1,125 research outputs found

    Fiber Ring Laser Based on Side-Polished Fiber MZI for Enhancing Refractive Index and Torsion Measurement

    Get PDF
    A fiber ring laser based on a side-polish fiber Mach-Zehnder interferometer (MZI) for effective improving refractive index (RI) and torsion sensing is proposed and investigated. The side-polished fiber MZI sensor can not only enhance the evanescent wave but also break circular symmetry of optical fiber face section, so it can be used for the surrounding RI and torsion sensing. A spectrum 3 dB bandwidth of less than 0.15 nm has been achieved which makes the fiber ring laser torsion sensing system to have higher measurement resolution. Experiment results show that the RI and torsion sensitivity of proposed sensor is dependent on the polish depth: the thicker the polish depth, the higher the sensitivity. For a sensor with side polish depth of 47 μ m, the measured RI sensitivity reaches-81.36 nm/RIU, the torsion sensitivity is as high as-0.019nm/O, the sensitivity converted to torsional rate is-0.267 nm/(rad. m-1)

    Recent Progress in Optical Fiber Research

    Get PDF
    This book presents a comprehensive account of the recent progress in optical fiber research. It consists of four sections with 20 chapters covering the topics of nonlinear and polarisation effects in optical fibers, photonic crystal fibers and new applications for optical fibers. Section 1 reviews nonlinear effects in optical fibers in terms of theoretical analysis, experiments and applications. Section 2 presents polarization mode dispersion, chromatic dispersion and polarization dependent losses in optical fibers, fiber birefringence effects and spun fibers. Section 3 and 4 cover the topics of photonic crystal fibers and a new trend of optical fiber applications. Edited by three scientists with wide knowledge and experience in the field of fiber optics and photonics, the book brings together leading academics and practitioners in a comprehensive and incisive treatment of the subject. This is an essential point of reference for researchers working and teaching in optical fiber technologies, and for industrial users who need to be aware of current developments in optical fiber research areas

    Power system applications of fiber optics

    Get PDF
    Power system applications of optical systems, primarily using fiber optics, are reviewed. The first section reviews fibers as components of communication systems. The second section deals with fiber sensors for power systems, reviewing the many ways light sources and fibers can be combined to make measurements. Methods of measuring electric field gradient are discussed. Optical data processing is the subject of the third section, which begins by reviewing some widely different examples and concludes by outlining some potential applications in power systems: fault location in transformers, optical switching for light fired thyristors and fault detection based on the inherent symmetry of most power apparatus. The fourth and final section is concerned with using optical fibers to transmit power to electric equipment in a high voltage situation, potentially replacing expensive high voltage low power transformers. JPL has designed small photodiodes specifically for this purpose, and fabricated and tested several samples. This work is described

    Contribution to the development of new photonic systems for fiber optic sensing applications

    Get PDF
    En este trabajo de doctorado se presentan nuevos sistemas y subsistemas de sensores de fibra óptica. Así, se proponen y desarrollan nuevas técnicas, componentes y tecnologías basadas en láseres de fibra con espejos distribuidos (random), fibras de cristal fotónico, estructuras de luz lenta, multiplexores de inserción y extracción (add and drop), conmutadores tele-alimentados por luz, reflectometría óptica tanto en el dominio del tiempo como de la frecuencia o filtros ópticos reconfigurables. También se han demostrado nuevas aplicaciones para estructuras de sensores tradicionales y técnicas de medida ya conocidas. Todas ellas dirigidas a la mejora del funcionamiento de los actuales transductores, redes de sensores y aplicaciones de monitorización de salud estructural. De este modo, y en primer lugar, se han desarrollado nuevos transductores puntuales. En concreto, dos sensores interferométricos basados en fibras de cristal fotónico y otro basado en una estructura resonante en anillo. También se han realizado diferentes redes de sensores utilizando OTDRs comerciales. Por un lado, se han multiplexado diferentes sensores utilizando una red en forma de bus y, por el otro, se ha interrogado de manera remota un sensor FLM/LPG a una distancia de 253 km sin necesidad de amplificación. Se han estudiado láseres basados en efecto de realimentación distribuida random (RDFB) para su uso en interrogación de sensores. Para ello, se han demostrado dos nuevos láseres multi-longitud de onda y también, por primera vez, se ha modulado un laser random. Después, se han demostrado experimentalmente varias redes de sensores de fibra óptica teniendo en cuenta los principales desafíos que estas presentan: multiplexar varios sensores en una misma red y permitir su monitorización de manera remota. En primer lugar, se han multiplexado sensores basados en la modulación de la intensidad óptica utilizando técnicas de multiplexación en dominio del tiempo. En segundo lugar, se han multiplexado sensores basados en fibras de cristal fotónico. En tercer lugar, se presentan tres nuevos métodos para la medida remota de sensores. Por último, se incluye la demostración de un conmutador de fibra óptica tele-alimentado a través de luz. Éste se utiliza en tres redes diferentes para añadir robustez e incrementar la versatilidad en la multiplexación. Finalmente, se han realizado tres pruebas de campo para aplicaciones de monitorización de salud estructural.In this PhD work, different new photonic systems and subsystems for fiber optic sensing are presented. The aim of this thesis has been to contribute to the fiber optic sensors field using modern techniques, components and technologies such as random fiber lasers, photonic crystal fibers, slow light structures, add and drop multiplexers, powered by light switches, optical frequency and time domain reflectometry or reconfigurable optical filters, among others. New applications of traditional sensing structures or techniques have been also demonstrated. All of them focused on improving the performance of current sensors transducers, multiplexing networks and structural health monitoring applications. Thus, new point transducers have been developed: two of them are interferometric sensors based on photonic crystal fibers; and another one is based on a fiber ring resonator structure. Fiber optic sensor networks using commercial OTDRs have been also explored. On the one hand, different sensors have been successfully multiplexed in the same bus network. And, on the other hand, a FLM/LPG sensor was remotely interrogated at a distance of 253 km without using amplification. Random distributed feedback (RDFB) lasers have been explored for sensors interrogation. Two multi-wavelength Raman fiber lasers suitable for sensors interrogation have been demonstrated. Also, a random fiber laser has been internally modulated for the first time. Then, some experimental demonstrations of fiber optic sensors networks have been carried out taking into account the principal challenges they pose: multiplexing a number of optical sensors in a single networks, and enabling the possibility of remote sensing. Firstly, intensity sensors using TDM technology have been multiplexed. Secondly, PCF sensors have been successfully multiplexed. Thirdly, three new approaches to enable remote sensing are presented. Finally, a remote powered by light fiber optic switch have been included in three networks in order to add robustness and multiplexing versatility.Este trabajo se ha llevado a cabo gracias a las aportaciones económicas recibidas de los siguientes organismos, entre otros: - Secretaría de Estado de Investigación, Desarrollo e Innovación, Ministerio de Economía y Competitividad de España a través del programa de Formación del Personal Investigador y asociado al proyecto de investigación TEC2010-20224-C02-01. - Universidad Pública de Navarra mediante las ayudas a tesis doctorares. - Acción Europea COST- TD1001: Novel and Reliable Optical Fibre Sensor Systems for Future Security and Safety Applications (OFSeSa) - También se ha recibido financiación del Proyecto de Investigación de la Secretaría de Estado de Investigación, Desarrollo e Innovación, Ministerio de Economía y Competitividad de España TEC2013-47264-C2-2-R, de Innocampus, del Proyecto Europeo SUDOE-ECOAL-Intereg Project ECOAL-MGT y de los Fondos FEDER.Programa Oficial de Doctorado en Tecnologías de las Comunicaciones (RD 1393/2007)Komunikazioen Teknologietako Doktoretza Programa Ofiziala (ED 1393/2007

    Design and implementation of a control system for use of galvanometric scanners in laser micromachining applications

    Get PDF
    In the recent years, laser machining technology has been used widely in industrial applications usually with the aim of increasing the production capability of mass production lines - especially for fast marking, engraving type of applications where speed is an important concern - or manufacturing quality of a certain facility by increasing the level of accuracy in material processing applications such as drilling, cutting; or any scientific research oriented work where high precision machining of parts in sub millimeter scale might be required. A galvanometric scanner is a high precision device that is able to steer a laser beam with a mirror attached to a motor, whose rotor angular range is usually limited with tens of degrees in both directions of rotation; and position is controlled either by voltage or current. Due to their lightness, the rotor and the mirror can move very fast, allowing fast marking (burning out) operation with the laser beam. This can be evaluated as a great advantage compared to slower mechanical appliances used for cutting/machining of different materials. This study concentrates on the analysis of galvanometric scanner system components; and the design and implementation of a hardware and software based control system for a dual-axis galvo setup; and their adaptation for use in laser micromachining applications either as a standalone system or a modular subsystem. Analysis part of the thesis work contains: evaluation of dominant laser micromachining techniques, an overview of the galvanometric scanner system based approach and related components (e.g. electromechanical, electrical, optical), understanding of working principles and related simulation work, compatibility issues with the target micromachining applications. Design part of the thesis work includes: the design and implementation of electronic controller board, intermediate drive electronics stage, microcontroller programming for machining control algorithm, interfacing with graphical user interface based control software and production of necessary mechanical parts. The study has been finalized with experimental work and evaluation of obtained results. The results of these studies are promising and motivate the use of laser galvanometric scanner systems in laser micromachining applications

    Review of photoacoustic imaging plus X

    Full text link
    Photoacoustic imaging (PAI) is a novel modality in biomedical imaging technology that combines the rich optical contrast with the deep penetration of ultrasound. To date, PAI technology has found applications in various biomedical fields. In this review, we present an overview of the emerging research frontiers on PAI plus other advanced technologies, named as PAI plus X, which includes but not limited to PAI plus treatment, PAI plus new circuits design, PAI plus accurate positioning system, PAI plus fast scanning systems, PAI plus novel ultrasound sensors, PAI plus advanced laser sources, PAI plus deep learning, and PAI plus other imaging modalities. We will discuss each technology's current state, technical advantages, and prospects for application, reported mostly in recent three years. Lastly, we discuss and summarize the challenges and potential future work in PAI plus X area

    Fabrication and characterisation of 45º and Ex 45º:tilted fibre gratings and their applications in fibre lasers and sensors

    Get PDF
    In this thesis, I present the studies on fabrication, spectral and polarisation characterisation of fibre gratings with tilted structures at 45º and > 45º (namely 45º- TFGs and ex 45º-TFGs throughout this thesis) and a range of novel applications with these two types of grating. One of the major contributions made in this thesis is the systematic investigation of the grating structures, inscription analysis and spectral and polarisation properties of both types of TFGs. I have inscribed 45º-TFGs in standard telecom and polarisation maintaining (PM) fibres. Two wavelength regions of interest have been explored including 1.55 µm and 1.06 µm. Detailed analysis on fabrication and characterisation of 45º-TFGs on PM fibres have also been carried out for the first time. For ex 45º- TFGs, fabrication has been investigated only on low-cost standard telecom fibre. Furthermore, thermal responses have been measured and analysed showing that both types of TFG have low responsivity to temperature change. More importantly, their refractive index (RI) responses have been characterised to verify the high responsivity to surrounding medium. Based on the unique polarisation properties, both types of TFG have been applied in fibre laser systems to improve the laser performance, which forms another major contribution of the research presented in this thesis. The integration of a 45º-TFG to the Erbium doped fibre laser (EDFL) enables single polarisation laser output at a single wavelength. When combing with ex 45º-TFGs, the EDFL can be transformed to a multi-wavelength switchable laser with single polarisation output. Furthermore, by utilising the polarisation property of the TFGs, a 45º-TFG based mode locked fibre laser is implemented. This laser can produce laser pulses at femtosecond scale and is the first application of TFG in the field of nonlinear optics. Another important contribution from the studies is the development of TFG based passive and active optical sensor systems. An ex 45º-TFG has been successfully developed into a liquid level sensor showing high sensitivity to water based solvents. Strain and twist sensors have been demonstrated via a fibre laser system using both 45°- and ex 45º-TFG with capability identifying not just the twist rate but also the direction. The sensor systems have shown the added advantage of low cost signal demodulation. In addition, load sensor applications have been demonstrated using the 45º-TFG based single polarisation EDFL and the experimental results show good agreement with the theoretical simulation

    Manufacturing Metrology

    Get PDF
    Metrology is the science of measurement, which can be divided into three overlapping activities: (1) the definition of units of measurement, (2) the realization of units of measurement, and (3) the traceability of measurement units. Manufacturing metrology originally implicates the measurement of components and inputs for a manufacturing process to assure they are within specification requirements. It can also be extended to indicate the performance measurement of manufacturing equipment. This Special Issue covers papers revealing novel measurement methodologies and instrumentations for manufacturing metrology from the conventional industry to the frontier of the advanced hi-tech industry. Twenty-five papers are included in this Special Issue. These published papers can be categorized into four main groups, as follows: Length measurement: covering new designs, from micro/nanogap measurement with laser triangulation sensors and laser interferometers to very-long-distance, newly developed mode-locked femtosecond lasers. Surface profile and form measurements: covering technologies with new confocal sensors and imagine sensors: in situ and on-machine measurements. Angle measurements: these include a new 2D precision level design, a review of angle measurement with mode-locked femtosecond lasers, and multi-axis machine tool squareness measurement. Other laboratory systems: these include a water cooling temperature control system and a computer-aided inspection framework for CMM performance evaluation
    corecore