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Abstract 

Parkinson’s disease (PD) is a progressive neurodegenerative disorder affecting movement 

and is characterized by symptoms such as tremor, rigidity, and Freezing of Gait (FOG). FOG is a 

walking disturbance seen in more advanced stages of PD. FOG is characterized by the feeling of 

feet being glued to the ground and has been associated with higher risks of falls. While falling can 

have great repercussions in individuals with PD, leading to restricted movement and independence, 

hip fracture, and fatal injury, even the disturbance of FOG alone can lead to decreased mobility, 

inactivity, and decreased quality of life. Determining methods to counter FOG can potentially lead 

to a better life for people with PD (PwPD).  

Freezing episodes can be countered with the help of external intervention such as visual or 

auditory cues. Such intervention when administered during the freeze has been found to alleviate 

the freeze and thus prevent freeze-related falls. This sheds the importance of detecting or predicting 

a freeze event. Once a freeze is detected or predicted, an intervention can be administered to help 

prevent the freeze altogether (in case of prediction) or help resume normal walking (in case of 

detection).  

Different wearable sensors have been used to collect data from participants to understand 

FOG and develop approaches to detect and predict it. Plantar pressure data has earlier been used 

in gait related studies; however, they have not been used for FOG detection or prediction. Based 

on the hypothesis that plantar pressure data can capture subtle weight shifts unique to FOG 

episodes, this research aimed to determine if plantar pressure data alone can be used to detect and 

predict FOG.  

In this research, plantar (foot sole) pressure data were collected from shoe-insole sensors 

worn by 11 participants with PD as they walked a predefined freeze-provoking path while on their 

normal antiparkinsonian medication. The sensors included IMU, EMG, and plantar pressure foot 

insoles; however, for the research in this thesis, only plantar pressure data were used. The walking 

trials were also video recorded for labelling the data. A custom-built application was used to 

synchronize data from all sensors and label them. This was followed by feature extraction, dataset 
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balancing, and z-score normalization. The datasets generated were then classified using Long-

short term memory (LSTM) networks.  

The best model had an average 82.0% (SD 6.25%) sensitivity and 89.4% (SD 3.60%) 

specificity for one-freezer-held-out cross validation tests. For the participants who did not freeze 

during the walking trials, an average 87.7% specificity was achieved. Since, FOG detection is done 

with the aim to provide an intervention, a freeze episode analysis was completed, and it was found 

that the model could correctly detect 95% of freeze episodes. The misclassified freezes and false 

positives were analyzed with respect to active (walking and turning) and inactive states (standing). 

The model’s specificity performance for one-freezer held out cross validation tests was found to 

improve to 93.3% when analyzing the model only on active states. FOG prediction was done 

afterwards, including data before FOG (labelled Pre-FOG) in the target class. The best FOG 

prediction method achieved an average 74.02% (SD 12.48%) sensitivity and 82.99% (SD 5.75%) 

specificity for one-freezer-held-out cross validation tests. 

The research showed that plantar pressure data can be successfully used for FOG detection 

and prediction. Moving away from window-based model also helped the research in reducing the 

freeze detection latency. However, further research is required to improve the FOG prediction 

performance and a bigger sample size should be used in future research.  
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Chapter 1 
Introduction 

Parkinson’s disease (PD) is a progressive neurodegenerative condition characterized by 

motor symptoms such as rest tremor (tremor occurring mostly at rest that lessens during physical 

activities), bradykinesia (slowness in physical action and difficulty in initiating movements) 

rigidity, loss of postural reflexes, and freezing of gait (FOG)  [1]. FOG is a gait disorder, defined 

as the inability to step effectively and move forward despite the clear intention to do so, and occurs 

in up to 26% of people in the early stage of PD [2-4] . While FOG can occur in both early and 

advanced stages of PD, it is known to affect 20% to 60% of people in the more advanced stages 

of the disease [5]. 

Most FOG episodes are brief, typically lasting less than ten seconds [6], and can manifest as 

shuffling small steps, trembling in place, or total akinesia (when a person losses the ability to move 

their muscle) [7]. Episode severity is determined by duration, frequency, and intensity [8]. FOG 

manifests frequently at home when the participant is not being observed [9], but is difficult to 

evoke in a lab setting [10,11]. In some people, FOG episodes occur during medication “ON state” 

due to dopaminergic drugs [7]. However, in most people, FOG episodes occur while off 

medication (“OFF State”, where medication has worn off) [2-4]. FOG episodes are also more 

severe in “OFF State” and rarely manifest as total akinesia during “ON State” [12].   

FOG can cause falls [13], and even a brief FOG episode of less than 10 seconds can result 

in forward or lateral falls [7]. A forward fall happens when the feet are suddenly unable to move 

while walking. Lateral falls happen when a person freezes during a turn. Most falls due to FOG 

occur during the transition from walking to a freeze episode. While recurrent falls can increase a 

person with PD’s mortality risk, reducing survival years by seven [14], even repeated freeze 

episodes can negatively affect the overall mobility of a person with PD, their level of activity and 

independence, and thus quality of life [15-17]. Therefore, research aimed toward reducing the 

occurrence of FOG in people with PD (PwPD) can have an important beneficial impact on their 

independence and quality of life. 
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Cueing can alleviate FOG by providing external stimuli (such as light or sound) that facilitate 

gait initiation and continuation [18]. Cueing during a freeze episode can help a person resume 

walking. However, continuous cueing may be distracting when a person is not walking, can lead 

to cue dependency [19] and induces greater fatigue [20] in PwPD. Furthermore, cueing with a pre-

set rhythm that is not matched to the person’s specific gait at each instant may induce FOG [21]. 

Cueing only during a freeze could lead to end or reduce the duration of a freeze. This would require 

a freeze detection system. Since many falls occur during the transition from walking to a freeze, 

FOG episodes should be predicted in order to prevent such falls. An FOG prediction system could 

prevent a FOG episode when used with cueing just before the transition to FOG. The development 

of methods for both freeze detection and prediction are thus important toward reducing freeze 

duration and occurrence.  

FOG detection and prediction need physiological parameters that discriminate FOG 

from walking or standing. Wearable sensors such as electrocardiography (ECG), 

electromyography (EMG), and Inertial Measurement Unit (IMU: accelerometer, gyroscope, 

magnetometer) can capture physiological and biomechanical parameters relevant to FOG. ECG, 

EMG, and IMU have been used for detecting and predicting FOG [22]. Plantar pressure (i.e., 

pressure between the foot and the ground) is another gait related biomechanical parameter that has 

been used in several gait related studies such as fall-risk assessment [23,24], but not for FOG 

detection or prediction. Plantar pressure insoles can provide a 2D array of pressure readings from 

the foot’s plantar (sole, bottom) surface. If plantar pressure manifests differently in a freeze 

episode than normal walking, this wearable sensor may be useful for FOG detection and prediction 

since the entire sensor and electronics can be easily used in footwear (i.e., easy to don and doff, 

unobtrusive, does not affect movement, etc.).  

A FOG detection or prediction system needs a classifier to differentiate FOG, or episodes 

prior to a freeze, from normal walking and standing. Several classifiers including support vector 

machines (SVM), decision trees, and artificial neural networks have been used for FOG detection 

and prediction [22]. At each instant, plantar pressure data is a 2D matrix of pressure values. A 

Convolutional neural network (CNN) can be used to classify the raw 2D matrices of pressure 

values as belonging to a FOG or Non-FOG class. A CNN is an artificial neural network that can 
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learn hierarchies of patterns across fixed-size inputs through kernels and can be useful in FOG 

detection and prediction. Most machine learning classifiers would require features to be extracted 

from 3D plantar pressure data (row, column, pressure value) before training and implementing a 

model. A CNN can be used to extract features from the raw data, or handcrafted features may be 

used. The extracted features can then be fed into a machine-learning classifier for classification of 

the data.  

 Since wearable sensors provide a data stream (temporal sequence), a range of inputs should 

be considered while learning patterns from the sequence. Recurrent Neural Networks (RNN) are 

deep learning classifiers that learn from a temporal sequence. An RNN is an artificial neural 

network that can store previous information as an internal state (memory). Unlike a conventional 

feed-forward neural network or convolutional neural network (CNN), an RNN can have variable 

length inputs. Since freeze episodes vary in temporal length, RNNs could be suitable for FOG 

detection and prediction. Long short-term memory (LSTM) classifiers are a version of RNN that 

can learn from longer sequences [25]. Candidate values are calculated from the input data. LSTM 

units use a memory cell that is updated based on these candidates. LSTM classifiers have 

outperformed RNN for FOG prediction [26]. Thus, RNN based on LSTM units can be useful for 

FOG detection and prediction models.  

For FOG detection or prediction using plantar pressure data, the raw plantar pressure data 

could be classified using a CNN, or alternatively, features that are extracted from the plantar 

pressure data can be fed into a classifier. Further, either handcrafted features could be extracted, 

or a CNN can be used to extract features. These extracted features can then be classified using 

machine learning classifiers or an LSTM network.  

For FOG detection, one of the best results in a leave-one-participant-out (LOPO) cross 

validation have been achieved by a K-means clustering algorithm using IMU data [27]. The 

algorithm achieved 92.4% (SD 1.2%) sensitivity and 94.9% (SD 2.3%) specificity for ten PD 

participants. For FOG prediction in a participant-independent setting (i.e., a model was validated 

on a participant’s data unseen by the model), one of the best results was obtained with a neural 

network using EEG data [28]. The neural network achieved 85.56% sensitivity and 86.60% 
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specificity on 5 held-out PD participants. The above results can be a benchmark for developing 

new FOG detection and prediction models based on plantar pressure data only.  

1.1 Research Objectives 

The research objectives of this thesis are as follows: 

a) Determine if an LSTM network can detect FOG episodes with sensitivity > 92.4% (SD 

1.2%) and specificity > 94.9% (SD 2.3%) [27] in a person-independent model using only 

plantar pressure data.  

b) Determine if an LSTM network can predict FOG episodes with sensitivity > 85.86% and 

specificity > 80.25% [28] in a person-independent model using only plantar pressure data.  

c) Determine if an LSTM network can achieve the benchmarks in a) and b) using custom 

features extracted from only plantar pressure data.   

d) Determine if an LSTM network can achieve FOG detection and prediction, with similar 

specificity between participants who did not freeze during the walking trials and 

participants who froze during the trials. 

e) Determine if only classifying FOG during active states (i.e., walking, moving, etc.) can 

reduce freeze episode misclassification and false positives by an LSTM network. 

1.2 Research Contributions 

The main contributions of this research are as follows: 

a) This research developed the first viable FOG detection system that uses only in-shoe 

plantar pressure measurements. This can lead to an efficient wearable FOG mitigation 

system that is unobtrusive to a person with PD, thereby enhancing wearing compliance. 

b) This research demonstrated that adding activity-state recognition to a wearable FOG 

mitigation system greatly reduces FOG-detection false positives. This could lead to 

improve future user experience by avoiding unneeded cueing that might lead to system 

abandonment. 
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c) This research identified a range of hyperparameters that can be used in LSTM network 

training for FOG detection and prediction. This can guide future research by providing an 

appropriate hyperparameter search space.    

d) This research used data at each data-sampling time instant so that the model can be 

computationally efficient and mean FOG detection latency can be kept low in a wearable 

system, in comparison to an approach using data time windowing.  

1.3 Thesis Outline 

Chapter 2 discusses Parkinson’s disease, FOG, and the FOG relationship to falling; reviews 

literature on FOG detection and prediction systems; and briefly reviews RNN and LSTM theory.  

Chapter 3 presents the data collection process, including, participant recruitment, materials 

and sensors, and participant preparation during data collection and test protocol.  

Chapter 4 presents FOG detection models; including, data setup, feature extraction and 

normalization; freeze episode misclassification, and false-positive analysis with respect to 

activities during the walking trials; and discussion. 

Chapter 5 presents the FOG prediction method along with results and discussion. The thesis 

concludes in Chapter 6. 
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Chapter 2 
Background 

2.1 Freezing of Gait and Functional Mobility 

Parkinson’s disease (PD) is a slowly progressive neurodegenerative disorder characterized 

by symptoms such as bradykinesia, tremor, and rigidity [8], with the most distressing symptoms 

being FOG, postural instability, sleep disturbance, and difficulty in concentrating [8]. Trembling 

is the main complaint during early-stage PD, while FOG is rare in the early stage, manifesting only 

as gait hesitation [6]. As the disease progresses, balance impairment and FOG become more 

common, leading to falls [2,13]. Most falls in PD are caused by balance disorders rather than 

environmental causes (i.e., collisions, etc.) [29].  

FOG manifests as total akinesia, trembling in place, and shuffling forward with small steps. 

FOG episodes generally last less than 10 seconds and rarely more than 30 seconds [6]. FOG events 

are more frequent in the OFF-medication state than in the ON state [13]. Most FOG episodes occur 

while turning or initiating walking, and while walking straight in a narrow pathway or trying to 

avoid obstacles [13]. Sudden changes in posture are attributed to falls in PD participants, 

particularly turning the trunk or multitasking while walking or balancing [13]. While most PD 

individuals can have a conversation while walking, they have difficulties performing other dual 

tasks during gait (such as carrying an empty or loaded tray, answering repetitive questions, or 

walking in reduced illumination), leading to FOG or balance loss, more so as these tasks become 

more complex [30]. Under complex conditions, individuals with PD can have poor gait and 

balance when they try to perform all tasks equally well [30]. 

Attention and vision can have both positive and negative effects on FOG occurrence [16]. 

While FOG episodes are more likely to occur in crowded places or as the person navigates narrow 

passages, focusing attention on each step through an external cue can alleviate FOG [31]. Auditory, 

visual, or tactile cues can help PwPD overcome freezing episodes and resume walking [32,33]. 

Auditory cues are the most common type for FOG and are generally administered using a 

computerized tone, such as a short beep, which are played in accordance with a participant’s 

normal waking cadence [34]. Auditory cues can reduce FOG duration and frequency [5]. Laser 
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lines projected on the ground [35] have been used as a visual cue for alleviating FOG. These cues 

are often accompanied by a freeze detection system to automatically identify freezing episodes 

and activate the assistive cue only when needed. 

2.2 Freezing of Gait Detection  

The objective of a FOG detection system is to correctly identify all FOG occurrences and 

avoid falsely recognizing Non-FOG events as FOG occurrences. Further, a usable FOG detection 

system should be easily incorporated in a person’s daily mobility activities. Data from the system 

can be captured using wearable sensors. A wearable physiological or biomechanical sensor that 

can be integrated with clothes or shoes would be desirable. Most research on FOG detection used 

3D accelerometer data [36-39] or data from multiple IMU sensors [38,40]. IMU have been placed 

at the hip, above the knee, or on the ankle [36,41]. IMU located on the lower leg performed best, 

while hip-located IMU showed the highest standard deviation across participants and the thigh 

position was the most uncomfortable [41].   

Plantar pressure data are also promising for FOG detection and prediction. Plantar pressure 

is based on the reaction force exerted by ground on participant’s shoe insoles. Plantar pressure has 

been used for rehabilitating people with a spinal cord injury [42], post-traumatic rehabilitation 

[43], and stroke rehabilitation [44]. Since plantar pressure distribution can be useful in assessing 

lower limb function, this measure has been helpful in providing better rehabilitation strategies [45]. 

Apart from rehabilitation purposes, plantar pressure data have been used for fall-risk prediction 

[23] and classification [24] in older adults and to classify gait as belonging to a participant with 

PD or a healthy control [46].  

Plantar pressure data can capture subtle weight shifts within a foot and between feet. 

Furthermore, the pressure distribution may vary distinctly between normal walking phases, during 

the transition from normal walking into a freeze, and during a freeze. Plantar pressures have been 

used in gait analyses for both PD and non-PD populations; however, they have not been used for 

FOG detection or prediction. The preliminary phase of this research using plantar pressure data 

for FOG detection and prediction has shown promise [47,48]; thus, using plantar pressure data 

may open new avenues in detecting or predicting FOG events. 
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Machine-learning algorithms have been used for classifying FOG [36,39,40,49]. Random 

forests have outperformed other machine learning classifiers such as pruned decision trees, K-

nearest neighbor (KNN), and Naïve Bayes in a participant dependent setting [36] (i.e., each 

participant’s data were in both training and test sets) and LOPO cross validation [40]. A random 

forest achieved 99.54% sensitivity and 99.96% specificity with 4 s windows but with the same 

participant data from the Daphnet dataset [50] in both training and testing groups [36]. Four time-

domain features, signal energy, freeze index (power ratio in 3-8 Hz band and 0.5-3 Hz band), and 

signal power were computed from each acceleration data window. Use of the same participant data 

for training and testing created bias and reduced generalizability for this model [36]. Freeze 

detection latency (i.e., delay between FOG start and detection by the system) was 1.085 s (SD 

0.731 s) for 4 s windows, decreasing to 0.235 s (SD 0.175 s) for 1 s windows with a pruned decision 

tree. The average FOG detection latency increased linearly with increasing window length, 

demonstrating a trade-off between detection performance and detection latency while choosing a 

window length.  

Random forests achieved 89.30% (SD 9.47%) sensitivity and 79.15% (SD 7.48%) specificity 

for PD participants with FOG symptoms in LOPO cross validation [40]. Data were collected from 

11 PD participants (only 5 showed FOG symptoms) with 93 FOG events using 6 accelerometers 

and 2 gyroscopes. Accelerometers were placed on both legs, both wrists, chest, and waist. 

Gyroscopes were located on the chest and waist. Manual data processing such as replacing missing 

values and filtering low frequency components were required before entropy was calculated as a 

feature from all sensor data.  The model had a high standard deviation of 9.47% and was validated 

only on 5 PD participants, who showed FOG symptoms. Multiple sensors over different body 

locations would require more time to don and keep in place during the day, thereby being 

inconvenient to the user and perhaps reducing device compliance. Thus, the application of the 

FOG detection model based on accelerometers and gyroscopes is limited.   

When a different sensor location and features were used than those in the above studies, 

SVM outperformed other machine learning classifiers [39,49].  Three-dimensional acceleration 

data from 15 participants with PD were collected from an IMU placed at participant’s waist and 

55 features were extracted from 3.2 s windows [49]. The SVM model on average had 6790 support 
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vectors, which required 1.49 MB computer memory, and achieved 74.7% sensitivity and 79% 

specificity with a LOPO validation. In a personalized setting, 50% FOG data and the 

corresponding non-FOG data from the target participant became part of the training set. Model 

performance in the personalized setting increased to 80.1% sensitivity and 88.1% specificity [49]. 

The personalized model with 9221 support vectors would need 2 MB computer memory. 

In follow up research, features were reduced from 55 to 28 [39]. SVM with 1.6 s windows 

achieved 84.49 % sensitivity and 85.83 % specificity, in LOPO cross validation [39]. SVM with 

1.6 s windows outperformed other “machine learning classifiers and window length” 

combinations. Using a stratified 10-fold cross validation when data were not split by participants 

(i.e, each participants’ data were both in training and validation set), the performance increased to 

91.7% sensitivity and 87.4% specificity. The SVM model with 7412 support vectors required 1.6 

MB computer memory. Using a single IMU sensor allowed for a wearable system; however, 

multiple complex features were used, with preprocessing steps that could be computationally 

expensive for a wearable device.  

2.2.1 Gradient Descent Optimization Algorithms in Neural Networks 

In the standard gradient-descent learning algorithm in neural networks, gradients are 

calculated based on the true label and the output by the neural network. These gradients are then 

used to update the network parameters (i.e., weights and biases). However, gradient descent with 

momentum works faster than the standard gradient descent algorithm. In a gradient descent with 

momentum algorithm, the exponentially weighted average of gradients (called first moment 

estimate because the derivatives are directly used) is calculated and used to update the network 

parameters. Another useful optimization algorithm is RMSprop, which uses an exponential 

weighted-average of the squares of the derivative (called second moment estimate because of 

squares of derivatives) to update the parameters. The Adam optimizer combines both the gradient 

descent with momentum and gradient descent with RMSprop, and has been found to excel for 

many applications. The gradient-descent Adam optimizer speeds up the descent towards the 

minima and decreases the oscillation of the descent in other directions. The first moment 

estimations are denoted by 𝑚𝑚𝑡𝑡, while the second moment estimations are denoted by 𝑣𝑣𝑡𝑡 . Both the 
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first and second moments are initialized as zero vectors before first iteration of the learning. At 

iteration t, the first and second moments are calculated using a moving average of the gradients 

(square of gradients in case of second moment).  

Equation 2.1 and 2.2 show the first moment and second moment estimation, respectively, 

the first moment 𝑚𝑚𝑡𝑡 is calculated as the exponential weighted moving average of gradients 𝑔𝑔𝑡𝑡, 

while the second moment 𝑣𝑣𝑡𝑡 is calculated as the exponential weighted moving average of element-

wise square of gradients. 

𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡 (2.1) 

𝑣𝑣𝑡𝑡 = 𝛽𝛽2𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2 (2.2) 

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝛼𝛼𝑚𝑚𝑡𝑡/(�𝑣𝑣𝑡𝑡 + 𝜀𝜀) , (2.3) 

where 𝛽𝛽1 and 𝛽𝛽2 denote the exponential decay rate for the first and second moment estimation, 

respectively. The parameter 𝜃𝜃 at time t-1 is updated based on Equation 2.3, where 𝛼𝛼 denotes the 

learning rate. Learning rate (𝛼𝛼), exponential weight decay rate for first and second moment 

estimates (𝛽𝛽1 and 𝛽𝛽2), and a very small value ε = 10-7 govern the learning process with Adam 

optimizer. ε is used to avoid the denominator from becoming zero. The learning rate in Adam 

optimizer needs to be tuned; however, the 𝛽𝛽1 and 𝛽𝛽2 parameters are set to default values of 0.9 and 

0.999, respectively.  

2.2.2 Convolutional Neural Networks 

While machine learning models have been successful for FOG detection, deep learning 

methods have the potential to achieve better performance without feature extraction. A 

Convolutional Neural Network (CNN) is a deep learning algorithm that learns a hierarchy of 

features across an image or a windowed signal, starting from low level features such as edges in 

earlier layers to high level features such as a human face in final layers.  

  A 1D CNN was used for FOG detection [38,51,52], with a 4-layer 1D CNN model [52] 

achieving 74.43% (SD 9.79 %) sensitivity and 90.59 % (SD 6.4 %) specificity in a LOPO cross 

validation. Acceleration data were acquired from 10 participants’ left shank, left thigh, and lower 

back (8 participants froze during trials). The model was trained with stochastic gradient descent 
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(0.9 momentum coefficient), 0.001 constant learning rate, and 128 batch size. These 

hyperparameters (parameters set to control a model’s learning process) can be a good starting place 

to train a model. Batch-normalization and drop-out showed little influence on classification 

performance, and thus may not be considered a priority while configuring a network for FOG 

detection. The model suffered from a large variability in sensitivity (SD 9.79 %) across participants 

[52].   

A 1D CNN model with 2.56 s windows achieved 88.6% sensitivity and 78% specificity on 

4 held-out participants [38]. Data were collected from 15 participants with an IMU placed at their 

waist. Five convolutional layers (each with 16 kernels) and 2 fully connected layers (with 32 

neurons) were used in the CNN model. Various hyperparameters were optimized and it was 

concluded that initializing network weights with ‘Glorot’ weight initialization, activating 

convolutional layer’s output with ‘ReLU’ activation function (rectified linear unit defined as y=x 

for x>0), and training the network with ‘Adam’ optimizer work best. To account for training data 

imbalance, weighted hinge loss was used as the loss function [38]. These hyperparameters and loss 

function can be used in research on FOG detection when dealing with an imbalanced dataset.   

In follow up research, 1D CNN model performance improved to 91.9% sensitivity and 

89.5% specificity on 4 held out participants [51].  The new model used 9-channel IMU data from 

21 PD participants. The number of convolutional layers was reduced to 4 and network weights 

were initialized using ‘Xavier’ initialization. Thus, adding data from more participants and 

including multiple IMU channels can improve a deep learning model’s performance. The model 

needed 37,121 parameters (145 KB computer memory) to classify a sample, which was an 

improvement over the previous SVM model’s 1.6 MB memory requirement [39]. These results 

demonstrated deep learning model’s advantages for FOG detection when a larger dataset is 

available for training. However, better validations strategies (LOPO cross validation, etc.) may 

have produced lower results than a favorable train-test group split [38,51]. A stacking strategy was 

used to combine spectral domain information in current and previous windows, which increased 

the computational load [38,51]. However, a 16 batch size [38,51] or 128 batch size [52] was used 

to reduce time consumption in model training, and a 1 batch size has been recommended for the 
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best generalization error. (i.e., the difference in model’s performance over training and test 

datasets) [53].  

These deep learning methods reported good performance for FOG detection; however, the 

validation methods created uncertainty in model generalizability. More research is required to 

explore deep learning methods for FOG detection, especially when using sensor setups that are 

viable in a system that is worn all day by PwPD . Moreover, most FOG detection methods required 

signal preprocessing, which could increase the delay in a real time FOG detection system. More 

research is required to reduce or eliminate most time-consuming preprocessing steps.  

2.2.3 Recurrent Neural Networks 

A recurrent Neural Network is an artificial neural network that can model sequence data, 

taking a sequence as input and outputting a sequence. Unlike CNN, RNN input and output sizes 

are not fixed. RNN is used in speech recognition, music generation, sentiment classification, DNA 

sequence analysis, machine translation, video activity recognition, and other applications (i.e., 

where a standard neural network cannot be used). For these applications, each training and test 

sample varies in length, and features are learned across different positions/instances in the 

sequence. 

RNN architectures include “many to many” (for machine translation), “many to one” (for 

sentiment classification), and “one to many” (for music generation). A “many to many” RNN has 

a sequence input and sequence output. RNN uses information only from values earlier in the 

sequence (i.e., earlier from the present position) and not from the sequence ahead. Bidirectional 

RNN learn from information ahead in the sequence; however, bidirectional RNNs are not suitable 

for real-time systems because a decision can be made only at the sequence’s end. Bidirectional 

RNN were thus not explored in this thesis where the outcome must be applicable immediately 

from new streamed input in a wearable cueing control system. 

RNN output prediction at a time instance is computed with input at that time but also from 

previous time steps. At each time step, an activation is calculated and passed on to the next time 

step for the network to use. Typically, a zero vector forms the activation needed for the first time- 

step.  
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Figure 2.1: Recurrent Neural Network unrolled in time. 

Equations 2.4 and 2.5 depict forward propagation in an RNN, 𝑤𝑤𝑎𝑎 and [𝑎𝑎𝑡𝑡−1, 𝑥𝑥𝑡𝑡] are given by 

Equations 2.6 and 2.7, respectively. 

𝑎𝑎𝑡𝑡 = 𝑔𝑔1(𝑤𝑤𝑎𝑎[𝑎𝑎𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑎𝑎 ) (2.4) 

𝑦𝑦𝑡𝑡 =  𝑔𝑔2�𝑤𝑤𝑦𝑦𝑎𝑎 𝑎𝑎𝑡𝑡 +  𝑏𝑏𝑦𝑦� (2.5) 

𝑤𝑤𝑎𝑎 = [𝑤𝑤𝑎𝑎𝑎𝑎 𝑤𝑤𝑎𝑎𝑎𝑎] (2.6) 

[𝑎𝑎𝑡𝑡−1, 𝑥𝑥𝑡𝑡] = [𝑎𝑎𝑡𝑡−1 𝑥𝑥𝑡𝑡]𝑇𝑇 . (2.7) 

In Equations 2.4 to 2.7,  𝑎𝑎𝑡𝑡 is the activation at time t and 𝑥𝑥𝑡𝑡 is the input at time t. In these 

equations, 𝑤𝑤𝑎𝑎𝑎𝑎, 𝑤𝑤𝑎𝑎𝑎𝑎 and 𝑤𝑤𝑦𝑦𝑎𝑎 are the weights while 𝑏𝑏𝑎𝑎 and 𝑏𝑏𝑦𝑦 are the biases. Activation at time t 

is calculated using activation at time t-1, input at time t, weights (waa, wax) and bias 𝑏𝑏𝑎𝑎 , which 

are passed through an activation function 𝑔𝑔1. The activation function 𝑔𝑔2 is generally hyperbolic 

tangent (tanh) or rectified linear unit (ReLU). The output at time t is calculated using activation at 

time t, which is multiplied by weight 𝑤𝑤𝑦𝑦𝑎𝑎 and then bias 𝑏𝑏𝑦𝑦 is added before passing through 

activation function 𝑔𝑔2 (sigmoid or Softmax function). The weights and biases are shared across all 

time steps. An RNN unrolled in time is shown as a “many to many” architecture in Figure 2.1. 

2.2.4 Long Short-Term Memory  

Long short-term memory (LSTM) units were introduced to solve the vanishing gradients 

problem and thus allow RNNs to learn from longer sequences [25]. The vanishing gradients are 
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caused when gradients calculated at the output layer decrease exponentially with increasing hidden 

layers and are not able to backpropagate to the first few layers to update their weights. For an 

RNN, the gradient associated with later time steps does not affect the computations in earlier time 

steps. Gradients in a neural network are calculated based on the error between the network output 

and the true label that backpropagates through the network to update the weights iteratively.  

An LSTM unit calculates a candidate value based on the current input and the previous 

activation. Update and forget gates allow a memory cell to keep or forget the old candidate value 

while including a new candidate value. If the update and forget gates are set up correctly, an LSTM 

could retain the candidate’s value for a longer duration than a standard RNN, thus capturing long-

term dependencies.  

Equations 2.8 to 2.14 show forward propagation in an LSTM unit, where �̂�𝑐𝑡𝑡 is the candidate 

for replacing memory cell, 𝑢𝑢𝑡𝑡 is the update gate, 𝑓𝑓𝑡𝑡 is the forget gate, 𝑜𝑜𝑡𝑡 is the output gate, 𝜎𝜎 is the 

sigmoid function and ∗ denotes element wise multiplication. 𝑤𝑤𝑢𝑢, 𝑤𝑤𝑓𝑓, and 𝑤𝑤𝑜𝑜 represent the update 

gate, forget gate, and output gate weights, respectively. 

 

�̂�𝑐𝑡𝑡 = 𝑡𝑡𝑎𝑎𝑡𝑡ℎ(𝑤𝑤𝑐𝑐[𝑎𝑎𝑡𝑡−1, 𝑥𝑥𝑡𝑡] +  𝑏𝑏𝑐𝑐) (2.8) 

𝑢𝑢𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑢𝑢[𝑎𝑎𝑡𝑡−1, 𝑥𝑥𝑡𝑡] +  𝑏𝑏𝑢𝑢) (2.9) 

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑤𝑤𝑓𝑓[𝑎𝑎𝑡𝑡−1, 𝑥𝑥𝑡𝑡] +  𝑏𝑏𝑓𝑓� (2.10) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑜𝑜[𝑎𝑎𝑡𝑡−1, 𝑥𝑥𝑡𝑡] +  𝑏𝑏𝑜𝑜) (2.11) 

𝑐𝑐𝑡𝑡 =  𝑢𝑢𝑡𝑡 ∗ �̂�𝑐𝑡𝑡  +  𝑓𝑓𝑡𝑡 ∗  𝑐𝑐𝑡𝑡−1 (2.12) 

𝑎𝑎𝑡𝑡 =  𝑜𝑜𝑡𝑡 ∗ 𝑡𝑡𝑎𝑎𝑡𝑡ℎ(𝑐𝑐𝑡𝑡) (2.13) 

𝑦𝑦𝑡𝑡 = 𝑠𝑠𝑜𝑜𝑓𝑓𝑡𝑡𝑚𝑚𝑎𝑎𝑥𝑥�𝑤𝑤𝑦𝑦𝑎𝑎𝑡𝑡 +  𝑏𝑏𝑦𝑦� , (2.14) 

where 𝑏𝑏𝑢𝑢, 𝑏𝑏𝑓𝑓, and 𝑏𝑏𝑜𝑜 represent the gates biases. All the weights can be expanded in the same way 

as in Equation 2.6, and [𝑎𝑎𝑡𝑡−1, 𝑥𝑥𝑡𝑡] is given by Equation 2.7. Equation 2.12 shows how the candidate 

for replacing a memory cell, along with the update and forget gates, are used to decide the current 

entry in the memory cell. An LSTM unit’s pictorial representation is shown in Figure 2.2 [54]. 
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Figure 2.2: LSTM unit representation depicting how activation, memory state, and output at 

current time step are obtained from activation, input, and memory state at previous time step. 

An LSTM network reported 83.38% (SD 10%) accuracy for FOG detection when trained 

with acceleration data acquired from 10 participants (8 froze) [37]. The 3D acceleration signals 

were acquired from participants’ hip, knee, and ankle at 64 Hz frequency. The LSTM network was 

trained separately for each participant who froze, training on 70% the participant’s data and testing 

on 30% of the data. The LSTM network used 100 units followed by 2 fully connected layers and 

was trained without feature extraction [37].  The research demonstrated that an LSTM network can 

be used for FOG detection. However, the model reported a 10% standard deviation across the 8 

participants who froze [37].  Furthermore, accuracy is insufficient when validating on an 

imbalanced dataset. Since sensors are placed at multiple locations on participant’s body, this 

approach may be inconvenient as a wearable system. Since there were only 8 participants who 

froze and the LSTM model was trained separately for each participant, the generalizability is 

limited [37].  
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2.3 Freezing of Gait Prediction 

Since a FOG detection system provides a cue after the freeze has begun, falling risk due to 

freezing cannot be completely resolved. A preferred approach would be to predict the impending 

freeze and use a pre-emptive cue to help prevent the episode. Distinct FOG indicators can exist in 

gait parameters preceding a freeze episode [55]. Gait could deteriorate over a period of time as the 

person progresses into a freeze state (i.e., does not change abruptly). This period preceding a freeze 

is called pre-FOG [56] and has been predicted using IMU data [56], skin-conductance response 

(SCR) [5], and EEG data [57].  

Data collected just before a freeze episode is considered as pre-FOG data (and labelled “Pre-

FOG”). The Pre-FOG duration is determined empirically. Data collected before Pre-FOG is 

considered as non-FOG data (and labelled “Non-FOG”). A decision tree was used to classify Pre-

FOG, FOG, and Non-FOG 3D shank acceleration data (1 s windows, 0.25 s overlap) from the 

Daphnet dataset [50]. After under sampling the Non-FOG data, a 10-fold cross validation was 

performed with all the data [56]. The Pre-FOG F1-measure (classification performance measure: 

harmonic mean of precision and recall) increased as the Pre-FOG duration increased from 1 s to 6 

s [56]. On the other hand, the FOG and Non-FOG F1-measures decreased with increasing Pre-

FOG duration. Pre-FOG durations of less than 4 s resulted in Pre-FOG F1-measures less than 0.4, 

while Pre-FOG durations greater than 4 s resulted in FOG F1-measures less than 0.65 [56]. These 

results suggest that Pre-FOG duration is a tradeoff between Pre-FOG and FOG classification 

performance.  

A participant specific, anomaly-based model predicted 71.3% FOG episodes, 4.2 s in 

advance of a freeze [5]. Skin-conductance response (SCR) data were collected from 11 

participants. Eight features including mean, median, standard deviation, minimum, maximum, 

difference between minimum and maximum, and number of local maxima and minima were 

calculated from SCR data. To predict FOG, Pre-FOG and FOG data were treated as anomalies and 

multivariate Gaussian distribution (MGD) was used for anomaly detection with a 3 s Pre-FOG 

length [5]. A FOG prediction model was built for each of the 11 participants. This method was 

adopted after participant dependent (i.e, a different algorithm threshold needed for each 
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participant) and statistically significant (p < 0.01) changes were found in features extracted from 

SCR just before FOG episodes, compared to normal walking [5].  

FOG prediction using EEG data has shown promise [28,57]. A Wilcoxon Sum Rank test was 

used to select the best frequency and time domain features from EEG signals [57]. A multilayer 

perceptron neural network achieved 86.0% sensitivity and 74.4% specificity for FOG prediction 

using EEG data between 5 s and 1 s prior to FOG. In another study, EEG data was collected from 

16 participants with FOG symptoms. EEG signals were filtered using a band-pass and band-stop 

filter after visually removing artifacts. A 3-layer backpropagation neural network using time-series 

analysis achieved 85.56% sensitivity and 86.60% specificity on 5 held-out participant’s EEG data 

[28]. While EEG achieved good FOG prediction, the method required manual steps as well as 

preprocessing to remove noise [28]. Signals capturing different physiological 

or biomechanical parameters were used; however, further research is required to select a wearable 

sensor most suitable for FOG prediction.   

A SVM model, based on classifying predicted features, achieved 93% (SD 4%) sensitivity 

and 87% (SD 7%) specificity for FOG prediction [58]. 3D acceleration data (64 Hz) from 10 PD 

participants’ lower back, shank, and thigh were extracted from the Daphnet dataset [50]. Time and 

frequency-based features were calculated from each acceleration signal. Time series lag was 

calculated using autocorrelation. Future feature values were predicted using autoregressive models 

based on the time series lag [58]. A majority voting SVM fused 9 separately trained SVM 

classifiers to classify the predicted features as FOG or Non-FOG [58]. FOG was predicted within 

1.72 s. The majority voting SVM had high computational cost, making the model unsuitable for a 

real-time system. The model gave a biased result since, in a participant dependent setting (i.e, 

prediction model for each participant), for each test window, there could be a training sample that 

overlapped the test window. More research is required before FOG prediction 

systems could reliably move from a Pre-FOG classification approach to a time series prediction-

based approach.    

Recently, deep learning has been used for FOG prediction. A 2-layer LSTM network was 

used (each layer with 50 neurons) for a 2-class model with Pre-FOG and FOG classes together in 
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the target class [26]. The network was trained with a 1000 batch size while using Adam optimizer 

with the cross-entropy loss function. The model used 50% data from all 10 participants for training 

and the remaining 50% data for testing [26]. The LSTM network achieved 87.54% accuracy for 

1 s Pre-FOG duration, 85.54% accuracy for 3 s Pre-FOG duration, and 79.47% accuracy for 5 s 

Pre-FOG duration using acceleration signals [26]. A 2-layer LSTM network, when trained with 

Adam optimizer and cross-entropy loss function, can be useful for a FOG prediction model. Since 

the model used data from all participants in the training set, the model’s application on a new 

participant is limited. Only accuracy was reported as a metric, which gives a biased analysis when 

learning from an imbalanced dataset.   

2.4 Summary 

Given the debilitating effects of FOG, such as reduced mobility, inactivity, and falls, the 

need for a FOG detection and prediction system (to be used with a device for intervention) is 

apparent. Previous research has provided a foundation for FOG detection and 

prediction; however, most research has focused on participant-dependent models (i.e., model was 

only validated on a participant’s data, whose data was used for training the model) [5,26,36,37,58]. 

Since these models were not validated on an unseen participant’s data, their applicability to a new 

participant is limited. Furthermore, participant dependent models gave a biased result due to a 

correlation between training and validation samples, which have been acknowledged, but not 

completely mitigated [36,58].  A few FOG detection [38,51] and FOG prediction [28] models have 

been validated on a set of held-out participant’s data. However, the variation of the model’s 

performance (i.e., standard deviation) across different held out participants was not reported. In 

deep learning models, a high batch size of 128 [52] or a high batch size of 1000 [26] was used, 

which led to poor generalization. A batch size of 1 has been recommended for the best 

generalization error [53]. There is a need for validating a FOG detection or prediction model with 

a leave-one-participant-out cross validation and a batch size of 1. This will allow the model to be 

evaluated on an unseen participant’s data, and the performance variation across different 

participants can be known.    
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A FOG detection or FOG prediction model should aim to be wearable compliant. However, 

existing methods have used multiple sensors across different body locations making the 

sensors difficult to don and keep in place. Using plantar pressure insoles, which fit into 

participant’s shoes, may be less obtrusive and more wearable compliant. A FOG 

detection or prediction model should require minimum computer memory and minimum 

preprocessing (including signal filtering) without any manual steps so that the model can be 

deployed for a real time application (such as in a microcontroller with limited computational 

resources).  However, most research used noise filtering [28,40,57], manual steps [40], 

preprocessing such as combining windows in the spectral domain [38,51], or computationally 

intensive feature extraction [39,49] before FOG detection or prediction.  A FOG detection model 

should aim to reduce freeze detection latency without compromising the freeze detection 

accuracy.  Decreasing window length was found to decrease freeze detection latency at the cost of 

decreased freeze detection accuracy [36]. However, only a few studies have focused on finding 

and reducing freeze detection latency [36]. There is a need for a FOG detection and prediction 

system that requires fewer computational resources and decreases freeze detection latency without 

compromising accuracy.   

Plantar pressure data detailed in Section 2.2 have been used for rehabilitation [42-44] and 

fall-risk analysis [23]. LSTM networks detailed in Section 2.2.4 have been used for FOG detection 

[37] and FOG prediction [26]. Using LSTM networks with plantar pressure data, the following 

chapters provide an analysis to assess the hypothesis that plantar pressure data can be used for 

FOG detection and prediction.   
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Chapter 3 
Data Collection 

3.1 Research Overview 

The research described in this thesis aims to detect and predict FOG using plantar pressure 

data. Plantar pressure data from PD participants who show FOG symptoms are needed to train and 

validate a FOG detection or prediction model. Since no publicly available plantar pressure data 

from PD participants exist, the data needed to be collected. To collect data, PD participants 

were recruited and were asked to walk a Pre-defined freeze-provoking path while wearing plantar-

pressure insole sensors. Data were labelled and a dataset was generated after data collection.  

In preliminary modelling and testing in this research, classification algorithms performed 

poorly using raw plantar pressure data. This research was therefore continued with features 

extracted from plantar pressure data. The features were classified using an LSTM network for 

FOG detection and prediction. LSTM networks were trained on all but one participant’s data who 

froze during the test protocol and were validated on the held-out participant’s data. 

Hyperparameter tuning was done to find the best LSTM network architecture and training 

parameters for FOG detection. The best network was chosen based on the model’s sensitivity and 

specificity results over one-held-out participant’s data. The best LSTM network’s performance for 

FOG detection was further validated with one-freezer-held-out cross validation. The model was 

also validated on held-out participants who did not freeze during the test protocol.   

Since a FOG detection model should aim to detect freeze episodes with minimum latency, 

freeze detection latencies of the FOG detection model were calculated. FOG detection model 

performance was also investigated for different active (walking and turning) and inactive states 

(standing) during testing. Following this investigation, the FOG detection model was evaluated 

only on the active states, which led to an improvement in model specificity. For FOG prediction, 

data preceding freeze events (Pre-FOG) were relabelled to be included in the target class with FOG 

data. A binary classification was then done with the LSTM models for FOG prediction.   
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3.2 Participants and Inclusion Criteria 

A convenience sample of 11 male participants was recruited from the Ottawa-Outaouais 

community with mean age 72 years (SD 5.5), mean height 1.77 m (SD 0.04), mean weight 80 kg 

(SD 11.37), and a mean 12 of years (SD 3.77) since PD diagnosis. Eligibility criteria were PD with 

FOG at least once a week, able to walk 25 m unassisted (without a cane or walking aid) and not 

having a lower limb injury or other comorbidities that impaired their ability to walk. The 

participants must not have undergone deep brain stimulation therapy or have other conditions that 

impaired balance and walking. Participants were on their normal antiparkinsonian medication 

schedule and dosage. Ethics clearance was obtained at both the University of Ottawa and the 

University of Waterloo. All participants provided written informed consent to participate.  

3.3 Plantar Pressure Measurement  

Plantar pressure data were recorded during multiple walking trials at 100 Hz using FScan 

pressure sensing insoles (Tekscan, Boston, MA; Figure 3.1). FScan insoles are thin (< 1 mm) 

plastic film sheets with 3.9 pressure sensing cells per cm2 (25 cells per in2). The insoles were 

equilibrated before participant arrival by applying uniform pressure to the entire sensor and 

adjusting the sensor constants to produce a uniform output [59]. Equilibration was performed at 

138 kPa, 276 kPa, and 414 kPa.  

 

Figure 3.1: F-Scan system: A plantar pressure insole sensor (left) and sensors worn in shoes 

(right). 
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3.4 Clinical Assessment 

After providing informed consent, participants completed an information form that included 

disease history and medication schedule, New Freezing of Gait questionnaire, self-reported fall 

history questionnaire, and the Motor Examination section from the Unified Parkinson’s Disease 

Rating Scale (UPDRS III).  

3.5 Test Protocol 

Data collection was performed in the Movement Performance Laboratory at the University 

of Ottawa. Participants were weighed and then the plantar pressure sensors were trimmed and 

fitted into their shoes. The plantar pressure sensors were connected to a computer and data 

streaming was verified. F-Scan step calibration was performed (i.e., standing on one leg and then 

quickly transferring weight to the other foot, to calibrate sensors to body weight). Participants were 

asked to walk a Pre-defined 25 m path that involved navigating multiple cones (requiring two 90° 

and two 180° turns); walking as far into a narrow, dead-end hallway as possible (2.1 m tall, 1.2 m 

wide, 2.4 m long), turning 180°, and walking back to the starting position (Figure 3.2). Participants 

were asked to stop once (voluntarily) while walking back to the starting position. Participants 

would also stop at the end of each test trial.  

 

Figure 3.2: Walking Path. Participants started from a chair, walked straight, navigating multiple 

cones, walked as far into a narrow hallway as possible, turned 180°, and walked back to the starting 

position. Participants stopped (voluntarily) once while walking back to the starting position. 

Participants also stopped at the end of each test protocol.  



 

 23 

Walking trials were recorded using a smartphone camera so that the trials could be analyzed 

after collection and freezing instances could be labelled. The camera closely followed the 

participant throughout the walking trial. For each walking trial, participants stood up from a sitting 

positing and did a foot stomp before starting to walk. The stomp was later used to synchronize 

plantar pressure data and the video. Participants completed up to 30 trials. The first five trials were 

baseline trials in which the participants completed the walking path without any additional tasks. 

After five baseline trials, additional tasks were added if the participant did not freeze (Figure 3.3). 

These included verbal (continuously speaking as many words as possible beginning with a specific 

letter) and motor tasks (holding a plastic meal tray with both hands, with objects on the tray). These 

tasks were performed individually or simultaneously to obtain more freezing episodes. Different 

difficulty levels were used when performing the motor task; for example, starting with three small 

wooden blocks on the tray and adding additional blocks as needed, to increase difficulty. 

Alternatively, the blocks were replaced with an empty paper coffee cup, a sealed water bottle, or 

the participant was asked to carry the tray with only one hand. 

 

Figure 3.3: PD participant turning in a narrow hallway while holding a tray with a cup. Assistant 

follows for safety. 

3.6 Results 

A total of 241 minutes of walking data were collected, during which seven participants froze 

(Table 3.2). The data included 362 freeze episodes, with most freeze episodes corresponding to 
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Participant 7. A sample plantar pressure data frame from both feet of Participant 3 is shown in 

Figure 3.4. The blue regions indicate low pressure, dark blue regions indicate zero pressure, and 

yellow regions indicate higher pressure.   

Table 3.1: Data collection summary with freeze episodes, with mean and total duration for each 

participant. 

Participant Most affected 
side 

Number of FOG 
episodes 

Mean (SD) FOG 
duration (s) 

Total FOG 
duration (s) 

1 Right 49 0.69 (0.26) 34.05 
2 Left 35 2.64 (1.61) 92.35 
3 Left 14 1.06 (0.53) 14.88 
4 Left 0 - - 
5 Right 0 - - 
6 Left 10 4.23 (3.80) 42.29 
7 Right 221 1.52 (1.48) 336.2 
8 Right 24 1.51 (1.05) 36.16 
9 Left 9 0.75 (0.35) 6.74 
10 Left 0 - - 
11 Right 0 - - 

 

 

Figure 3.4: Plantar pressure array sample frame (kPa). Dark blue indicates zero pressure. 

  



 

 25 

Chapter 4 
Freezing of Gait Detection 

4.1 Data preprocessing and labeling 

Plantar pressure data were labelled using a custom-made GUI application in MATLAB 

R2019b (MathWorks, MA, USA). Trial video and plantar pressure frames were loaded and 

displayed in the GUI. Video and plantar pressure were synchronized using the right foot stomp of 

the participant at the start of each trial. The plantar pressure trial data start was set at the end of the 

spike in pressure. The video and plantar pressure data were viewed together, and each FOG episode 

start and end were marked in the video when detected. The program would then label all 

timestamps between the marked points as FOG and all other timestamps as Non-FOG.  

Plantar pressure data from a foot at each instant was a 60x21 matrix of pressure values. 

Plantar pressure data collected at each time instant were stacked together as a time series. Data 

from each trial by each participant were kept as a separate time series, with a label for each 

timestamp. This preserved the time series information in the data which would be lost if data from 

any two trials were concatenated or mixed. Plantar pressure data from both feet were kept separate.  

4.2 Experiment 1: FOG Detection with Raw Data 

4.2.1 Methods 

A 2D CNN network can classify a 60x21 matrix of pressure values (from each insole, at each 

time instance) into freeze events. However, a 2D CNN does not consider the data series and thus 

would fail to capture relevant time series information. Changing patterns over time is important in 

walking; thus, an LSTM network that captures time series relevant patterns could be better. A 

CNN could still be used to extract relevant features from each matrix of pressure values, before 

feeding these features to an LSTM network for classification.  

To determine a 2D CNN’s feature extraction capability with the plantar pressure dataset, a 

2D CNN model was trained with data from five PD participants to classify FOG, Non-FOG, or 

Pre-FOG.  Data acquired 2 s before all freeze episodes were relabelled as Pre-FOG and plantar 
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pressure data from both feet at each time instant were concatenated into a single 60x42 array. Since 

time series information was not needed for a CNN model, data from all trials with all participants 

were grouped together. The majority classes were undersampled, such that data in all three classes 

were equal in number. Data from all five participants were used for a 5-fold cross validation.   

The 2D CNN model had two convolutional layers, the first layer with 8, 3x3 filters and the 

second with 16, 3x3 filters (Figure 4.1, graphic inspiration from [60]). The filter stride (pixels 

shifted by the filter over the input data) was set to 1 in both convolutional layers. A 

batch normalization layer and a ReLU nonlinearity unit followed each convolutional layer. Each 

convolutional layer was followed by a max-pooling layer with 2x2 filter size and a stride of 1. 

After the second pooling layer, two fully connected layers were used, the first with 10 neurons and 

the second with 3 neurons. A Softmax unit provided the final classifier output. A piecewise 

learning-rate schedule was used with a 0.02 initial learning rate and a 50% decrease every 10 

epochs. The model was trained with Adam optimizer and 128 batch size for 45 epochs.  

 

Figure 4.1: 2D CNN classifier architecture. 

4.2.2 Results 

In the three-class classification for a 2 s Pre-FOG duration, the 2D CNN model achieved 

86.9% sensitivity and 95% specificity for Non-FOG class. For the FOG class, the model achieved 
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95.5% sensitivity and 96.5% specificity, while for the Pre-FOG class, the model achieved 86.9% 

sensitivity and 93.2% specificity.  These results were obtained after balancing both training and 

validation sets. However, balancing the validation dataset led to a biased result. The validation 

dataset should represent a real-world test dataset, which is imbalanced, and thus should reflect the 

original data imbalance.  

When the imbalanced dataset from all 11 participants was used to train and validate the 

model (5-fold cross validation), the model achieved 6.73% sensitivity for the Pre-FOG class, 

43.68% specificity for the Non-FOG class, and 65.75% sensitivity for the FOG class. These results 

showed that the CNN model could not be used for FOG detection or prediction when the dataset 

is imbalanced. Apart from data imbalance, training the CNN model with raw plantar pressure data 

can lead to overfitting, increased noise sensitivity, and poor generalization. Since the raw data had 

2520 (60x42) features, a CNN model would require a bigger dataset. Extracting handcrafted 

features from the plantar pressure data could reduce the number of features, thereby decreasing the 

population sample size needed for a network to learn patterns from the dataset. An approach based 

on handcrafted features was therefore tested, as described in Section 4.3.  

4.3 Experiment 2: FOG Detection with Features 

4.3.1 Feature Extraction 

A feature is a data attribute or characteristic. A model trained with extracted features tends 

to be simpler and thus less prone to overfitting. A simple model generalizes better on unseen 

samples and is less sensitive to noise and outliers. A set of 16 features were extracted from plantar 

pressure data as follows: 

• Centre of pressure coordinates (mm):  Centre of pressure (COP) coordinates were calculated 

as weighted average positions, where the force magnitude at each pressure-sensor cell was 

multiplied by the distance of the sensor cell from the origin, the resulting products for all 

cells summed, and the sum was divided by the total ground reaction force. The COP 

coordinates were originally in cell numbers (a plantar pressure insole sensor has a 60x21 cell 

grid, each 5.08 mm apart) and then converted to distance from the origin by multiplying the 
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cell position (in x or y direction) with the distance between two cells (5.08 

mm).  COP coordinates in x (lateral) and y (medial) directions for both feet were calculated 

at each timestamp. The COP for a foot was set to zero to remove noise, if the total GRF from 

that foot was less than 5% of the total GRF for both feet. 

• Centre of pressure velocity (cm/s): COP velocity was calculated by dividing the COP 

coordinates difference between two consecutive samples by the time difference between 

the samples. Since the plantar pressure data were collected at 100 Hz, the time difference 

between two consecutive samples is 0.01 s. COP velocity was calculated in both x and y 

axes for both feet.   

• Centre of pressure acceleration (cm/s2): COP acceleration was calculated by dividing the 

COP velocities difference between two consecutive samples by the time difference between 

the samples. COP acceleration was calculated in both x and y axes for both feet.  

• Total ground reaction force (kPa): Total Ground Reaction Force (GRF) was obtained by 

adding pressure from all pressure cells in the plantar pressure sensor. Total GRF was 

determined for both feet at each timestamp.   

• Fraction of total ground reaction force (unitless): Fraction of total GRF is the ratio of GRF 

from one foot divided by the total GRF for both feet. Fraction of total GRF was calculated 

for both feet at each timestamp.   

These features were used in all feature-based experiments. For FOG detection with extracted 

features, data from each trial by each participant were kept as a separate time series and the plantar 

pressure data from both feet were kept separate. Data were split into training and validation set by 

participant, i.e., all the data from a participant were either in a training or validation set for an 

experiment.  

4.3.2 LSTM Model 

FOG detection was defined as a binary classification task, where samples were classified as 

FOG or Non-FOG.  For all experiments in this thesis, LSTM networks were setup using a multiple-

input multiple-output architecture. Each LSTM layer returned the full sequence to the model’s 
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next layer. This allowed the model to classify each timestamp. LSTM layers used a hyperbolic 

tangent (tanh) activation function, followed by a time-distributed fully-connected layer (i.e., output 

at each time step passes through the fully connected layer) with 2 units and Softmax activation. 

Models were trained with Adam optimizer, using 0.9 decay rate for first and 0.999 decay rate for 

the second moment estimates and a cross entropy loss function.  

Most deep learning frameworks (e.g., Tensorflow) require that all sequences in the same 

batch have the same length for vectorization. Vectorization uses network weights and inputs as 

vectors, allowing vector multiplication rather than repetitive element-wise multiplications. Thus, 

deep learning frameworks are built to use vectorization, allowing them to speed up the network 

training process. If two samples in a batch vary in length, then the computations needed for both 

samples are different (based on the sample length) and thus both cannot be 

computed simultaneously. Sequences of different lengths can be handled by a 1-batch size. All 

LSTM models were evaluated using the model’s specificity and sensitivity on the validation set. 

4.3.3 Experiment 2a: LSTM Without Data Balancing 

A 2-layer LSTM model with 16 units in both layers was used for FOG detection. Data from 

all but one participant who froze during the trials formed the training set. Data from the held-out 

participant formed the validation set. The 2-layer LSTM model was trained with 0.01 constant 

learning rate for 30 epochs. The model failed to learn and classified every timestamp as Non-FOG. 

This was due to dataset imbalance, with most samples belonging to the Non-FOG class. 

4.3.4 Experiment 2b: LSTM with Balanced Training Set 

One way for a model to learn from imbalanced data is to randomly reduce the majority class 

samples in the training set while leaving the validation set untouched.  

4.3.4.1 Data Balancing Approach 1 

In a first data-balancing approach, the training set was built from:  

• Only FOG labelled data from all trials with a freeze.  
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• Trials without a freeze were randomly chosen and data were added to the training set 

until the number of FOG instances was equal to or greater than the number of Non-

FOG instances.  

A 2-layer LSTM network, with 16 units, followed by a time-distributed fully-connected layer 

with 2 units and Softmax activation was trained for 30 epochs with 0.01 constant learning rate. 

This experiment was completed with data from all 11 participants. The one held-out validation 

results had very high sensitivity and 0 specificity (i.e., model was classifying most data points as 

belonging to FOG class).  

4.3.4.2 Data Balancing Approach 2 

In a second data-balancing approach, the model was again trained on FOG data extracted 

from trials with a freeze. The model was also trained on complete trials with no freeze. However, 

this time, the number of trials in the training set with no FOG was equal to the number of freeze 

episodes. The one held-out validation results were 0 sensitivity and very high specificity (i.e., 

model classified most data points as the Non-FOG class).  

In both data-balancing methods above, the model was trained with instance labels in groups 

(i.e., all FOG labels in a freeze then all Non-FOG labels in a non-freeze period). Hence, the model 

classified data points together as a group, failing to properly classify transitions between Non-

FOG and FOG. The network was not trained on any time series where a transition between both 

classes occur. A model should be able to learn that:  

• both FOG and Non-FOG class data points occur in a group.  

• generally, the FOG data-points group should occur between Non-FOG data-points 

groups. Thus, the model should learn the transition from Non-FOG to FOG data points 

and the transition from FOG to Non-FOG data points.  

4.3.4.3 Data Balancing Approach 3 

Based on the insights from the above three methods to balance the data, a different method 

of balancing the dataset was tried. At first, the length of each freeze episode was calculated. If the 

number of Non-FOG data points both before and after the freeze episode were at least half the 
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number of data points in the freeze episode, then Non-FOG data points equal to half the number 

of FOG data points both before and after the freeze episode, along with the freeze episode were 

extracted as a Non-FOG, FOG, Non-FOG (data points with labels in that order) time series from 

the trial. This series of extracted data points formed a training sample of the model. Such training 

samples were balanced. 

 If for a freeze episode, the number of data points before or after the freeze episode were less 

than half the number of data points in the freeze episode, then more data points were taken from 

one side (before or after, as available) to compensate for the less availability of data points on the 

other side and make the extracted time series balanced. However, in a few cases, there were not 

enough Non-FOG data points before and after a FOG event (this happened when multiple FOG 

episodes occurred close to each other). In such cases, the FOG episode along with the available 

Non-FOG data between freezes was extracted. Such time series (and thus the training sample and 

training batch) was slightly imbalanced, with more FOG data points than Non-FOG.  This data 

organization performed well on one-held-out-freezer participant’s data and was used for all 

experiments on FOG detection. 

4.3.5 Experiment 2c: Determination of the Best LSTM Model 

The best performing data organization from Experiment 2b was used for training with 

several network architectures and learning rate combinations while using Adam optimizer, cross 

entropy loss function, and a batch size of 1 (Table 4.1). All the models had a time-distributed fully 

connected layer with 2 neurons and a Softmax activation after the LSTM layers.  

Table 4.1: LSTM Network configurations tried: Number of LSTM layers, number of units in each 

LSTM layer, different learning rate schedule were tried to find the best network configuration.  

Hyperparameter  Values tried  
Number of LSTM layers  1, 2, 3, 4, 5  
Number of units in each LSTM layer  16, 32, 64  
Constant learning rate  0.1, 0.01, 0.001, 0.0001  
Learning rate decay with a decay rate  
(decay rate, initial learning rate)  

(0.5, 0.005), (0.75, 0.001)  

Learning rate decreases in discrete steps  
(initial learning rate)  

Decreases to half every 5 epochs (0.01)  
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The 2-layer LSTM network was trained with 16, 32, and 64 units in both layers for 30 

epochs with a 0.01 constant learning rate. Using 16 units in each layer worked best. The 2-layer 

LSTM network’s performance did not improve beyond 30 epochs. Thus, in all subsequent 

experiments, the network was trained only until 30 epochs. With 16 units in each layer, networks 

with 1, 2, 3, 4, and 5 LSTM layers were trained. Networks with 1, 4, or 5 LSTM layers 

performed poorly. Thus, only networks with 2 LSTM layers (each with 16 units) and 3 LSTM 

layers (each with 32 units) were used for subsequent experiments.  

Different learning rates were explored for the 2- and 3-layer LSTM network; 0.1, 0.01, 0.001, 

and 0.0001 constant learning rates were used. Learning rate decay with 0.5 decay rate (0.005 initial 

learning rate) and 0.75 decay rate (0.001 initial learning rate) were tried. All the different 

learning rate schedules were outperformed by the learning rate schedule for which the learning 

rate was reduced to half every 5 epochs after starting from a 0.01 initial learning rate. The best 

performing models were used for FOG detection (Table 4.2). 

Table 4.2: Best performing LSTM network configuration for FOG detection.  

Network or training parameter  Values / Options  
LSTM layers (units in each LSTM layer)  2 layers (16 units) and 3 layers (32 units)  
Initial learning rate   0.01  
Learning rate decay  Decreases to half, every 5 epochs  
Optimizer  Adam optimizer  
Loss function  Cross entropy loss function  
Batch size  1  
Training epochs  30  

4.3.6 Cross Validation 

The aim of this research was to develop FOG detection and prediction models that could be 

applied on a new participant (a participant whose data the model has not been trained on). With k-

fold cross validation, where FOG and non-FOG data would be pooled from all participants and 

then separated into k folds, a participant’s FOG and non-FOG data would be used in both training 

and validation sets. Performance of the model on a new participant could thus not be determined. 

An alternative k-fold validation by participant would have too little freeze data in the training set, 

since only 7 participants froze. Therefore, participant held out cross validation was performed 

instead of k-fold cross validation.    
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Models were trained and evaluated with cross validation as follows:   

• One-freezer-held-out-cross-validation: The model was trained on data from all participants 

who froze during trials except one participant (who froze), on whose data the model was 

validated. This was repeated for each freezer, such that each freezer was in the validation 

set once (7 folds).  

• All-non-freezer-held-out validation: The model was trained on data from all participants 

who froze and was validated on all participants who did not freeze during the trials. This 

facilitated false positive assessment in situations where a participant does not freeze.  

Each feature was normalized using z-score normalization by subtracting the feature value by 

the feature’s mean and dividing by the feature’s standard deviation. The mean and standard 

deviation calculated on the training set was used for normalizing both the training and the 

validation sets. The process was repeated for each cross-validation test, where a new mean and 

standard deviation were calculated from the cross-validation's training set. Z-score normalization 

is useful for removing outliers and bringing all features to a similar scale.  One-freezer-held-out-

cross-validation and all-non-freezer-held-out validation were performed with the 2-layer and 3-

layer LSTM models after z-score normalization.  

4.4  Results 

The 2-layer LSTM model achieved 82.06% (SD 6.25%) sensitivity and 89.46% (SD 

3.60%) specificity in one-freezer-held-out cross validation (Table 4.3). The model achieved 

81.65% specificity in all-non-freezer-held-out validation (Table 4.4). The 3-layer LSTM model 

achieved a slightly improved 83.44% (SD 6.65%) sensitivity but a slightly lower 87.36% (SD 

5.42%) specificity than the 2-layer LSTM model in one-freezer-held-out cross validation (Table 

4.5). In all-non-freezer-held-out validation, using the 3-layer model improved the specificity to 

87.70% (Table 4.6). 
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Table 4.3: FOG Detection: One-freezer-held-out cross validation for the 2-layer LSTM model. 

Each LSTM layer had 16 units. LSTM layers were followed by a time-distributed fully-connected 

layer and a Softmax activation.  

Participant Held Out Sensitivity Specificity 
Participant 1 83.03% 92.50% 
Participant 2 77.17% 90.25% 
Participant 3 72.50% 92.76% 
Participant 6 85.90% 90.24% 
Participant 7 77.42% 89.53% 
Participant 8 86.18% 81.15% 
Participant 9 92.24% 89.76% 

Average 82.06% ± 6.25% 89.46% ± 3.60% 
 

 

Table 4.4: FOG Detection: All-non-freezer-held-out validation for the 2-layer LSTM model. Each 

LSTM layer had 16 units. LSTM layers were followed by a time-distributed fully-connected layer 

and a Softmax activation. 

Participant Held Out Sensitivity Specificity 
Participant 4,5,10,11 - 81.65% 

 
 

Table 4.5: FOG Detection: One-freezer-held-out cross validation for the 3-layer LSTM model. 

Each LSTM layer had 32 units. LSTM layers were followed by a time-distributed fully-connected 

layer and a Softmax activation.  

Participant Held Out Sensitivity Specificity 
Participant 1 83.64% 86.26% 
Participant 2 83.45% 90.08% 
Participant 3 71.70% 91.98% 
Participant 6 86.93% 90.71% 
Participant 7 77.13% 89.17% 
Participant 8 87.63% 74.72% 
Participant 9 93.56% 88.57% 

Average 83.44% ± 6.65% 87.36% ± 5.42% 
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Table 4.6: FOG Detection: All-non-freezer-held-out validation for the 3-layer LSTM model. Each 

LSTM layer had 32 units. LSTM layers were followed by a time-distributed fully-connected layer 

and a Softmax activation. 

Participant Held Out Sensitivity Specificity 
Participant 4,5,10,11 - 87.70% 

 

4.5 FOG Detection Latency 

FOG detection latency is the time difference between freeze onset and the time when the 

model detects the freeze. A freeze episode was detected correctly if the model classified a freeze 

during the true freeze period.  If multiple freeze classifications exist within the true freeze episode, 

the earliest classification was used to calculate freeze detection latency.  

With a 2-layer LSTM model (16 units) in one-freezer-held-out cross validation, 95% of 

freeze episodes were detected correctly (Table 4.7).  Seventeen freeze episodes from Participant 7 

and one freeze episode from Participant 8 were not detected by the 2-layer LSTM model. The 

model achieved a maximum 0.1 s (SD 0.32 s) average freeze detection latency for Participant 7. 

However, standard deviations were larger, up to 0.85 s (for Participant 8). A negative freeze 

detection latency means that, on average, freeze episodes were detected before the freeze started, 

as desired. 

Table 4.7: Average FOG detection latency and standard deviation in one-freezer-held-out cross 

validation with the 2-layer LSTM model. A negative freeze detection latency means that the freeze 

was detected before the true freeze onset, as desired. 

Participant Held 
Out  

Freezes - 
not 

detected  

Freezes  
correctly 
detected  

Average FOG detection 
latency (s) 

Participant 1  0  49  -0.23 ± 0.55  
Participant 2  0  35  0.02 ± 0.17  
Participant 3  0  14  0.08 ± 0.25  
Participant 6  0  9  -0.04 ± 0.36  
Participant 7  17  204  0.10 ± 0.32  
Participant 8  1  23  -0.55 ± 0.85  
Participant 9  0  9  -0.47 ± 0.74  

Total  18  343 -  
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4.6 False Positive and Not-detected Analysis 

Freeze episodes not detected and false positive classifications by the 2-layer LSTM model, 

across active (walking and turning) and inactive (standing) states are shown in Figure 4.2. For the 

2-layer LSTM model, 35.13% of false positives were during walking, 27.91% of false positives 

were during turning, 34.74% of false positives were during standing, and 2.22% of the data were 

not defined. Not defined refers to the beginning and the end of a trial when no specific activity 

was being performed. For the 2-layer LSTM model, 58.67% of misclassified freezes were during 

turning while 46.12% of misclassified freezes were during walking. 

 

Figure 4.2: False positives and misclassified freezes distributed across active (walking, turning) 

and inactive (standing) states with the 2-layer LSTM model. Not defined refers to the beginning 

and end of a trial when a participant was not performing a specific activity. 

Most standing states were misclassified as freeze by the model (Table 4.8). Almost no 

standing data were included in the final training set due to the data setup method (i.e., only freeze 

episodes, and data before and after the freeze episodes were included in the training 

set). Considering that standing state data could be classified using an activity recognition algorithm 

(not developed or implemented in this research) before FOG detection, the 2-layer LSTM model 

was also evaluated only on active states (turning and walking) and excluding standing. For the 2-
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layer LSTM model, in one-freezer-held-out cross validation, the mean specificity increased by 

3.8%, from 89.46 % (SD 3.6%) to 93.27% (SD 3.96%) when evaluating only on active states 

compared to classifying both active and inactive states, while the sensitivity decreased almost 

negligibly by 0.48% (Table 4.9). For all-non-freezer-held-out validation, the specificity increased 

from 81.65% to 88.39% (6.7% increase) (Table 4.10). 

Table 4.8: Percentage of active and inactive states resulting in false positives with the 2-layer 

LSTM model. 

Activity Percentage of activity resulting in false positives 
Standing 65.32% 
Walking 3.72% 
Turning 7.09% 

 

Table 4.9: FOG Detection: One-freezer-held-out cross validation using the 2-layer LSTM model 

only on active states and on both active and inactive states. The active states include walking and 

turning during the trials and excludes standing. 

Participant 
held out 

Only active states Both active and inactive states 
Sensitivity Specificity Sensitivity Specificity 

1 79.24% 95.79% 83.03% 92.50% 
2 77.16% 96.76% 77.17% 90.25% 
3 72.50% 93.64% 72.50% 92.76% 
6 85.89% 94.79% 85.90% 90.24% 
7 77.87% 92.33% 77.42% 89.53% 
8 86.18% 84.15% 86.18% 81.15% 
9 92.24% 95.43% 92.24% 89.76% 

Average 81.58% ± 6.26% 93.27% ± 3.96% 82.06% ± 6.25% 89.46% ± 3.60% 
 

Table 4.10: FOG Detection: All-non-freezer-held-out validation using the 2-layer LSTM model 

only on active states and on both active and inactive states. The active states include walking and 

turning during the trials and excludes standing. 

Participant held out Only active states Both active and inactive states 
Sensitivity Specificity Sensitivity Specificity 

4,5,10,11 - 88.39% - 81.65% 
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4.7 Discussion 

The new method for FOG detection using plantar pressure data detected 95% of freeze 

episodes correctly (Table 4.7). The new method was the first attempt to use an LSTM network for 

FOG detection in a LOPO cross validation. The results could be considered reliable due to the use 

of participant independent LOPO cross validation; however, more participant data should be added 

to improve reliability. The 3-layer LSTM model achieved a consistent specificity for participants 

who did not freeze during the trials with the participant who froze. In the literature, LSTM 

networks for FOG detection were not validated on data from an unseen participant (i.e, a 

participant, whose data the network was not trained with) [37]. The 2-layer LSTM model showed 

an improvement in specificity when classifying only the actives states. The model can be viable 

since only 16 features from plantar pressure data have been used after z-

score normalization without signal filtering. The 2-layer LSTM model needs 51 KB computer 

memory and can be stored on a microcontroller. Compared to SVM models [39,49] and a 1D CNN 

model [51], the new 2-layer LSTM model needs less computer memory (Table 4.11). The 2-

layer LSTM model achieved a better freeze detection latency than a random forest with 4 s 

windows [36]. The random forest had achieved 1.08 s (SD 0.73 s) freeze detection latency 

compared to the new 2-layer LSTM model’s 0.1 s (SD 0.3 s) maximum freeze detection latency.  

Table 4.11: Computer memory requirement of different models in KB. 

Model Computer memory requirement (KB) 
SVM [39] 1600 
SVM [49] 1490 

1D CNN [51] 145 
New 2-layer LSTM 51 

 

Compared to a SVM model [39] which achieved 84.49% sensitivity and 85.83% specificity 

on 15 participants in LOPO cross validation, the new 2-layer LSTM model in this research has 

slightly better specificity (89.46% (SD 3.6%)) but slightly worse sensitivity (82.06% (SD 

6.25%)). The SVM model had used 28 features from 1.6 s windows of IMU data after low pass 

filtering and required 1.6 MB computer memory compared to the LSTM model’s 16 features used 

with plantar pressure data without signal filtering.  The SVM model’s performance variations 
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across the 15 participants (as standard deviation) had not been reported [39]. On the other hand, 

the SVM model had a bigger sample size of 15 PD participants who froze, compared to the new 

LSTM model in this research, which had 7 PD participants who froze. 

When classifying only the active states, the new 2-layer LSTM model achieved a better 

sensitivity and specificity (in both mean and standard deviation) than a 4-layer 1D CNN model 

[52]. The 4-layer 1D CNN model achieved 74.43% (SD 9.79 %) sensitivity and 90.59 % (SD 

6.4%) specificity (only on active states) in LOPO cross validation on 8 participants. The 4-

layer 1D CNN was trained with a 128-batch size and would have worse generalization compared 

to the new 2-layer LSTM model, which uses 1-batch size. With 1 batch size, however, the network 

will take more time to converge to the global optimum. A batch size of 1 can also perform poorly 

in many applications, and thus a larger batch size should be used in those applications. With the 

2- and 3-layer LSTM models, however, 1-batch size has shown to perform well in FOG detection 

using the plantar pressure dataset.  Compared to the use of plantar pressure insoles in this research, 

the 4-layer 1D CNN in the literature used acceleration data from participant’s ankle, knee, and hip, 

which may be more obtrusive [52]. While wires and cuffs used with the plantar pressure insoles 

can also be obtrusive, more wireless technology is available. 

A 4-layer 1D CNN model using 9-channel IMU data from 21 participants achieved better 

sensitivity (91.9%) and similar specificity (89.5%) on 4 held out participants [51]. However, the 

1D CNN model required 145 KB computer memory. The 1D CNN model used 16 batch size 

leading to a slightly poorer generalization than the 2-layer LSTM model. The 1D CNN model had 

combined information from 2 consecutive 2.56 s windows in the frequency domain before 

classification, which would increase the computational cost [51]. The 4-layer 1D CNN’s 

performance improved from previous work by the research group where a similar model was used 

with a smaller dataset (15 participants) [38]. This shows that deep learning models for FOG 

detection, including the new 2-layer LSTM model, can benefit from adding more participants to 

the dataset.  

A k-means clustering algorithm [27] achieved a better sensitivity (92.4%) and specificity 

(94.9%) in a LOPO cross validation setting than the new LSTM model in this research. Entropy 
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was extracted from 1 s sliding windows (with 0.5 s overlap) of raw acceleration data from 10 PD 

participants. In a k-means clustering algorithm; however, outliers should be removed in advance. 

Further research on a larger dataset is required to validate the utility of unsupervised learning 

algorithms (i.e., learning algorithms which use unlabelled data) such as k-means clustering for 

FOG detection. 
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Chapter 5 
Freezing of Gait Prediction 

For FOG prediction, data collected just before a freeze episode was labelled as Pre-FOG. 

FOG is usually a 3-class classification problem, with the classes being Non-FOG, Pre-FOG, and 

FOG. FOG prediction has earlier been done as a binary classification [26], where data just before 

a freeze episode (Pre-FOG) and the freeze episodes were in the target class (i.e., the class which 

the model aims to detect) and the remaining Non-FOG data were in the non-target class. The same 

binary classification setup was used for FOG prediction in this research. The data length before a 

freeze (Pre-FOG duration) was chosen depending on the corresponding freeze episode’s length. 

For short freeze episodes, the gait deterioration (from normal walking into a freeze) was assumed 

to be short compared to longer freeze episodes. Based on this assumption, for all freeze episodes 

that were 2 s or longer, a 2 s Pre-FOG duration was chosen. For all other freeze episodes shorter 

than 2 s, a Pre-FOG duration equal to the corresponding freeze episode length was chosen.   

5.1 FOG prediction 

  Based on a freeze episode length, Non-FOG timestamps before FOG were relabelled to be 

included in the target class with FOG as Pre-FOG. For FOG detection with extracted features, data 

from each trial by each participant were kept as a separate time series and the plantar pressure data 

from both feet were kept separate. The 16 features extracted from plantar pressure data for FOG 

detection were used for FOG prediction. Data were split into training and validation set by 

participant, i.e., all the data from a participant were either in the training or validation set for an 

experiment. Data from all but one participant who froze during the trials formed the training set. 

Data from the held out participant formed the validation set. 

For the model to learn from the imbalanced data, the majority class samples in the training 

set were undersampled, while leaving the validation set untouched. To balance the training dataset, 

the length of each target class episode (which includes both Pre-FOG and FOG) was calculated. If 

the number of Non-FOG data points both before and after the target class episode was at least half 

the number of data points in the target episode, then Non-FOG data points equal to half the number 
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of target class data points both before and after the freeze, along with the freeze episode are 

extracted from the trial. This series of extracted data points formed a training sample of the model. 

This training sample (and a batch) was balanced.  

If the number of data points before or after the target class episode was less than half the 

number of data points in the target class, then more data points were taken from one side (before 

or after, as available) to compensate for the less availability of data points on the other side and to 

make the extracted time series balanced. However, in a few cases, there were not enough Non-

FOG data points before and after a target class. In such cases, the target class episode along with 

the available Non-FOG data were extracted. Such time series (and thus the training samples) were 

slightly imbalanced, with more data points of the target class than of the non-target (Non-FOG) 

class.  

The model architecture and training parameters that performed best for FOG detection were 

used for FOG prediction (Table 5.1). A 2-layer LSTM model with 16 units in each 

LSTM layer and a 3-layer LSTM model with 32 units in each LSTM layer were used for FOG 

prediction. The LSTM layers in both of these models were followed by a time-distributed fully 

connected layer with 2 units and Softmax activation. Both the 2-layer and the 3-layer LSTM 

models were trained with the Adam optimizer, a cross entropy loss function, and 1-batch size. A 

learning rate schedule was used with a 0.01 initial learning rate, which was decreased by half every 

5 epochs. 

One-freezer-held-out cross validations and all-non-freezers-held-out validation were 

performed. In one-freezer-held-out cross validations, the model was trained on data from all but 

one participant who froze and was validated on the held-out participant. The one-freezer-held-out 

cross validations were repeated for each participant who froze during the trials (7 folds). The all-

non-freezers-held-out validation was performed by training the model on data from all participants 

who froze and validating on all participants who did not freeze during the trials.   
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Table 5.1: Network configuration used for FOG prediction. The 2-layer LSTM network had 16 

units in each layer while the 3-layer LSTM network had 32 units in each layer. LSTM layers were 

followed by a time-distributed fully-connected layer and Softmax activation.  

Hyperparameter  Value / Options  
LSTM layers (units in each LSTM layer)  2 layers (16 units) and 3 layers (32 units)  
Initial learning rate   0.01  
Learning rate decay  Learning rate decreases by half every 5 epochs  
Optimizer  Adam optimizer  
Loss function  Cross entropy loss function  
Batch size  1  
Training epochs    30  

 

5.2 Results 

The best mean sensitivity and specificity were obtained after 4 training epochs for the 2-

layer LSTM model and after 3 training epochs for the 3-layer LSTM model. The 2-layer LTSM 

model achieved 75.8% (SD 12.59%) average sensitivity and 76.9% (SD 7.15%) average specificity 

in one-freezer-held-out cross validation (Table 5.2). The same model achieved a higher 84.5% 

specificity for participants who did not freeze during the walking trials (i.e., Participants 4,5,10, 

11) (Table 5.3). For the 3-layer LSTM model, average sensitivity decreased to 74% (SD 12.48 %) 

and specificity increased to 82.9% (SD 5.75%) (Table 5.4). However, the 3-layer model’s 

specificity on participants who did not freeze decreased to 69.4% (Table 5.5). 

Table 5.2: FOG Prediction: One-freezer-held-out cross validation with the 2-layer LSTM model 

after 4 training epochs. 

Participant held out  Sensitivity Specificity 
Participant 1 66.96% 86.21% 
Participant 2 97.24% 74.11% 
Participant 3 90.16% 62.05% 
Participant 6 69.13% 83.21% 
Participant 7 61.83% 78.28% 
Participant 8 65.50% 77.96% 
Participant 9 80.31% 76.98% 

Average 75.88% ± 12.59% 76.97% ± 7.15% 
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Table 5.3: FOG Prediction: All-non-freezer-held-out validation with the 2-layer LSTM model 

after 4 training epochs. 

Participant held out Sensitivity Specificity 
Participant 4,5,10,11 - 84.5% 

 

Table 5.4: FOG Prediction: One-freezer-held-out cross validation with the 3-layer LSTM model 

after 3 training epochs. 

Participant held out  Sensitivity Specificity 
Participant 1 78.83% 84.88% 
Participant 2 94.04% 79.11% 
Participant 3 82.20% 71.17% 
Participant 6 71.51% 83.26% 
Participant 7 51.54% 90.36% 
Participant 8 64.68% 86.09% 
Participant 9 75.33% 86.05% 

Average 74.02% ± 12.48 % 82.99% ± 5.75% 
 

Table 5.5: FOG Prediction: All-non-freezer-held-out validation with the 3-layer LSTM model 

after 3 training epochs. 

Participant held out Sensitivity Specificity 
Participant 4,5,10,11 - 69.4% 

 

5.3 Discussion 

The new 3-layer LSTM model for FOG prediction using features extracted from plantar 

pressure data achieved good specificity; however, improvement in sensitivity is desired. The new 

3-layer LSTM model, with 74.02 % (SD 12.48%) mean sensitivity and 82.99% (SD 5.75%) mean 

specificity performed better than a multilayer perceptron neural network that did FOG prediction 

using EEG data [57]. The multilayer perceptron neural network achieved 73.19% mean sensitivity 

and 80.16 % mean specificity in classifying data between 5 s and 1 s before freeze onset for 5 held 

out participants using wavelet energy [57].  
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A backpropagation neural network using EEG signals from 16 participants and time series 

analysis predicted FOG with 85.56% sensitivity and 80.25% specificity on 5 held-out 

participants [28]. This result had better sensitivity but worse specificity than the new 3-layer 

LSTM model. Since EEG signal artifacts were removed with visual inspection and the signal 

needed to be filtered [28], the noise and complex pre-processing make the EEG approach 

challenging for use in a wearable system. 

Most FOG prediction models in the literature have been set in a participant dependent setting 

(i.e., all participant’s data used in both training and test set). For example, a 2-layer LSTM network 

was trained using all participant’s 50% data and was tested on the remaining 50% [26]. While the 

model achieved 87.54% accuracy in FOG prediction with 1 s Pre-FOG duration and 85.54% 

accuracy with 2 s Pre-FOG duration [26], the results cannot be generalized on new participants 

because all participant’s data were used both in the training and validation set. Furthermore, the 2-

layer LSTM network in [26] will lead to poor generalization, since it was trained using a large 

1000-batch size compared to the new 3-layer LSTM model’s 1-batch size. 

In another participant dependent setting (i.e, modeled and trained on the same participant’s 

data), autoregressive (AR) models were used to predict feature values that were classified using a 

majority voting Support Vector Machine (SVM) [58].  A separate predictive model was built for 

each participant, achieving 93% (SD 4%) mean sensitivity and 87% (SD 7%) mean specificity. 

The majority voting SVM fused the results from 9 separately trained SVM classifiers, which made 

the model computationally expensive. Since the same participant’s data were used both in the 

training and validation set, the results were biased due to the correlation between overlapping 

windows in the training and validation set. Compared to the new 3-layer LSTM model that used 

plantar pressure insoles in this research, the SVM model had used IMUs placed at participant’s 

lower back, shank, and thigh, which would be more obtrusive [58]. Since a separate predictive 

model was built for each participant, the SVM model’s validity could not be generalized to a new 

participant.   
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Chapter 6 
Conclusion 

Freezing of Gait is an incapacitating problem for people with advanced stage Parkinson’s 

disease. While many research outcomes have been reported in the literature, FOG is still a problem. 

The research in this thesis was undertaken to determine if plantar pressure data could be effective 

for FOG detection. After data collection and preprocessing, features were extracted from plantar 

pressure data and were used to train LSTM models. For FOG detection, a 2-layer LSTM model 

achieved comparable results with existing literature. The approach of using plantar pressure insole 

sensors rather than IMU can be useful for FOG detection and prediction, since the entire sensor 

and electronics can be easily worn in footwear and would thus be unobtrusive and not affect 

movement.  

6.1 Conclusions Related to Objectives 

6.1.1 Determine if an LSTM network can detect FOG episodes with sensitivity > 92.4% (SD 
1.2%) and specificity > 94.9% (SD 2.3%) [27] in a person-independent model using only 
plantar pressure data.  

The new LSTM model for FOG detection using plantar pressure data achieved a lower 

82.06% (SD 6.25%) sensitivity and 89.46% (SD 3.6%) specificity than the benchmark results that 

were obtained using the K-means clustering algorithm (an unsupervised learning algorithm) and 

IMU data [27]. When classifying only active states, the new LSTM model with plantar pressure 

data achieved a comparable 93.27% (SD 3.96%) specificity with the K-means clustering algorithm 

with IMU data. LSTM models have an advantage of not being highly susceptible to outliers, unlike 

the K-means clustering algorithm. 

6.1.2 Determine if an LSTM network can predict FOG episodes with sensitivity > 85.86% 
and specificity > 80.25% [28] in a person-independent model using only plantar pressure 
data.  

The new 3-layer LSTM model achieved a greater 82.99% (SD 5.75%) specificity but a lower 

74.02% (SD 12.48%) sensitivity than the benchmark results. However, the results by the new 
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LSTM model in this research are more reliable since the results were obtained in a participant-

held-out cross-validation setting, compared to the benchmark results, where the model was 

validated on 5 held out participants without a cross validation. The new LSTM models used plantar 

pressure data without any signal filtering, while the benchmark results were obtained used EEG 

signals which needed manual steps and preprocessing to remove noise. Furthermore, plantar 

pressure insoles are easier to use in a wearable system compared to EEG sensors.  

6.1.3 Determine if an LSTM network can achieve the benchmarks in a) and b) using custom 
features extracted from only plantar pressure data.   

The LSTM network using the 16 features extracted from plantar pressure data could not 

achieve the benchmark results for FOG detection. For FOG prediction, the LSTM network using 

the extracted features performed better than the benchmark in terms of specificity but could not 

achieve the sensitivity benchmarks. The new FOG detection and prediction models, however, used 

data from plantar pressure insoles which can be less obtrusive than EEG and IMU sensors in a 

wearable device. The current model of plantar pressure used wires and cuffs, which can also be 

obtrusive in a wearable system; however, a wireless system is available [61]. 

6.1.4 Determine if an LSTM network can achieve FOG detection and prediction, with similar 
specificity between participants who did not freeze during the walking trials and 
participants who froze during the trials. 

For FOG detection, the 2-layer LSTM model achieved a lower specificity (81.65%) for 

participants who did not freeze compared to 89.46% (SD 3.6%) specificity for participants who 

froze. The 3-layer LSTM model achieved a better specificity (87.70%) for participants who did 

not freeze. For FOG prediction, the 3-layer LSTM model achieved a lower specificity (69.4%) for 

participants who did not freeze compared to 82.99% (SD 5.75%) specificity for participants who 

froze. The 2-layer LSTM model achieved a better specificity (84.5%) for participants who did not 

freeze for FOG prediction. The models that performed best for participants who froze performed 

slightly worse for participants who did not freeze during the trials, since a higher false positive 

rate occurred for participants who did not freeze than for those who froze. In a practical application 
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of the freeze detection or prediction system, it may be more important to achieve fewer false 

negatives to avoid missing a freeze and tolerate false positives as unnecessary cues. 

6.1.5 Determine if only classifying FOG during active states (i.e., walking, moving, etc.) can 
reduce freeze episode misclassification and false positives by an LSTM network. 

For FOG detection, most data during an inactive state (standing) were misclassified by the 

model. When classifying only the active states, the performance of the 2-layer LSTM model 

improved. The mean specificity increased by 3.8% while the sensitivity decreased by 0.48%. The 

specificity by the model had increased to 93.27% (SD 3.96%) which is comparable to the objective 

of achieving specificity greater than 94.9% (SD 2.3%). Thus, coupling the FOG detection system 

with an activity recognition system can decrease the false positives by the detection model, while 

the correctly detected FOG remains unaffected.  

6.2 Future work 

This research showed that features extracted from plantar pressure data can be reliably used 

for FOG detection with LSTM models. The thesis also showed that FOG detection models could 

move away from the window-based approach, which could save critical time in real-time 

implementation without compromising on freeze detection performance. To improve the new 2-

layer LSTM model’s performance, more features could be explored while including only the best 

features selected by a feature-selection technique. The training dataset used for the new LSTM 

models did not contain standing activity data, thus the standing data (inactive state) in the 

validation set were misclassified as FOG by the model.  An energy threshold-based approach 

could be implemented to classify data corresponding to inactive states before FOG detection. 

Model performance for FOG prediction should be improved before implementation, and a 

different approach may be needed for this task. Models based on time series prediction can be 

explored for FOG prediction. The network configurations that performed best for FOG detection 

were also used for FOG prediction. Hyperparameter optimizations should be done again for the 

FOG prediction task, which may lead to an optimal network architecture and training parameters 

for FOG prediction.  
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A personalized model could be made with transfer learning. The final few layer’s weights in 

a participant independent deep learning model could be trained with the target participant’s data. 

Apart from training the model with a larger dataset, future work could implement the LSTM model 

in a microcontroller for real-time FOG detection and prediction. 
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