159 research outputs found

    Prediction and Detection of Freezing of Gait in Parkinson's Disease using Plantar Pressure Data

    Get PDF
    Parkinson’s disease (PD) is a progressive neurodegenerative disorder affecting movement and is characterized by symptoms such as tremor, rigidity, and Freezing of Gait (FOG). FOG is a walking disturbance seen in more advanced stages of PD. FOG is characterized by the feeling of feet being glued to the ground and has been associated with higher risks of falls. While falling can have great repercussions in individuals with PD, leading to restricted movement and independence, hip fracture, and fatal injury, even the disturbance of FOG alone can lead to decreased mobility, inactivity, and decreased quality of life. Determining methods to counter FOG can potentially lead to a better life for people with PD (PwPD). Freezing episodes can be countered with the help of external intervention such as visual or auditory cues. Such intervention when administered during the freeze has been found to alleviate the freeze and thus prevent freeze-related falls. This sheds the importance of detecting or predicting a freeze event. Once a freeze is detected or predicted, an intervention can be administered to help prevent the freeze altogether (in case of prediction) or help resume normal walking (in case of detection). Different wearable sensors have been used to collect data from participants to understand FOG and develop approaches to detect and predict it. Plantar pressure data has earlier been used in gait related studies; however, they have not been used for FOG detection or prediction. Based on the hypothesis that plantar pressure data can capture subtle weight shifts unique to FOG episodes, this research aimed to determine if plantar pressure data alone can be used to detect and predict FOG. In this research, plantar (foot sole) pressure data were collected from shoe-insole sensors worn by 11 participants with PD as they walked a predefined freeze-provoking path while on their normal antiparkinsonian medication. The sensors included IMU, EMG, and plantar pressure foot insoles; however, for the research in this thesis, only plantar pressure data were used. The walking trials were also video recorded for labelling the data. A custom-built application was used to synchronize data from all sensors and label them. This was followed by feature extraction, dataset balancing, and z-score normalization. The datasets generated were then classified using Long-short term memory (LSTM) networks. The best model had an average 82.0% (SD 6.25%) sensitivity and 89.4% (SD 3.60%) specificity for one-freezer-held-out cross validation tests. For the participants who did not freeze during the walking trials, an average 87.7% specificity was achieved. Since, FOG detection is done with the aim to provide an intervention, a freeze episode analysis was completed, and it was found that the model could correctly detect 95% of freeze episodes. The misclassified freezes and false positives were analyzed with respect to active (walking and turning) and inactive states (standing). The model’s specificity performance for one-freezer held out cross validation tests was found to improve to 93.3% when analyzing the model only on active states. FOG prediction was done afterwards, including data before FOG (labelled Pre-FOG) in the target class. The best FOG prediction method achieved an average 74.02% (SD 12.48%) sensitivity and 82.99% (SD 5.75%) specificity for one-freezer-held-out cross validation tests. The research showed that plantar pressure data can be successfully used for FOG detection and prediction. Moving away from window-based model also helped the research in reducing the freeze detection latency. However, further research is required to improve the FOG prediction performance and a bigger sample size should be used in future research

    Sensor Approach for Brain Pathophysiology of Freezing of Gait in Parkinson\u27s Disease Patients

    Get PDF
    Parkinson\u27s Disease (PD) affects over 1% of the population over 60 years of age and is expected to reach 1 million in the USA by the year 2020, growing by 60 thousand each year. It is well understood that PD is characterized by dopaminergic loss, leading to decreased executive function causing motor symptoms such as tremors, bradykinesia, dyskinesia, and freezing of gait (FoG) as well as non-motor symptoms such as loss of smell, depression, and sleep abnormalities. A PD diagnosis is difficult to make since there is no worldwide approved test and difficult to manage since its manifestations are widely heterogeneous among subjects. Thus, understanding the patient subsets and the neural biomarkers that set them apart will lead to improved personalized care. To explore the physiological alternations caused by PD on neurological pathways and their effect on motor control, it is necessary to detect the neural activity and its dissociation with healthy physiological function. To this effect, this study presents a custom ultra-wearable sensor solution, consisting of electroencephalograph, electromyograph, ground reaction force, and symptom measurement sensors for the exploration of neural biomarkers during active gait paradigms. Additionally, this study employed novel de-noising techniques for dealing with the motion artifacts associated with active gait EEG recordings and compared time-frequency features between a group of PD with FoG and a group of age-matched controls and found significant differences between several EEG frequency bands during start and end of normal walking (with a p\u3c0.05)

    Towards a wearable system for predicting the freezing of gait in people affected by Parkinson's disease

    Get PDF
    Some wearable solutions exploiting on-body acceleration sensors have been proposed to recognize Freezing of Gait (FoG) in people affected by Parkinson Disease (PD). Once a FoG event is detected, these systems generate a sequence of rhythmic stimuli to allow the patient restarting the march. While these solutions are effective in detecting FoG events, they are unable to predict FoG to prevent its occurrence. This paper fills in the gap by presenting a machine learning-based approach that classifies accelerometer data from PD patients, recognizing a pre-FOG phase to further anticipate FoG occurrence in advance. Gait was monitored by three tri-axial accelerometer sensors worn on the back, hip and ankle. Gait features were then extracted from the accelerometer's raw data through data windowing and non-linear dimensionality reduction. A k-nearest neighbor algorithm (k-NN) was used to classify gait in three classes of events: pre-FoG, no-FoG and FoG. The accuracy of the proposed solution was compared to state of-the-art approaches. Our study showed that: (i) we achieved performances overcoming the state-of-the-art approaches in terms of FoG detection, (ii) we were able, for the very first time in the literature, to predict FoG by identifying the pre-FoG events with an average sensitivity and specificity of, respectively, 94.1% and 97.1%, and (iii) our algorithm can be executed on resource-constrained devices. Future applications include the implementation on a mobile device, and the administration of rhythmic stimuli by a wearable device to help the patient overcome the FoG

    Automated Intelligent Cueing Device to Improve Ambient Gait Behaviors for Patients with Parkinson\u27s Disease

    Get PDF
    Freezing of gait (FoG) is a common motor dysfunction in individuals with Parkinson’s disease (PD). FoG impairs walking and is associated with increased fall risk. Although pharmacological treatments have shown promise during ON-medication periods, FoG remains difficult to treat during medication OFF state and in advanced stages of the disease. External cueing therapy in the forms of visual, auditory, and vibrotactile, has been effective in treating gait deviations. Intelligent (or on-demand) cueing devices are novel systems that analyze gait patterns in real-time and activate cues only at moments when specific gait alterations are detected. In this study we developed methods to analyze gait signals collected through wearable sensors and accurately identify FoG episodes. We also investigated the potential of predicting the symptoms before their actual occurrence. We collected data from seven participants with PD using two Inertial Measurement Units (IMUs) on ankles. In our first study, we extracted engineered features from the signals and used machine learning (ML) methods to identify FoG episodes. We tested the performance of models using patient-dependent and patient-independent paradigms. The former models achieved 92.5% and 89.0% for average sensitivity and specificity, respectively. However, the conventional binary classification methods fail to accurately classify data if only data from normal gait periods are available. In order to identify FoG episodes in participants who did not freeze during data collection sessions, we developed a Deep Gait Anomaly Detector (DGAD) to identify anomalies (i.e., FoG) in the signals. DGAD was formed of convolutional layers and trained to automatically learn features from signals. The convolutional layers are followed by fully connected layers to reduce the dimensions of the features. A k-nearest neighbors (kNN) classifier is then used to classify the data as normal or FoG. The models identified 87.4% of FoG onsets, with 21.9% being predicted on average for each participant. This study demonstrates our algorithm\u27s potential for delivery of preventive cues. The DGAD algorithm was then implemented in an Android application to monitor gait patterns of PD patients in ambient environments. The phone triggered vibrotactile and auditory cues on a connected smartwatch if an FoG episode was identified. A 6-week in-home study showed the potentials for effective treatment of FoG severity in ambient environments using intelligent cueing devices

    Optimization Algorithms for Integrating Advanced Facility-Level Healthcare Technologies into Personal Healthcare Devices

    Get PDF
    Healthcare is one of the most important services to preserve the quality of our daily lives, and it is capable of dealing with issues such as global aging, increase in the healthcare cost, and changes to the medical paradigm, i.e., from the in-facility cure to the prevention and cure outside the facility. Accordingly, there has been growing interest in the smart and personalized healthcare systems to diagnose and care themselves. Such systems are capable of providing facility-level diagnosis services by using smart devices (e.g., smartphones, smart watches, and smart glasses). However, in realizing the smart healthcare systems, it is very difficult, albeit impossible, to directly integrate high-precision healthcare technologies or scientific theories into the smart devices due to the stringent limitations in the computing power and battery lifetime, as well as environmental constraints. In this dissertation, we propose three optimization methods in the field of cell counting systems and gait-aid systems for Parkinson's disease patients that address the problems that arise when integrating a specialized healthcare system used in the facilities into mobile or wearable devices. First, we present an optimized cell counting algorithm based on heuristic optimization, which is a key building block for realizing the mobile point-of-care platforms. Second, we develop a learning-based cell counting algorithm that guarantees high performance and efficiency despite the existence of blurry cells due to out-focus and varying brightness of background caused by the limitation of lenses free in-line holographic apparatus. Finally, we propose smart gait-aid glasses for Parkinson’s disease patients based on mathematical optimization. ⓒ 2017 DGISTopenI. Introduction 1-- 1.1 Global Healthcare Trends 1-- 1.2 Smart Healthcare System 2-- 1.3 Benefits of Smart Healthcare System 3-- 1.4 Challenges of Smart Healthcare. 4-- 1.5 Optimization 6-- 1.6 Aims of the Dissertation 7-- 1.7 Dissertation Organization 8-- II.Optimization of a cell counting algorithm for mobile point-of-care testing platforms 9-- 2.1 Introduction 9-- 2.2 Materials and Methods. 13-- 2.2.1 Experimental Setup. 13-- 2.2.2 Overview of Cell Counting. 16-- 2.2.3 Cell Library Optimization. 18-- 2.2.4 NCC Approximation. 20-- 2.3 Results 21-- 2.3.1 Cell Library Optimization. 21-- 2.3.2 NCC Approximation. 23-- 2.3.3 Measurement Using an Android Device. 28-- 2.4 Summary 32-- III.Human-level Blood Cell Counting System using NCC-Deep learning algorithm on Lens-free Shadow Image. 33-- 3.1 Introduction 33-- 3.2 Cell Counting Architecture 36-- 3.3 Methods 37-- 3.3.1 Candidate Point Selection based on NCC. 37-- 3.3.2 Reliable Cell Counting using CNN. 40-- 3.4 Results 43-- 3.4.1 Subjects . 43-- 3.4.2 Evaluation for the cropped cell image 44-- 3.4.3 Evaluation on the blood sample image 46-- 3.4.4 Elapsed-time evaluation 50-- 3.5 Summary 50-- IV.Smart Gait-Aid Glasses for Parkinson’s Disease Patients 52-- 4.1 Introduction 52-- 4.2 Related Works 54-- 4.2.1 Existing FOG Detection Methods 54-- 4.2.2 Existing Gait-Aid Systems 56-- 4.3 Methods 57-- 4.3.1 Movement Recognition. 59-- 4.3.2 FOG Detection On Glasses. 62-- 4.3.3 Generation of Visual Patterns 66-- 4.4 Experiments . 67-- 4.5 Results 69-- 4.5.1 FOG Detection Performance. 69-- 4.5.2 Gait-Aid Performance. 71-- 4.6 Summary 73-- V. Conclusion 75-- Reference 77-- 요약문 89본 논문은 의료 관련 연구시설 및 병원 그리고 실험실 레벨에서 사용되는 전문적인 헬스케어 시스템을 개인의 일상생활 속에서 사용할 수 있는 스마트 헬스케어 시스템에 적용시키기 위한 최적화 문제에 대해 다룬다. 현대 사회에서 의료비용 증가 세계적인 고령화에 따라 의료 패러다임은 질병이 발생한 뒤 시설 내에서 치료 받는 방식에서 질병이나 건강관리에 관심있는 환자 혹은 일반인이 휴대할 수 있는 개인용 디바이스를 이용하여 의료 서비스에 접근하고, 이를 이용하여 질병을 미리 예방하는 방식으로 바뀌었다. 이에 따라 언제, 어디서나 스마트 디바이스(스마트폰, 스마트워치, 스마트안경 등)를 이용하여 병원 수준의 예방 및 진단을 실현하는 스마트 헬스케어가 주목 받고 있다. 하지만, 스마트 헬스케어 서비스 실현을 위하여 기존의 전문 헬스케어 장치 및 과학적 이론을 스마트 디바이스에 접목하는 데에는 스마트 디바이스의 제한적인 컴퓨팅 파워와 배터리, 그리고 연구소나 실험실에서 발생하지 않았던 환경적인 제약조건으로 인해 적용 할 수 없는 문제가 있다. 따라서 사용 환경에 맞춰 동작 가능하도록 최적화가 필요하다. 본 논문에서는 Cell counting 분야와 파킨슨 환자의 보행 보조 분야에서 전문 헬스케어 시스템을 스마트 헬스케어에 접목시키는데 발생하는 세 가지 문제를 제시하고 문제 해결을 위한 세 가지 최적화 알고리즘(Heuristic optimization, Learning-based optimization, Mathematical optimization) 및 이를 기반으로 하는 시스템을 제안한다.DoctordCollectio

    Deep Learning Based Abnormal Gait Classification System Study with Heterogeneous Sensor Network

    Get PDF
    Gait is one of the important biological characteristics of the human body. Abnormal gait is mostly related to the lesion site and has been demonstrated to play a guiding role in clinical research such as medical diagnosis and disease prevention. In order to promote the research of automatic gait pattern recognition, this paper introduces the research status of abnormal gait recognition and systems analysis of the common gait recognition technologies. Based on this, two gait information extraction methods, sensor-based and vision-based, are studied, including wearable system design and deep neural network-based algorithm design. In the sensor-based study, we proposed a lower limb data acquisition system. The experiment was designed to collect acceleration signals and sEMG signals under normal and pathological gaits. Specifically, wearable hardware-based on MSP430 and upper computer software based on Labview is designed. The hardware system consists of EMG foot ring, high-precision IMU and pressure-sensitive intelligent insole. Data of 15 healthy persons and 15 hemiplegic patients during walking were collected. The classification of gait was carried out based on sEMG and the average accuracy rate can reach 92.8% for CNN. For IMU signals five kinds of abnormal gait are trained based on three models: BPNN, LSTM, and CNN. The experimental results show that the system combined with the neural network can classify different pathological gaits well, and the average accuracy rate of the six-classifications task can reach 93%. In vision-based research, by using human keypoint detection technology, we obtain the precise location of the key points through the fusion of thermal mapping and offset, thus extracts the space-time information of the key points. However, the results show that even the state-of-the-art is not good enough for replacing IMU in gait analysis and classification. The good news is the rhythm wave can be observed within 2 m, which proves that the temporal and spatial information of the key points extracted is highly correlated with the acceleration information collected by IMU, which paved the way for the visual-based abnormal gait classification algorithm.步态指人走路时表现出来的姿态,是人体重要生物特征之一。异常步态多与病变部位有关,作为反映人体健康状况和行为能力的重要特征,其被论证在医疗诊断、疾病预防等临床研究中具有指导作用。为了促进步态模式自动识别的研究,本文介绍了异常步态识别的研究现状,系统地分析了常见步态识别技术以及算法,以此为基础研究了基于传感器与基于视觉两种步态信息提取方法,内容包括可穿戴系统设计与基于深度神经网络的算法设计。 在基于传感器的研究中,本工作开发了下肢步态信息采集系统,并利用该信息采集系统设计实验,采集正常与不同病理步态下的加速度信号与肌电信号,搭建深度神经网络完成分类任务。具体的,在系统搭建部分设计了基于MSP430的可穿戴硬件设备以及基于Labview的上位机软件,该硬件系统由肌电脚环,高精度IMU以及压感智能鞋垫组成,该上位机软件接收、解包蓝牙数据并计算出步频步长等常用步态参数。 在基于运动信号与基于表面肌电的研究中,采集了15名健康人与15名偏瘫病人的步态数据,并针对表面肌电信号训练卷积神经网络进行帕金森步态的识别与分类,平均准确率可达92.8%。针对运动信号训练了反向传播神经网络,LSTM以及卷积神经网络三种模型进行五种异常步态的分类任务。实验结果表明,本工作中步态信息采集系统结合神经网络模型,可以很好地对不同病理步态进行分类,六分类平均正确率可达93%。 在基于视觉的研究中,本文利用人体关键点检测技术,首先检测出图片中的一个或多个人,接着对边界框做图像分割,接着采用全卷积resnet对每一个边界框中的人物的主要关节点做热力图并分析偏移量,最后通过热力图与偏移的融合得到关键点的精确定位。通过该算法提取了不同步态下姿态关键点时空信息,为基于视觉的步态分析系统提供了基础条件。但实验结果表明目前最高准确率的人体关键点检测算法不足以替代IMU实现步态分析与分类。但在2m之内可以观察到节律信息,证明了所提取的关键点时空信息与IMU采集的加速度信息呈现较高相关度,为基于视觉的异常步态分类算法铺平了道路

    Foot Motion-Based Falling Risk Evaluation for Patients with Parkinson’s Disease

    Get PDF
    Parkinson’s disease (PD) affects motor functionalities, which are closely associated with increased risks of falling and decreased quality of life. However, there is no easy-to-use definitive tools for PD patients to quantify their falling risks at home. To address this, in this dissertation, we develop Monitoring Insoles (MONI) with advanced data processing techniques to score falling risks of PD patients following Falling Risk Questionnaire (FRQ) developed by the U.S. Centers for Disease Control and Prevention (CDC). To achieve this, we extract motion tasks from daily activities and select the most representative features associated with PD that facilitate accurate falling risk scoring. To address the challenge in uncontrolled daily life environments and to identify the most representative features associated with PD and falling risks, the proposed data processing method firstly recognizes foot motions such as walking and toe tapping from continuous movements with stride detection and fast labeling framework, and then extracts time-axis and acceleration-axis features from the motion tasks, at the end provides a score of falling risks using regression. The data processing method can be integrated into a mobile game to be used at home with MONI. The main contributions of this dissertation includes: (i) developing MONI as a low power solution for daily life use; (ii) utilizing stride detection and developing fast labeling framework for motion recognition that improves recognition accuracy for daily life applications; (iii) analyzing two walking and two toe tapping tasks that are close to real life scenarios and identifying important features associated with PD and falling risks; (iv) providing falling scores as quantitative evaluation to PD patients in daily life through simple foot motion tasks and setups

    Chronic-Pain Protective Behavior Detection with Deep Learning

    Get PDF
    In chronic pain rehabilitation, physiotherapists adapt physical activity to patients' performance based on their expression of protective behavior, gradually exposing them to feared but harmless and essential everyday activities. As rehabilitation moves outside the clinic, technology should automatically detect such behavior to provide similar support. Previous works have shown the feasibility of automatic protective behavior detection (PBD) within a specific activity. In this paper, we investigate the use of deep learning for PBD across activity types, using wearable motion capture and surface electromyography data collected from healthy participants and people with chronic pain. We approach the problem by continuously detecting protective behavior within an activity rather than estimating its overall presence. The best performance reaches mean F1 score of 0.82 with leave-one-subject-out cross validation. When protective behavior is modelled per activity type, performance is mean F1 score of 0.77 for bend-down, 0.81 for one-leg-stand, 0.72 for sit-to-stand, 0.83 for stand-to-sit, and 0.67 for reach-forward. This performance reaches excellent level of agreement with the average experts' rating performance suggesting potential for personalized chronic pain management at home. We analyze various parameters characterizing our approach to understand how the results could generalize to other PBD datasets and different levels of ground truth granularity.Comment: 24 pages, 12 figures, 7 tables. Accepted by ACM Transactions on Computing for Healthcar
    corecore