced task-supportive frontal-motor structural pathways in 

improvisers. Such consistency between the functional and structural networks reflect the specifc 

brain-behavior architecture of musical improvisation. Future analysis should be directed towards 

the whole-brain connectivity and network dynamics. 
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APPENDICES  

Appendix A 

Appendix A.1 

The vocalization trials were rated for accuracy independently by two expert jazz 

musicians not affiliated with the study using the Consensual Assessment Technique [85]. 

Accuracy was rated on a seven-point Likert Scale with 1 being “extremely inaccurate” and 7 

being “highly accurate”. We analyzed the vocalized audio files of improvisation tasks of 13 

participants and found out that the overall ratings were excellent. Table A.1.1 and Table A.1.2 

includes the subject-wise and run-wise rating details for pre-learned and improvised 

vocalizations, respectively. We sorted their ratings in increasing values, divided 12 participants 

around the median rating into two groups (high-scoring group (HSG) and low scoring group 

(LSG)), and performed activation analyses of vocalized improvisation (VI) comparing these two 

groups. We compared VI_HSG minus VI_LSG and the other way around, and there is not any 

significant difference (p < 0.0005, uncorrected, and cluster extent k > 20) in brain activation 

either way. So, the little discrepancy during the performance does not reflect in cluster 

level activation in the brain during vocalized improvisation. 

If we lower the threshold to a very low (p < 0.01, uncorrected and cluster extent k >5), 

the activation at Brodmann area 40 (postcentral area, a part of Wernicke's area, language 

perception and processing) appears during VI_HSG compared to VI_LSG. There is no activation 

in the other way of contrast.  

           Thus, we do not think that the level of variability in accuracy that we have would affect 

the main results of brain activations.   
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Table A.1.1 Average ratings of improvised vocalization 

 

Participant No. Run 1 Run 2 Run 3 Average 

Rating 

08 
5.333 5.575 5.667 5.6 

09 

6.6 6.5 6.167 6.409 

10 
6 5.833 6.167 6 

12 

6.25 6.167 6 6.136 

13 
6.5 6 5.625 6.045 

15 

5.833 4.875 4.475 5.091 

16 

6.167 6 5 5.889 

17 
6.125 6 6 6.05 

18 

5.875 6 5.875 5.917 

19 
6.617 6.275 5.75 6.122 

21 

5.875 5.875 6 5.917 

22 
6.625 6.75 6.333 6.591 

24 

6.333 6.5 6.125 6.3 

 

Table A.1.2 Average ratings of pre-learned vocalization 

 

Participant No. Run 1 Run 2 Run 3 Average 

Rating 

08 6.838 6.15 6.25 6.373 

09 
7 6.75 6.333 6.727 

10 6.5 6.625 6.5 6.55 

12 
6.125 6.375 6.25 6.25 
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13 6 6.25 6.375 6.208 

15 
5.75 6.125 6.375 6.083 

16 
6.875 6.5 6.667 6.7 

17 6.5 6.333 6.625 6.5 

18 
5.5 5.375 5.375 5.417 

19 6.75 6.625 6.5 6.667 

21 
6.25 6.625 6.375 6.417 

22 6.5 6.875 6.875 6.417 

24 
6.333 6.5 5.625 6.136 

 

Appendix A.2 

               We wanted to avoid potential confounds of overt movement in musical improvisation, 

unlike how it was done in previous studies (already discussed in vocalizing and imagery 

improvisation). For that, we introduced a new imagery task in our study: imagery improvisation 

and singing the pre-learned melody. 

We further looked at brain activations results of contrasting the vocalized improvisation 

(VI) with the imagined improvisation (II) or vice-versa. The results are shown in Figure A.2; for 

II-VI, there is a higher activation in Brodmann area 19 (visual cortex) and Brodmann area 40 

(postcentral area, a part of Wernicke’s language area) and (ii) for VI-VII, there is an activation in 

BA 41 (auditory cortex) and precentral gyrus (motor area) as expected.   
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Figure A.1.1 Brain activations during imagery and vocalized condition 

Left panel shows the brain activation during imagery improvised condition (II) versus vocalize 

improvised condition (VI), whereas the right panel shows the brain activation in other way, i.e., 

vocalize improvised condition (VI) versus imagery improvisation (II) 
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Appendix A.3 

 

Figure A.1.2 Region-based generalized fractional anisotropy 

Region-based subject-averaged generalized fractional anisotropy (GFA) for advanced jazz 

improvisers and control nonmusicians. No significant differences observed in regional GFA 

measures except in fiber crossing of STG. 
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Appendix A.4  

 

Figure A.1.3 Track-specific generalized fractional anisotropy 

Track-specific subject-averaged generalized fractional anisotropy (GFA) for advanced jazz 

improvisers and nonmusicians. No significant differences were observed in GFA measures. 
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