1,317 research outputs found

    An optimized algorithm of image stitching in the case of a multi-modal probe for monitoring the evolution of scars

    No full text
    International audienceWe propose a new system that makes possible to monitor the evolution of scars after the excision of a tumorous dermatosis. The hardware part of this system is composed of a new optical innovative probe with which two types of images can be acquired simultaneously: an anatomic image acquired under a white light and a functional one based on autofluorescence from the protoporphyrin within the cancer cells. For technical reasons related to the maximum size of the area covered by the probe, acquired images are too small to cover the whole scar. That is why a sequence of overlapping images is taken in order to cover the required area. The main goal of this paper is to describe the creation of two panoramic images (anatomic and functional). Fluorescence images do not have enough salient information for matching the images; stitching algorithms are applied over each couple of successive white light images to produce an anatomic panorama of the entire scar. The same transformations obtained from this step are used to register and stitch the functional images. Several experiments have been implemented using different stitching algorithms (SIFT, ASIFT and SURF), with various transformation parameters (angles of rotation, projection, scaling, etc...) and different types of skin images. We present the results of these experiments that propose the best solution. Thus, clinician has two panoramic images superimposed and usable for diagnostic support. A collaborative layer is added to the system to allow sharing panoramas among several practitioners over different places

    A study of smart device-based mobile imaging and implementation for engineering applications

    Get PDF
    Title from PDF of title page, viewed on June 12, 2013Thesis advisor: ZhiQiang ChenVitaIncludes bibliographic references (pages 76-82)Thesis (M.S.)--School of Computing and Engineering. University of Missouri--Kansas City, 2013Mobile imaging has become a very active research topic in recent years thanks to the rapid development of computing and sensing capabilities of mobile devices. This area features multi-disciplinary studies of mobile hardware, imaging sensors, imaging and vision algorithms, wireless network and human-machine interface problems. Due to the limitation of computing capacity that early mobile devices have, researchers proposed client-server module, which push the data to more powerful computing platforms through wireless network, and let the cloud or standalone servers carry out all the computing and processing work. This thesis reviewed the development of mobile hardware and software platform, and the related research done on mobile imaging for the past 20 years. There are several researches on mobile imaging, but few people aim at building a framework which helps engineers solving problems by using mobile imaging. With higher-resolution imaging and high-performance computing power built into smart mobile devices, more and more imaging processing tasks can be achieved on the device rather than the client-server module. Based on this fact, a framework of collaborative mobile imaging is introduced for civil infrastructure condition assessment to help engineers solving technical challenges. Another contribution in this thesis is applying mobile imaging application into home automation. E-SAVE is a research project focusing on extensive use of automation in conserving and using energy wisely in home automation. Mobile users can view critical information such as energy data of the appliances with the help of mobile imaging. OpenCV is an image processing and computer vision library. The applications in this thesis use functions in OpenCV including camera calibration, template matching, image stitching and Canny edge detection. The application aims to help field engineers is interactive crack detection. The other one uses template matching to recognize appliances in the home automation system.Introduction -- Background and related work -- Basic imaging processing methods for mobile applications -- Collaborative and interactive mobile imaging -- Mobile imaging for smart energy -- Conclusion and recommendation

    Adaptative Image Flow in Collaborative Medical Telediagnosis Environments

    No full text
    International audienceTelemedicine, the application of telecommunication in the medicine field, has been developed to meet major problems encountered in connecting doctors with patients and other medical staff. Having a robust and efficient telemedical system has always been a challenge. The system needs to make the members in different locations capable of sharing medical data efficiently and without errors. In this work, we present a telemedical system that overcomes these challenges.We deploy a collaborative system and adapt data to store, visualize, modify and transfer fluorescence images efficiently and robustly at the same time. We also make the system adaptive to communicate across different client platforms. We conduct experiments comparing our method with traditional collaborative system, and all results confirm our system is over others in terms of efficiency and robustness

    MusA: Using Indoor Positioning and Navigation to Enhance Cultural Experiences in a museum

    Get PDF
    In recent years there has been a growing interest into the use of multimedia mobile guides in museum environments. Mobile devices have the capabilities to detect the user context and to provide pieces of information suitable to help visitors discovering and following the logical and emotional connections that develop during the visit. In this scenario, location based services (LBS) currently represent an asset, and the choice of the technology to determine users' position, combined with the definition of methods that can effectively convey information, become key issues in the design process. In this work, we present MusA (Museum Assistant), a general framework for the development of multimedia interactive guides for mobile devices. Its main feature is a vision-based indoor positioning system that allows the provision of several LBS, from way-finding to the contextualized communication of cultural contents, aimed at providing a meaningful exploration of exhibits according to visitors' personal interest and curiosity. Starting from the thorough description of the system architecture, the article presents the implementation of two mobile guides, developed to respectively address adults and children, and discusses the evaluation of the user experience and the visitors' appreciation of these application

    Panoramic Human Structure Maintenance based on Invariant Features of Video Frames

    Get PDF
    [[abstract]]Panoramic photography is becoming a very popular and commonly available feature in the mobile handheld devices nowadays. In traditional panoramic photography, the human structure often becomes messy if the human changes position in the scene or during the combination step of the human structure and natural background. In this paper, we present an effective method in panorama creation to maintain the main structure of human in the panorama. In the proposed method, we use an automatic method of feature matching, and the energy map of seam carving is used to avoid the overlapping of human with the natural background. The contributions of this proposal include automated panoramic creation method and it solves the human ghost generation problem in panorama by maintaining the structure of human by energy map. Experimental results prove that the proposed system can be effectively used to compose panoramic photographs and maintain human structure in panorama.[[incitationindex]]SCI[[booktype]]電子

    High-Resolution Images with Minimum Energy Dissipation and Maximum Field-of-View in Camera-Based Wireless Multimedia Sensor Networks

    Get PDF
    High-resolution images with wide field of view are important in realizing many applications of wireless multimedia sensor networks. Previous works that generally use multi-tier topology and provide such images by increasing the capabilities of camera sensor nodes lead to an increase in network cost. On the other hand, the resulting energy consumption is a considerable issue that has not been seriously considered in previous works. In this paper, high-resolution images with wide field of view are generated without increasing the total cost of network and with minimum energy dissipation. This is achieved by using image stitching in WMSNs, designing a two-tier network topology with new structure, and proposing a camera selection algorithm. In the proposed two-tier structure, low cost camera sensor nodes are used only in the lower-tier and sensor nodes without camera are considered in the upper-tier which decreases total network cost as much as possible. Also, since a simplified image stitching method is implemented and a new algorithm for selecting active nodes is utilized, energy dissipation in the network is decreased by applying the proposed methods. The results of simulations supported the preceding statements
    corecore