62,685 research outputs found

    A Fundamentally Irreversible World as an Opportunity towards a Consistent Understanding of Quantum and Cosmological Contexts

    Get PDF
    In a preceding publication a fundamentally oriented and irreversible world was shown to be de- rivable from the important principle of least action. A consequence of such a paradigm change is avoidance of paradoxes within a “dynamic” quantum physics. This becomes essentially possible because fundamental irreversibility allows consideration of the “entropy” concept in elementary processes. For this reason, and for a compensation of entropy in the spread out energy of the wave, the duality of particle and wave has to be mediated via an information self-image of matter. In this publication considerations are extended to irreversible thermodynamics, to gravitation and cos- mology with its dependence on quantum interpretations. The information self-image of matter around particles could be identified with gravitation. Because information can also impose an al- ways constant light velocity there is no need any more to attribute such a property to empty space, as done in relativity theory. In addition, the possibility is recognized to consider entropy genera- tion by expanding photon fields in the universe. Via a continuous activation of information on matter photons can generate entropy and release small energy packages without interacting with matter. This facilitates a new interpretation of galactic redshift, emphasizes an information link between quantum- and cosmological phenomena, and evidences an information-triggered origin of the universe. Self-organized processes approach maximum entropy production within their constraints. In a far from equilibrium world also information, with its energy content, can self- organize to a higher hierarchy of computation. It is here identified with consciousness. This ap- pears to explain evolution of spirit and intelligence on a materialistic basis. Also gravitation, here identified as information on matter, could, under special conditions, self-organize to act as a su- per-gravitation, offering an alternative to dark matter. Time is not an illusion, but has to be understood as flux of action, which is the ultimate reality of change. The concept of an irreversible physical world opens a route towards a rational understanding of complex contexts in nature

    An Energy Efficient Semi-static Power Control and Link Adaptation Scheme in UMTS HSDPA

    Get PDF
    High speed downlink packet access (HSDPA) has been successfully applied in commercial systems and improves user experience significantly. However, it incurs substantial energy consumption. In this paper, we address this issue by proposing a novel energy efficient semi-static power control and link adaptation scheme in HSDPA. Through estimating the EE under different modulation and coding schemes (MCSs) and corresponding transmit power, the proposed scheme can determine the most energy efficient MCS level and transmit power at the Node B. And then the Node B configure the optimal MCS level and transmit power. In order to decrease the signaling overhead caused by the configuration, a dual trigger mechanism is employed. After that, we extend the proposed scheme to the multiple input multiple output (MIMO) scenarios. Simulation results confirm the significant EE improvement of our proposed scheme. Finally, we give a discussion on the potential EE gain and challenge of the energy efficient mode switching between single input multiple output (SIMO) and MIMO configuration in HSDPA.Comment: 9 pages, 11 figures, accepted in EURASIP Journal on Wireless Communications and Networking, special issue on Green Radi

    Set-up and study of a networked control system

    Get PDF

    Evaluation of cross-layer reliability mechanisms for satellite digital multimedia broadcast

    Get PDF
    This paper presents a study of some reliability mechanisms which may be put at work in the context of Satellite Digital Multimedia Broadcasting (SDMB) to mobile devices such as handheld phones. These mechanisms include error correcting codes, interleaving at the physical layer, erasure codes at intermediate layers and error concealment on the video decoder. The evaluation is made on a realistic satellite channel and takes into account practical constraints such as the maximum zapping time and the user mobility at several speeds. The evaluation is done by simulating different scenarii with complete protocol stacks. The simulations indicate that, under the assumptions taken here, the scenario using highly compressed video protected by erasure codes at intermediate layers seems to be the best solution on this kind of channel

    Mixed-signal CNN array chips for image processing

    Get PDF
    Due to their local connectivity and wide functional capabilities, cellular nonlinear networks (CNN) are excellent candidates for the implementation of image processing algorithms using VLSI analog parallel arrays. However, the design of general purpose, programmable CNN chips with dimensions required for practical applications raises many challenging problems to analog designers. This is basically due to the fact that large silicon area means large development cost, large spatial deviations of design parameters and low production yield. CNN designers must face different issues to keep reasonable enough accuracy level and production yield together with reasonably low development cost in their design of large CNN chips. This paper outlines some of these major issues and their solutions
    corecore